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Abstract

We present a simple and operational yet rigorous framework that
combines current methods of bank solvency stress tests with a descrip-
tion of fire sales. We demonstrate the applicability of our framework
to the EBA stress testing exercise. Fire sales are described by an
equilibrium model which balances leverage improvements and drops
in security prices. The differences in bank losses caused by fire sales
are significant and go beyond the trivial fact that with deleveraging we
will get bigger losses. It is shown that ignoring potential deleveraging
effects can show institutions as resilient which are in fact fragile and
thus create a false sense of resilience.
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Non-Technical Summary

While deleveraging has been widely acknowledged as one of the key ampli-
fiers of financial distress the considerations of such mechanisms in bank solvency
stress tests have not been widely adopted. One reason might be the concern
that augmenting an already complex framework might overburden a practical
stress testing exercise. We present a simple and operational yet rigorous frame-
work that can be combined with actual stress testing procedures and is firmly
rooted in empirical knowledge about price impact. We demonstrate the appli-
cability of our framework to the EBA stress test and put the evaluation of losses
using a traditional methods into direct comparison with an evaluation of losses
that takes potential deleveraging effects into account. The data show that the
differences are significant and go beyond the trivial fact that with deleveraging
we will get bigger losses. It is shown that ignoring potential deleveraging effects
can show institutions as resilient which are in fact fragile and thus create a false
sense of resilience.



1 Introduction

When undertaking a solvency stress test for banks, the consequences of a
stress scenario are judged by evaluating a financial loss function. The goal is
finding out, whether in a hypothetical extreme economic environment banks
have sufficient capacity to absorb the resulting financial losses and to continue
operations. Bank stress tests currently evaluate losses by applying estimated
risk parameter values to quantify potential future losses given a certain
financial exposure. Amplification of these losses by the attempt of banks to
improve their individual financial position by selling assets in distress are not
considered. While it has often been acknowledged that in financial distress
losses are often substantially amplified by such deleveraging effects, their
consideration in actual stress tests have not yet been widely adopted.1 The
reason is, perhaps, that stress testers fear this might overburden an already
complex framework.

In this paper we show a practical way to incorporate deleveraging effects
into the evaluation of losses which is both simple and that can be combined
with stress testing models currently in place very easily. We substantiate
this claim by applying our framework to the published stress test data of
the European Banking Authority to compare a stress test with and without
taking deleveraging processes into account.

We present both conceptual as well as empirical results. The core of
our conceptual result is that insights from market microstructure theory
can be combined with a very simple yet credible behavioral model of bank
reactions in distress to understand the impact of fire selling in terms of
equilibrium ideas. We capture this concept by a constructive fixed point
argument (Theorem 1) which gives us at the same time an algorithm to
compute deleveraging impacts (Theorem 2).

In the data part of the paper we use our deleveraging framework to
undertake a thought experiment. Using the published data of the 2016
stress test of the European Banking Authority (EBA) we ask: How would a
loss assessment for banks under the traditional approach compare to a loss
evaluation that takes potential deleveraging into account. We demonstrate
that the outcome differs materially. Not only does it differ in the trivial way
of leading to larger losses. We can also see that important institutions can get
into trouble indirectly because assets sales take place in the entire banking
system. Thus banks which look resilient in the traditional approach look

1An important institution that has taken fire sales into account in their stress testing 
practice is the Bank of England, who has taken a pioneering role: “The Bank has also 
considered the risks of amplification through sales of commonly held assets. The Bank 
has adapted the methodology developed by Cont and Schaanning [2016], which seeks to 
quantify a) the impact of the sales of traded securities on the prices of those securities, and 
b) the realised and mark-to-market losses that result from asset sales. Contagion occurs 
when one or more banks sell assets held by other banks, leading to a fall in asset values 
and mark-to-market losses for those banks”. See Bank of England [2017][1, p. 41].
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fragile when losses are evaluated more comprehensively and - as we believe -
also more realistically. The data show that the order of magnitude in which
losses can differ under the two approaches is non-negligible. The results
suggest that the traditional approach might create an illusion of resilience
which is in fact not as strong as it appears.

Fire sales and deleveraging have been very prominent topics in the
literature of the last ten years. So we contribute to an already very large
literature. Before we place our paper into the context of our most important
references, let us explain where we see the new contribution of this paper.

Most importantly, we transform some of the abstract ideas from the
huge theoretical literature into concepts that can be practically applied,
easily combined with approaches already used and which are firmly rooted
in the empirical research on market micro structure theory when it comes
to the modeling of price impact. While most applied papers in the field are
based on simulation, we give a rigorous analysis of potential deleveraging
impact and point out potential pitfalls that might occur in a simulation
based framework. For instance, a very popular assumption on deleveraging
behavior - proportional selling of marketable assets - will not necessarily lead
to a unique outcome. We show that still in such situations we can give lower
and upper bounds for losses. Many theory papers on deleveraging often do
not make the step to actual applications. In our paper we give an integrated
view of both theory and actual stress testing data from the field. One way
to see our main contribution is thus perhaps this: We synthesize and distill
a large literature on fire sales and bank distress in a way which gives stress
testers a framework which they can directly apply and integrate into what
they already have. The code as well as all the compiled and raw data we use
for this project is available to the interested reader in a GitHub repository.2

Our paper builds on Cont and Schaanning [2016]. It differs in two main
respects. In Cont and Schaanning [2016] the results of deleveraging on
price impact are based on pure simulation, while our paper embeds this
approach into a theoretical framework, which perhaps both reveals more
clearly what is going on and at the same time allows for a more efficient and
cleaner computation of price impact. In the data part Cont and Schaanning
[2016] are focused on triggers of deleveraging waves and the role of liquidity
weighted overlapping portfolios. We focus, in contrast, directly on the EBA
stress test and the difference we can see when a loss evaluation with and

2https://github.com/Martin-Summer-1090/syslosseval. From the GitHub repos-
itory one can download the package sources code as a zip archive by pressing the 
green right upper button which says “Code”. The raw data and the R-scripts 
which compile the data-sets used in the paper are in a tar.gz archive in the 
folder “data-raw” (syslossevel raw data.tar.gz). You can find instructions how to un-
tar and unzip this archive on Windows and Mac for example here: https://www. 
uubyte.com/extract-tar-gz-bz2-on-windows-mac.html; or on Linux here: https://
smarttechnicalworld.com/how-to-extract-unzip-tar-gz-file/
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without deleveraging is compared. Such an analysis of the data aiming at 
a direct comparison between the two approaches can not be found in their 
paper.

Our paper is also closely related to the work of Cont and Wagalath [2016], 
Braouezec and Wagalath [2018], Feinstein and El-Masri [2017], Detering 
et al. [2020], Aymanns et al. [2018] as well as Veraart [2020]. Pioneering 
papers of applied deleveraging analysis which are closely related are also 
Greenwood et al. [2015] as well as Duarte and Eisenbach [2013]. The most 
important papers in the market microstructure literature, which we use to 
base our impact model on are Kyle and Obizhaeva [2016], Bouchaud [2017] 
and Caccioli et al. [2012].

Section 2 sets up our model. Section 3 explains the key theoretical 
results of the paper. Section 4 is the data part of our paper with the direct 
comparison of the traditional approach to loss evaluation with our own. 
Section 5 contains conclusions. A detailed appendix contains formal proofs 
of the two theorems, an example of an instance of the model where multiple 
fire selling equilibria can occur as well as a detailed guide to the data sources 
with an explanation how we compile the data for our analysis.

2 The banking system and its exposure

2.1 Present state of the banking system

Given is a set B of banks labeled b = 1, . . . , B. For each bank b we can 
observe the value of security and loan exposures on its asset side as well 
as the value of its equity on the liability side. Furthermore, we assume to 
have additional information about bank assets which allows us to categorize 
security holdings by mapping them to a given set I of different security 
classes labeled i = 1, . . . , I and loan exposures into a given set J of loan 
asset classes labeled j = 1, . . . , J . By assumption, all of these figures can be 
observed at a given point in time denoted t = 0.

One way to compactly describe the exposures of the banking system at 
this observation period is to write the value of security exposures across 
banks and security classes at time t as a B × I matrix Stbi, b = 1, . . . , B, 
i = 1, . . . , I. The value of loan exposures across banks and across loan classes 
is given by the B × J matrix Ltbj , b = 1, . . . , B, j = 1, . . . , J . Whether the 
values are market values or accounting values depends on the data source 
from which we retrieve the exposure values.

The equity holdings in the banking system at time t are described by a 
B × 1 vector et. We assume that at the observation time t = 0 we observe 
only solvent banks, so e0 is strictly positive. Sometimes it is convenient to 
write equity in matrix form as a B × B diagonal matrix with the values e0 

on the main diagonal. In this case we write E0 for the equity holdings at 
t = 0.
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Assets Liabilities

S0
b1I D0

b

L0
b1J e0b

a0b = S0
b1I + L0

b1J
λ0b = (S0

b1I + L1
b1J)/e0b

Table 1: Balance sheet of bank b ∈ B at t = 0. The data provide information on S0
b ,

L0
b , and e0

b for all banks b. Debt Db is the aggregate residual figure S0
b1I +L0

b1J − e0b .

We denote by 1I an I × 1 vector with all components 1 and similarly
vector 1J . Using these vectors we write Stb1I for the total value of securities
holdings of bank b and Ltb1J for the total value of loan holdings of bank b at
time t.3

This description leads to a stylized balance sheet of a bank b at time
t = 0, which is shown in Table 1. The value of assets and leverage for the
entire banking system are given by the B × 1 vectors

a0 =
(
S01I + L01J

)
(1)

λ0 =
(
E0
)−1 (

S01I + L01J
)

(2)

2.2 Future state of the banking system

We fix a given future time horizon, denoted as t = 1. The value of the bank
holdings in securities, loans and equity at this horizon is risky and unknown
as of t = 0. Formally this is captured by assuming that the values of the
components of a1 and λ1 at t = 1 are all random variables on a probability
space (Ω,F ,P).

But for some states ω the values of assets and leverage additionally
depend on potential market and bank reactions to these value changes. We
try to capture behavioral reactions observed in the recent and also in previous
financial crises. Factoring in behavior during distress is important for the
evaluation of potential bank losses in a modern banking system. Especially
the big banks, which are the main focus of regulators and the public, today
depend very strongly on financial markets both for funding as well as for
their asset management. There is a long and rich literature on mechanisms
of loss amplification through capital markets. Some important references are
Brunnermeier and Pedersen [2009], Shin [2010] and Geanakoplos [2009]. We
attempt to model these effects in a way that can be brought to data and can

3The current regulatory regime is based on risk weighted assets. Risk weighting can be 
considered in our model by choosing vectors wI ∈ [0, 1]I and wJ ∈ [0, 1]J of risk weights 
instead of 1I and 1J . In the current discussion we ignore risk weighting.
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at the same time be combined with more traditional loss evaluation models
used in current stress tests.

When we talk about behavioral reactions it is important not to get
confused about the time horizon at which uncertainty due to external shocks
and further relevant loss events due to behavior take place. This is the
simplest modeling choice we can think of: On the one hand we have the time
period from t = 0 to t = 1 which is the time horizon for our random variables
on the probability space (Ω,F ,P). It describes the external uncertainty
banks face at t = 1. Once exogenous uncertainty is resolved, this can in
certain states of the world trigger further behavioral reactions.

In the context of our model we want to focus on potential asset sales
once leverage is higher than a threshold level. In the model we will not
go into the details of exactly why leverage levels trigger asset sales. Our
formulation is compatible with different deleveraging stories based on the
level of actual leverage. One that focuses on the aim of banks is the motive
to stay above some thresholds which banks themselves see as critical for
their own operations as for instance in Cont and Schaanning [2016]. Our
model would also be consistent with a story where upon the breach of some
threshold other investors withdraw funding from the bank, because they
become concerned with the viability of that institution, which must then
sell assets to raise the cash to fill the funding gap. This is referred to as the
interaction of market and funding liquidity by Brunnermeier and Pedersen
[2009]. One example of the detailed modeling of such a mechanism is given,
for example, in Cont and Wagalath [2013].

It is important to keep in mind that the value changes due to asset sales
are realized after uncertainty at t = 1 is resolved. One way to think about
this is that as long as shocks are not too strong banks can cope with their
regular business and a static and purely stochastic description of balance
sheets will capture most relevant events in terms of financial stability. Once
this threshold is exceeded we can not abstract anymore from behavior and
have to factor in its consequences for losses more precisely. Behavior in
financial distress becomes amenable to somewhat realistic modeling, because
in distress and at the typically short time horizon – let us call it τ – behavioral
options are restricted to very few things a bank can do.

So our time line has in fact two periods. One period ranges from t = 0
to t = 1. In this period exogenous uncertainty is resolved. The value of
securities holdings changes from S0

b1I to S1
b (ω)1I . The value of loan holdings

changes from L0
b1J to L1

b(ω)1J . The value of equity changes from e0b to
e1b(ω) = e0b + (S1

b (ω)1I + Lb(ω)1J)− (S0
b1I + L0

b1J).
In the second period, from t = 1 to t = 1 + τ behavioral reactions and

their effects on bank values unfold. Here τ is the expected time over which
these behavioral reactions take place.4

4Note that this time structure is similar to the discrete time model in Cont and Wagalath
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Figure 1: The value of positions is determined by exogenous uncertainty modeled by
random variables on a probability space (Ω,F ,P) and by market and bank reactions.
While exogenous uncertainty is resolved at t = 1 the consequences of behavioral
reactions unfold over an expected time period τ starting at t = 1.

Assets Liabilities

S1
b (ω)1I D1

b

L1
b(ω)1J e1b(ω) = e0b + (S1

b (ω)1I + L1
b(ω)1J)− (S0

b1I + L0
b1J)

a1b(ω) = S1
b (ω)1I + L1

b(ω)1J
λ1b(ω) = (S1

b (ω)1I + L1
b(ω)1J)/e1b(ω)

Table 2: Balance sheet of bank b at t = 1. The value of its total assets is a1b(ω) and
its leverage is λ1

b(ω).

We have now a new state of the banking system given by a new stylized
balance sheet of a bank b at time t = 1, which is shown in Table 2. The
value of assets and leverage for the entire banking system at t = 1 are given
by the B × 1 vectors

a1(ω) =
(
S1(ω)1I + L11J(ω)

)
(3)

λ1(ω) =
(
E1(ω)

)−1 (
S1(ω)1I + L1(ω)1J

)
(4)

Assume that for some state ω and some bank b leverage changes from

λb
0 to λb

1(ω). There is, however, a threshold λ∗ above which the bank needs 
to sell some of its liquid positions, which in our model (as well as in a 
real situation) are securities, to rebalance its portfolio such that leverage is 
restored back to that threshold. We denote the share of marketable assets 
that are sold in the market by ban b by θb. As we have explained above, this 
is very much reduced form model in which we do not go into the details as 
to why exactly the selling takes place.

In this paper we focus on the analysis of how to model losses arising from 
fire sales. We do not model the exogenous stochastic shocks in any detail. 
We have described the assumed probability component up to now to make 
clear how our loss model is embedded in the wider stress testing framework.

[2013] where exogenous uncertainty unfolds from tk to ∗ and behavior unfolds from ∗ to 
tk+1.
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Assets Liabilities

S1
b (1I − δ)(1− θb) D0

b − θbS1
b (1− δ)

L1
b1J e1b − S1

b δ

a1+τb = S1
b (1I − δ)(1− θb) + L1

b · 1J
λ1+τb =

S1
b (1I−δ)(1−θb)+L

1
b1J

e1b−S
1
b δ

Table 3: Balance sheet of bank b ∈ B at t = 1 + τ with price impact. The value
of its total assets is a1+τ and its leverage is λ1+τ . The asset sale has an ambiguous
effect on the new leverage. On the one hand, debt can be reduced with the proceeds
from the sale. On the other hand, by the price impact the bank is facing a valuation
loss on its assets at t = 1 + τ relative to t = 1. The loss affects the share of the assets
sold as well as the value of the shares kept on the balance sheet. This loss has to be
absorbed by equity and increases leverage. The total effect depends on the size of the
price impact.

Since we do not use the stochastic component in the following we do not
explicitly write the variables at t = 1 as functions of the state ω from now
on to economize on notation.

At the time of fire sales the value of a security i exposure equals only
1− δi times its value before fire sales, where 0 < δi < 1 is the price drop due
to fire sales. We assume that we can interpret the change in the value of
the position as coming from an impact to prices. So we interpret δi as the
price impact of fire sales on security i. The price impact on all securities
is denoted by the vector δ = (δ1, . . . , δI) which is the vector of fire sales
discounts as percentage of pre-sales prices.

Fire sales discounts imply that security exposures do not have a value of
S1
b1I but S1

b (1I − δ). This has consequences on the value of equity:

e1+τb = S1
b (1I − δ)(1− θb) + L1

b1J − (D0
b − θbS1

b (1I − δ))

= S1
b (1I − δ) + L1

b1J −D0
b (5)

Therefore the loss in equity as a result of fire selling is

e1+τb − e1b = S1
b (1I − δ)− S1

b1I = −S1
b δ (6)

The balance-sheet mechanics of the delveraging process is shown in Table 3
If the bank is able to bring its leverage back to λ∗ or lower it will stabilize. 

This might, however, turn out to be infeasible. While the outflow of debt 
reduces Db and thus leverage, the loss on security values increases leverage. 
Thus it can happen that it is not be possible for the bank to reach the target, 
even if it sells its entire security portfolio.
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3 Fire sales equilibrium

3.1 Individual bank behaviour

Let ω ∈ Ω be a given realization of risk factors at t = 1 and assume there is
a bank b for which λ1b(ω) > λ∗. It is assumed that this bank will then begin
to sell securities to achieve the target leverage λ∗.

The bank understands that selling assets at time t = 1 will have a price
impact on the sold asset classes at t = 1 + τ expressed as a vector δ ∈ [0, 1]I .
From the viewpoint of the individual bank this impact vector δ is regarded as
a parameter in its decision. It is not the choice of the bank but is determined
in the market.

A leverage threshold λ∗ specifies the maximum leverage a bank is allowed
to have. If the leverage of the bank is below λ∗ the bank is fine and there is
no further need for action. If the leverage is above λ∗ the bank has to sell
part of its security portfolio to bring its leverage back to λ∗.

Assume that some bank—not necessarily bank b —has to sell securities.
Then we denote by λb,min the leverage after fire sales if bank b sold its whole
security portfolio, and by λb,max the leverage if bank b sold no securities.
Both λb,min and λb,max depend on the fire sale price discount δ.

Assumption 1. If the leverage λ1b of a bank b is larger than the required λ∗,
it sells the same proportion θb of all types of securities it holds. 0 ≤ θb ≤ 1,
assuming that bank b must not go short in securities (θb ≤ 1) and that it does
not buy securities (0 ≤ θb) in a fire sale when it already violates the leverage
constraint. We assume the loan portfolio cannot be sold on the time scale τ
of fire sales. The proceeds from selling the proportion θb are used to reduce
debt.

Leverage after fire sales depends on the price impact δ of fire sales (see
Table 3). So do λb,min and even λb,max, although the latter results from the
bank not selling itself any securities. But the value of securities held by the
bank is affected by fire sale price effects triggered by other banks.

We make the following assumption on bank behavior and fire selling,
which details Assumption 1:

Assumption 2. At t = 1 the bank decides about its participation in the
fire sale. In this decision it assumes some price impact δ of the fire sales.
We assume the bank decides to sell the following proportion of its securities
portfolio:

θb(δ) =


1 if λ∗ < λb,min(δ) or if e1b ≤ 0

1− λ∗(e1b−S
1
b δ)−L

1
b1J

S1
b (1I−δ)

if λ∗ ∈ [λb,min(δ), λb,max(δ)]

0 if λ∗ > λb,max(δ)

(7)
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The fire sale proportion in equation 7 can easily be computed from solving
the expression for leverage at 1 + τ in Table 3 by setting λ1+τ = λ∗ and
solving for θb. From 7 we can derive the expressions for λb,min and λb,max as

λb,min(δ) =
L1
b1J

e1b − S1
b δ
, λb,max(δ) =

S1
b (1I − δ) + L1

b1J
e1b − S1

b δ
. (8)

λb,max(0) is the leverage of bank b at t = 1.
If we focus on the idea that the breach of a trigger level of leverage 

initiates the fire-sale of securities, then the assumption that the banks strive 
to get back to a leverage target value seems reasonable. For this modeling 
decision it does not matter why exactly the breach of the trigger initiates 
security sales. The motives from sales could come from the banks’ own 
attempt not to exceed a certain level of leverage. It could also come from the 
fact that other banks who are concerned with too high leverage withdraw 
funds and thereby force a sale of securities.

Since we are interested in a model which can be used in applications, 
we are interested in making the model as simple as possible. We are aware 
that the practical decision, which asset classes to sell and in which precise 
amounts is complex. Banks might consider the market liquidity, the risk 
weights (see Braouezec and Wagalath [2018]) and perhaps also other aspects.

A particularly simple assumption we make in this model is that banks sell 
a constant share of value uniformly over all security classes (Assumption 1). 
While this is unrealistic, in terms of modeling it leads to a great simplification 
of the description of bank behavior. The reason is that — as in Cont and 
Schaanning [2016]– this allows to determine the share from the goal to achieve 
a certain leverage target only.

Why do we choose such a simple and mechanical decision rule, when we 
could try modeling the decision rule of banks in a more general way? Our 
short answer is that given the very coarse precision of the data and a lack 
of systematic empirical evidence on how banks actually behave in an actual 
fire sale situation, it seems reasonable to use a simple rule, and make the 
model thus easier to use in actual stress tests.

The literature has considered more sophisticated behavioral models. For 
instance Braouezec and Wagalath [2018] consider an optimization problem, 
where banks choose an optimal liquidation strategy based on risk weights. In 
this case the decision requires the solution of a linear programming problem for 
each state of the world. Braouezec and Wagalath [2019] model the fire sale 
decision as a strategic equilibrium problem where banks choose a to play 
Cournot Nash quantity strategies with certain constraints. This also needs 
the solution to an optimization problem in each state of the world. Detering et 
al. [2018] assume a general sales function which depends in a systematic way 
on the ratio of losses to equity.
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Our approach allows to determine the sales decision based on the con-
straint λ∗ alone and leads thus to a very simple decision rule. Without any
detailed evidence giving a basis to guide the modelling on bank securities
selling behaviour under distress there is no clear “best” way how to model
the security selling decision. Our approach leads to the simplest meaningful
decision rule, we could think of. It can be easily implemented in applications.
Given that a fire sale model is perhaps not able to give a quantification of
effects beyond a rough estimate of orders of magnitude the level of behavioral
detail in modeling the decision rule we choose in this paper, might be all
that is needed.

3.2 Price impact

If each bank b sells a proportion θb(δ) of its securities portfolio, the total
volume of security i which is sold on the market is

qi(δ) =
∑
b

S1
b,iθb(δ), (9)

where S1
b,i is the value of security position i held by bank b at time t = 1.

Following the market micro-structure literature we assume that the price
impact on a security asset class i is some function of the total volume of
this security sold in the market. We denote this function by ϕ and make the
following:

Assumption 3. The price impact of selling a certain volume of security i
is described by a function ϕi from RI+ to [0, 1]I which we assume to have the
following properties: ϕi(0) = 0, ϕi is strictly increasing and continuous and
for all i ∈ I, ϕi < 1, more specifically

ϕi

(∑
b

S1
b,i

)
=: δi,max < 1. (10)

The precise shape of the price impact function ϕ is a question actively 
discussed in the market microstructure literature. For a recent overview see, 
for example, Bouchaud [2017].

We derive our specific impact function by relying on recent work of Kyle 
and Obizhaeva [2016]. They postulate and empirically test two market micro 
structure invariance principles. These invariance principles essentially claim 
that there exists a deeper structure in financial markets so that some salient 
characteristics of trades do neither depend on time nor the particular asset 
class. One of them relates to transaction costs. They show that market 
micro-structure invariance implies a transaction cost model where the 
percentage costs of trading of a particular asset is proportional to the 
product of volatility, two invariant constants and a general invariant price 
impact function.
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The shape of that function can be determined only empirically. The
invariance principles are shown to approximately hold for equities. However,
the authors express belief that they likely hold for other asset classes including
bonds. Following the empirical literature on price impact we assume that
this function is a square root function (see Bouchaud [2017]).

δi,max is the price discount resulting when the maximal quantity of
security i, namely the total holdings of all banks, is sold. Denote the vector
(δ1,max, . . . , δI,max) by δmax. We assume that the maximal price discount
is smaller than one. Even if all banks sell their full security holdings, the
price of the securities will not be zero. This assumption ensures that θb(δ)
defined in (7) is well defined. The price impacts of all security sales are
ϕ(q1, . . . , qI) := (ϕ1(q1), . . . , ϕI(qI)).

Using the square root specification we get:

ϕi(qi) = σiκ

√
qi

ADVi
(11)

where qi is the aggregate volume in value terms (say Euro or Dollar) of
security i sold in the market, κ is a constant of order unity independent of
the asset class and ADVi is the average daily volume (turnover) of security i.

Our equation (11) is consistent with Kyle and Obizhaeva [2016] equation
(18) under the assumption that their constant κ0 = 0. This last condition
implies that spread costs are ignored. Unobservable quantities in their model
are absorbed in our constant κ. Following the terminology of Kyle and
Obizhaeva [2016] the quantity qi is the “aggregate bet”. In the invariance
equations the original expressions contain bet volatility and bet volume. Both
of these quantities are defined for the business time τ , in their terminology.
Expressing these two quantities in terms of observable variables, daily returns
volatility and average daily volume, bet volatility scales as

√
τ while bet

volume scales as τ . As a result the τ dependence of price impact cancels out
in the square root case.5

3.3 Fire sales equilibrium

To make a specific loss assessment for a given state of the world ω we
determine the price discount by applying an equilibrium idea. Given a
discount vector δ, we can think of our bank behavior equation (7) as a
security supply decision by banks. We have explained why we prefer in the

5Cont and Schaanning [2016] use different impact functions based on exponential 
functions rather than the square root function. In their specification, therefore, τ has to be 
specified to pin down the price impact. We stick to the square root function because the 
literature presents some evidence that this function is actually often observed in the 
context of price impact events (see Bouchaud [2017]). Note that our results do not depend on 
the exact form of the impact function but only on Assumption 3. The impact functions used 
in Cont and Schaanning [2016] do - for instance - fulfill Assumption 3 and could therefore 
be used as well.
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particular context to derive this supply decision from a simple leverage target
rule rather than from optimizing behavior, more usually applied in economics
and finance. The impact function ϕ can be thought of as an inverse demand
function which describes the price reactions that can be expected in the
security markets for a given volume sold. In a fire-sale equilibrium supply
and demand balance. The ultimate price impact is the discount vector which
achieves this balance. Note that a bank only knows its own fire sales behavior
but not the behavior of other banks, which depends on their balance sheets.
Our concept therefore applies a non-strategic, competitive-equilibrium idea.

Definition 1. Given a state ω ∈ Ω at t = 1 a fire-sale equilibrium is given
by a pair (q∗(δ∗), δ∗) such that:

1. For every bank b ∈ B:

θb(δ
∗) =


1 if λ∗ < λb,min(δ∗) or if e1b ≤ 0

1− λ∗(e1b−S
1
b δ

∗)−L1
b1J

S1
b (1I−δ

∗)
if λ∗ ∈ [λb,min(δ∗), λb,max(δ∗)]

0 if λ∗ > λb,max(δ∗)

(12)
with q∗(δ∗) = (S1)Tθ(δ∗), where (S1)T denotes the transposed security
holdings matrix S1

bi, b = 1, . . . , B, i = 1, . . . , I.

2. Security supply equals security demand:
(ϕ1(q

∗
1(δ∗)), . . . , ϕI(q

∗
I (δ
∗))) = δ∗

To make our equilibrium concept useful for an application we have to 
show that under our assumptions a fire sales equilibrium actually exists. We 
furthermore need to give a constructive procedure how such an equilibrium 
can be computed given our data. Let us start with existence first.

Theorem 1. Given Assumptions 1 - 3 and λ∗ > 1 a fire sale equilibrium 
exists.

Proof. A proof is given in the appendix.

The idea of the proof uses the fact that the map ϕ ◦ q turns out to be 
an order preserving self map on the complete lattice D := {δ = (δ1, . . . , δI ) : 
0 ≤ δi ≤ δi,max}. By the Knaster-Tarski fixed point theorem, we can then 
deduce that a fixed point exists and that the set of fixed points of ϕ ◦ q 
contains a minimal and a maximal element.

Note that our concept of a fire sale equilibrium also allows for the case, 
where no fire sales take place. In the appendix we give a proof that δ = 0 is 
a fixed point of φ ◦ q if and only if all banks have λ∗ > λb,max(0) in (7).

At first sight this result may appear of only limited use in a stress test 
application. While in this paper we focus on the evaluation of losses, in a fully 
fledged stress test, we also have a risk factor distribution in the background.
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So if we associate to each state of the world ω ∈ Ω a corresponding behavioral
reaction, we can not say what the ultimate loss will be in this state, since
there are in general several possibilities.

Still, we argue that the order theoretic setup of the model provides
additional structure that is useful, because it allows for cases where we do
not have a unique fixed point, to give upper and lower bounds for the fire-sale
losses. This allows us to assess the losses by giving a lower (optimistic) and
an upper (pessimistic) bound. Whether a particular loss scenario ends up in
a unique fixed point or in several fixed points can not be said in general. In
the appendix we give an example which demonstrates that we can not hope
for uniqueness of the fixed point in general, given our setup.

3.4 Computing a fire sales equilibrium

Based on a version of the Kleene [1952] fixed point theorem formulated by
Cousot and Cousot [1979] we can also give a constructive procedure of how we
can compute the minimum and maximum fixed points. This is indispensable
for applying our method to data. This result is formulated in the following:

Theorem 2. Starting from δ = 0, an iteration of the map ϕ ◦ q converges to
the least fire sales equilibrium: (ϕ ◦ q)n(0)→ δ∗min. Starting from δ = δmax,
an iteration of the map ϕ ◦ q converges to the greatest fire sales equilibrium:
(ϕ ◦ q)n(δmax)→ δ∗max.

Proof. A proof is given in the appendix.

We call δ∗min the least and δ∗max the most severe fire sales equilibrium.
Note that in many cases we will have δ∗min = δ∗max and the fire sale equilibrium
is unique.

3.5 The state of the banking system after fire sales

Denote the fixed point of ϕ◦q by δ∗ with δ∗ ∈ D. In the fire sales equilibrium
the selling decision of bank b is θb(δ

∗). Denote these selling decisions by θ∗b .
The balance sheet parameters of the banks after fire sales are

S1+τ
b = S1

b (1J − δ∗)(1− θ∗b ) (13)

L1+τ
b = L1

b (14)

e1+τb = e1b − S1
b δ
∗ (15)

λ1+τb =
S1
b (1− δ∗)(1− θ∗b ) + L1

b1J
e1b − S1

b · δ
∗ . (16)

After fire sales no bank sells any more securities—either because its leverage 
is smaller or equal to the required λ∗, or because it has already sold its entire

securities portfolio. If we choose δ∗min we get the least and if we choose δ∗max 
we get the most severe state of the banking system after fire sales.
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4 An application of systemic loss evaluation to
public EBA data

We now analyze a data-set published by the European Banking Authority 
(EBA). It is from the 2016 EBA stress testing exercise. It contains exposure 
as well as impairment data and was the basis of the pan European bank 
solvency stress test of 2016. This data-set allows for comparing the risk 
assessment that would result from the standard EBA methodology and from 
our loss evaluation method, which takes into account potential deleveraging 
effects.

From this analysis we can see both how our ideas can be applied to a 
practical stress testing situation and it simultaneously gives us some first 
ideas of the quantitative importance of such an extended evaluation of 
potential losses. It gives us only a first idea, because the data allow us 
considering only a limited set of marketable securities, which are held on the 
bank balance sheet. We cannot look beyond government bonds and beyond 
the on balance sheet items. There is nothing, however, in our framework 
that would exclude in principle a wider consideration if data were available. 
It also gives us only a first idea because the loss evaluation is derived from an 
assumption about bank behavior which is not yet empirically validated. We 
are confident, however, that our framework is flexible enough to accommodate 
more elaborate and more realistic behavioral models of the fire sale process.

4.1 Organizing the EBA data into stylized bank balance sheets

We now give a brief high level description of our data. A more detailed 
description is given in the appendix. Readers interested in every detail of the 
data compilation can consult our GitHub repository cited in the introduction.

In the annual transparency exercise EBA discloses detailed bank-by-bank 
data for given reference dates, usually June and December. Information is 
published for a wide set of banks across 26 countries at the highest level of 
consolidation in the European Union (EU-27) and the European Economic 
Area (EEA) as well as for some banks from UK. The data are made available 
on the EBA web-page and provide disclosure on banks’ assets and liabilities, 
capital positions, risk exposure amounts, leverage exposures and asset quality 
as well as information on sovereign exposures.

Biannually the EBA also conducts a bank solvency stress test for the 
largest banks in the European Union and the European Economic Area. The 
sample of banks is smaller than in the transparency exercise. The selection 
threshold is at a value of total assets larger than 30 billion Euro.

Under some assumptions on the aggregation of data, detailed in the 
appendix, and using our theoretical computational framework of fire-sale 
equilibrium, we can construct stylized balance sheets for each bank at t = 0, 
t = 1 and t = 1 + τ described in our respective Tables (1), (2) and (3).
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Assets Liabilities

Central banks and central governments: Loans
Central banks and central governments: Bonds
Institutions
Corporates
Retail Debt
Equity
Other non credit obligations
Residual Position Core Tier 1 equity

Table 4: Balance sheet of bank b ∈ B at t = 0.

The stylized balance sheet we get in this way for each bank for the 2016 
data is given in 4. This scheme uses the asset classification of the reporting 
standard according to the internal rating based approach (IRB) at the highest 
level of consolidation.

We need to explain a few features of this scheme in more detail: Not 
all banks report to the EBA according to the IRB standard. Some banks 
report assets partially also according to the standard approach (STA). To 
organize the data into a unique scheme like in Table (4) we have to make an 
assumption about how we map STA into IRB classifications, where necessary. 
The detailed assumption how we do this is described in the appendix.

Observe that as for the position “central banks and central government”, 
we split the position into loans and (sovereign) bonds. Thus when we bring 
our model to the EBA data, sovereign bonds are the only on balance sheet 
marketable assets for which we have exposure information. The price impact 
effects of distressed deleveraging can thus only be partially described given 
our data.

Finally observe that in our organization of the data we use an asset class 
called “Residual Position”. This position is constructed as the difference 
between the sum of the value of all asset positions reported as exposed to 
credit risk in the stress test and the value of total assets reported by banks in 
their annual reports. That such a gap can be not only negative (total value 
of EBA assets smaller than total assets) but also positive (total assets smaller 
than total value of EBA assets) is a consequence of the regulatory reporting 
framework. A more detailed analysis of these (sometimes substantial) gaps 
is given in the appendix.

4.2 How do the data look like? Some summary statistics

We now give a brief descriptive overview of our data. Table 5 displays some 
descriptive statistics for the distribution of total assets, the (unweighted) 
ratio of Core Tier 1 equity over total assets, the leverage ratio λ as well as
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the share of the value of sovereign bonds in the value of total assets of the
2016 EBA stress test exposure data. We can see that all of the 51 banks in
this sample have total assets of at least 30 billion euro. The average capital
ratio is at about 5% with a standard deviation of 2 percentage points. The
equity base, if computed without the usual Basel II risk weighting, shows
a relatively thin equity base overall. The leverage ratio shows the same
information (just expressed as the inverse of the tier 1 capital ratio). We
display it here because it is a critical ratio in our behavioral model. From
the table we see that even without any shock or stress there is at least one
bank with a leverage ratio way above the critical threshold. The average
value of sovereign bond holdings in this sample is about 8%.6

Statistics Total assets CET1 ratio Leverage ratio Bond ratio

Min 33.70 0.02 7.70 0.01
Q25 154.08 0.04 17.55 0.05
Median 234.57 0.05 20.47 0.07
Q75 744.83 0.06 23.31 0.11
Max 2218.57 0.13 47.35 0.30
Mean 526.53 0.05 20.87 0.08
StDev 548.06 0.02 6.55 0.06

Table 5: Summary statistics of the data from the 2016 EBA stress testing exercise.
There are 51 banks in the sample. The table shows the minimum value the 25%
quantile, the median, the 75% quantile, the mean and the standard deviation for
total assets, the ratio of equity to unweighted total assets (CET1 ratio), the ratio of
(unweigthed) total assets over Core Tier 1 equity (Leverage ratio) as well as the share
of the total value of sovereign bond exposures in total assets. All figures are in billion
Euro.

The key variable in our analysis is leverage. Leverage is not only critical
for the overall resilience to shocks– what is usually studied in traditional
stress testing – but it is also critical for potential deleveraging and thus loss
amplification processes. Figure 2 shows that already without any stress, in
both samples there are banks which already exceed the threshold of λ∗ = 33
even without any shock.7

4.3 The EBA 2016 bank solvency stress test

Let us now study our first case, the EBA 2016 stress test. We want to go
through the following thought experience: Let us first look at the published
stress test data first and observe the assessment which resulted from this

6This corresponds to estimates given in the literature. For example Gennaioli et al.
[2018] for report a figure of 9% in a sample of 191 big banks around the globe.

7The Basel 3 framework sets the minimum required leverage at 3 % which is why we
(defining leverage as exposure/capital in contrast to Basel which uses capital/exposure) set
λ∗ at this particular value.
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Figure 2: Histogram of leverage in the 2016 EBA stress testing banking sample. The
dashed (red) line is the critical leverage threshold above which in our model behavioral
reactions are taken into account in the evaluation of losses. In this particular figure
the critical threshold is set at λ∗ = 33.

analysis. We then ask the hypothetical question: How would our assessment 
have looked like if we had factored in the potential deleveraging effects as 
captured by our framework. In the comparison of these two cases we then 
can understand how and to which extent both approaches differ.

The sample of banks which participated in the 2016 EBA stress test 
consisted of 51 banks from 15 EU and EEA countries, 37 from SSM countries 
and 14 from the Denmark, Hungary, Norway, Poland, Sweden and the UK. 
The scenario considered in the stress test assumed a deviation of EU GDP 
from its baseline level by 3.1% in 2016, 6.3% in 2017 and 7.1% in 2018. It 
furthermore considered a shock in the residential and commercial real estate 
prices, as well to foreign exchange rates in Central and Eastern Europe under 
the adverse scenario. The assumption on the advanced economies, including 
Japan and the US were a cumulative GDP growth between 2.5% and 4.6%
lower than under the baseline scenario in 2018. For the main emerging 
economies the stress test assumed total GDP between 4.5% and 9.7% below 
the baseline projections in 2018, with a stronger impact for Brazil, Russia 
and Turkey. Finally the stress test defined an adverse scenario for a number 
of key prices such as long term interest rates, FX rates, stock prices, inflation 
and swap rates. These scenarios are processed by the participating banks 
to “translate” them by their own analytical frameworks into impairments
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according to the EBA methodology (European Banking Authority [2016a]).
The results of the stress test is reported in European Banking Authority
[2016b].

Let us note for the following that we do not reproduce the EBA stress
test exactly here, since we do not implement the full EBA methodology for
this analysis. We do, for instance, not consider risk weighting, we do not
consider (exogenous) market risk and operational risks and we do not model
income flows but confine ourselves to balance sheets only. The reason why
we take so many bold shortcuts here is to focus on the key question of this
section: How does a loss assessment based on the EBA data differ between
an approach where we use impairments only from one where we factor in
additional losses from deleveraging. While the EBA stress test makes a
stress assessment focused on 8 different metrics8 we focus for our purposes
on leverage, equity losses and the number and size of affected institutions.

Results under the assumption of no deleveraging Let us first look at
the pure credit risk losses implied by the EBA data under the adverse scenario
in terms of the leverage ratio λ. This plot may be compared with Figure 13
on page 23 of European Banking Authority [2016b]. The comparison shows
that the leverage numbers look very similar, despite of the fact that we do
not reproduce the EBA stress test exactly.9. From Figure 3 we can see that
under the adverse scenario the median leverage as well as the share of banks
with significantly higher leverage increases compared to the initial position.
The median leverage increases at all horizons above the 75% quantile in the
initial state. There are also a number of banks, which would not survive
the stress test without help from outside. They are not able to maintain a
leverage ratio below the critical boundary of λ∗ = 33. We display this fact
graphically in a bar chart in Figure 4. The names of the affected institutions
as well as their rank among the 51 banks in terms of total assets are written
into the chart for the initial position as well as for the adverse scenario at all
horizons.

As we can see from Figure 4, there is one bank, which is above the
threshold already in in the initial state. Under the one year ahead adverse
scenario there are five additional banks exceeding the threshold. If we go two
years ahead an additional bank is going to join the club. Finally in 2018 at
the three year horizon we have again only seven banks above the threshold.

8Transitional CET1 capital ratio, Fully loaded CET1 capital ratio, Transitional leverage
ratio, Transitional CET1 capital, Cumulative credit risk losses (impairment or reversal
of impairment on financial assets not measured at fair value through profit or loss),
Cumulative gains or losses arising from operational risk, Cumulative market risk losses
including CCR, Cumulative profit or loss for the year. See European Banking Authority
[2016a] for definitions and details.

9Note that in Figure 13 in EBA the leverage ratio is represented as CET1 over total
assets whereas we have defined it reciprocally as total assets over CET1.
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Figure 3: Distribution of leverage λ in the EBA stress test. The left most box-plot
shows the initial state of the banking system at year end 2015. This corresponds to
t = 0 in our model. The next box plots show the leverage distribution under the
adverse EBA scenario at different time horizons, 2016 (one year ahead), 2017 (two
years ahead) and 2018 (three years ahead). In terms of our model, these horizons
would correspond all to different assumptions about t = 1. There are a few banks
which exceed the critical leverage threshold of λ∗ = 33 under the adverse scenario.
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Figure 4: Number of banks with a leverage λ above the threshold λ∗ = 33 in the
initial state at year end 2015, in the adverse scenario in 2016, 2017 and 2018. The
names of the banks as well as their size rank among the 51 banks in terms of total
assets are given as annotations right of the bar (initial state year end 2015) or in the
bars (Adverse scenario 2016, 2017, 2018).
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Note that the banks who get in trouble in the stress scenario are very
large in terms of total assets. These seven or eight banks make up about 6
percent of total assets in 2016 and 2018. The eight banks in 2017 make up a
share of 8 percent of the total assets of all banks participating in the stress
test. In terms of the GDP of the Eurozone 19 the total assets of distressed
banks make up a share of 56, 72 and 52 percent. The institutions which
come into trouble are thus really huge and certainly too big to rescue for the
national states in which they are residing.

In terms of losses in Core Tier 1 equity relative to the initial position
we can say that in aggregate terms the loss of tier 1 equity in the stress
scenarios would be at about 16% in 2016, 17% in 2018 and 16% relative to
the aggregate tier 1 equity position at the initial date.

Results under the assumption of deleveraging Now let us compare
these numbers under the assumption that we also factor in potential fire sales
of sovereign bonds. Note that when computing the price impact, according
to our impact equation (11) all parameters, except the parameter κ, are
pinned down by data. From κ we only know that it is empirically “of order
unity”, which allows for quite a wide range of values. If we had a time series
of observed impact events, we could estimate the value of this parameter.
Here we can only make assumptions, which are more of less arbitrary. The
order unity constraint is, for example, compatible with values between 1 and
9 but not with 20 or 50. For our simulation we set κ = 5.

When we take into account the potential for deleveraging we have to
compute a fire sale equilibrium for all stress test horizons. Given our data,
it turns out that the fixed points are unique. The values of the discount at
the fire sale equilibrium is given in Table 6.

Bond δ∗2016 δ∗2017 δ∗2018
DE 0.0192 0.0213 0.0198
ES 0.0021 0.0021 0.0021
FR 0.0327 0.0363 0.0338
GB 0.0416 0.0439 0.0434
IT 0.0438 0.0558 0.0477
JP 0.0023 0.0027 0.0025
US 0.0169 0.0187 0.0176
Rest of the world 0.0055 0.0063 0.0057

Table 6: Values of the fixed point δ∗. The rows display the different asset classes of
marketable securities, the columns display the value of δ∗ for the years 2016, 2017
and 2018 in the adverse EBA scenario. The parameter κ is set to a value of 5 in this
computation. For the given data the fixed points are unique. We thus only report
one value for each security class.

Is this impact large or low? We can get a feeling for the oder of magnitude

21



by bench-marking the price impact against a hypothetical maximum impact
which can occur here if all banks would sell their entire sovereign bond
portfolio. The result of such a hypothetical sovereign bond “meltdown-
situation” is shown in Table 7. From the table we can see that the the impact

Bond δmax δ∗2016/δmax δ∗2017/δmax δ∗2018/δmax

DE 0.05 0.40 0.44 0.41
ES 0.06 0.03 0.03 0.03
FR 0.07 0.48 0.54 0.50
GB 0.06 0.75 0.79 0.78
IT 0.11 0.41 0.52 0.44
JP 0.00 0.77 0.92 0.84
US 0.03 0.56 0.62 0.58
Rest of the world 0.01 0.39 0.45 0.41

Table 7: Maximum price impact - the impact which would result if all banks
sold their entire bond portfolio - and the relative impact in the EBA stress scenario
compared to the maximum impact for all adverse scenarios.

in the stress scenario is about half of the impact of a situation in which every
bank would sell its entire sovereign bond portfolio. This means that the
price impact in a stress scenario can be significant.

In terms of banks, which exceed the threshold of critical leverage λ∗ = 33
under such an evaluation of losses we see that we can observe a “systemic
effect”. The deleveraging effects push banks beyond the critical threshold
which would have stayed below the threshold in the EBA scenario. We
have now two additional banks, which get into trouble, as a result of the
deleveraging “dynamics‘”: Banco Popolare - Società Cooperativa and BNP
Paribas.10 One of them is huge: In terms of total assets BNP Paribas is the
second largest bank in the sample. Banco Popolare - Società Cooperativa is
only the 40th largest bank. Their combined total assets amount to roughly
7% of the entire total assets of all banks combined or about 17% of Euro 19
GDP. This means that the factoring in of deleveraging losses reveal indeed a
huge amount of additional losses which will be concealed in the traditional
EBA approach.

We observe that we can not gauge the entire potential of deleveraging,
given our data. Of the 9 banks which are at or above the threshold of λ∗ = 33
N.V. Bank Nederlandse Gemeenten, Lloyds Banking Group Plc, Deutsche
Bank AG, Banca Monte dei Paschi di Siena S.p.A. and Société Générale S.A.
sell their entire bond portfolio but still are unable to restore a stable capital
structure. They are not able to restore even the critical leverage of 33. If
we had more marketable assets in our data the deleveraging of significant

10PNB Paribas is in trouble in the deleveraging scenario in all adverse scenarios, while it
is not above the threshold in the adverse EBA scenario 2016 and 2018.
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institutions would affect other asset classes and would be bigger. It can not
be excluded that we might even run into a major systemic crisis.

Cont and Schaanning [2016] discuss for the EBA 2016 data at which
threshold of losses fire selling of marketable assets might cascade into a fully
fledged systemic crisis. We refer the interested readers for details of such a
threshold analysis to their paper.

Looking at losses in aggregate Core Tier 1 equity taking deleveraging
into account, the numbers are a loss of 19%, 21% and 19% in the adverse
scenario at the different horizons of 2016, 2017 and 2018. This is significantly
more than the 16%, 17% and 16% we observed for the stress scenarios not
taking into account potential deleveraging effects. A more detailed picture
can be given from looking the the distribution of tier 1 equity losses in the
entire sample of banks under the assumption of no deleveraging compared to
the case with deleveraging, shown in Figure 5. We see that in the case where
we evaluate losses taking into account potential deleveraging the box-plot is
stretched in the upper quartiles of the distribution as well as shifted upwards.
This means that the entire distribution shifts and the losses become more
severe.

The overall conclusion from the analysis of the 2016 EBA stress test is
that whether we factor in potential deleveraging processes or not can make
a significant difference. We are not in a position, given our data, to pin
down more precisely when this difference will be most relevant. We have no
precise data on the value of the parameter κ; we have no precise and full
picture of marketable securities which can become part of a fire sale but only
a small though significant subset: sovereign bonds. We also do not have an
empirically validated theory of bank behavior in distress.

We think, however, that our model does not preclude the closure of
these gaps in data and modeling in principle. Our results indicate that the
significance of indirect losses would be even more pronounced, when these
gaps are closed. We therefore think that loss evaluations should take potential
deleveraging effects into account to get a more comprehensive picture of the
potential fall outs from financial distress.

5 Conclusions

When considering potential impacts of financial distress in a banking stress
test, taking into account deleveraging effects in the evaluation of losses is very
important. Ignoring these effects leads to a perhaps too benign assessment of
risk ignoring important and quantitatively significant indirect loss potentials.
We show for the 2016 EBA stress test that a stress test ignoring these effects
would overlook important and quantitatively significant losses. It would
consider institutions as resilient which—at a closer look—are actually fragile.

A key message of our paper is that we are now able offer a framework to
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Figure 5: The Figure shows three comparative box-plots of the distribution of
CET1 losses relative to the initial position for the adverse scenario in 2016, 2017 and
2018. The left box in each of the three plots (in red) gives a plot of the distribution of
these losses for the case where deleveraging is factored in in the evaluation of losses.
The right box plot in each of the three plots (the blue box) shows the distribution
when potential deleveraging is ignored, as in the EBA stress test.
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stress testing practitioners which is practical, simple and rigorous and can be
integrated with the standard stress test very easily. The framework uses all
familiar concepts of stress testing as practiced today and allows for a modular
add on of a deleveraging analysis tool. It is our hope that the results of
our paper will encourage stress testing practitioners to include deleveraging
analysis in their toolkit and thereby help us to collectively improve and
increase our knowledge about this key amplification mechanism of financial
distress.
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A Proofs

A.1 Existence of a minimal and maximal fixed point of ϕ ◦ q

Step 1: ϕ ◦ q is a self-map on a complete lattice: The set of possible
fire sales discount vectors is

D := {δ = (δ1, . . . , δI) : 0 ≤ δi ≤ δi,max}. (17)

The composite map ϕ ◦ q is a map from D onto itself. D is a compact subset
of RI . Introduce a partial order relation ≤ on D by δ ≤ δ′ if δi ≤ δ′i for
all i ≤ I. With this order D is a lattice with least element 0 = (0, . . . , 0).
Each subset X ⊆ D has a supremum (supδ∈X δ1, . . . , supδ∈X δI), which is
in D since D is compact in RI . Also, each subset X ⊆ D has an infimum
(infδ∈X δ1, . . . , infδ∈X δI). So D is a complete lattice.

Step 2: If λ∗ > 1, ϕ ◦ q is non-decreasing: The map φ ◦ q is non-
decreasing on D if the leverage threshold λ∗ > 1: If δ ≤ δ′ then φ ◦ q(δ) ≤
φ ◦ q(δ′). δ ≤ δ′ implies S1

b · δ ≤ S1
b · δ

′ by our choice of partial order ≤ and
the fact that S1

b ≥ 0. Now consider the following cases:

1. If δ ≤ δ′ then λb,max(δ) ≤ λb,max(δ′) and λb,min(δ) ≤ λb,min(δ′) by (8).

2. For λ∗ ≤ λb,min(δ), θb(δ
′) = 1 and θb(δ) = 1.

3. For λ∗ ≥ λb,max(δ), θb(δ
′) = 0 and θb(δ) = 0.

4. For λb,min(δ) ≤ λ∗ ≤ λb,min(δ′), θb(δ
′) = 1 and θb(δ) < 1.

5. For λb,max(δ) ≤ λ∗ ≤ λb,max(δ′), θb(δ) = 0 and θb(δ
′) > 0.

6. For λb,min(δ′) ≤ λ∗ ≤ λb,max(δ), 0 < θb(δ) < θb(δ
′) < 1.

In all cases θb(δ) ≤ θb(δ′).
By (9) this implies qi(δ) ≤ qi(δ′) for all security types i. Since by 

Assumption 3 the price impact functions ϕi are strictly increasing we get 
ϕ(q(δ)) ≤ ϕ(q(δ′)).

Step 3: Existence of a minial and maximal fixed point: We have 
argued already why the set D of possible fire sale discount factors is a 
complete lattice. By steps 1 and 2 the map ϕ ◦ q is an order preserving 
self-map from D to D. Hence by the Knaster-Tarski Fixed point theorem 
(see Davey and Priestley [2002], theorem 2.35, p. 50) the set of fixed points 
contains a maximum and a minimum element under the order ≤ on D.
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A.2 δ = 0 as a fixed point of φ ◦ q

δ = 0 is a fixed point of φ ◦ q if and only if all banks have λ∗ > λb,max(0)
in (7). To see this, first assume that λ∗ > λb,max(0) for all banks. By (7)
this implies that θb(0) = 0 for all banks b. Therefore qi(0) = 0 by (9) and
φ(q(0)) = 0. So 0 is a fixed point of φ ◦ q.

On the other hand, if 0 is a fixed point of φ ◦ q, φ(q(0)) = 0, then
q(0) = 0, since by Assumption 3 ϕ is strictly increasing and ϕ(0) = 0. By
(9) q can be zero only if for all banks θb = 0. By (12) θb(0) = 0 for all banks
only if λ∗ > λb,max(0) for all banks.

A.3 An example of multiple fire sale equilibria

That uniqueness can not be expected in general is demonstrated by the
following example for a system of three banks, one security type, one loan
type.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
delta

0.02

0.04

0.06

0.08

0.10

0.12

0.14

phi(q(delta))

Figure 6: Plot of the map φ ◦ q: [0, δmax] → [0, δmax] in the example with three
banks. It has three fixed points. The fixed points δ∗ = 5.65% and δ∗ = 13.9% = δmax

are stable. The fixed point δ∗ = 11.4% is unstable.

Under the map φ ◦ q, [0, 11.4%) is the domain of attraction for the first 
equilibrium δ∗ = 5.65%. (11.4%, δmax] is the is the domain of attraction for 
the third equilibrium δ∗ = δmax. The second equilibrium, δ∗ = 11.4% is 
unstable.
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time balance Bank 1 Bank 2 Bank 3

t=1 S 145 435 300
L 1170 1245 1190
e 28 80 65
λ 46.9 21 22.9

t = 1 + τ S 0 410 283
δ∗ = 5.65% L 1170 1245 1190

e 20 55 48
λ 59.0 29.9 30.6
θ∗ 1 0 0

t = 1 + τ S 0 91 164
δ∗ = 11.4% L 1170 1245 1190

e 11 30 30
λ 102 44 44
θ∗ 1 0.76 0.38

t = 1 + τ S 0 0 0
δ∗ = 13.9% L 1170 1245 1190

e 7.8 19 23
λ 149 63 51
θ∗ 1 1 1

Table 8: State of the banking system before fire sales (t = 1). There are three fire
sales equilibria (t = 1 + τ). Bank 1 fails in all three equilibria. Banks 2 and 3 are in
danger in the second equilibrium and fail in the third equilibrium. Assumed leverage
constraint: λ∗ = 44. Impact function:

√
0.000022V , where V is the total sales volume

of all banks. δmax = 13.9%. In all equilibria, all banks are in status “red” or “green”,
depending on whether or not they meet the leverage constraint.
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A.4 Computing the least and the most severe fixed point

The proof of theorem 2 is based on a version of the Kleene [1952] fixed
point theorem formulated by Cousot and Cousot [1979]: Suppose (L,≤) is a
complete lattice with least element 0 and f : L→ L a monotone function.
Consider the transfinite ascending chain {fβ(0)} where β ranges over the
ordinals, defined by f0(0) = 0, fα+1(0) = f(fα(0)) for any ordinal α and
fα(0) = supβ<α f

β(0) for any limit ordinal α. Then the least fixed point of
f is fγ(0) for some ordinal γ less or equal the height of the lattice L.

In our context we take L to be the set D defined in (17). For f we take
the map ϕ ◦ q : D → D. We have seen in the proof of theorem 1 that φ ◦ q is
monotone. Now the Cousot and Cousot [1979] theorem implies that φ ◦ q
has a least fixed point in D and that this fixed point is the supremum of
{(φ ◦ q)n(0) : n = 0, 1, 2, . . .}.

The proof for the approximation of the most severe fixed point is also
based on Cousot and Cousot [1979]. Starting from the greatest element δmax

of the lattice D the chain {(ϕ ◦ q)n(δmax) : n = 0, 1, 2, . . .} is a descending
chain. The greatest fixed point δ∗max is the infimum of this descending chain.

B Data: Sources and compilation

B.1 EBA - Exposures and Impairment Data:

The exposure data are composed from raw data provided via the web-page
of the European banking authority.11

Exposure and impairment data We first retrieve the IRB credit risk
exposures from the file TRA CR.csv and filter the data-file according to Table
9

The exposure values for F-IRB and A-IRB positions as well as for de-
faulted and non defaulted assets are added up for each bank and each country
to which the banks are exposed for each of the different exposures. 12

For the impairment data, which report impairment rates13 we retrieve
from the file TRA CR.csv as in table 10.

11https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/

2016. Readers who are interested in a line by line documentation of how the
exposure data are constructed precisely are welcome to study the R-scripts
make balance sheets 2016.R which is contained in the data-raw subfolder in the
github repository https://github.com/Martin-Summer-1090/syslosseval which hosts
the code used for all data compilations and computations used in this paper. We describe
the filters used for the 2016 data here in detail.

12This aggregation step is requires necessary because the EBA data leave the respective
field for the aggregate IRB exposure empty in the raw data file.

13The impairment rate is a ratio of the impairment flow which contains the probability
of default as well as the loss given default, and the exposure. The EBA file contains only
the ratio but not the nominator and the denominator of this ratio separately.
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Variable Value Meaning

Period 201512 December 31 2015
Portfolio 3,4 Foundation IRB (F-IRB), Advances IRB (A-IRB)
Item 1690201 Exposure values (IRB)
Scenario 1 Actual Figures
Status 1,2 Non defaulted assets, defaulted assets
Exposure 1100, 2000, Central banks and government, Institutions

3000, 4000, Corporates, Retail
6100, 6300 Equity, Other

Perf status 0 No-breakdown by performance status

Table 9: Query scheme for the IRB exposures from the file TRA CR.csv.

Variable Value Meaning

Period 201612, 201712, 201812 December 31 2016, 2017, 2018
Portfolio 2 IRB
Item 1690205 Impairment rate (IRB)
Scenario 2,3 Baseline, Adverse
Status 0 No break down by status
Exposure 1100, 2000, Central banks and government, Institutions

3000, 4000, Corporates, Retail
6100, 6300 Equity, Other

Perf status 0 No-breakdown by performance status

Table 10: Query scheme for the IRB impairments from the file TRA CR.csv.
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These impairment rates are reported for one year, two year and three
years into the future for a baseline as well as for an adverse scenario.

The next step is to retrieve all the exposures reported according to the
STA approach. Here the query scheme is as in table 11

Variable Value Meaning

Period 201512 December 31 2015
Portfolio 1 Standard Approach (STA)
Item 1690301 Exposure values (STA)
Scenario 1 Actual Figures
Status 1,2 Non defaulted assets, defaulted assets
Exposure 1100, 1200 Central banks and government, regional government

1300, 1400 Public sector entities, multilateral development banks
1500, 1600 International organisations, central banks
1700, 2000 General governments, institutions
3000, 4000 Corporates, retail
5000, 6400 Secured by mortgages, Items with particularly high risk
6500, 6600 Covered bonds, Claims on inst. and corp. with a ST credit assessment
6700, 6100 Collective investments undertakings (CIU), equity
6200, 6300 Securitistaion, Other non-credit obligation assets

Perf status 0 No-breakdown by performance status

Table 11: Query scheme for the STA exposures from the file TRA CR.csv. text.

For the impairment data on the STA positions we use the query described
in Table 12. As with the IRB case we organise these data in the same format
in one long-format data table with the same variables.

Data on bank equity We also retrieve data which are independent of
the accounting framework (IRB, STA) and which are stored in the data
file TRA OTH.csv on the EBA website. These data are the common tier 1
equity, tier 1 equity and the leverage ratio. The data are retrieved using the
following query summarized in Table 13

From the Table 9 and Table 11 it can be seen that the IRB and STA
data do not use the same classification of assets. To organize the data in a
coherent and uniform balance sheet we have to make some assumptions. We
map the STA positions to the IRB scheme. We make our assumption on the
mapping precise here:

Assumption 4. Our mapping uses the following rules:

1. Exposures 1100, 1200, 1300, 1400, 1500, 1600 and 1700 STA are
mapped into Exposure 1100 IRB and then added with the IRB values
into an overall position for central banks and central government.
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Variable Value Meaning

Period 201612, 201712, 201812 December 31 2016, 2017, 2018
Portfolio 1 Standard Approach (STA)
Item 1690305 Impairment rate (STA)
Scenario 2, 3 Baseline scenario, adverse scenario
Status 0 No break down by status
Exposure 1100, 1200 Central banks and government, regional government

1300, 1400 Public sector entities, multilateral development banks
1500, 1600 International organisations, central banks
1700, 2000 General governments, institutions
3000, 4000 Corporates, retail
5000, 6400 Secured by mortgages, Items with particularly high risk
6500, 6600 Covered bonds, Cl. on inst. and corp. with a ST c.a.
6700, 6100 Collective investments undertakings (CIU), equity
6200, 6300 Securitistaion, Other non-credit obligation assets

Perf status 0 No-breakdown by performance status

Table 12: Query scheme for the STA impairments from the file TRA CR.csv

Variable Value Meaning

Period 201512 December 31 2015
Item 1690106 Common Tier 1 equity
Scenario 1 Actual Figures

Table 13: Query scheme for the equity and leverage ratio figures in TRA OTH.csv.
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2. Exposure 2000 in IRB and Exposure 2000 STA are added to one position
Institutions.

3. Exposure 3000 in IRB and Exposure 3000 STA are added to one position
Corporates.

4. Exposure 4000 in IRB and Exposure 4000 and 5000 in STA are added
to one position Retail.

5. Exposure 6100 in IRB and Exposure 6100 in STA are added to one
position Equity.

6. Exposure 6200 in IRB and Exposure 6200 in STA are added to one
position Securitisation.

7. Exposure 6300 in IRB and Exposure 6300 in STA are added to one
position Other.

When we have to add up impairment rates across STA categories we use 
the exposure weighted averages across the subcategories for aggregation of 
impairment rates.

The biggest exposures are held against, governments, corporates and 
households. The positions which are classified as equity, and other obligations 
are significantly smaller. Exposures towards institutions are in between. A 
more detailed picture of the exposure distribution in the cross section of 
banks is given in Figure 7.

B.2 Total assets and residual position.

The EBA exposures reports positions which are subject to credit risk accord-
ing to the supervisory rules. Thus when we add up the assets of each bank, 
reported in the TRA CR.csv file, we will not get the total assets of the bank 
but most of the times less than that and in rare cases more than that. These 
gaps can be quantitatively substantial. The reported sum of assets subject to 
credit risk is smaller than the total assets reported in the published balance 
sheet of a bank, if the regulatory reporting framework allows the bank to 
exclude certain exposures from reporting because they have no credit risk 
(according to the reporting requirements). Sometimes an actual exposure 
is considered as not revealing the actual risk and the regulatory framework 
forces banks to apply certian multipliers to these positions. In that case the 
total value of credit risky exposures may even exceed the value of total assets 
reported in the balance-sheet.

How do we deal with this? We thus introduce the residual position as 
an additional artificial asset class, if the value of the total EBA exposures 
is less than the total assets reported in the balance sheet. In the case 
the EBA position is larger we take this value as the total asset figure.
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Figure 7: Histograms of exposure size in the different IRB exposure categories in
the cross section of banks in the EBA 2016 stress test.
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Unfortunately these residuals can be fairly large and can go in either direction.
They also show no clear systematic pattern over time. In the 2016 sample
the negative gaps dominate the value gap. We can not fully clarify these
discrepancies which must have its deeper roots in the financial regulatory
reporting framework. To get a rough quantitative impression about the
magnitude of these discrepancies we show two histograms displaying the
distribution of the gap between the total value of reported EBA assets and
the value of total assets as reported in the balance sheet as a percentage of
total assets.

Figure 8: Histogram of the value gap between the total value of reported EBA
exposures and total assets as reported in the bank balance sheet as a percentage of
reported total assets. The gap is on average slightly negative in the 2016 sample.

B.3 Attributing sovereign bond exposures

The EBA data contain information about the exposures of each bank in 
government bonds. This information is stored in the TRA SOV.csv file on 
the EBA website. Sovereign exposures contain subcategories of securities 
available for sale (AFS), positions designated at fair value through profit and 
loss (FVO) and securities held for trading (HTF). This allows a split of the 
overall position into loans and securities. This allows the application of our 
framework to a limited but very important security class held on the bank 
balance sheet.

The precise query for these data is given in Table 15
We subtract the sum of the exposure values of 1690503, 1690506, 1690507 

and 1690508 from the total position 1100 governments and central banks. 
This difference is the value we attribute as a sovereign bond position for each
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Variable Value Meaning

Period 201512 December 31 2015
Item 1690503, 1690506

1690507, 1690508 Net direct exposures AFS, FVO, HFT
SOV maturity 8 All maturities

Table 14: Query scheme for sovereign bond figures from the file TRA SOV.csv AFS
means available for sale, FVO means fair value through profit and loss, and HFT
means held fro trading.

of the 51 banks in our sample. Though the order of magnitude of sovereign
bond exposures in the total assets of the bank look right on average in the
data there are some problems we can not fully explain. It is for instance
not always the case that the sum of 1690503, 1690506, 1690507 and 1690508
is strictly smaller than the total position 1100. If 1100 reports the entire
exposure to central banks and central governments including all loans and
securities this should in theory be the case. It is the case for most banks but
not all of them. In the case where this sum exceeds the value repored under
1100 we assume that the entire exposure is held in government bonds.

Variable Value Meaning

Period 201912 December 31 2019
Item 2020811 Total carrying amount of non-der. financial assets
SOV maturity 8 all maturities
Accounting Portfolio 0 No breakdown by accounting portfolio

Table 15: Query scheme for sovereign bond figures from the file TRA SOV.csv AFS
means available for sale, FVO means fair value through profit and loss, and HFT
means held fro trading.

Table 16 shows the geographical distribution of sovereign bond exposures.
About half of the exposure is in countries for which we can access public
data on average daily volume and the volatility of sovereign bond prices.

We finally show a histogram displaying the distribution of bond exposures
in the cross section of banks towards every of the individual regions in
Figure 9.

B.4 Market data for bonds and the residual position

Bond prices Bond prices are retrieved from http://us.spindices.com.
Table 17 gives the data we get from this site. We retrieve the data for
Germany, Spain, Great Britain, France, Italy, Japan and the United states.
All other countries are aggregated in a position rest of the world.

We show the time series of the indices in Figure 10
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Country Share

DE 0.11
ES 0.08
FR 0.09
GB 0.10
IT 0.09
JP 0.01
US 0.11
Rest of the world 41.00

Table 16: Geographical distribution of sovereign bonds across regions for the aggre-
gate banking system in 2016.

Figure 9: Histograms of exposure size in the different IRB exposure categories in
the cross section of banks in the EBA 2016 stress test.

Average daily volume for sovereign bonds We collect the data for 
average daily volumes from various public sources from the internet. This 
collection process is rather messy, because the data are only partially available. 
They are stored in different formats and are often only available as graphics. 
We give a table describing the sources for our volumes data, for the countries 
we can actually use in our analysis.

To compute an average daily volume figure for the rest of the world 
we use an idea from Cont and Schaanning [2016]. They observe a high 
correlation between the nominal debt outstanding and the average daily 
volume. Figures about the nominal debt outstanding can be retrieved from
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Country Index

Germany Germany Sovereign Bond Index
Spain Spain Sovereign Bond Index
France France Sovereign Bond Index
Great Britain U.K. Gilt Bond Index
Italy Italy Sovereign Bond Index
Japan Japan Sovereign Bond Index
United States U.S. Treasury Bond Index
Rest of the World S&P Global Developed Aggregate Ex-Collateralized Bond Index

Table 17: Description and sources of sovereign bond indices used in the paper.

Figure 10: Time series of the different bond indices of Table 10. The graph shows 
that the bonds of GB and Italy are the most volatile while US, JP and DE show the 
least volatility.
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Country Link
Germany https://www.deutsche-finanzagentur.de/en/institutional-investors/secondary-market/

Spain https://www.tesoro.es/sites/default/files/estadisticas/15I.xlsx

France https://www.afme.eu/reports/data/details//Government-Bond-Data-Report-Q2-2019

Great Britain ttps://www.dmo.gov.uk/data/gilt-market/turnover-data/

Italy https://infostat.bancaditalia.it/

Japan https://asianbondsonline.adb.org/data-portal/

US https://www.sifma.org/resources/research/us-treasury-trading-volume/

Rest of the world computed

Table 18: Sources of average daily volumes data of sovereign bonds.

the BIS international debt statistics (https://www.bis.org/statistics/
secstats.htm). Denote the nominal debt outstanding in country i by Ni

and using the ADV data we have, following Cont and Schaanning [2016], we
run the regression:

logADVi = c1 log(Ni) + c0 + εi

Then we use the values of the estimated parameters c1 and c0 and the relation
to assign an expected average daily volume for the rest of the world by adding
all nominal values outstanding except for the countries where we have direct
observations.

Readers who are interested in all details are referred to the R-script
make price volume data.R in the folder data-raw in the GitHub repository
for the syslosseval package. Here we show the numbers in Table 19.

Country Volume Unit Currency

DE 17039.68 Million Euro
ES 8288.12 Million Euro
FR 8500.00 Million Euro
IT 5164.63 Million Euro
JP 36736.51 Million Euro
GB 34853.66 Million Euro
US 467657.66 Million Euro
Rest of the world 97852.20 Million Euro

Table 19: Average daily volumes of different sovereign bond classes for the year
2016. The individual country values are from public data sources listed in table 18.
The figure for the rest of the world is based on an estimation.
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