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Serial Correlation in Contingency Tables
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Abstract

Pearson’s chi-squared test for independence in two-way contin-
gency tables is developed under the assumption of multinomial sam-
pling. In this paper I consider the case where draws are not indepen-
dent but exhibit serial dependence. I derive the asymptotic distribu-
tion and show that adjusting Pearson’s statistic is simple and works
reasonably well irrespective whether the processes are Markov chains
or m-dependent. Moreover, I propose a test for independence that
has a simple limiting distribution if at least one of the two processes
is a Markov chain. For three-way tables I investigate the Cochrane-
Mantel-Haenszel (CMH) statistic and show that there exists a closely
related procedure that has power against a larger class of alternatives.
This new statistic might be used to test whether a Markov chain is
simple against the alternative of being a Markov chain of higher or-
der. Monte Carlo experiments are used to illustrate the small sample
properties.
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Non-Technical Summary

Contingency tables display the relative or absolute frequencies of two cat-

egorical variables. A classical application in economics would be an early

warning indicator. Two possible values of the indicator (warning/no warn-

ing) are grouped by the actual values (crisis occurred/no crisis occurred).

After observing both variables for T = 100 periods the table could look like

this:

observed crisis no crisis sum

warning 7 13 20

no warning 13 67 80

sum 20 80 100

To assess the quality of the indicator we compare the performance to a

pure random guess. In this particular example we would expect that the

table for 100 draws should look like this

expected crisis no crisis sum

warning 4 16 20

no warning 16 64 80

sum 20 80 100

The null hypothesis that the indicator and the actual value are indepen-

dent of each other is commonly tested using Pearson’s chi-squared statistic by

comparing the observed values to the expected ones. This test is asymptoti-

cally chi-squared distributed under the assumption of multinomial sampling.

In the example the Pearson statistic equals 3.52. The p-value is 6.1% and

hence we would reject at a level of 10%.

In the above example we reckon that both the indicator and the actual

event at a particular point in time might depend on the outcomes in preceding

periods. Even if both series are independent from each other, the serial

correlation of the individual series would induce a spurious relationship. The

assumption of multinomial sampling is not justified in such a situation. An



autocorrelation of 0.5 would change the p-value of the test statistic to 14.6%

and we would not reject at a level of 10%.

It is a well known but persistently ignored fact that Pearson’s test is not

chi-squared distributed if the variables exhibit serial correlation. In this paper

I show that it is quite simple to adjust the test statistic in a way such that

serial or spatial correlation is accounted for. The proposed method works for

a fairly large class of Markov chains and m-dependent processes. I extend the

approach to higher dimensional tables. Finally, I discuss a procedure to test

for conditional independence. Simulations illustrate that all these methods

work quite well.



1 Introduction

Serial correlation in contingency table data is a widespread phenomenon (for

examples and references see Pesaran and Timmermann [2009]). The depen-

dencies between observations make the assumption of a multinomial sampling

scheme invalid. It follows that the Pearson chi-squared test for independence

in two-way contingency tables with serial correlation is asymptotically not

χ2 distributed.

The larger part of the literature on serial correlation in contingency tables

dates back to the 1980s. In a series of papers the effect of stratification and

clustering on the asymptotic distribution of Pearson statistics is investigated

(Holt et al. [1980], Rao and Scott [1979], Rao and Scott [1981], Rao and

Scott [1984], Rao and Scott [1987]). It is shown that the Pearson statistic

is asymptotically distributed as a weighted sum of independent χ2
1 variables

with weights related to design effects. The derived asymptotic distribution

differs considerably from the null distribution under serial independence.

A second strand of literature deals with the case of Markov chains. Tavaré

[1983] and Tavaré and Altham [1983] show that for reversible Markov chains

the weights in the asymptotic distribution are simple functions of the eigen-

values of the transition matrices. Porteous [1987] extends the results to

multi-way tables. The most recent contribution is Pesaran and Timmermann

[2009]. They choose a novel route and propose new tests based on canonical

correlations. They illustrate via Monte Carlo simulations that these tests

perform very well under serial correlation.

In this paper I assume that a central limit theorem holds for the observed

frequencies. Stationary and ergodic Markov chains and m-dependent pro-

cesses satisfy this assumption. The asymptotic distribution of the standard

Pearson chi-squared statistics for goodness of fit and independence in two-

way tables is given by a weighted sum of independent χ2
1 variables. Simple

examples are used to illustrate the difference between the asymptotic distri-

bution with serial correlation and that without. For Markov chains I gener-

alize the result of Tavaré [1983]. The sum of the weights in the asymptotic

distribution is a simple function of the eigenvalues of the transition matri-
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ces. This result is useful insofar as the exact critical values of weighted sums

of independent χ2
1 variables are difficult to obtain but can be approximated

quite well by matching the first moment which corresponds to the sum of the

weights. I propose a test for independence based on appropriately filtered

processes which works if at least one of the two processes is a Markov chain.

For conditional independence in multi-way tables I demonstrate that the

classical Cochrane-Mantel-Haenszel statistic (CMH) tests for a rather weak

implication of conditional independence and hence has no power against a

class of relevant alternatives. I show that a simple adjustment solves the

problem and illustrate via Monte Carlo simulations that this test is as power-

ful as CMH against standard alternatives. Using an argument from Kullback

et al. [1962] I show that this adjusted version of CMH works well when we

test whether a process is a simple Markov chain against the alternative of

being a Markov chain of higher order.

The paper is structured as follows. In the next section I introduce the

relevant notation and discuss the consequences of serial correlation on the

asymptotic distribution of standard Pearson chi-squared statistic for good-

ness of fit. Section 3 continues with independence tests for two-way tables

under serial correlation. Section 4 deals with three-way tables. Tests for

mutual independence, joint independence of two series from the third, and

conditional independence are investigated. In section 5 I present the results

of Monte Carlo simulations. Section 6 concludes.

2 Goodness of Fit

Let {Ut}t∈Z be a stationary series of categorical variables taking values in

some finite set of states mu. The variable is represented by the column

vector Ut = (U1,t, . . . , Umu,t)
′. Ui,t = 1 if at time t the ith category occurs

and 0 otherwise. The unconditional probability of Ui,t = 1 is denoted by

pi. The mu × 1 vector of unconditional state probabilities is given by p =

(p1, · · · , pmu)′. The l-step transition probability P(Uj,t+l = 1|Ui,t = 1) is

denoted by q
(l)
i,j . These probabilities are summarized in the matrix Q(l). The

joint probabilities, p
(l)
i,j = P(Ui,t = 1, Uj,t+l = 1), are summarized in the matrix
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P(l) concordantly to Q(l). P(0) is a diagonal matrix with p on its diagonal,

denoted by Dp. Q(0) is the identity matrix. Observe that P(−l) = P(l)′,

DpQ
(l) = P(l),DpQ

(−l) = Q(l)′Dp,p
′Q(l) = p′, and Q(l)1mu = 1mu for all

l ∈ Z. 1mu denotes the mu × 1 vector of ones.1 A process is reversible if

P(l) = P(−l) = P(l)′ for all l ∈ Z. In this case Q(l) = Q(−l) and Q(l) =

D−1p Q(l)′Dp. Processes with two states are always reversible.

The vector n(T ) =
∑T

t=1 Ut counts the number of occurrences of the dif-

ferent categories between t = 1 and T . The relative frequencies (1/T )n(T )

are denoted by p̂. All results in this paper are based on the following as-

sumption which is satisfied if {Ut} is a stationary and ergodic Markov chain

or an m-dependent process.

Assumption 1. {Ut}t∈Z with p > 0 is such that a central limit theorem

holds, i.e.
√
T (p̂− p) ∼a N (0,Σ) with

Σ = lim
T→∞

Dp

T−1∑
l=−T+1

T − |l|
T

(
Q(l) − 1p′

)
> 0.

We assume that the above series is absolutely convergent. The rank of Σ is

denoted by d ≤ mu − 1.

Consider testing the hypothesis H0: p specified. The Pearson χ2 statistic

is given by

P (T ) =
mu∑
i=1

(ni(T )− Tpi)2

Tpi
= T (p̂− p)′D−1p (p̂− p) . (1)

The asymptotic distribution of P (T ) under H0 can be represented as a

weighted sum of independent χ2
1 variables, i.e.

∑d
i=1 ρiZ

2
i . {ρi} are the

nonzero eigenvalues of D−1p Σ.

1In the sequel I will omit subscripts whenever the dimension is clear from the context.
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Example 1. Let {Ut} be a simple two-state Markov chain with transition

matrix

Q =

(
a 1− a

1− a a

)
for a ∈ (0, 1).

p = (1/2, 1/2)′ and

Σ =
a

4(1− a)

(
1 −1

−1 1

)
.

The eigenvalues of D−1p Σ are given by {0, a/(1 − a)}. Therefore, P (T ) ∼a
a

1−aχ
2
1. Figure 1 illustrates the rejection rates if we use the incorrect χ2

1

distribution. The level differs considerably from the nominal level of 10%, i.e.

a critical value of 2.71, unless a = 0.5. Let U∗t =
∑mu

i=1 iUi,t. The correlation

of U∗t−1 and U∗t equals 2a − 1. Even moderate levels of autocorrelation lead

to sizable deviations from the 10% level. If a ≥ 1/2 then {Ut} is positively

dependent in the sense of Gleser and Moore [1985]. A similar example for

an m-dependent process can be found in Appendix A.

The critical values of a linear combination of independent χ2
1 variables

have to be determined via simulations. The literature (e.g. Holt et al. [1980]

and Yuan and Bentler [2010]) shows that two simple approximations work

reasonably well. The first approximation is by matching the mean. Let ρ̄

equal the average nonzero eigenvalue of D−1p Σ, i.e. ρ̄ =
∑d

i=1 ρi/d. The

distribution of P (T ) is approximated by ρ̄χ2
d. Alternatively, we may match

the first two moments via aχ2
b . This implies

a =

∑d
i=1 ρ

2
i∑d

i=1 ρi
and b =

(∑d
i=1 ρi

)2
∑d

i=1 ρ
2
i

.
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Figure 1: The rejection rate at a nominal level of 10% for the Markov chain
given in Example 1. The blue line is the theoretical rejection rate. The red
line is based on 1000 simulations for a = 0.01 to a = 0.99 in steps of 0.01.
The number of observations in each simulation equals 200.
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Remark 1. Using that Q(−l) = D−1p Q(l)′Dp and that the trace is invariant

under cyclic permutations we get

d∑
i=1

ρi = tr(D−1p Σ) = 2
∞∑
l=0

(tr(Q(l))− 1)− (mu − 1). (2)

This is true irrespective whether the process is reversible or not. Observe

that only the diagonal elements of Q(l) are needed, i.e. the probabilities that

Ui,t+l = 1 conditional on Ui,t = 1 for all l > 0 and i.

If {Ut} is a simple Markov chain the variance of the asymptotic distri-

bution may be rewritten as

Σ = Dp

∑∞
l=1 (Q− 1p′)l +

∑∞
l=1 (Q′ − p1′)l Dp + (Dp − pp′)

= DpZ + Z′Dp −Dp − pp′

with Z = (I−Q+1p′)−1. Tavaré and Altham [1983] show that for reversible

Markov chains the eigenvalues of D−1p Σ are simple functions of the nonunit

eigenvalues of the transition matrix Q. If we drop the reversibility assump-

tion, we get that the sum of the eigenvalues of D−1p Σ is a simple function of

the eigenvalues of the transition matrix.

Theorem 1. If {Ut} is a simple Markov chain and fulfills Assumption 1,

the asymptotic distribution of P (T ) under H0 equals
∑d

i=1 ρiZ
2
i where {ρi}

are the eigenvalues of D−1p Σ and {Zi} are independent N (0, 1). It holds that

d∑
i=1

ρi =
mu−1∑
i=1

1 + λi
1− λi

(3)

with {λi} being the nonunit eigenvalues of Q. If {Ut} is additionally re-

versible, {1+λi
1−λi} are the eigenvalues of D−1p Σ.

6



Proof. The first part of the theorem is well established. It remains to be

shown that

d∑
i=1

ρi =
mu−1∑
i=1

1 + λi
1− λi

.

For simple Markov chains Q(l) = Ql for l ≥ 0. From Equation (2) we know

that

d∑
i=1

ρi = 2
∞∑
l=0

(tr(Ql)− 1)− (mu − 1).

Now, tr(Ql) =
∑mu

i=1 λ
l
i. 1 is a right eigenvector of Q with an eigenvalue of 1.

Assumption 1 implies that the infinite sum on the right hand side converges.

Hence, 1 is the unique largest eigenvalue in absolute value. W.l.o.g. we may

order the eigenvalues such that λmu = 1. This implies∑d
i=1 ρi = 2

∑∞
l=0(
∑mu

i=1 λ
l
i − 1)− (mu − 1)

= 2
∑∞

l=0

∑mu−1
i=1 λli − (mu − 1) =

∑mu−1
i=1 (2

∑∞
l=0 λ

l
i − 1)

=
∑mu−1

i=1

(
2

1−λi − 1
)

=
∑mu−1

i=1
1+λi
1−λi .

The claim for reversible Markov chains is proved in Tavaré and Altham [1983].

If we approximate the distribution of P (T ) by matching the first mo-

ment only, it suffices to determine the eigenvalues of Q and the rank of Σ

irrespective whether the process is reversible or not.

For Markov chains there is yet another alternative by adjusting the Pear-

son test. If we left multiply
√
T (p̂−p) by (I−Q′), the covariance matrix of

the asymptotic distribution equals Dp−Q′DpQ which is singular. To define

a quadratic form, we need the following definition.

Definition 1. An n × m matrix G is said to be a generalized inverse (g

inverse) of an m × n matrix A if AGA = A. We denote G by A−. A g

inverse exists for any matrix. If additionally A−AA− = A− then we call

A− a reflexive g inverse and denote it by Ag. If both AAg and AgA are
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Hermitian, we call Ag a Moore-Penrose inverse and denote it by A+. The

Moore-Penrose inverse exists and is unique.

The quadratic form

Pa(T ) = T (p̂− p)′ (I−Q)(Dp −Q′DpQ)−(I−Q′) (p̂− p) (4)

is asymptotically χ2
d distributed for any g inverse of (Dp−Q′DpQ) by the re-

sults of Ogasawara and Takahashi [1951]. Note that in general the quadratic

form is not invariant with respect to the chosen g inverse but the asymptotic

distribution is the same.

If Q is not known a priori but can be estimated consistently by Q̂ than

P̂a(T ) = T (p̂− p)′ (I− Q̂)(Dp − Q̂′DpQ̂)−(I− Q̂′) (p̂− p) (5)

is asymptotically equivalent to Pa(T ).

3 Two-way tables

Suppose that Ut = Xt ⊗ Yt where ⊗ denotes the Kronecker product. Both

series of category variables take values in some finite set of states mx and my

with mxmy = mu. The unconditional probability that Xi,t = 1 and Yj,t = 1

is denoted by pi,j. The mu × 1 vector of unconditional state probabilities is

given by p = (p1,1, · · · , p1,my , p2,1, · · · , pmx,my)′. q
(l)
i,j is the l-step transition

probability P(Xu,t+l = 1 and Yv,t+l = 1|Xa,t = 1 and Yb,t = 1) with i =

(a− 1)my + b and j = (u− 1)my + v.

The marginal probabilities of {Xt}t∈Z and {Yt}t∈Z are given by

px = (

my∑
i=1

p1,i, · · · ,
my∑
i=1

pmx,i)
′ = (Imx ⊗ 1′my

)p

and py = (1′mx
⊗ Imy)p. nx(T ), p̂x, ny(T ), and p̂y are defined analogously.

P
(l)
x = (Imx⊗1′my

)P(l)(Imx⊗1my) and P
(l)
y = (1′mx

⊗Imy)P(l)(1mx⊗Imy) are

the (marginal) joint probabilities of the pairs (Xt+l, Xt) and (Yt+l, Yt). The
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l-step transition probabilities for {Xt} and {Yt} are given by Q
(l)
x = D−1px P

(l)
x

and Q
(l)
y = D−1py P

(l)
y .

Consider the null hypothesis that the series {Xt}t∈Z and {Yt}t∈Z are in-

dependent of each other. In this case P(l) = P
(l)
x ⊗P

(l)
y for all l ∈ Z and

√
T (p̂− p) =

√
T (p̂− px ⊗ py) ∼a N (0,Σ)

with

Σ = (Dpx ⊗Dpy)
∞∑

l=−∞

(
Q(l)
x ⊗Q(l)

y − (1mxp
′
x)⊗ (1myp

′
y)
)
.

If we condition on the observed marginal proportions p̂x and p̂y, Tavaré

[1983] showed that

√
T (p̂− p̂x ⊗ p̂y) =

√
TB′ (p̂− px ⊗ py) +Op(T

−1/2)

with B = (Imx − 1mxp
′
x)⊗ (Imy − 1myp

′
y).

Remark 2. To be precise, Tavaré [1983] showed that
√
T (p̂− p̂x ⊗ p̂y) =√

T (B′−p1′) (p̂− px ⊗ py)+Op(T
−1/2). It is easy to see that 1′ (p̂− p) ≡ 0

and we may use B as specified. Holt et al. [1980] derive the same result using

the delta method. Let h(p̂) = p̂ − p̂x ⊗ p̂y. The Jacobian matrix of h(p)

equals (B′ − p1′).

Theorem 2. Under Assumption 1 and the null hypothesis that {Xt}t∈Z and

{Yt}t∈Z are independent of each other,
√
T (p̂− p̂x ⊗ p̂y) is asymptotically

distributed N (0,Ω) with

Ω = (Dpx ⊗Dpy)
∞∑

l=−∞

(
Q(l)
x − 1mxp

′
x

)
⊗
(
Q(l)
y − 1myp

′
y

)
.

If at least one of the two series is i.i.d. then Ω = (Dpx − pxp
′
x)⊗

(
Dpy − pyp

′
y

)
as in the case of multinomial sampling.
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Proof. Using B′Dp = DpB we get

B
(
Q(l)
x ⊗Q(l)

y − (1mxp
′
x)⊗ (1myp

′
y)
)

B =
(
Q(l)
x − 1mxp

′
x

)
⊗
(
Q(l)
y − 1myp

′
y

)
for all l ∈ Z. To verify the second claim assume w.l.o.g. that {Xt} is i.i.d. In

this case Q
(l)
x = 1mxp

′
x ∀l 6= 0. Plugging this in yields the desired result.

The asymptotic distribution of Pearson’s chi-squared test

X2 = T (p̂− p̂x ⊗ p̂y)
′
(
D−1p̂x ⊗D−1p̂y

)
(p̂− p̂x ⊗ p̂y)

= T (p̂− p̂x ⊗ p̂y)
′
(
D−1px ⊗D−1py

)
(p̂− p̂x ⊗ p̂y) +Op(T

−1/2).

is equal to the distribution of a weighted sum of χ2
1 variables.

X2 ∼a
d∑
i=1

ρiZ
2
i

with d = rank(Ω) and {ρi} being the eigenvalues of

Θ = D−1p Ω =
∞∑

l=−∞

(
Q(l)
x − 1mxp

′
x

)
⊗
(
Q(l)
y − 1myp

′
y

)
.

Tavaré [1983] proved that for reversible Markov chains the eigenvalues

{ρi} of Θ are given by {(1 + λx,iλy,j)/(1− λx,iλy,j)} where {λx,i} and {λy,j}
are the nonunit eigenvalues of Qx and Qy respectively.

Theorem 3. Under Assumption 1 and the null hypothesis that {Xt}t∈Z and

{Yt}t∈Z are independent Markov chains, the asymptotic distribution of Pear-

son’s chi-squared test equals that of
∑d

i=1 ρiZ
2
i where {ρi} are the eigenvalues

of Θ and {Zi} are independent N (0, 1) variables. d is the rank of Ω. It holds

that

d∑
i=1

ρi =
mx−1∑
i=1

my−1∑
j=1

1 + λx,iλy,j
1− λx,iλy,j

. (6)

If both processes are additionally reversible, {1+λx,iλy,j
1−λx,iλy,j } are the eigenvalues
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of D−1p Ω.

A proof of this theorem can be established analogously to the proof of

Theorem 1. The significance of this result stems again from the fact that for

a mean approximation we only need to know the eigenvalues of Qx and Qy

and the rank of Θ. The rather restrictive reversibility assumption can thus

be dropped.

The Pearson test can be adjusted analogously to the discussion in the

previous section. If {Xt} and {Yt} are independent Markov chains then we

get

√
T
(
I−Q′x ⊗Q′y

)
(p̂− px ⊗ py) ∼a N (0,Ωb)

with Ωb = Dpx⊗Dpy−Q′xDpxQx⊗Q′yDpyQy. If we condition on the observed

marginals p̂x and p̂y we get

√
T
(
I−Q′x ⊗Q′y

)
(p̂− p̂x ⊗ p̂y) ∼a N (0,Ωa)

with

Ωa = (Dpx − pxp
′
x)⊗ (Dpy − pyp

′
y)

− Q′x(Dpx − pxp
′
x)Qx ⊗Q′y(Dpy − pyp

′
y)Qy.

The quadratic form

X2
a(T ) = T (p̂− p̂x ⊗ p̂y)

′ (I−Qx⊗Qy)Ω
−
a (I−Q′x⊗Q′y) (p̂− p̂x ⊗ p̂y)

is asymptotically χ2
d distributed where d is the rank of Ωa. Observe that in

the derivation Qx and Qy are known a priori. But again, if Qx and Qy can

be estimated consistently by Q̂x and Q̂y the asymptotic distribution does

not change, i.e.

X̂2
a(T ) = T (p̂− p̂x ⊗ p̂y)

′ (I− Q̂)Ω̂−a (I− Q̂′) (p̂− p̂x ⊗ p̂y)

with

Ω̂a = (Dp̂x − p̂xp̂
′
x)⊗ (Dp̂y − p̂yp̂

′
y)

− Q̂′x(Dp̂x − p̂xp̂
′
x)Q̂x ⊗ Q̂′y(Dp̂y − p̂yp̂

′
y)Q̂y

11



is also asymptotically χ2
d distributed.

Finally, consider εxt = Xt −Q
(1)′
x Xt−1 and εyt = Yt −Q

(1)′
y Yt−1 and let

Hb(T ) =
1√
T − 1

T∑
t=2

εxt ⊗ ε
y
t .

The expected value of Hb(T ) is 0. Under H0 the variance is given by

V(Hb(T )) =
T−2∑

l=−T+2

T − 1− |l|
T − 1

(
A(l)
x −Q(1)′

x A(l+1)
x

)
⊗
(
A(l)
y −Q(1)′

y A(l+1)
y

)
with

A(l)
x = P(l)

x −P(l−1)
x Q(1)

x and A(l)
y = P(l)

y −P(l−1)
y Q(1)

y .

Theorem 4. If Assumption 1 holds, if {Xt} and {Yt} are independent of each

other, and if at least one of the two series is a Markov chain then Hb(T ) ∼a

N (0, (Dpx − Q
(1)′
x DpxQ

(1)
x ) ⊗ (Dpy − Q

(1)′
y DpyQ

(1)′
y )). The quadratic form

X2
b (T ) = Hb(T )′

{
(Dpx −Q

(1)′
x DpxQ

(1)
x )⊗ (Dpy −Q

(1)′
y DpyQ

(1)′
y )
}−

Hb(T ) is

asymptotically χ2
d distributed where d is the rank of the covariance matrix.

Proof. Assumption 1 implies that V(Hb(T )) converges for T →∞. W.l.o.g.

let {Xt} be a Markov chain. A
(l)
x = DpxQ

l
x−DpxQ

l−1
x Qx = 0 for l > 0. If l <

0 then A
(l)
x −Q

(1)′
x A

(l+1)
x = P

(−l)′
x −P

(−l+1)′
x Qx−Q′xP

(−l−1)′
x +Q′xP

(−l)′
x Qx. By

setting k = −l we get Q′kx Dpx−Q′k+1
x DpxQx−Q′xQ

′k−1
x Dpx +Q′xQ

′k
x DpxQx =

0. Plugging this in yields V(Hb(T )) = A
(0)
x ⊗

(
A

(0)
y −Q

(1)′
y A

(1)
y

)
. Now,

A
(1)
y = P

(1)
y − P

(0)
y Q

(1)
y = DpyQ

(1)
y −DpyQ

(1)
y = 0 irrespective whether {Yt}

is a Markov chain or not. Hence,

V(Hb(T )) = (Dpx −Q(1)′
x DpxQ

(1)
x )⊗ (Dpy −Q(1)′

y DpyQ
(1)
y ).

Now, suppose that the transition probabilities are not known but the

estimators Q̂
(1)
x and Q̂

(1)
y satisfy Q̂

(1)
x = Q

(1)
x + Op(T

−1/2) and Q̂
(1)
y = Q

(1)
y +

12



Op(T
−1/2). Define ε̂xt = Xt − Q̂

(1)′
x Xt−1, ε̂

y
t = Yt − Q̂

(1)′
y Yt−1, and

Ĥb(T ) =
1√
T − 1

T∑
t=2

ε̂xt ⊗ ε̂
y
t .

Theorem 5. If the assumptions of Theorem 4 hold and if Q̂
(1)
x = Q

(1)
x +

Op(T
−1/2) and Q̂

(1)
y = Q

(1)
y +Op(T

−1/2) then

X̂2
b (T ) = Ĥb(T )′

{
(Dp̂x − Q̂(1)′

x Dp̂xQ̂
(1)
x )⊗ (Dp̂y − Q̂(1)′

y Dp̂yQ̂
(1)′
y )
}−

Ĥb(T )

is asymptotically equivalent to X2
b (T ).

Proof. The term in curly brackets equals (Dpx − Q
(1)′
x DpxQ

(1)
x ) ⊗ (Dpy −

Q
(1)′
y DpyQ

(1)′
y ) +Op(T

−1/2). Ĥb(T ) may be expressed as

Ĥb(T ) = Hb(T )

+ 1√
T−1

{
Ix ⊗

(
Q

(1)
y − Q̂

(1)
y

)′}∑T
t=2 ε

x
t ⊗ Yt−1

+ 1√
T−1

{(
Q

(1)
x − Q̂

(1)
x

)′
⊗ Iy

}∑T
t=2Xt−1 ⊗ εyt

+ 1√
T−1

{(
Q

(1)
x − Q̂

(1)
x

)′
⊗
(
Q

(1)
y − Q̂

(1)
y

)′}∑T
t=2Xt−1 ⊗ Yt−1

= Hb(T )

+ 1√
T−1Op(T

−1/2)
∑T

t=2 ε
x
t ⊗ Yt−1

+ 1√
T−1Op(T

−1/2)
∑T

t=2Xt−1 ⊗ εyt
+ Op(T

−3/2)
∑T

t=2Xt−1 ⊗ Yt−1

Xt and Yt are vectors consisting of zeros and ones. Hence, the last summand

is Op(T
−1/2). Now, the expected value (1/

√
T − 1)

∑T
t=2 ε

x
t ⊗Yt−1 equals zero

and the variance equals

T−2∑
l=−T+2

T − 1− |l|
T − 1

(
A(l)
x −Q(1)′

x A(l+1)
x

)
⊗P(l)

y

which is finite by Assumption 1. The same is true for (1/
√
T − 1)

∑T
t=2Xt−1⊗

εyt . Hence, Ĥb(T ) = Hb(T )+Op(T
−1/2) and X̂2

b (T ) = X2
b (T )+Op(T

−1/2).
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Remark 3. I show in Appendix B that X2
b (T ) is asymptotically equivalent

to the trace statistic developed in Theorem 1 in Pesaran and Timmermann

[2009]. The main difference is that only one of the two series has to be

a Markov chain for the theorem to hold. Chou and Chu [2010] proposed a

similar test using stronger assumptions.

4 Three-way tables

Let Ut = Xt ⊗ Yt ⊗ Zt. All three series fulfill Assumption 1. The notation

is analogous to the last section. We analyze three different notions of inde-

pendence: mutual independence, joint independence of two series from the

third, and finally, conditional independence.

Mutual independence implies that P(l) = P
(l)
x ⊗P

(l)
y ⊗P

(l)
z for all l ∈ Z, in

particular p = px⊗py⊗pz. We know that
√
T (p̂−px⊗py⊗pz) ∼a N (0,Σ)

with

Σ = (Dpx⊗Dpy⊗Dpz)
∞∑

l=−∞

(
Q(l)
x ⊗Q(l)

y ⊗Q(l)
z − 1mxp

′
x ⊗ 1myp

′
y ⊗ 1mzp

′
z

)
.

Porteous [1987] showed that

√
T (p̂− p̂x ⊗ p̂y ⊗ p̂y) =

√
TB′ (p̂− px ⊗ py ⊗ pz) +Op(T

−1/2)

with B = I − Imx ⊗ 1myp
′
y ⊗ 1mzp

′
z − 1mxp

′
x ⊗ Imy ⊗ 1mzp

′
z − 1mxp

′
x ⊗

1myp
′
y ⊗ Imz . Porteous [1987] used B′ + 2 · p1′. But again, as 1′(p̂− p) = 0

we may drop the last summand. The asymptotic covariance matrix Ω of√
T (p̂− p̂x ⊗ p̂y ⊗ p̂y) is rather clumsy.

Ω = B′ΣB = DpB
∑∞

l=−∞

(
Q

(l)
x ⊗Q

(l)
y ⊗Q

(l)
z − 1p′

)
B

= D
∑∞

l=−∞

{
Q

(l)
x ⊗Q

(l)
y ⊗Q

(l)
z − 1p′

− (Q
(l)
x − 1mxpx)⊗ 1myp

′
y ⊗ 1mzp

′
z

− 1mxp
′
x ⊗ (Q

(l)
y − 1mxpy)⊗ 1mzp

′
z

− 1mxp
′
x ⊗ 1myp

′
y ⊗ (Q

(l)
z − 1mzpz)

}
.
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Pearson’s statistic for testing mutual independence of the three variables

is given by

X2
I(3) = T (p̂− p̂x ⊗ p̂y ⊗ p̂z)

′
(
D−1p̂x ⊗D−1p̂y ⊗D−1p̂z

)
(p̂− p̂x ⊗ p̂y ⊗ p̂z) .

The asymptotic distribution is equal to the distribution of a weighted sum

of χ2
1 variables. The weights correspond to the eigenvalues of D−1p Ω.

If the three series are Markov chains, we get by using the same reasoning

as above that

∑d
i=1 ρi =

mx∑
i=1

my∑
j=1

mz∑
i=1︸ ︷︷ ︸

i+j+k<mx+my+mz

1+λx,iλy,jλz,k
1−λx,iλy,jλz,k

−
∑mx−1

i=1
1+λx,i
1−λx,i −

∑my−1
i=1

1+λy,i
1−λy,i −

∑mz−1
i=1

1+λz,i
1−λz,i

where {λx,i}, {λy,j}, and {λz,k} are the ordered eigenvalues of Qx, Qy, and

Qz. λx,mx = λy,my = λz,mz = 1. Porteous [1987] showed that if all three series

are reversible, the eigenvalues of DpΩ correspond to {(1 + λx,iλy,jλz,k)/(1−
λx,iλy,jλz,k)}.

If two of the three series are i.i.d., we get

Ω = (Dp − pp′)− (Dpx ⊗ pyp
′
y ⊗ pzp

′
z − pp′)

−(pxp
′
x ⊗Dpy ⊗ pzp

′
z − pp′)− (pxp

′
x ⊗ pyp

′
y ⊗Dpz − pp′).

In this case D−1p Ω is idempotent and the Pearson test is asymptotically χ2
d

distributed with d = (mxmymz − 1)− (mx − 1)− (my − 1)− (mz − 1).

To test whether {(Yt, Zt)} are jointly independent from {Xt} is a simple

extension of the two-way tables case. The null hypothesis implies that P(l) =

P
(l)
x ⊗P

(l)
y⊗z for all l ∈ Z where the subscript y⊗z is shorthand for the random

variable Yt ⊗ Zt. All the results from section 2 apply. A weaker implication

of this null hypothesis is that both P
(l)
x⊗y = P

(l)
x ⊗P

(l)
y and P

(l)
x⊗z = P

(l)
x ⊗P

(l)
z

for all l ∈ Z. I show in Appendix B that the test proposed by Pesaran and

Timmermann [2009] tests actually for this weaker implication.
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Let us finally assume that Yt and Zt are independent conditionally on

Xt, i.e. pijk = pij+pi+k/pi++. As usual the subscript + denotes that we sum

across this dimension. Hence, we focus on

dijk =
1

T

(
nijk −

nij+ni+k
ni++

)
= p̂ijk −

p̂ij+p̂i+k
p̂i++

.

The first observation is that

dijk = p̂ijk − pij+pi+k

pi++
− pij+(p̂i+k−pi+k)

pi++
− pi+k(p̂ij+−pij+)

pi++

+
pij+pi+k

pi++
(p̂i++ − pi++) +Op(T

−1).

Let r̂i = (p̂i11, . . . , p̂i,my ,mz)
′/pi++ and ri = (pi11, . . . , pi,my ,mz)

′/pi++. For

di = (di1,1, d
i
1,2 . . . , d

i
my ,mz

)′ we may write

di = pi++

(
Imy ⊗ Imz − riy1

′ ⊗ Imz − Imy ⊗ riz1
′) (r̂i − ri

)
.

+ (p̂i++ − pi++)riy ⊗ riz +Op(T
−1).

riy and riz are the conditional marginal probabilities of Yt and Zt (riy = (Imy⊗
1′mz

)ri and riz = (1′my
⊗ Imz)r

i). For d = (d1′,d2′, . . . ,dmx′)′ we get d =

A′(p̂ − p) + Op(T
−1) where A is the block diagonal matrix consisting of

Ai = (Imy − 1ri′y )⊗ (Imz − 1ri′z ).

Without serial correlation the covariance matrix of
√
T (p̂ − p) is given

by Σ = Dp − pp′ with

p =


p1++r1y ⊗ r1z

...

pmx++rmx
y ⊗ rmx

z

 .

It is easy to check that A′i(r
i
y ⊗ riz) = 0. The covariance matrix Ω of

√
Td is

therefore the block matrix given by the direct sum
⊕mx

i=1 pi++(Driy
− riyr

i′
y )⊗

(Driz
−rizr

i′
z ). An immediate consequence is that di and dj are asymptotically

independent for i 6= j. Moreover,

CMH∗i = Tdi′
(
pi++(Driy

− riyr
i′
y )⊗ (Driz

− rizr
i′
z )
)−

di ∼a χ2
(my−1)(mz−1).
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(1/pi++)D−1
riy
⊗D−1

riz
is a g inverse of pi++(Driy

− riyr
i′
y )⊗ (Driz

− rizr
i′
z ). Hence,

CMH∗i =
T

pi++

di′(D−1
riy
⊗D−1

riz
)di = T

my∑
j=1

mz∑
k=1

(
p̂ijk − p̂ij+p̂i+k

p̂i++

)2
pij+pi+k

pi++

.

The asymptotic independence of di and dj implies that CMH∗ = Td′Ω−d =∑mx

i=1CMH∗i is χ2
d distributed with d = mx(my − 1)(mz − 1). Plugging in

the observed frequencies instead of pij+, pi+k, and pi++ in the denominator

does not change the result, i.e.

T
mx∑
i=1

my∑
j=1

mz∑
k=1

(
p̂ijk − p̂ij+p̂i+k

p̂i++

)2
p̂ij+p̂i+k

p̂i++

∼a χ2
d.

The classical Cochran–Mantel–Haenszel test (CMH) focuses on d∗ =∑mx

i=1 di = (1′mx
⊗ Imy ⊗ Imz)d. CMH tests the weaker hypothesis that

p+jk =
∑mx

i=1 pij+pi+k/pi++. The covariance matrix of
√
Td∗ is given by

Ω∗ =
mx∑
i=1

pi++(Driy
− riyr

i′
y )⊗ (Driz

− rizr
i′
z ).

Again, using the observed frequencies instead of the true probabilities in

Ω∗ does not change the result and CMH = Td∗′(Ω̂∗)+d∗ ∼a χ2
d with d =

(my − 1)(mz − 1). A detailed analysis that the above definition of CMH

is equivalent to the classical definition as in Agresti [2002] can be found

in Appendix C. It is important to note that the equivalence holds only for

the Moore-Penrose inverse. If we use an arbitrary g inverse, Td∗′(Ω̂∗)−d∗

is asymptotically χ2
d distributed but does not equal the standard definition

of CMH. The test for conditional independence proposed in Pesaran and

Timmermann [2009] is closely related to CMH. As I show in Appendix B

they use(
mx∑
i=1

pi++(Driy
− riyr

i′
y )

)
⊗

(
mx∑
i=1

pi++(Driz
− rizr

i′
z )

)
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instead of Ω∗. The difference is small but not necessarily negligible.2

If we allow for serial correlation the situation becomes a lot more complex.

The fact that Yt and Zt are independent conditional on Xt does not imply

that Yt and Zt are independent conditional on Xt and some lagged variables.

Example 2. Let {Ut} be a Markov process with transition matrix

Q =



a 1− a 1− a a 1− a a a 1− a
a 1− a 1− a a 1− a a a 1− a

1− a a a 1− a a 1− a 1− a a

1− a a a 1− a a 1− a 1− a a

a 1− a 1− a a 1− a a a 1− a
a 1− a 1− a a 1− a a a 1− a

1− a a a 1− a a 1− a 1− a a

1− a a a 1− a a 1− a 1− a a


.

a ∈ (0, 1). If Ut = Xt ⊗ Yt ⊗ Zt then it is straightforward to verify that

P(Yt, Zt|Xt) = P(Yt|Xt)P(Zt|Xt). But if we condition additionally on Yt−1

the two series are not independent anymore, i.e. P(Yt, Zt|Xt, Yt−1) does not

equal P(Yt|Xt, Yt−1)P(Zt|Xt, Yt−1).

So it seems reasonable to put further restrictions on the transition ma-

trices. In the first case assume that only the conditioning variable might be

serially correlated. Let qx,li,j be the probability of Xt+l = j conditional on

Xt = i. For mx = 2 and l 6= 0 the transition matrix is given by

Q(l) =

(
qx,l1,11mymz(r

1
y ⊗ r1z)

′ qx,l1,21mymz(r
2
y ⊗ r2z)

′

qx,l2,11mymz(r
1
y ⊗ r1z)

′ qx,l1,11mymz(r
2
y ⊗ r2z)

′

)
.

It is not surprising that the covariance matrix of
√
Td in this case is equal

to the case without serial correlation, i.e. A′Q(l) = 0 for l 6= 0. Both, CMH

and CMH* have the above specified asymptotic distributions under H0.

A second application is to test whether a Markov chain is of order 1

against the alternative of a higher order as in Kullback et al. [1962]. Sup-

2See Appendix B for details.
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pose that {Xt} is a simple Markov chain with transition matrix Q. Define

Ut = Xt−1 ⊗ Xt−2 ⊗ Xt and let pi,j,k denote P(Xt−1 = i,Xt−2 = j,Xt = k).

The particular ordering is chosen such that the first index corresponds to the

conditioning variable. Under the null hypothesis Xt−2 and Xt are indepen-

dent conditional on Xt−1, or

P(Xt−1 = i,Xt−2 = j,Xt = k) = pi,j,k =
pi,j,+pi,+,k
pi++

= pi,j,+qi,k

where qi,k denotes P(Xt = k|Xt−1 = i). For mx = 2 this equals in vector

notation

p =

(
p1++r1y ⊗ r1z

p2++r2y ⊗ r2z

)
=

(
p1,•,+ ⊗ q′1,•

p2,•,+ ⊗ q′2,•

)

with pi,•,+ = (pi,1,+, pi,2,+)′ and qi,• = (qi,1, qi,2). The transition matrix for

Ut is given by

Q =



(
1 0

1 0

)
⊗

(
q1,1 q1,2

0 0

) (
1 0

1 0

)
⊗

(
0 0

q2,1 q2,2

)
(

0 1

0 1

)
⊗

(
q1,1 q1,2

0 0

) (
0 1

0 1

)
⊗

(
0 0

q2,1 q2,2

)
 .

Now, A′DQA = 0 and together with the discussion from above we get that

CMH and CMH* are asymptotically χ2 distributed under the null hypothesis.

If the values of Xt correspond to mx different strata, Assumption 1 is

violated. To invoke asymptotic theory we have to take the limit for each

stratum separately. Under this assumption the transition matrices are given

by

Q(l) =

(
Q

(1,l)
y ⊗Q

(1,l)
z 0

0 Q
(2,l)
y ⊗Q

(2,l)
z

)
.
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The covariance matrix of
√
Tdi is given by

Ωi = pi++(Driy
⊗Driz

)
∑
l

(Q
(i,l)

riy
− 1ri′y )⊗ (Q

(i,l)

riz
− 1ri′z )

and the covariance matrix Ω of
√
Td is the direct sum of the Ωi. We may

proceed as in the standard I ×J case. Yet, some caution with respect to the

asymptotic result is necessary. In particular, it has to be guaranteed that

the convergence of the estimators not only within but also across the strata,

i.e. for p̂i++, is sufficiently fast for all i = 1, . . . ,mx.

5 Simulation Results

I undertake a couple of simulations to illustrate the finite sample properties of

the various test statistics.3 The realizations of Ut are denoted by the column

vector ut. They are summarized in the matrix U = (u1, . . . ,uT )′. The rela-

tive frequencies are calculated by p̂ = (1/T )U′1T and Dp̂ = (1/T )U′U. For

l > 0 the joint probabilities P(l) are estimated by P̂(l) = 1
T−l
∑T

t=1+l ut−lu
′
t.

For notational convenience I denote
∑T

t=1+l ut−lu
′
t by U′−lU where it is un-

derstood that U−l includes the first T − l observations and that in U the

first l rows are deleted. As P(−l) = P(l)′ we use P̂(−l)′ for l < 0 to estimate

P(l). The transition probabilities Q(l) are estimated by Q̂(l) = D−1p̂ P̂(l).4

5.1 Goodness of Fit

In this section the classical Pearson test is compared to P̂a and the Wald test.

I use two procedures to estimate the covariance matrix Σ of
√
T (p̂−p). The

3Appendix D includes additional simulations.
4Observe that p̂′Q̂(l) 6= p̂′ and Q̂(l)1 6= 1. If we use Dp̂−l

= (1/(T−l))U′−lU−l instead

of Dp̂, we would get Q̂(l)1 = 1. I tried both versions. The differences in the results were
negligible so I stick with the first definition.
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naive estimator is defined by

Σ̂n = Dp̂

∑τ
l=−τ

T−|l|
T

(
Q̂(l) − 1p̂′

)
=
∑τ

l=−τ
T−|l|
T

(
P̂(l) − p̂p̂′

)
= Dp̂ − p̂p̂′ +

∑τ
l=1

T−|l|
T

(
P̂(l) − p̂p̂′ + P̂(l)′ − p̂p̂′

)
with the number of lags τ specified. This estimator is not consistent unless

{Ut} is an m-dependent process and τ > m. For Markov chains I use that

Σ = Dp(I−Q + 1p′)−1 + (I−Q + 1p′)−1′Dp −Dp − pp′

and define

Σ̂M = Dp̂(I− Q̂ + 1p̂′)−1 + (I− Q̂ + 1p̂′)−1′Dp̂ −Dp̂ − p̂p̂′.

I approximate the asymptotic distribution of the Pearson test by matching

the first moment. Three variants to estimate ρ̄ = (1/d)
∑
ρi are employed.

The corrected statistic is denoted by Pn(T ) (PM(T )) if the trace of D−1p̂ Σ̂n

(D−1p̂ Σ̂M) is used. The estimated mean eigenvalue is denoted by ˆ̄ρn (ˆ̄ρM).

If we estimate ρ̄ using Theorem 1, we denote the statistic by Ptav(T ) and

the estimated mean eigenvalue by ˆ̄ρtav. The Wald test based on Σ̂n (Σ̂M) is

denoted by Wn (WM).

To illustrate the size of the various tests consider the Markov chain given

in example 1. I perform 1000 simulations for each a from a = 0.01 to a = 0.99

in steps of 0.01. The number of observations T in each run is 100. τ = 3

for the naive estimator. The results are displayed in Figure 2. We find

that Ptav(T ), PM(T ), WM , and P̂a perform very well. ˆ̄ρM and ˆ̄ρtav are close

to the true value. The mean absolute percentage error is around 20% for

a in the range of 0.15 to 0.85. Not surprisingly, estimators based on the

naive approach (Pn(T ) and Wn) perform poorer. The estimated mean of

the eigenvalues (ˆ̄ρn) is consistently negative for a < 0.18 (this is equivalent

to ρ̄ < 0.22 and an autocorrelation of {U∗t } of less than −0.64). For a in

the range between 0.3 and 0.7 the performance is fine. It deteriorates again

beyond a = 0.7. Increasing τ would improve the performance slightly yet not

solve the general problem. Before calculating the rejection rates I eliminated
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Figure 2: Rejection rates at a nominal level of 10% for the Markov chain
given in Example 1. The results are based on 1000 simulations for a = 0.01
to a = 0.99 in steps of 0.01. The number of observations in each simulation
equals 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ej

ec
tio

n 
R

at
e

all flawed values (negative values, NaNs, and Inf). For a < 0.25 more than

10% of the values of Pn(T ) and Wn had to be deleted. Appendix A includes a

size simulation for an m-dependent process. In this case the statistics based

on the naive estimator perform better.

In terms of power I consider the following example. Let {Ut} be an i.i.d.

sequence with p = (0.5, 0.5)′. For a = 0.01 to a = 0.99 in steps of 0.01 we

test separately and independently the null hypothesis that p = (a, 1 − a)′.

For each a we use 1000 simulations with T = 100 observations. Figure 3

illustrates that the alternative tests are as powerful as the standard Pearson

test.
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Figure 3: Rejection rates at a nominal level of 10% for an i.i.d. process with
p = (0.5, 0.5)′. The null hypothesis p0 = (a, 1 − a)′ varies from a = 0.01 to
a = 0.99 in steps of 0.01. The results are based on 1000 simulations. The
number of observations in each simulation equals 100.
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5.2 Independence of two series

In this section I will analyze the performance of Pearson’s classical χ2 test, the

Wald test, X̂2
a(T ), and X̂2

b (T ) and compare the results to the trace statistic

in Pesaran and Timmermann [2009]. To control for serial dependence I will

use the analogous procedures as above to estimate the covariance matrices.

The naive estimator is defined by

Ω̂n = (Dp̂x − p̂xp̂
′
x)⊗ (Dp̂y −⊗p̂yp̂

′
y)

+
∑τ

l=1
T−|l|
T

(
P̂

(l)
x − p̂xp̂

′
x

)
⊗
(
P̂

(l)
y − p̂yp̂

′
y

)
+

∑τ
l=1

T−|l|
T

(
P̂

(l)′
x − p̂xp̂

′
x

)
⊗
(
P̂

(l)′
y − p̂yp̂

′
y

)
with τ = 3. For Markov chains I use that

Ω = (Dpx − pxp
′
x)⊗ (Dpy − pyp

′
y)− 2(Dpx ⊗Dpy)

+ (Dpx ⊗Dpy)(I− (Qx − 1mxp
′
x)⊗ (Qy − 1myp

′
y))
−1

+ (I− (Q′x − px1
′
mx

)⊗ (Q′y − py1
′
my

))−1(Dpx ⊗Dpy).

Let Ω̂M be the estimator that is obtained by plugging in p̂x, p̂y, Q̂x, and Q̂y.

To illustrate size and power of the above tests I use the same process as

Pesaran and Timmermann [2009]. Let

xt = φxt−1 + νt and yt = φyt−1 + εt

with νt = rxyεt +
√

1− r2xyηt. Both, ηt and εt are i.i.d. standard normal

variables. The cross-correlation of the increments rxy is set to 0 for the size

and to 0.2 for the power simulations. The simulated data is categorized

into m = mx = my equally probable bins.5 The sample sizes are T =

20, 50, 100, 500, and 1000. Table 1 displays the simulation results for φ = 0

and rxy = 0 at a nominal level of 5%.6 By and large the tests have the

right size. Yet, there are some notable exceptions. Wn and X̂2
b have a poor

performance for small samples.

5In the simulations I use the correct bounds for the bins.
6I use the critical values from the asymptotic distribution. The results for estimated

small sample critical values can be found in Appendix E.
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m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.056 0.054 0.052 0.054 0.052 0.028 0.054 0.029 0.064
2 50 0.055 0.055 0.056 0.056 0.056 0.055 0.056 0.049 0.052
2 100 0.051 0.048 0.049 0.049 0.049 0.048 0.049 0.046 0.047
2 500 0.058 0.057 0.058 0.058 0.058 0.057 0.058 0.058 0.058
2 1000 0.044 0.045 0.044 0.044 0.044 0.045 0.044 0.046 0.046

3 20 0.050 0.047 0.045 0.049 0.043 0.011 0.044 0.020 0.095
3 50 0.051 0.048 0.048 0.049 0.050 0.040 0.048 0.052 0.072
3 100 0.049 0.048 0.049 0.049 0.049 0.047 0.050 0.049 0.053
3 500 0.046 0.047 0.046 0.046 0.046 0.046 0.046 0.045 0.046
3 1000 0.050 0.050 0.050 0.050 0.050 0.051 0.050 0.047 0.047

4 20 0.040 0.037 0.047 0.043 0.031 0.006 0.040 0.029 0.038
4 50 0.028 0.024 0.024 0.026 0.029 0.027 0.028 0.029 0.071
4 100 0.048 0.047 0.047 0.048 0.049 0.048 0.049 0.048 0.064
4 500 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.038 0.045
4 1000 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.048 0.049

Table 1: Size of independence tests: level 5%, no serial correlation (ψ = 0),
no cross-correlation (rxy = 0), 1000 simulations

The case with serial correlation (φ = 0.8) but no cross-correlation is

summarized in Table 2. The rejection rates of the standard Pearson test

differ substantially from 5%. The rejection rates for almost all tests increase

with sample size. For very small samples (T = 20) X̂2
b and Wn have a rather

poor performance .

If the two series are correlated with rxy = 0.2, the power of all tests is

on a similar level as the power of the standard Pearson test. The power of

the tests is a little bit higher without serial correlation (Table 3) than with

serial correlation (Table 4).

5.3 Conditional Independence

In a first simulation I compare CMH with CMH∗. For mx = my = mz = 2

I draw independently r1y, r1z, r2y, r2z, and px. Set p = (px,1r
1
y⊗ r1z, px,2r

2
y⊗ r2z)

′.

In this case Yt and Zt are independent conditional on Xt. For 100 different

values of p I simulated 1000 series of 100 observations. The results are given
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m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.151 0.059 0.073 0.063 0.044 0.014 0.063 0.025 0.061
2 50 0.202 0.073 0.077 0.077 0.077 0.044 0.077 0.060 0.067
2 100 0.251 0.072 0.089 0.088 0.090 0.069 0.088 0.057 0.061
2 500 0.210 0.053 0.071 0.071 0.071 0.053 0.071 0.052 0.052
2 1000 0.248 0.059 0.080 0.080 0.080 0.059 0.080 0.073 0.074

3 20 0.128 0.059 0.089 0.047 0.028 0.004 0.034 0.021 0.026
3 50 0.247 0.072 0.067 0.066 0.056 0.032 0.052 0.051 0.050
3 100 0.280 0.079 0.086 0.086 0.071 0.061 0.069 0.081 0.088
3 500 0.297 0.072 0.093 0.093 0.071 0.048 0.070 0.060 0.060
3 1000 0.308 0.074 0.089 0.089 0.082 0.058 0.082 0.051 0.051

4 20 0.093 0.047 0.093 0.029 0.014 0.003 0.020 0.011 0.004
4 50 0.194 0.059 0.053 0.048 0.041 0.024 0.038 0.048 0.013
4 100 0.263 0.080 0.073 0.072 0.061 0.060 0.056 0.046 0.016
4 500 0.292 0.081 0.091 0.091 0.057 0.041 0.057 0.048 0.043
4 1000 0.310 0.079 0.096 0.096 0.071 0.055 0.070 0.051 0.051

Table 2: Size of independence tests: nominal level 5%, serial correlation
(ψ = 0.8), no cross-correlation (rxy = 0), 1000 simulations

m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.089 0.080 0.083 0.082 0.083 0.036 0.082 0.047 0.100
2 50 0.164 0.154 0.160 0.161 0.160 0.153 0.161 0.144 0.156
2 100 0.252 0.245 0.249 0.249 0.249 0.245 0.249 0.235 0.240
2 500 0.823 0.821 0.824 0.824 0.824 0.821 0.824 0.814 0.814
2 1000 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983

3 20 0.073 0.065 0.076 0.072 0.069 0.010 0.073 0.027 0.115
3 50 0.114 0.109 0.112 0.109 0.117 0.107 0.114 0.108 0.130
3 100 0.197 0.196 0.196 0.195 0.198 0.192 0.198 0.189 0.211
3 500 0.819 0.821 0.820 0.820 0.818 0.818 0.817 0.819 0.827
3 1000 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990

4 20 0.062 0.053 0.059 0.057 0.056 0.007 0.060 0.028 0.050
4 50 0.081 0.079 0.082 0.080 0.080 0.079 0.081 0.068 0.136
4 100 0.146 0.147 0.145 0.145 0.146 0.143 0.146 0.145 0.185
4 500 0.786 0.786 0.786 0.786 0.787 0.789 0.788 0.783 0.793
4 1000 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.987 0.987

Table 3: Power of independence tests: nominal level 5%, no serial correlation
(ψ = 0), cross-correlation rxy = 0.2, 1000 simulations
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m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.178 0.083 0.085 0.076 0.053 0.020 0.075 0.035 0.066
2 50 0.284 0.107 0.131 0.129 0.131 0.066 0.129 0.092 0.097
2 100 0.387 0.170 0.197 0.199 0.197 0.165 0.199 0.129 0.134
2 500 0.722 0.456 0.507 0.507 0.507 0.456 0.507 0.442 0.445
2 1000 0.906 0.744 0.782 0.782 0.782 0.744 0.782 0.717 0.717

3 20 0.153 0.074 0.104 0.060 0.034 0.008 0.042 0.026 0.032
3 50 0.293 0.111 0.107 0.105 0.073 0.040 0.074 0.083 0.072
3 100 0.405 0.157 0.177 0.176 0.112 0.092 0.110 0.133 0.140
3 500 0.747 0.510 0.545 0.545 0.400 0.356 0.401 0.498 0.505
3 1000 0.922 0.779 0.799 0.799 0.670 0.632 0.670 0.846 0.849

4 20 0.102 0.056 0.090 0.038 0.022 0.009 0.030 0.013 0.004
4 50 0.264 0.105 0.085 0.078 0.060 0.039 0.061 0.071 0.018
4 100 0.398 0.150 0.142 0.141 0.080 0.076 0.081 0.116 0.035
4 500 0.761 0.485 0.504 0.504 0.298 0.269 0.296 0.513 0.452
4 1000 0.917 0.782 0.809 0.809 0.538 0.507 0.537 0.853 0.844

Table 4: Power of independence tests: nominal level 5%, serial correlation
(ψ = 0.8), cross-correlation rxy = 0.2, 1000 simulations

in Figure 4. Both tests perform reasonably well.

Now, assume that p = (1/4)(a, 1−a, 1−a, a, 1−a, a, a, 1−a)′. It is easy

to verify that in this case pijk does not equal pij+pi+k/pi++ unless a = 1/2. Yt

and Zt are not independent conditionally on Xt. But p+jk = p1j+p1+k/p1+++

p2j+p2+k/p2++. Figure 5 displays the rejection rates of both tests in relation

to a which ranges from 0 to 0.5 in steps of 0.01. Not surprisingly, CMH has

no power against these kind of processes.

Finally, I draw randomly 100 values for p to illustrate the power of both

tests. The rejection rates are plotted against the distance between p and

p0 = (p1++r1y ⊗ r1z, p2++r2y ⊗ r2z)
′. The performance of CMH∗ is considerably

better than that of CMH as illustrated in Figure 6.

We may use CMH and CMH∗ to test whether a series is Markov of order

one against the alternative of a higher order. Suppose that {Xt} is a Markov

chain of order 2 with two states. Define X̃t = Xt−1 ⊗ Xt. The transition
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Figure 4: Rejection rates of CMH and CMH∗ at a nominal level of 10% for
a conditionally independent process. The results are based on 1000 simula-
tions. The number of observations in each simulation equals 100.
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Figure 5: Rejection rates at a nominal level of 10%. p+jk =
∑

i pij+pi+k/pi++

but pijk 6= pij+pi+k/pi++, i.e. Yt and Zt are not independent conditional on
Xt. The results are based on 1000 simulations. The number of observations
in each simulation equals 100.
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Figure 6: Rejection rates at a nominal level of 10%. One hundred p are
randomly drawn. The results are based on 1000 simulations for each p. The
number of observations in each simulation equals 100.
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matrix of {X̃t} is given by

QX̃ =


a 1− a 0 0

0 0 b 1− b
c 1− c 0 0

0 0 d 1− d

 .

If {Xt} is a simple Markov chain then c = a and d = b. To illustrate the

power of CMH and CMH∗ I set b = c = 1− a and d = a, i.e.

QX̃ =


a 1− a 0 0

0 0 1− a a

1− a a 0 0

0 0 a 1− a

 .

In this case {Xt} is a simple Markov chain if and only if a = 0.5. Figure 7

displays the simulation result for a ranging from 0.1 to 0.9 in steps of 0.01.

CMH∗ performs very well compared to CMH.

6 Conclusion

Based on the assumption that a central limit theorem holds I analyze the

consequences of serial correlation on the distribution of Pearson statistics.

Simple adjustments that can easily be implemented suffice to correct for the

serial dependence in the data. Simulations illustrate that the loss of power

caused by this adjustments in cases without serial correlation is small.

The results in Tavaré [1983] and Porteous [1987] can be generalized to non

reversible processes. For independence tests in two-way tables an alternative

test using filtered observations is proposed. If one of the two series is a

Markov chain, the test has a simple asymptotic distribution and performs

well in simulations.

The classical CMH test for conditional independence is discussed in detail.

It is shown that CMH tests for a rather weak implication of conditional

independence. A minor modification suffices to get a statistic that tests for
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Figure 7: Power of CMH and CMH∗ for a two-state Markov chain of order
two. The rejection rates are based on a nominal level of 10%. The results are
based on 1000 simulations for each a. The number of observations in each
simulation equals 100.
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a larger class of alternatives without losing power in those cases for which

CMH is tailor-made. Finally, simulations indicate that the variant of CMH

performs very well as a test for Markovity of order one.
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A m-dependent Process

Let {Xt} be a sequence of independent random variables which are dis-

tributed uniformly on the unit interval. Define Ut = 1 if Xt−1 ≤ aXt

and 2 otherwise. {Ut} is a 1-dependent process. For a ∈ (0, 1] we get

p = (a/2, 1− a/2)′,

Q(1) =

(
a2

3
3−a2
3

3a−a3
6−3a

6−6a+a3
6−3a

)
and Σ =

a(6− 9a+ 4a2)

12

(
1 −1

−1 1

)

The non-zero eigenvalue of D−1p Σ equals (6− 9a+ 4a2)/(6− 3a). Hence, the

asymptotic distribution of P (T ) is not χ2
1 but 6−9a+4a2

6−3a χ2
1. Figure 8 illustrates

the rejection rates at a 10% level for a ∈ (0, 1] if the critical value from the

χ2
1 distribution is used. Let U∗t =

∑mu

i=1 iUi,t. The correlation of U∗t−1 and

U∗t equals (2a2 − 3a)/(6 − 3a). Moderate levels of autocorrelations lead to

sizable deviations from the 10% level.

Figure 9 illustrates the performance of the tests specified in subsection 5.1.

The naive estimation of Σ and ρ̄ with τ = 3 works well in this environment

as long as a is larger than 0.2
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Figure 8: The rejection rate at a nominal level of 10% for a 1-dependent
process. The blue line is the theoretical rejection rate. The red line is based
on 1000 simulations for a = 0.01 to a = 0.99 in steps of 0.01. The number of
observations in each simulation equals 200.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
ej

ec
tio

n 
R

at
e

Goodness of Fit Test

37



Figure 9: Rejection rates at a nominal level of 10% for a 1-dependent process.
The results are based on 1000 simulations for a = 0.01 to a = 0.99 in steps
of 0.01. The number of observations in each simulation equals 200.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
ej

ec
tio

n 
R

at
e

38



B Pesaran and Timmermann’s trace statistic

Pesaran and Timmermann [2009] propose new procedures to test for inde-

pendence of two or more stationary and ergodic Markov chains based on

canonical correlations. To be more specific, consider the category variables

Xt = (X1,t, X2,t, . . . , Xmx,t)
′ with Xi,t = 1 if category i occurs at time t

and Xi,t = 0 otherwise (analogously for Yt = (Y1,t, Y2,t, . . . , Ymx,t)
′). To

avoid multicollinearity in the regression framework Pesaran and Timmer-

mann [2009] delete the last entries of Xt and Yt. I denote these vectors by

X0
t and Y 0

t , respectively. The observations of Xt are summarized in the ma-

trix X = (x1,x2, . . . ,xT)′ (analogously for X0
t , Yt, and Y 0

t ). Pesaran and

Timmermann [2009] show that under independence

Ttr(S−1y0y0,w0Sy0x0,w0S−1x0x0,w0Sx0y0,w0) ∼a χ2
(mx−1)(my−1)

with Mw0 = IT −W0(W0′W0)−1W0′, Sy0y0,w0 = T−1Y0′Mw0Y0, Sx0x0,w0 =

T−1X0′Mw0X0, and Sx0y0,w0 = T−1X0′Mw0Y0 = S′y0x0,w0 . In the case of no

serial correlation W0 = 1T . For simple Markov chains W0 = (X0
−1,Y

0
−1,1T ).

For notational convenience I follow Pesaran and Timmermann [2009] and

assume that we do have T observations of the lagged variables. X0
−1 denotes

the T × (mx−1) matrix of observations on X0
t−1. All simulations in the main

text are based on a fixed number of T observations. The statistic has to be

adjusted in the obvious way.

To get a clearer understanding of the relation between contingency tables

and the above trace statistic I show that we may use Xt and Yt instead of X0
t

and Y 0
t if we substitute generalized inverses for inverse matrices. This would

be only a minor contribution. Yet, this restatement of the theorems in Pe-

saran and Timmermann [2009] allows a more comprehensible representation

of the trace statistic.

In the above definitions of Mw0 we used that W0′W0 is invertible. Now,

suppose that this is not the case and define M∗
w = IT −W(W′W)−W′ for

some g inverse of W′W.
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Lemma 1. Let W0 be an m×k matrix of full column rank and A be a k×n
matrix of full row rank. For W = W0A it holds that (a) W(W′W)−W′ =

W0(W0′W0)−1W0′, (b) W(W′W)−W′W = W, and (c) W′W(W′W)−W′ =

W′ for any g inverse of W′W.

Proof. Rao and Mitra [1972] show in Theorem 2.4 that W(W′W)−W′ is

invariant for any choice of (W′W)−, in particular it equals W(W′W)+W′.

It is straightforward to check that

(W′W)+ = (A′W0′W0A)+ = A′(AA′)−1(W0′W0)−1(AA′)−1A.

Plugging this in yields W(W′W)+W′ = W0(W0′W0)−1W0′ . (b) and (c)

are proved in Theorem 2.4 of Rao and Mitra [1972].

Lemma 1 implies that M∗
w is invariant with respect to the chosen g inverse

and that M∗
w = Mw0 provided that W = W0A holds. Under this assumption

S∗yy,w = T−1Y′M∗
wY = T−1Y′Mw0Y = Syy,w0 . The same is true for S∗xx,w

and S∗xy,w.

Lemma 2. Suppose that S−1y0y0,w0, S−1x0x0,w0, and (W0′W0)−1 exist. If 1T is

in the column space of W0 and W = W0A where A is of full row rank then

tr(S−1y0y0,w0Sy0x0,w0S−1x0x0,w0Sx0y0,w0) = tr((S∗yy,w)+S∗yx,w(S∗xx,w)+S∗xy,w).

Proof. Y may be expressed as Y = (Y0,1T − Y01my−1). Plugging this in

yields Mw0(Y0,1T −Y01my−1) = Mw0Y0(Imy−1,−1my−1). The last equality

follows from the fact that 1T is in the column space of W0. Consequently,

Y′M∗
wY =

(
Imy−1

−1
′
my−1

)
Y0′Mw0Y0

(
Imy−1,−1my−1

)
and

(Y′M∗
wY)

+
=

(
I

−1
′

) (
I + 11

′)−1 (
Y0′Mw0Y0

)−1 (
I + 11

′)−1
(I,−1)

where I dropped the subscript of Imy−1 and 1my−1. We get analogous results
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for S∗yx,w, (S∗xx,w)+, and S∗xy,w. Plugging this in yields

(S∗yy,w)+S∗yx,w(S∗xx,w)+S∗xy,w =

(
I

−1
′

)(
I + 11

′)−1
S−1y0y0,w0Sy0x0,w0

× S−1x0x0,w0Sx0y0,w0 (I,−1) .

The trace is invariant under cyclic permutations. Hence,

tr(S−1y0y0,w0Sy0x0,w0S−1x0x0,w0Sx0y0,w0) = tr((S∗yy,w)+S∗yx,w(S∗xx,w)+S∗xy,w)

Given the last result it is understood that from now on the projection

matrix M∗
w is used instead of Mw and the asterisk is dropped from M∗

w,

S∗yy,w, S∗yx,w, S∗xx,w, and S∗xy,w.

The next step is to verify that the trace does not depend on using the

Moore-Penrose inverse, i.e.

tr(S+
yy,wSyx,wS+

xx,wSxy,w) = tr(S−yy,wSyx,wS−xx,wSxy,w)

for arbitrary g inverses of Syy,w and Sxx,w. The trace is rotation invariant,

tr(A′B) = vec(A)′vec(B), and vec(ABC) = (C′ ⊗ A)vec(B). We get the

desired result if

vec(Syx,w)′
(
S+
xx,w ⊗ S+

yy,w

)
vec(Syx,w) = vec(Syx,w)′

(
S−xx,w ⊗ S−yy,w

)
vec(Syx,w).

Lemma 3. For v ∈ Rm in the column span of the symmetric m×m matrix Σ

the quadratic form v′Σ−v is invariant with respect to the particular g inverse

chosen.

Proof. If v is in the column span then there exists a vector u ∈ Rm such

that v = Σu. Hence, v′Σ−v = u′Σ′Σ−Σu = u′ΣΣ−Σu = u′Σu for any g

inverse.

The trace is therefore invariant with respect to the chosen g inverse if
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vec(Syx,w) is in the column span of Sxx,w ⊗ Syy,w. Observe that

Syy,wS+
yy,wSyx,wS+

xx,wSxx,w = Syx,w.

This corresponds to

(Sxx,w ⊗ Syy,w)vec(S+
yy,wSyx,wS+

xx,w) = vec(Syx,w).

vec(Syx,w) is in the column span of Sxx,w⊗Syy,w. Lemma 2 can be generalized.

Lemma 4. Suppose that S−1y0y0,w0, S−1x0x0,w0, and (W0′W0)−1 exist. If 1T is

in the column span of W0 and W = W0A where A is of full row rank then

tr(S−1y0y0,w0Sy0x0,w0S−1x0x0,w0Sx0y0,w0) = tr(S−yy,wSyx,wS−xxSxy,w) for arbitrary g

inverses S−yy,w and S−xx,w.

Remark 4. If either X or Y are in the column span of W, the trace is

identical to zero. This would be the case if for instance Xt = Yt−1.

B.1 Two-way Tables without Serial Correlation

In the case of no serial correlation W = W0 = 1T. 1T is in the space

spanned by W0 and W0′W0 = T is invertible. Hence, Lemma 4 may be

applied. Pesaran and Timmermann [2009] showed that in this case the trace

statistic is equivalent to the standard χ2 test for two-way tables. Using the

new notation this result can be derived quite easily.

Lemma 5. In the case without serial correlation, i.e. W = W0 = 1T, we

get

Ttr(S−yy,wSyx,wS−xx,wSxy,w) = Tvec(P̂xy−p̂xp̂
′
y)
′(D̂−1y ⊗D̂−1x )vec(P̂xy−p̂xp̂

′
y)

where P̂xy = (1/T )X′Y. The trace may be rewritten as Pearson’s chi-squared

test for independence

T
mx∑
i=1

my∑
j=1

(p̂ij − p̂i+p̂+j)2

p̂i+p̂+j
.
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Proof. Syy,w = T−1Y′(I−1T (1′T1T )−11′T )Y = Dp̂y−p̂yp̂
′
y and Sxx,w = Dp̂x−

p̂xp̂
′
x. Analogously we get Syx,w = T−1Y′(I−1T (1′T1T )−11′T )X = P̂yx−p̂yp̂

′
x.

Hence, vec(Syx,w) = p̂− p̂x ⊗ p̂y. D−1p̂x is a g inverse of Dp̂x − p̂xp̂
′
x. Hence,

we get

tr(S−yy,wSyx,wS−xx,wSxy,w)

= (p̂− p̂x ⊗ p̂y)
′(D−1p̂y ⊗D−1p̂x )(p̂− p̂x ⊗ p̂y).

B.2 Two-way Tables with Serial Correlation

In this subsection I will show that the dynamically augmented trace statis-

tic is asymptotically equivalent to X2
b as defined in the main text if both

{Xt} and {Yt} are simple, stationary, and ergodic Markov chains. In the

dynamically augmented case W0 = (X0
−1,Y

0
−1,1T ). W = (X−1,Y−1) may

be written as

W = (X0
−1,1T −X0

−11mx−1,Y
0
−1,1T −Y0

−11my−1)

= W0

 Imx−1 −1mx−1 0 0

0 0 Imy−1 −1my−1

0 1 0 1


The matrix in brackets is of full row rank and 1T is in the span of W0. We

may apply Lemma 4 again.

Syy,w = Dp̂y − (P̂yx−1 , P̂yy−1)

(
Dp̂x−1

P̂x−1y−1

P̂y−1x−1 Dp̂y−1

)−(
P̂x−1y

P̂y−1y

)

= Dpy − (pyp
′
x,P

′
y)

(
Dpx pxp

′
y

pyp
′
x Dpy

)−(
pxp

′
y

Py

)
+Op(T

−1/2)

with P̂yx−1 = (1/T )Y′X−1 = P̂′x−1y
, P̂yy−1 = (1/T )Y′Y−1 = P̂′y−1y

, Dp̂x−1
=

(1/T )X′−1X−1, Dp̂y−1
= (1/T )Y′−1Y−1, and P̂y−1x−1 = (1/T )Y′−1X−1 =

P̂′x−1y−1
. For stationary and ergodic Markov chains these estimators are
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consistent.7 The second equality is then a consequence of the null hypothesis

of independence. Using that(
D−1px −

3
4
1mx1

′
mx

1
4
1mx1

′
my

1
4
1my1

′
mx

D−1py −
3
4
1my1

′
my

)

is a (reflexive) g inverse of(
Dpx pxp

′
y

pyp
′
x Dpy

)

yields

Syy,w = Dpy −Q′yDpyQy +Op(T
−1/2).

Analogously we get Sxx,w = Dpx − Q′xDpxQx + Op(T
−1/2). We see that

Sxx,w⊗Syy,w equals (Dpx −Q′xDpxQx)⊗ (Dpy −Q′yDpyQy) +Op(T
−1/2) and

is asymptotically equivalent to the covariance matrix of Hb(T ).

Syx,w is given by 1
T
Y′X− 1

T
Y′W (W′W)−W′X. Under H0

(W′W)
−

W′X =

(
Dpx pxp

′
y

pyp
′
x Dpy

)−(
Px−1x

pyp
′
x

)
+Op(T

−1/2).

We use the same g inverse as above to get

(W′W)
−

W′X =

(
Qx − 1

2
1mxp

′
x

1
2
1myp

′
x

)
+Op(T

−1/2) = Ax +Op(T
−1/2).

Analogously we get for (W′W)−W′Y

(W′W)
−

W′Y =

(
1
2
1mxp

′
y

Qy − 1
2
1myp

′
y

)
+Op(T

−1/2) = Ay +Op(T
−1/2).

7See for instance Billingsley [1961].
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Plugging this in yields

Syx,w = 1
T
Y′X−Y′W (W′W)−

(
1
T
W′W

)
(W′W)−W′X

= 1
T
Y′X−Y′W (W′W)−

(
1
T
W′W

)
Ax

− A′y
(
1
T
W′W

)
(W′W)−W′X

+ A′y
(
1
T
W′W

)
Ax

−
(
Y′W (W′W)− −Ay

)′ ( 1
T
W′W

) (
(W′W)−W′X−Ax

)
.

The last term is of the order Op(T
−1). Now, by Lemma 1

W′W (W′W)
−

W′X = W′X and W′W (W′W)
−

W′Y = W′Y.

Hence,

Syx,w = 1
T
Y′X−

(
1
T
Y′W

)
Ax −A′y

(
1
T
W′X

)
+ A′y

(
1
T
W′W

)
Ax +Op(T

−1).

Moreover,

WAx = X−1Qx and WAy = Y−1Qy.

Plugging this in yields

Syx,w = 1
T
Y′X− 1

T
Y′X−1Qx − 1

T
Q′yY

′
−1X

+ 1
T
Q′yY

′
−1X−1Qx +Op(T

−1)

= 1
T

(Y −Y−1Qy)
′ (X−X−1Qx) +Op(T

−1).

If both processes, {Xt} and {Yt}, are stationary and ergodic Markov chains

then
√
Tvec(Syx,w) = Hb(T ) + Op(T

−1/2). Using the results for Syy,w and

Sxx,w we get that Xb(T ) is asymptotically equivalent to the trace statistic

Ttr(S−yy,wSyx,wS−xx,wSxy,w).

B.3 Joint Independence in Three-way Tables

The test for joint independence of ({Xt}, {Zt}) from {Yt} proposed in Pesaran

and Timmermann [2009] reads as Ttr(S−yy,wSyq,wS−qqSqy,w) with Q = (X,Z).
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The statistic is asymptotically χ2
(mx+mz−2)(my−1) distributed. Let us ignore

any serial correlation for the moment and set W = 1T . We get S−yy,w = D−1p̂y
and Syq,w = (P̂yx, P̂yz)− (p̂yp̂

′
x, p̂yp̂

′
z). Furthermore,

Sqq,w =

(
Dp̂x − p̂xp̂

′
x P̂xz − p̂xp̂

′
z

P̂zx − p̂zp̂
′
x Dp̂z − p̂zp̂

′
z

)
.

Using the same arguments as above we get that Ttr(S−yy,wSyq,wS−qqSqy,w)

equals

Tvec

(
P̂xy − p̂xp̂

′
y

P̂zy − p̂zp̂
′
y

)′ (
D−1p̂y ⊗ S−qq,w

)
vec

(
P̂xy − p̂xp̂

′
y

P̂zy − p̂zp̂
′
y

)
.

The typical elements of the vec operator are given by p̂ij+ − p̂i++p̂+j+ and

p̂+jk − p̂+j+p̂++k. Joint independence of ({Xt}, {Zt}) from {Yt} implies

that pijk = p+j+pi+k. This in turn implies that p+jk = p+j+p++k and

pij+ = p+j+pi++ but not vice versa. The trace statistic defined in Pesaran

and Timmermann [2009] tests for simultaneous pairwise rather than joint

independence.

For illustrative purposes suppose that additionally pi+k = pi++p++k. Un-

der this assumption

Sqq,w =

(
Dp̂x − p̂xp̂

′
x 0

0 Dp̂z − p̂zp̂
′
z

)
+Op(T

−1/2).

A g inverse is given by

S−qq,w =

(
D−1p̂x 0

0 D−1p̂z

)
+Op(T

−1/2).

The trace may be written as

Tvec

(
P̂xy − p̂xp̂

′
y

P̂zy − p̂zp̂
′
y

)′(
D−1p̂y ⊗

(
D−1p̂x 0

0 D−1p̂z

))
vec

(
P̂xy − p̂xp̂

′
y

P̂zy − p̂zp̂
′
y

)
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or

T

mx∑
i=1

my∑
j=1

(p̂ij+ − p̂i++p̂+j+)2

p̂i++p̂+j+
+ T

my∑
j=1

mz∑
k=1

(p̂+jk − p̂+j+p̂++k)
2

p̂+j+p̂++k

.

Example 3. Let mx = my = mz = 2. The joint probabilities are given

by p = (1/12)(1, 2, 2, 1, 2, 1, 1, 2)′. It is easy to verify that pi++ = p+j+ =

p++k = (1/2)(1, 1)′ and pij+ = pi+k = p+jk = (1/4)(1, 1, 1, 1)′. Hence,

Pxz = pxp
′
z, Pxy = pxp

′
y, and Pyz = pyp

′
z. But pijk 6= p+j+pi+k. ({Xt}, {Zt})

are not jointly independent from {Yt}. The test has no power against this

alternative.

If we use Q̃t = Xt⊗Zt instead ofQt = (Xt, Zt) then Ttr(S−yy,wSyq̃,wS−q̃q̃Sq̃y,w)

tests whether ({Xt}, {Zt}) are jointly independent from {Yt}. The statistic

is asymptotically χ2
(mxmz−1)(my−1) distributed.

B.4 Conditional Independence in Three-way Tables

In Part 1 of Theorem 2 Pesaran and Timmermann [2009] propose a test for

conditional independence of {Xt} and {Yt} given {Zt}. They show that

Ttr(S−yy,wSyx,wS−xx,wSxy,w) ∼a χ2
(mx−1)(my−1)

with W = Z in the case of no serial correlation and W = (Z,Y−1,X−1,Z−1)

for Markov chains.8

Let us assume no serial correlation. Straightforward calculations along

8Pesaran and Timmermann [2009] use W0 = (Z0,1T ) and W0 =
(Y0
−1,X

0
−1,Z

0,Z0
−1,1T−1) respectively. Lemma 4 can be applied.
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the above lines yield

Ttr(S−yy,wSyx,wS−xx,wSxy,w)

= Ttr(S−xx,wSxy,wS−yy,wSyx,w)

= Tvec
(
P̂yx − P̂yzD

−1
p̂z

P̂zx

)′
×

((
Dp̂x − P̂xzD

−1
p̂z

P̂zx

)−
⊗
(
Dp̂y − P̂yzD

−1
p̂z

P̂zy

)−)
× vec

(
P̂yx − P̂yzD

−1
p̂z

P̂zx

)
Let r̃k = (p̂1,1,k . . . p̂mx,my ,k)

′/p̂++k be the conditional observed fractions

and denote the marginal conditional fractions by r̃kx and r̃ky. A closer look at

the matrix (Dp̂x − P̂xzD
−1
p̂z

P̂zx) reveals that it can be written as

mz∑
k=1

p̂++k

(
Dr̃kx
− r̃kxr̃

k′
x

)
.

Analogously, we get

(Dp̂y − P̂yzDp̂zP̂zy) =
mz∑
k=1

p̂++k

(
Dr̃ky
− r̃ky r̃

k′
y

)
.

The term in the vec operator equals

vec
(
P̂yx − P̂yzD

−1
p̂z

P̂zx

)

=
∑mz

k=1




p̂11k

p̂12k
...

p̂mx,my ,k

− 1
p̂++k


p̂1+kp̂+1k

p̂1+kp̂+2k

...

p̂mx,+,kp̂+,my ,k




=
∑mz

k=1 p̂++k

(
r̃k − r̃kxr̃

k′
y

)
=

∑mz

k=1 di

with di as defined in the main text.9 The typical elements of the vec operator

are given by p̂ij+ −
∑mz

k=1 p̂i+kp̂+jk/p̂++k. But pij+ =
∑mz

k=1 pi+kp+jk/p++k is

9In the main text I used Xt as conditioning variable for notational convenience. Here
I use Zt as in Pesaran and Timmermann [2009].

48



only a weak implication of conditional independence compared to the usual

pijk = pi+kp+jk/p++k. Without serial correlation the trace statistic equals

Ttr(S−yy,wSyx,wS−xx,wSxy,w)

= T
∑mz

k=1 di′

×
(∑mz

k=1 p̂++k

(
Dr̃kx
− r̃kxr̃

k′
x

))− ⊗ (∑mz

k=1 p̂++k

(
Dr̃ky
− r̃ky r̃

k′
y

))−
×

∑mz

k=1 di.

Comparing this to the results from the main text we see that the covariance

matrix in the CMH statistic differs from that in the trace statistic by the

cross products between the different strata. The covariance matrix in the

CMH test as derived in the main text is given by

∑mx

i=1 pi++

(
Driy
− riyr

i′
y

)
⊗
(
Driz
− rizr

i′
z

)
= EX

[(
Dry − ryr

′
y

)
⊗ (Drz − rzr

′
z)
]

where the expectation is taken across the different categories of {Xt}. If Xt

is the conditioning variable, the matrix used in the trace statistic equals(∑mx

i=1 p̂i++

(
Dr̃iy
− r̃iyr̃

i′
y

))
⊗
(∑mx

i=1 p̂i++

(
Dr̃iz
− r̃iz r̃

i′
z

))
= EX

[
Dry − ryr

′
y

]
⊗ EX [Drz − rzr

′
z] +Op(T

−1/2).

The difference between these two is the covariance of Dry − ryr
′
y with Drz −

rzr
′
z across the different categories of {Xt}. The covariance matrix used in

the trace statistic will in general not be correct.

Example 4. Suppose that {Yt} and {Zt} are independent conditional on

{Xt}. The series are not serially correlated and mx = my = mz = 2. Let

p1++ = p2++ = 0.5, r1y = r1z = (0.5, 0.5)′, and r2y = r2z = (1− 1/n, 1/n)′. We

get

EX
[(

Dry − ryr
′
y

)
⊗ (Drz − rzr

′
z)
]

= 1
2

(
1
16

+ (n−1)2
n4

)( 1 −1

−1 1

)
⊗

(
1 −1

−1 1

)
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and

EX
[
Dry − ryr

′
y

]
⊗ EX [Drz − rzr

′
z]

= 1
4

(
1
4

+ n−1
n2

)2( 1 −1

−1 1

)
⊗

(
1 −1

−1 1

)
.

Not surprisingly, both expressions are equal for n = 2. For n = 20 the

rejection rate of the trace statistic for a notional size of 10% is 17.39%. For

n→∞ the scalar in the first term converges to 1/32 and in the second term

to 1/64. The rejection rate converges to 24.48%.

Alternatively, let p1++ = p2++ = 0.5, r1y = (0.5, 0.5)′, r2y = (1/n, 1−1/n)′,

r1z = (1− 1/n, 1/n)′, and r2z = (0.5, 0.5)′. Hence,

EX
[(

Dry − ryr
′
y

)
⊗ (Drz − rzr

′
z)
]

= 1
4
(n−1)
n2

(
1 −1

−1 1

)
⊗

(
1 −1

−1 1

)

and EX
[
Dry − ryr

′
y

]
⊗ EX [Drz − rzr

′
z] as above. For n = 20 the rejection

rate of the trace statistic is 2.48% for a notional size of 10%. For n → ∞
the correct term as used in the CMH test converges to 0. The rejection rate

converges also to 0.

C Cochrane-Mantel-Haenszel Test

In this section it is shown that CMH from the main text equals the Cochrane-

Mantel-Haenszel (CMH) test. I follow the presentation in Agresti [2002] with

the deviation that I condition on the first variable for notational convenience.

nijk is the number of realizations with Xt = i, Yt = j, and Zt = k. Let

ni = (ni11, . . . , ni,my ,mz)
′ be the counts conditional on Xt being equal to i.

Given nij+ and ni+k the nonredundant counts are summarized in

n0
i = (ni11, . . . , ni,1,mz−1, ni21 . . . , ni,my−1,mz−1)

′.

Let µi = (ni1+ni+1, . . . , ni,my ,+ni,+,mz)
′/ni++ and µ0

i corresponding to n0
i .
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The null covariance matrix Vi of ni is given by 10

Vi =
1

ni++

(
Dni•+ −

1

ni++

ni•+n
′
i•+

)
⊗
(

Dni+• −
1

ni++

ni+•n
′
i+•

)
where ni•+ is the vector (ni,1,+, · · · , ni,my ,+)′ and ni+• = (ni,+,1, · · · , ni,+,mz)

′.

The covariance matrix of n0
i under conditional independence is given by

V0
i =

1

ni++

(
Dn0

i•+
− 1

ni++

n0
i•+n

0′
i•+

)
⊗
(

Dn0
i+•
− 1

ni++

n0
i+•n

0′
i+•

)
with n0

i•+ = (ni,1,+, · · · , ni,my−1,+)′ and n0
i+• = (ni,+,1, · · · , ni,+,mz−1)

′. The

definition of the CMH test in Agresti [2002] is given by

CMHa =
mx∑
i=1

(
n0
i − µ0

i

)′( mx∑
i=1

V0
i

)−1 mx∑
i=1

(
n0
i − µ0

i

)
.

So the first question is whether we may use the vector of all counts instead

of the nonredundant ones. I will show that CMHa equals

mx∑
i=1

(ni − µi)′
(

mx∑
i=1

Vi

)+ mx∑
i=1

(ni − µi) .

The first step to establish equality is to reorder the elements of ni such that

the elements of n0
i come first. If we premultiply ni and µi by the permutation

matrix

P =

(
Imy ⊗ [Imz−1,0mz−1,1]

Imy ⊗ [01,mz−1, 1]

)
,

we get

ñi = Pni =

(
n0
i

n1
i

)
and µ̃i = Pµi =

(
µ0
i

µ1
i

)

with n1
i = (ni,my ,1, . . . , ni,my ,mz−1, ni,1,mz , . . . , ni,my ,mz)

′ and the corresponding

10I use Cochrane’s version and scale by ni++ instead of ni++ − 1.
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ordering for µ1
i . The covariance matrix of ñi is given by Ṽi = PViP

′. This

yields

∑mx

i=1 (ñi − µ̃i)′
(∑mx

i=1 Ṽi

)+∑mx

i=1 (ñi − µ̃i)
=

∑mx

i=1 (ni − µi)′P′ (
∑mx

i=1 PViP
′)
+∑mx

i=1 P (ni − µi)
=

∑mx

i=1 (ni − µi)′ (
∑mx

i=1 Vi)
+∑mx

i=1 (ni − µi) .

The ordering of the elements is irrelevant. The next step is to show that

there exists a matrix B such that n1
i − µ1

i = B(n0
i − µ0

i ). To see this note

that

my∑
j=1

(
nijk −

nij+ni+k
ni++

)
=

mz∑
k=1

(
nijk −

nij+ni+k
ni++

)
= 0.

Define

B =

 −11,my−1 ⊗ Imz−1

−Imy−1 ⊗ 11,mz−1

11,my−1 ⊗ 11,mz−1

 .

It is straightforward to verify that

ñi − µ̃i =

(
I(my−1)(mz−1)

B

)
(n0

i − µ0
i )

and

Ṽi =

(
I(my−1)(mz−1)

B

)
V0
i

(
I(my−1)(mz−1),B

′) .
Using that (I(my−1)(mz−1),B

′) is of full row rank we get

(∑mx

i=1 Ṽi

)+
=

(
I

B

)
(I + B′B)−1 (

∑mx

i=1 V0
i )
−1

(I + B′B)−1 (I,B′) .
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Hence,

CMHa =
∑mx

i=1 (n0
i − µ0

i )
′
(
∑mx

i=1 V0
i )
−1∑mx

i=1 (n0
i − µ0

i )

=
∑mx

i=1 (ñi − µ̃i)′
(∑mx

i=1 Ṽi

)+∑mx

i=1 (ñi − µ̃i)
=

∑mx

i=1 (ni − µi)′ (
∑mx

i=1 Vi)
+∑mx

i=1 (ni − µi) .

Now, Tdi = (ni − µi) and

Vi = T p̂i++

(
Dr̃iy
− r̃iyr̃

i′
y

)
⊗
(
Dr̃iz
− r̃iz r̃

i′
z

)
yields that CMHa = CMH, i.e.

T
∑mx

i=1 di′

×
(∑mx

i=1 p̂i++

(
Dr̃iy
− r̃iyr̃

i′
y

)
⊗
(
Dr̃iz
− r̃iz r̃

i′
z

))+
×

∑mx

i=1 di.

What happens if we use an arbitrary g inverse instead of the Moore-

Penrose inverse? The quadratic form is invariant if
∑mx

i=1 (ni − µi) is in the

column space of
∑mx

i=1 Vi. But this is in general not the case notwithstanding

that (ni − µi) is in the column space of Vi. The quadratic form is asymp-

totically χ2 distributed for arbitrary g inverses but the equivalence with the

standard definition of CMH holds for the Moore-Penrose inverse only.

Remark 5. If we had used the scaling factor ni++− 1, the formula would be

T
∑mx

i=1 di′

×
(∑mx

i=1

p̂2i++

p̂i++−1/T

(
Dr̃iy
− r̃iyr̃

i′
y

)
⊗
(
Dr̃iz
− r̃iz r̃

i′
z

))+
×

∑mx

i=1 di.

D Further Simulations

In this section I provide some more simulation results.
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D.1 Independence Tests

It is important to keep in mind that p = px ⊗ py does not imply that Xt is

independent from Yt−l for l 6= 0. But as all tests aim only at the difference

between p and px ⊗ py none of the tests is able to detect these kind of

dependencies.

Example 5. Suppose that the process Ut = Xt⊗Yt is a simple Markov chain

with transition probability

Q =
1

2


a 1− a a 1− a

1− a a 1− a a

1− a a 1− a a

a 1− a a 1− a

 .

It is straightforward to verify that p = (1/4)(1, 1, 1, 1)′ and px = py =

(1/2)(1, 1)′. Hence, p = px ⊗ py. Moreover,

Qx = Qy =
1

2

(
1 1

1 1

)
and Q 6= Qx ⊗Qy.

If we condition Xt and Yt on both Xt−1 and Yt−1 then they are in general

(for a 6= 1/2) not independent. Figure 10 illustrates that none of the tests

has any power to detect this kind of dependence.

To handle such a situation we have to test whether Q = Qx ⊗Qy. The

procedure used in Solow et al. [1995] and Sandland [1976] works well as is

illustrated in Figure 11.

The next two examples illustrate that the rejection rates of the standard

Pearson test for independence deviates considerably from the nominal size.

Example 6. To illustrate the size of the various independence tests consider

the follwing simple Markov chain

Qx = Qy =

(
a 1− a

1− a a

)
for a ∈ (0, 1).
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Figure 10: The rejection rate at a nominal level of 10% for Example 5. The
results are based on 1000 simulations for a from 0.1 to 0.9 in steps of 0.01.
The number of observations in each simulation equals 100. The power equals
the size for all test procedures used in Section 5.
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Figure 11: The rejection rate at a nominal level of 10% for Example 5. We
test whether Q = Qx ⊗ Qy. The results are based on 1000 simulations
for a from 0.1 to 0.9 in steps of 0.01. The number of observations in each
simulation equals 100. The rejection rate of Pearson χ2 test is plotted as a
benchmark.
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Figure 12: The rejection rate at a nominal level of 10% for the Example 6.
The results are based on 1000 simulations for a from 0.1 to 0.9 in steps of
0.01. The number of observations in each simulation equals 100. The smooth
red line is the theoretical rejection rate of X2.
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{Xt} and {Yt} are independent. Q equals Qx ⊗ Qy and p = px ⊗ py with

px = py = (0.5, 0.5)′. The asymptotic distribution of X2 is equivalent to

(1−2a+2a2)/(2a(1−a))χ2
1. For the simulations I used T = 100 observations.

The naive estimator is based on τ = 4 lags. a ranges from 0.1 to 0.9 with

increments of 0.01. As already derived in Example 1 the autocorrelation of

X∗t and Y ∗t equals 2a− 1. All results are based on 1000 simulations. Figure

12 displays the results. The rejection rates of the Pearson test are very high

for a close to 0 or 1. All other tests perform reasonably well across the entire

range of a.
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Example 7. Suppose that Qx is as in Example 6 but

Qy =

(
1− a a

a 1− a

)
for a ∈ (0, 1).

{Xt} and {Yt} are independent. Again, Q equals Qx ⊗Qy and p = px ⊗ py

with px = py = (0.5, 0.5)′. The asymptotic distribution of X2 is equivalent

to 2a(1− a)/(1− 2a+ 2a2)χ2
1. In this case the rejection rates of the Pearson

test are below the size for a close to 0 or 1. The results are illustrated in

Figure 13.

How should we deal with higher order Markov processes? Pesaran and

Timmermann [2009] suggest to include higher lags into the regressor matrix

W. This approach is not correct but works mostly very well in simulations.

Alternatively, we may transform the process into a simple Markov chain.

This correct approach suffers from the problem that the number of states

grows exponentially with the inclusion of additional lags.

Example 8. Suppose that {Xt} and {Yt} are independent Markov processes

of order 2. The transition matrices for X̃t = Xt−1 ⊗Xt and Ỹt = Yt−1 ⊗ Yt
are given by

Qx̃ = Qỹ =


a 1− a 0 0

0 0 1− a a

1− a a 0 0

0 0 a 1− a

 for a ∈ (0, 1).

Both processes are simple Markov chains if and only if a = 0.5. For each a

from 0.1 to 0.9 in steps of 0.01 I performed 1000 simulations with T = 100

observations. To test whether {Xt} and {Yt} are independent I calculated

the trace statistic by including up to 3 lags into the regressor matrix W.

Figure 14 displays the results. For a between 0.3 and 0.7 the rejection rate is

very close to the size irrespective how many lags are included. For a < 0.3

(a > 0.7) the rejection rate deviates from the level unless we include 3 lags

although both processes are only of order 2. If we perform the trace test on
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Figure 13: The rejection rate at a nominal level of 10% for the Example 7.
The results are based on 1000 simulations for a from 0.1 to 0.9 in steps of
0.01. The number of observations in each simulation equals 100. The smooth
red line is the theoretical rejection rate of X2.
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Figure 14: The rejection rate of the trace statistic including different numbers
of lags at a nominal level of 10% for Example 8. The results are based on 1000
simulations for a from 0.1 to 0.9 in steps of 0.01. The number of observations
in each simulation equals 100.
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X̃t and Ỹt, we run into a serious small sample problem. We have only 100

observations for 16 states. The performance is very weak in particular for

a < 0.3 and a > 0.7.

D.2 CMH∗ vs CMH: Constant Odds Ratio

Loosely speaking the CMH test aims at situations were the deviation from

independence is similar across the different categories of the variable condi-
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tioned upon. Suppose that my = mz = 2 and that the odds ratio

ri1,1r
i
2,2

ri1,2r
i
2,1

= c ∀i.

Conditional independence implies that c = 1. If the odds ratio is constant

and different from 1 the CMH statistic should have more power than CMH∗.

Example 9. Let p = 0.25(a, 1−a, 1−a, a, a, 1−a, 1−a, a)′. px = (0.5, 0.5)′.

The odds ratio equals (a/(1−a))2 irrespective whether we condition on X1,t =

1 or X2,t = 1. I simulated 1000 processes with T = 100 for each a from 0.01

to 0.98 in steps of 0.01. The results are illustrated in Figure 15.

We observe that the performance of CMH is only marginally better than

that of CMH∗. The cost of using CMH∗ instead of CMH seems to be low

even in this case.

E Small Sample Critical Values

To illustrate size and power of the tests I use the same process as Pesaran

and Timmermann [2009]. Let

xt = φxt−1 + νt and yt = φyt−1 + εt

with νt = rxyεt +
√

1− r2xyηt. Both, ηt and εt are i.i.d. standard normal

variables. The cross-correlation of the increments rxy is set to 0 for the size

and to 0.2 for the power simulations. The simulated data is categorized into

m = mx = my equally probable bins. In the main text I used the critical

values from the asymptotic distribution. Wn, X̂2
b performed very poorly.

Here, I will use estimated critical values for sample sizes of T = 20, 50, 100,

and 500. The values are summarized in Table 5. Each value is calculated

on the basis of 100, 000 simulations of discrete i.i.d. random variables with

pi = 1/m for i = 1, . . . ,m. The deviations from asymptotic values are

sizable for X2, Wn, X̂2
b , and the trace statistic for T = 20. Observe that the
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Figure 15: The rejection rate at a nominal level of 10% for Example 9. The
results are based on 1000 simulations for a from 0.01 to 0.98 in steps of 0.01.
The number of observations in each simulation equals 100.
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m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 4.105 3.908 3.952 3.925 3.910 2.819 3.925 3.089 4.440
2 50 3.945 3.896 3.922 3.918 3.921 3.883 3.918 3.886 4.073
2 100 3.962 3.921 3.940 3.939 3.939 3.921 3.939 3.898 3.987
2 500 3.867 3.864 3.866 3.866 3.866 3.864 3.866 3.858 3.872
2 ∞ 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841
3 20 9.228 9.074 9.233 9.141 9.131 6.812 9.163 8.230 11.115
3 50 9.470 9.426 9.479 9.457 9.454 9.367 9.433 9.419 10.256
3 100 9.465 9.451 9.464 9.460 9.464 9.456 9.462 9.477 9.879
3 500 9.532 9.534 9.536 9.535 9.539 9.541 9.538 9.500 9.575
3 ∞ 9.488 9.488 9.488 9.488 9.488 9.488 9.488 9.488 9.488
4 20 16.250 15.866 16.410 16.088 16.044 12.113 16.025 14.613 15.717
4 50 16.612 16.537 16.589 16.581 16.624 16.350 16.564 16.464 18.704
4 100 16.846 16.839 16.847 16.846 16.854 16.808 16.844 16.784 17.873
4 500 16.890 16.887 16.887 16.887 16.890 16.882 16.886 16.865 17.079
4 ∞ 16.919 16.919 16.919 16.919 16.919 16.919 16.919 16.919 16.919

Table 5: Critical values for a size of 5% for the various tests. These values
are estimated using 100, 000 simulations of discrete i.i.d. random variables
with pi = 1/m for i = 1, . . . ,m.

estimated critical values for the trace statistic are quite different from those

given in Pesaran and Timmermann [2009].

The performance of the trace statistic is very poor in the case of serial

correlation and m > 2. The results are displayed in Tables 6 and 7. Tables

8 and 9 summarize the results for the power of the tests.
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m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.051 0.051 0.050 0.053 0.050 0.049 0.053 0.044 0.054
2 50 0.043 0.052 0.048 0.048 0.047 0.053 0.048 0.048 0.047
2 100 0.048 0.046 0.047 0.048 0.047 0.046 0.048 0.045 0.045
2 500 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.058 0.058

3 20 0.057 0.057 0.053 0.056 0.049 0.050 0.052 0.048 0.046
3 50 0.052 0.049 0.048 0.050 0.050 0.043 0.049 0.052 0.052
3 100 0.049 0.049 0.049 0.049 0.049 0.047 0.050 0.049 0.048
3 500 0.044 0.045 0.044 0.044 0.044 0.044 0.044 0.044 0.045

4 20 0.055 0.055 0.055 0.054 0.046 0.049 0.051 0.059 0.053
4 50 0.030 0.031 0.032 0.031 0.029 0.035 0.031 0.035 0.037
4 100 0.048 0.047 0.048 0.048 0.049 0.048 0.049 0.049 0.047
4 500 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.039 0.041

Table 6: Size of independence tests: level 5%, no serial correlation (ψ = 0),
no cross-correlation (rxy=0), 1000 simulations.

m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.146 0.055 0.065 0.058 0.044 0.029 0.058 0.037 0.040
2 50 0.191 0.071 0.076 0.076 0.074 0.042 0.076 0.059 0.059
2 100 0.246 0.068 0.086 0.085 0.087 0.067 0.085 0.055 0.056
2 500 0.210 0.052 0.071 0.071 0.071 0.052 0.071 0.052 0.052

3 20 0.140 0.075 0.098 0.052 0.031 0.028 0.038 0.039 0.019
3 50 0.248 0.073 0.067 0.068 0.056 0.032 0.053 0.053 0.033
3 100 0.282 0.079 0.086 0.087 0.071 0.061 0.070 0.081 0.079
3 500 0.294 0.071 0.090 0.091 0.070 0.046 0.070 0.060 0.059

4 20 0.102 0.063 0.102 0.041 0.021 0.019 0.031 0.025 0.007
4 50 0.205 0.068 0.058 0.052 0.043 0.029 0.038 0.054 0.008
4 100 0.264 0.082 0.074 0.073 0.061 0.063 0.058 0.046 0.009
4 500 0.293 0.081 0.091 0.091 0.057 0.043 0.057 0.050 0.039

Table 7: Size of independence tests: level 5%, serial correlation (ψ = 0.8),
no cross-correlation (rxy=0), 1000 simulations.
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m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.078 0.077 0.076 0.079 0.079 0.077 0.079 0.062 0.080
2 50 0.142 0.152 0.152 0.154 0.152 0.151 0.154 0.142 0.144
2 100 0.244 0.234 0.241 0.240 0.241 0.234 0.240 0.232 0.228
2 500 0.817 0.816 0.818 0.819 0.818 0.816 0.819 0.812 0.812

3 20 0.080 0.085 0.087 0.083 0.081 0.062 0.082 0.053 0.059
3 50 0.114 0.112 0.112 0.111 0.117 0.111 0.116 0.110 0.112
3 100 0.199 0.200 0.198 0.198 0.200 0.194 0.200 0.189 0.190
3 500 0.818 0.819 0.817 0.817 0.817 0.817 0.817 0.818 0.821

4 20 0.073 0.066 0.073 0.075 0.076 0.073 0.079 0.068 0.071
4 50 0.089 0.089 0.089 0.088 0.090 0.089 0.088 0.077 0.078
4 100 0.152 0.155 0.150 0.147 0.147 0.148 0.152 0.150 0.153
4 500 0.787 0.787 0.787 0.787 0.789 0.789 0.790 0.785 0.786

Table 8: Power of independence tests: level 5%, no serial correlation (ψ = 0),
cross-correlation rxy = 0.2, 1000 simulations.

m T X2 X2
n X2

M X2
tav WM Wn X̂2

a X̂2
b Trace

2 20 0.169 0.081 0.079 0.066 0.052 0.034 0.065 0.048 0.045
2 50 0.275 0.106 0.126 0.123 0.127 0.066 0.123 0.090 0.091
2 100 0.374 0.167 0.194 0.193 0.195 0.163 0.193 0.128 0.127
2 500 0.722 0.455 0.506 0.506 0.506 0.455 0.506 0.441 0.442

3 20 0.163 0.095 0.113 0.065 0.037 0.037 0.049 0.051 0.021
3 50 0.295 0.112 0.107 0.106 0.074 0.042 0.076 0.086 0.055
3 100 0.407 0.161 0.178 0.177 0.113 0.094 0.111 0.133 0.125
3 500 0.746 0.508 0.544 0.544 0.398 0.354 0.397 0.498 0.497

4 20 0.117 0.072 0.101 0.045 0.029 0.031 0.044 0.031 0.006
4 50 0.274 0.113 0.094 0.091 0.064 0.049 0.068 0.078 0.014
4 100 0.399 0.151 0.143 0.142 0.083 0.079 0.083 0.123 0.028
4 500 0.762 0.486 0.507 0.507 0.299 0.272 0.300 0.517 0.443

Table 9: Power of independence tests: level 5%, serial correlation (ψ = 0.8),
cross-correlation rxy = 0.2, 1000 simulations.
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