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Abstract

In this paper I study the impact of increasing longevity on pay-as-you-go pension

systems. First, I show that increasing longevity increases their internal rate of

return. The size of the effect differs for different policy regimes. It is higher for the

case where the retirement age is increased in order to keep the system in balance

than for the case where the necessary adjustment is achieved by reducing pension

benefits. Second, I study optimally chosen retirement decisions and I show that the

socially optimal policy involves a shorter working life than the private optimum. The

social optimum can be implemented by the use of a PAYG system that combines

an actuarial and a flat pension.
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Non-Technical Summary

The population of a country can grow for two reasons: an increase in the average cohort

size (which depends on fertility and migration) and an increase in life expectancy (which

depends on mortality). The literature has so far mainly concentrated on the first aspect

of population growth. It has been shown, e.g., that ihe internal rate of return of a PAYG

pension system is positively affected by a higher birth rate. In particular, the internal

rate of return σ is given by the sum of the growth rate of wages g and the cohort size

n, i.e. σ = g + n. To give an example, assume that the contribution rate is 25%, people

start to work at the age of 20, work until the age of 60 and die at the age of 80. It can be

calculated that for constant cohort sizes (n = 0) a balanced PAYG system can provide in

this case a replacement rate of 50%. If cohort sizes increase by 1% each year (n = 0.01)

then this sustainanable replacement rate increases to 67.8%, for n = 0.02 to 93%.

This leaves the question open what would happen in the reverse case where cohort

sizes are constant and longevity increases? In fact, this seems to be the more realistic

demographic pattern if one looks at the development over the recent decades. I assume

that the longevity increase is linear and given by ωc(t) = ωc(0)+γ·t. Intuitively, one could

guess that an ageing population has a negative impact on the budget of a PAYG system

and thus on its rate of return. In the paper I show that this conjecture is false and that

the impact is positive. This is even true for the extreme case where the retirement age

stays constant which might be surprising at first sight. The reason for this positive effect

is that in order to keep the pension system in balance it is sufficient to base adjustments

on period-specific instead of the larger cohort-specific demographic measures. For the

cohort that dies at age 80 (i.e. that has a cohort longevity of 80) the average replacement

rate would be 50% if lonegvity is constant. If longevity increases, however, then the older

cohort that have been alive during the retirement period of this cohort die at younger ages

(say at 79, 78, ...) thereby allowing the pension system to pay out higher replacement

rates. The total internal rate of return can then be approximated by σ = g + n + γ
ωc(t)

.

I show that the size of the last effect γ
ωc(t)

is non-trivial and about half of the size of the

effect of increasing cohort sizes n.

In the second part of the paper I expand the analysis in order to investigate whether for

increasing longevity a PAYG system can be regarded as a Pareto improvement vis-á-vis

the laissez-faire situation. I show that under a set of simplifying assumptions the optimal

retirement age is proportional to longevity. In a next step I look at the social optimum in

a stationary situation where the social planner maximizes per period utilities. The social

optimum turns out to involve a shorter working life than the laissez-faire allocation.

Finally, I show that this social optimum can be implemented by a pension policy that

combines Bismarckian and Beveridgean elements, i.e. a pillar where pension benefits are

related to the individual retirement age and a pillar that promises a flat pension payment.



1 Introduction

Demographic developments are an important factor when thinking about the economic

role of social security systems. This was first demonstrated by Samuelson (1958) in the

framework of a consumption-loan economy for which he had shown that there exist two

equilibrium interest rates: an “autarkic rate” (determined by technology and individual

preferences) and a “biological interest rate” that is equal to the population growth rate.

This biological interest rate has interesting properties. First, it corresponds to the internal

rate of return of a pay-as-you-go (PAYG) pension system as has been shown by Samuelson

(1958) and later elaborated by Aaron (1966) and Cass & Yaari (1966). Second, the equi-

librium associated with this pension system will Pareto dominate the autarkic equilibrium

as long as the population growth rate exceeds the market interest rate.

The main focus of this pioneering and the following literature has been laid upon one

specific demographic development that causes the population to grow: increasing birth

rates. There exists, however, a second biological force that has mostly been neglected in

these considerations and that can also have a non-negligible impact on population growth

and the internal rate of return of PAYG pension systems: increases in longevity.

In this paper I focus on the impact of increasing longevity on social security systems

where I will deal with two crucial questions. First, how does increasing longevity affect

the internal rate of return of PAYG pension systems and does it matter which type of

system is established? Second, does the presence of increasing longevity allow for Pareto

improving interventions and which type of PAYG system could be used to implement a

“golden rule allocation”?

In the first part of the paper I assume that the policy maker can perfectly control

individual retirement behavior which therefore can be treated as a policy choice variable.

I then derive approximate expressions for the internal rate of return (IRR) of the system

when both demographic developments — changing fertility and changing mortality pat-

terns — are present. To this end I use a continuous time model and I assume that cohort

sizes grow exponentially while longevity increases in a linear fashion. I abstract from un-

certainty and assume that all members of a generation reach the cohort-specific maximum

age such that one can interchangeably refer to their longevity or their life expectancy.1.

I show that the IRR depends on the design of the pension system and in particular on

the parameters that are changed in order to keep the system financially balanced in the

presence of demographic shifts. In order to trace out the possibilities I deal with two

1For a set-up with uncertain death see e.g. d’Albis et al. (2012) and Bruce & Turnovsky (2013)
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polar cases. In the first policy regime the complete adjustment is done by varying the

retirement age such that the dependency ratio is always held constant. In the second

policy regime the retirement age is held constant and the adjustment is done by reducing

pension benefits.

I find that for both policies the approximate solution for the IRR depends not only on

the growth rate of wages and of the cohort size but also on increases in longevity. For the

policy with a constant retirement age the IRR is just given by the sum of the growth rate

of wages and the population growth rate which corresponds to the result in the original

literature. The difference, however, is that population growth is now affected by increases

both in the cohort size and in longevity. A second difference is that the size of the IRR

varies with the design of the PAYG system. In particular, I show that it is higher for the

policy that adjusts the retirement age.

The main reason for the positive contribution of increasing longevity is that in order

to keep the pension system in balance it is sufficient to base adjustments on period life

expectancies instead of the larger cohort life expectancies. For the policy with a constant

retirement age this means that the necessary reductions in the pension benefits can be

smaller than would be otherwise. For the policy with an increasing retirement age this

property manifests itself in the fact that only a fraction of each additional year of longevity

has to be spend on the labor market in order to keep the system balanced. This allows for

a larger retirement span and thereby increases the IRR. For this adjustment policy there

exists, however, an additional channel that increases the rate of return. In particular, the

rise in the retirement age causes a constant increase in the contribution base. This has

the same effect as the introduction of a PAYG system and thus entails “windfall profits”

for the generation that is the beneficiary of these extra revenues. As a consequence, the

contribution of increasing longevity is approximately twice as large for the policy with

increasing retirement age than it is for the one with a constant age. In both cases the size

of this effect is non-trivial. For reasonable parameter values the contribution of increases

in longevity to the total IRR of a PAYG pension system is between one third and two

thirds of a percentage point.

In the second part of the paper I expand the analysis in order to investigate whether a

PAYG system can be regarded as a Pareto improvement vis-á-vis the laissez-faire situation.

To this end I use a set-up with exogenous factor prices in which individuals choose their

consumption profile and the retirement age in an optimal manner. I show that under a set

of simplifying assumptions (in particular that the time discount rate and the exogenously

given interest rate are equal to zero) the optimal retirement age is proportional to longevity

2



which is equivalent to one of the two policies studied in the first part of the paper. In a

next step I look at the golden rule allocation, i.e. at the social optimum in a stationary

situation where the social planner maximizes per period utilities. The social optimum

turns out to involve a shorter working life than the laissez-faire allocation. Finally, I

show that this social optimum can be implemented by a pension policy that combines

Bismarckian and Beveridgean elements, i.e. a pillar where pension benefits are related to

the individual retirement age and a pillar that promises a flat pension payment.

The paper is organized as follows. In the next section I lay out the continuous time

model of the pension system. In section 3 I present the two policy regimes for the assump-

tion of exogenously given retirement ages and I derive approximate solutions for the IRR

for these constellations. In section 4 I look at individually and socially optimal policies.

Section 5 concludes.

2 Model

I work with a deterministic model in continuous time. In every instant of time t

a generation is born that has size N(t) and a life span of ωc(t) years. I assume that all

members of a generation reach this maximum attainable age such that ωc(t) is at the

same time the measure of cohort longevity and of cohort life expectancy.

Each member of generation t works for Rc(t) periods, earns a wage W (t + a) during

each of these working periods (a ∈ [0, Rc(t)]) and receives a pension benefit P (t+a) in each

period of retirement (a ∈ [Rc(t), ωc(t)]). While working, individuals pay contributions to

the PAYG pension system at rate τ(t). The (relative) pension level is defined as:

q(t) =
P (t)

W (t)
. (1)

Wages and the cohort size are assumed to grow in an exponential manner at rates g

and n, respectively:

W (t) = W (0)egt, (2)

N(t) = N(0)ent. (3)

Cohort longevity, on the other hand, is assumed to increase linearly over time:

ωc(t) = ωc(0) + γ·t, (4)
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where 0 ≤ γ < 1. The assumption about the linear increase in ωc(t) is in line with

empirical results. Lee (2003), e.g., refers to a number of studies that have found a linear

trend in life expectancy for a large number of industrial countries. The empirical estimates

suggest a value for γ between 0.15 and 0.25.2

For the following derivations it is necessary to distinguish between the viewpoint of

generation t (i.e. the one born in t) and the outlook of the pension system in period t. In

particular, ωp(t) stands for period longevity (or period life expectancy), i.e. the oldest

age observed in period t. It can be calculated from ωc(t − ωp(t)) = ωp(t). Solving the

equation ωc(0) + γ(t− ωp(t)) = ωp(t) for ωp(t) leads to:

ωp(t) =
1

1 + γ
ωc(t). (5)

In a similar fashion, I also introduce the variable Rp(t) that denotes the “period retirement

age”, i.e. the number of working years of the generation that retires in period t that will

in general differ from Rc(t), the number of working years of the generation born in t.

In the following I will always assume that if generation t works in some period then

all generations that are younger will work as well. This allows to express the following

aggregate values without the use of “indicator variables”. The size of the active pop-

ulation L(t), the retired population B(t) and the total population T (t) are then given

by:

L(t) =

∫ Rp(t)

0

N(t− a) da, (6)

B(t) =

∫ ωp(t)

Rp(t)

N(t− a) da, (7)

T (t) =

∫ ωp(t)

0

N(t− a) da. (8)

Given assumption (3) the dependency ratio z(t) = B(t)
L(t)

can be calculated as:

z(t) =
e−nR

p(t) − e−nωp(t)

1− e−nRp(t)
, for n 6= 0, (9)

z(t) =
ωp(t)−Rp(t)

Rp(t)
, for n = 0.

2Equation (4) assumes that life expectancy increases without bound. Since this is a controversial
assumption I briefly discuss the case where life expectancy is assumed to reach an upper limit in appendix
C.
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For later reference, note that equation (8) can be used to calculate the population growth

rate in this economy. As shown in appendix A it can be approximated as:

gT (t) ≡ Ṫ (t)

T (t)
≈ n+

γ

ωc(t)
. (10)

As is apparent from equation (10) population growth decreases over time and in the

limit, as t → ∞ one has that gT (t) → n. The reason for this is that longevity increases

only linearly and thus the percentage growth rate in longevity is given by γ
ωc(t)

which

approaches zero as mortality rates approach zero. This is not the case for cohort growth

which is assumed to proceed at an exponential (Malthusian) rate. If one had assumed

that instead of (3) the cohort size also increases linearly with N(t) = N(0) + n · t then

one would get a parallel result for the cohort growth rate and gT (t) ≈ n
N(t)

+ γ
ωc(t)

. On

the other hand, one could also assume that longevity grows in an exponential fashion,

i.e. ωc(t) = ωc(0)eγt. This is of course a completely unrealistic assumption that is just

made for illustrative purposes. In this case one would get a population growth rate of

gT (t) ≈ n+ γ.

It is assumed throughout the paper that the budget of the social security system

is always balanced, i.e. that τ(t)W (t)L(t) = P (t)B(t) or:

τ(t) = q(t)z(t). (11)

The internal rate of return (IRR) for cohort t is defined as the rate σ(t) for which the to-

tal of discounted benefits received by the cohort over all pension periods a ∈ [Rc(t), ωc(t)]

equals the total of discounted contributions for all working periods a ∈ [0, Rc(t)]. Using

the definition of q(t) in (1) and the assumption about constant wage growth in (2) one

can write this implicit definition of σ(t) as:∫ Rc(t)

0

τ(t+ a)e(g−σ(t))a da =

∫ ωc(t)

Rc(t)

q(t+ a)e(g−σ(t))a da. (12)

For calculating the IRR in the face of demographic trends one needs to specify how the

retirement age and the social security system react in order to keep the budget in balance.

I will only focus on adjustment policies with a fixed contribution rate, i.e. τ(t) = τ̂ .

Increases in the contribution rate expand the “size” of the PAYG system. This expansion

would add — so to say — a new supplement to the existing pension scheme thereby

creating the usual windfall gains for the introductory generations. This, however, would
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render comparisons between different policies difficult and I will therefore abstract from

this possibility. This leaves changes in the retirement age Rc(t) and in pension benefits

P (t) (or corresponding pension levels q(t)) as the two adjustment parameters.

In section 3 I will treat the development of the retirement age as given which amounts

to the assumption that the system can perfectly control the retirement decisions of the

insured population. In order to map the field of possible retirement behavior I will deal

with two polar cases. In the first case (“policy A”) I assume that the retirement age is

flexible and it adjusts in way such as to hold the dependency ratio and the budget of the

system constant. In the second regime (“policy B”) the retirement age is assumed to be

constant while the pension level is adjusted such as to keep the pension system in balance.

In section 4, on the other hand, I assume that individuals choose their retirement age

in an optimal manner. I will discuss how the individual optimum differs from the social

optimum and how a PAYG system can be designed to implement this first-best allocation.

It will turn out that under specific assumptions the resulting system corresponds to an

instance of policy A.

3 The internal rate of return for two adjustment poli-

cies

3.1 Policy A: Increasing retirement age

In this policy regime the retirement age is adjusted in such a way as to keep the dependency

ratio constant at some level ẑ. This means that Rp(t) is chosen such that z(t) = ẑ, ∀t. This

is a natural benchmark since it corresponds to a situation where both the contribution

rate and the pension level are held constant at τ̂ and q̂, respectively (cf. (11)). As will be

discussed in section 4.3 this policy is related to the Swedish notional defined contribution

(NDC) system (cf. Palmer 2012, Holzmann & Palmer 2012) where the development of

life expectancy is taken into account when calculating the pension payment. In order to

prevent a decline in annual pension benefits each cohort has to prolong its working life

and there exists a cohort-specific “benchmark retirement age” that has to be reached in

order to guarantee a constant pension level q̂.

One can use (9) together with the policy assumption z(t) = ẑ to derive the required

path for the retirement age. The solution for this “benchmark retirement age” is stated
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in the following proposition.3

Proposition 1 In order to stabilize the dependency ratio at z(t) = ẑ the retirement age

has to be determined according to the following rule:

Rp(t) =
ωp(t)

1 + ẑ
for n = 0, (13)

Rp(t) = ωp(t) +
1

n
ln

[
1 + ẑ

1 + enωp(t)ẑ

]
≈ ωp(t)

1 + ẑ

[
1− nẑωp(t)

2 (1 + ẑ)

]
for small n 6= 0. (14)

This result is quite intuitive as can be best seen by looking at a stationary situation with

n = 0, Rp = 45, ωp = 60, τ̂ = 0.2 and q̂ = 0.6. The system is in balance and the

dependency ratio is given by ẑ = 1
3
.4 Now assume that period longevity ωp increases

to 64. In order to keep the dependency ratio constant expression (13) shows that this

increase in longevity by 4 years does not require an increase in the retirement age of the

same magnitude but only from age 45 to age 48. The gain in longevity is shared between

working and retirement in the same proportion (i.e., 3:1) that could also be observed

before.

Expression (14) shows that in the case of a growing population (n > 0) the increase in

Rp(t) that stabilizes z(t) is smaller than in the case with n = 0 (∂R
p(t)
∂n

< 0). An increasing

population ceteris paribus decreases the dependency ratio and thus (partly) counteracts

the effects of population aging. By the same token a shrinking population size (n < 0)

necessitates an increase in retirement age that is more than proportional to the increase

in longevity.

Given the fact that for policy A the contribution rate and the pension level are con-

stant over time one can write the implicit definition of the IRR in equation (12) as:

τ̂
∫ Rc(t)
0

e(g−σ(t))a da = q̂
∫ ωc(t)
Rc(t)

e(g−σ(t))a da. For the calculation of the IRR one thus needs

an expression for the retirement age of the generation born in period t, i.e. Rc(t). This

variable is implicitly defined by Rp(t+Rc(t)) = Rc(t).5

3All proofs are collected in the appendix.
4 Note that this example is based on a stylized life-cycle model where individuals start to work at the

age of 20 and retire, after 45 years of work, at the age of 65. From then on they receive 15 years of pension
payments (ẑ = 15

45 = 1
3 ) and die at the age of 80. Thus the starting value of ωc(0) = 60 corresponds to a

“de facto” life expectancy of 80 years.
5In order to see this note that generation t will retire in period t+Rc(t). The retirement age observed

in this future period t+Rc(t) will then be equal to Rc(t), i.e. Rp(t+Rc(t)) = Rc(t).

7



Proposition 2 The benchmark retirement age stated in proposition 1 implies a retirement

age for the generation born in period t that is given by:

Rc(t) =
ωc(t)

1 + ẑ(1 + γ)
for n = 0, (15)

Rc(t) ≈ ωc(t)

1 + ẑ(1 + γ)

[
1− nẑ(1 + ẑ)(1 + γ)ωc(t)

2 (1 + ẑ(1 + γ))2

]
for small n 6= 0. (16)

The expression for Rc(t) in proposition 2 can be used in (12) to derive an approximation

of the IRR as specified in the following proposition.

Proposition 3 Under the assumptions of an exponentially growing cohort size (equ. (3)),

a linearly increasing longevity (equ. (4)) and a retirement age that holds the dependency

ratio constant (equ. (16)), the internal rate of return of the PAYG pension system can be

approximated as:

σ(t) ≈ g + n+ γ
2

ωc(t)
. (17)

I will discuss equation (17) after having derived the parallel result for policy B.

3.2 Policy B: Decreasing pension levels

Under this policy regime it is assumed that the retirement age is held constant (Rp(t) = R̂)

while the pension level q(t) is adjusted to keep the system in balance. In particular, this

requires to set:

q(t) = q̂
ẑ

z(t)
. (18)

The relative pension level q(t) thus has to be decreased if z(t) gets larger than ẑ. This can

happen if the size of the average cohort decreases and/or if longevity increases. The use

of (18) leads to a constantly balanced pension system irrespective of the determination

of the retirement age.6

For the assumptions Rp(t) = R̂ and (18) the implicit definition of the IRR in equation

(12) can be written as τ̂
∫ R̂
0
e(g−σ(t))a da = q̂

∫ ωc(t)
R̂

ẑ
z(t+a)

e(g−σ(t))a da. Using linearizations

one can derive an approximated solution for the IRR for the case of policy B.

Proposition 4 Under the assumptions of an exponentially growing cohort size (equ. (3)),

a linearly increasing longevity (equ. (4)), a constant retirement age and the adjustment

6In order to see this, simply insert (18) together with τ(t) = τ̂ into (11). This leads to τ̂ = q̂ ẑ
z(t)z(t) =

q̂ẑ. This is fulfilled since (per assumption) the values of τ̂ , q̂ and ẑ are chosen such that τ̂ = q̂ẑ.

8



of the pension level according to (18), the internal rate of return of the PAYG pension

system can be approximated as:

σ(t) ≈ g + n+ γ
1

ωc(t)
. (19)

3.3 Main properties of policies A and B

Propositions 3 and 4 contain a number of interesting results and the main properties are

(qualitatively) identical for policies A and B.

The first implication of equations (17) and (19) is that the IRR increases with the

growth rate of wages g (∂σ(t)
∂g

> 0). This is obvious and follows from the fact that

increasing wages will also raise future pension benefits.

Second, the IRR increases in the cohort growth rate n (∂σ(t)
∂n

> 0). Population

growth makes a PAYG system more attractive, since this increases the internal return

of the system. In fact, for constant longevity (γ = 0) equations (17) and (19) reduce to

σ(t) = g + n, i.e. the internal rate of return of the PAYG system is simply given by the

growth rate of the wage bill. This is the well-known formulation of the “biological interest

rate” for which Samuelson (1958) has given the following “common-sense explanation”:

“In a growing population [. . . ] retired men are outnumbered by workers more than in the

ratio of the work span to the retirement span. With more workers to support them, the

aged live better than in the stationary state—the excess being positive interest on their

savings” (Samuelson 1958, p.473).

Third, equations (17) and (19) imply that the IRR also increases in γ. In particular,

noting that ωc(t) = ωc(0) + γt it can be calculated that ∂σ(t)
∂γ

= 2ωc(0)
ωc(t)2

> 0 for policy A

and ∂σ(t)
∂γ

= ωc(0)
ωc(t)2

> 0 for policy B. Increasing longevity thus also contributes to the

“biological interest rate” of PAYG pension schemes, although this effect is not as well-

known as the one due to growing cohort sizes. In fact if one compares these expression

to the population growth rate (10) one sees that for policy B the IRR is just the sum of

wage growth g and the population growth rate n+ γ
ωc(t)

. This indicates that the impact of

the second biological force (the decreasing mortality rates) on the IRR is analogous to the

impact of the more frequently studied first force (the increasing cohort sizes). The reason

why the impact of increasing longevity on the IRR decreases over time has already been

discussed in section 2. I have shown there that it has to do with the fact that longevity

increases only linearly which diminishes the percentage growth rate for later generations

while cohorts are assumed to grow exponentially.
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In order to get a feeling for the size of the longevity-related part of the biological

interest rate assume that ẑ = 1
3
, γ = 0.2 and ωc(0) = 60 (cf. footnote 4). For policy A

the part of the IRR that is due to the increases in longevity is given by γ 2
60

= 0.00667.

This is smaller than the contribution of productivity growth which is often assumed to

be between g = 0.015 and g = 0.02. It is also about one third smaller than typical

assumptions about the population growth rate7 but certainly non-negligible. For higher

life spans the magnitude decreases but even for ωc(100) = 80 it is still given by γ 2
80

= 0.005

which is half the size of the benchmark population growth rate given by n = 0.01.

3.4 Intuition behind the results

In order to give the intuition behind the effect of increasing longevity on the biological

interest rate I want to focus on the case with g = 0 and n = 0, i.e. W (t) = W and

N(t) = N . The total flow of contributions over the working life for cohort t is given by:

TC(t) = τ̂WRc(t). (20)

Total benefits, on the other hand, can be written as:

TB(t) =

∫ ωc(t)

Rc(t)

q(t+ a)W da = τ̂W

∫ ωc(t)

Rc(t)

1

z(t+ a)
da, (21)

where I use (11). The ratio of total benefits to total contributions then comes out as

TB(t)
TC(t)

=
∫ ωc(t)
Rc(t)

1
z(t+a)

da

Rc(t)
.8 For constant longevity and constant retirement age this fraction

reduces to TB(t)
TC(t)

=
∫ ω
R

1
ẑ
da

R
= ω−R

Rẑ
= ω−R

Rω−R
R

= 1. For a stationary demographic structure

total benefits just correspond to total contributions (under the assumption of g = 0 and

n = 0).

For increasing longevity and policy B, however, total contributions are given by

TC(t) = τ̂WR̂, while total benefits are:

TB(t) = τ̂W

∫ ωc(t)

R̂

1

z(t+ a)
da = τ̂W

∫ ωc(t)

R̂

R̂

ωp(t+ a)− R̂
da.

The cohort has contributed R̂ periods to the system and receives a pension payment for

7The world population, e.g., has currently been estimated to grow at an annual rate of about 1.1%.
8This corresponds to another frequently used measure of intergenerational distribution, the present

value ratio (cf. Geanakoplos et al. 1999, Fenge & Werding 2003).
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(ωc(t)− R̂) periods. At first sight one might thus suspect that a balanced pension system

will be able to provide an annual pension payment of τ̂WR̂

ωc(t)−R̂ for (ωc(t) − R̂) periods.

This, however, is more modest than what the social security system can afford. In fact,

in each of the retirement periods (t + a) where a ∈ [R̂, ωc(t)] the system takes the total

revenues τ̂WR̂ and distributes them equally among the (ωp(t+ a)− R̂) cohorts of retired

workers thereby granting each a pension payment of τ̂WR̂

ωp(t+a)−R̂ . This annuity payment,

however, is larger than τ̂WR̂

ωc(t)−R̂ since ωp(t + a) < ωc(t) for a ∈ [R̂, ωc(t)) and only for

the very last period ωp(t + ωc(t)) = ωc(t). One can use (5) to write ωp(t + a) = ωc(t)+γa
1+γ

and to calculate that TB(t)
TC(t)

= (1+γ) ln(1+γ)
γ

≈ 1 + γ
2
. In other words, the PAYG system

provides a total stream of pensions that is (1 + γ
2
) times larger than the total stream

of contributions. In order to transform this total return into an annual measure one

can ask what constant rate of return ς would amount to this total return if the returns

would accrue in a continuous fashion. This is given by
∫ ωc(t)
0 eςa da

ωc(t)
= eςω

c(t)−1
ςωc(t)

≈ 1 + ςωc(t)
2

.

Equating this expression to 1 + γ
2

implies that ς = γ
ωc(t)

which is exactly the internal rate

of return in (19) of proposition 4.

For policy A with an increasing retirement age one can follow a parallel logic. In this

case TC(t) = τ̂WRc(t) = τ̂W ωc(t)
1+ẑ(1+γ)

, while total benefits are TB(t) = τ̂W
∫ ωc(t)
Rc(t)

1
z(t+a)

da.

Since policy A is designed in a way such that z(t) = ẑ,∀t the latter expression can be

written as:

TB(t) = τ̂W (ωc(t)−Rc(t))
1

ẑ
=
τ̂Wωc(t) ẑ(1+γ)

1+ẑ(1+γ)

ẑ
=
τ̂Wωc(t)(1 + γ)

1 + ẑ(1 + γ)
.

Therefore one can conclude that the total rate of return of the PAYG system is given by
TB(t)
TC(t)

= (1 + γ) which corresponds to an annual rate of return of ς = 2γ
ωc(t)

which is again

equal to the internal rate of return in (17) of proposition 3. The reason why the internal

rate of return is higher under policy A than under policy B stems from the fact that in this

case the contribution base increases every period due to the fact that the retirement age is

constantly extended. These extra contributions can be distributed to the currently retired

population thus giving rise to “introductory gains”. This process repeats itself from period

to period and thus every cohort can expect to receive similar “windfall profits” once they

are retired. The increase in the contribution base and the associated “introductory gains”

are only present for policy A and this leads—as the formulas show—to an IRR that is

approximately twice as high than for policy B.

The logic behind the biological rate of interest due to increases in longevity is thus
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completely parallel to the biological rate of interest due to fertility growth. Again, the

“aged live better than in the stationary state” because a constantly increasing longevity

enables the social security system to pay out annuities that are “generously priced” (based

on period instead of cohort life expectancies). For policy A there exists the additional

feature that a constantly postponed retirement age leads to a constantly increasing number

of workers that finance the longer retirement span. Both processes result in an “excess”

that provides a positive interest on pension savings.

4 Optimal behavior

So far I have assumed an exogenously given (or a perfectly controlled) retirement age

and I have focused on the internal rate of return to describe the distributional conse-

quences of different assumptions and corresponding adjustment policies. It is important

to note, however, that the IRR is not a welfare measure and that differences in its mag-

nitude should not be confused with statements about the advantage of one system over

the other. Since the adjustment policies involve different amounts of lifetime work and

lifetime leisure and since they are associated with a different temporal structure of contri-

butions and benefit payments they are not directly comparable. Whether an individual

will prefer one policy or the other will depend on the exact specification of his or her

intertemporal utility function. This is the topic of the present section. The introduction

of individual utility functions allows me to extend the analysis into two directions. First,

one can discuss optimal behavior and in particular optimally chosen retirement behavior.

It will be interesting to see, e.g., whether and under which conditions the optimal choices

will coincide with the exogenously given retirement age of policies A and B in section

3. Second, one can also compare the results of individual optimization with the choice

of a social planner. The assumption of increasing longevity, however, introduces some

difficulties for the study of socially optimal policies that are related to the inherent non-

stationarity of the problem and to the selection of an appropriate criterion for evaluating

intergenerational consumption patterns.9 An exhaustive treatment of these difficult topics

is beyond the scope of this paper and I will mostly focus on a specific set of assumptions

that allows for closed-form solutions and for an intuitive discussion of the issues involved.

9On the difficulties raised by population ethics see Ponthiére (2003) and Blackorby et al. (2005).
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4.1 Individual optimum

I start with the individual optimization problem that can be found in the related literature

(cf. Sheshinski 1978, Crawford & Lilien 1981, Bloom et al. 2007, Kalemli-Ozcan & Weil

2010, Bagchi 2015). Agents are assumed to maximize their lifetime utility by choosing

how much to consume in each period and how long to work. I ignore the effects of any

eventual bequest motives, of the family structure, of all possible sources of uncertainty and

— for the moment — from the existence of a public pension system. The intertemporal

utility function for the representative member of generation t is given by:

U(t) =

∫ ωc(t)

0

e−δaU(C(t, a)) da−
∫ Rc(t)

0

e−δaV (ωc(t), a) da, (22)

where δ is the rate of time preference, C(t, a) the level of consumption of cohort t at age

a and V (ωc(t), a) is the disutility of labor schedule that might also depend on longevity

ωc(t). In the following I will use the simple specification V (ωc(t), a) = υ (as is also

used, e.g., by Sheshinski (1978) and Kalemli-Ozcan & Weil (2010)).10 It is assumed that

labor supply is fixed at 1 before retirement (at the age of Rc(t)) and zero afterwards.

Furthermore, as in section 2, I again assume that retirement is a one-time decisions and

people do not return to the labor market once they have joined the ranks of the pensioners.

Lifetime utility (22) is maximized subject to the budget constraint:

dA(t, a)

da
= χ(t, a)W (t+ a) + rA(t, a)− C(t, a), (23)

where A(t, a) are the assets of generation t at age a, r is the (exogenously given) interest

rate and χ(t, a) is an indicator variable with the value χ(t, a) = 1 for a ∈ [0, Rc(t)]

and χ(t, a) = 0 for a ∈ [Rc(t), ωc(t)]. Agents choose their consumption paths and their

retirement age Rc(t) subject to the conditions that C(t, a) > 0 and A(t, a) ≥ 0 (no

borrowing).

In appendix D I study the problem in this general form and I specify the first-order

conditions for the consumption path and the retirement age. In the following, however,

I want to focus on a benchmark case that is often used in the related literature (e.g.

10Alternatively, one could also assume (cf. Bloom et al. 2007) that the health status improves pro-
portionally with longevity (see appendix D). This assumption leads to qualitatively identical results as
the assumption of V (ωc(t), a) = υ. Both variants imply an optimal policy that corresponds to policy A
in section 3. It would be straightforward to define a disutility of labor schedule for which policy B is
optimal. For example V (ωc(t), a) = 0 for a ∈ [0, R̂] and V (ωc(t), a) =∞ for a ∈ (R̂, ωc(t)]. For policy B,
however, there does not exist a stationary equilibrium and I will therefore focus on the case of policy A.
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Sheshinski 1978, Crawford & Lilien 1981, Cremer et al. 2004, Kalemli-Ozcan & Weil 2010).

I abstract from the growth of cohort size (n = 0) and I assume that the wage level is

constant (W (t) = W,∀t) and that both the interest rate and the discount rate are zero,

i.e. g = r = δ = 0. In this case the first-order condition for consumption implies that each

generation has a flat consumption profile (i.e. C(t, a) = C(t), ∀a). One can then write

(22) as:

U(t) = ωc(t)U(C(t))− υRc(t). (24)

Since I abstract for the moment from public transfers, the lifetime budget constraint is

given by:

ωc(t)C(t) = Rc(t)W. (25)

This implies that C(t) = Rc(t)W
ωc(t)

and thus the first-order condition concerning the retire-

ment age can be written as:11

U ′(C(t))W = υ. (26)

Each generation will work until the costs of the additional period of work is equal to the

benefit of this effort. Equation (26) implicitly defines the optimal retirement age. If one

assumes log utility of consumption (U(x) = ln(x)) one gets that:

Rc(t) =
1

υ
ωc(t) = µ∗ωc(t), (27)

where µ∗ ≡ 1
υ
. This is exactly analogous to policy A in section 3 (for n = 0) where

retirement Rc(t) has been assumed to be proportional to longevity ωc(t). Equation (27)

thus shows that policy A corresponds in fact to an individually optimal strategy under a

set of specific assumptions concerning technology and individual preferences.12 From (25)

it follows that consumption is given by C(t) = C∗ ≡ µ∗W . Furthermore, from (27) and

the relation Rc(t−Rp(t)) = Rp(t) one can conclude that Rp(t) = µ∗

1+γµ∗
ωc(t). Inserting the

solutions for C(t) and Rc(t) into (24) gives an expression for lifetime utility of generation

t: U(t) = ωc(t)(ln(µ∗W )− υµ∗).
For further reference I also want to look at individual savings that are associated with

11I assume here that there exists an interior optimum. This is the case for U ′(W )W < υ. Otherwise,
the optimal retirement age is Rc(t) = ωc(t).

12The strict proportionality is due to the assumption of log utility. For a general utility function one

can use the implicit function theorem on (26) to derive that dRc(t)
dωc(t) = Rc(t)

ωc(t) , i.e. the relation between the

retirement age and longevity is always positive. This might not be the case if the age of death is uncertain
as has been shown by Kalemli-Ozcan & Weil (2010) and d’Albis et al. (2012). For a calibrated study see
Chen & Lau (2014) and for a model including human capital investments Zhang & Zhang (2009).
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this policy. In particular, it follows that during working life the savings flow is given

by SW (t, a) = W − C = W (1 − µ∗) for a ∈ [0, Rc(t)] which leads to a wealth stock at

the moment of retirement given by Rc(t)W (1 − µ∗). This fund is then slowly depleted

during retirement at a dissaving flow of SP (t, a) = −C = −µ∗W for a ∈ [Rc(t), ωc(t)].

Individual (i.e. cohort-specific) saving over time is necessarily zero. This can be seen

by noting that:
∫ ωc(t)
0

S(t, a) da =
∫ Rc(t)
0

SW (t, a) da+
∫ ωc(t)
Rc(t)

SP (t, a) da which simplifies to

Rc(t)W (1 − µ∗) + (ωc(t) − Rc(t))(−µ∗W ) = ωc(t)W (µ∗(1 − µ∗) − µ∗(1 − µ∗)) = 0. In a

certain period of time, however, aggregate savings S(t) is not zero.13 In order to see this

start from the definition S(t) =
∫ ωp(t)
0

N(t − a)S(t − a, a) da. For a constant cohort size

(n = 0 or N(t) = N) this leads to:

S(t) = N (Rp(t)W (1− µ∗) + (ωp(t)−Rp(t))(−µ∗W )) =
γµ∗(1− µ∗)ωc(t)WN

(1 + γµ∗)(1 + γ)
.

For γ = 0 aggregate savings is zero, while it is positive for increasing longevity. This is

parallel to the standard life-cycle model of consumption where savings is also understood

as a pure storage technology and where it can be shown that for growing cohort sizes

(the second important demographic development) the stock of savings is also positive

(Modigliani 1986).

4.2 Social optimum

The individual optimum can now be contrasted with the socially optimal, first-best allo-

cation that would be chosen by a social planner that can observe all relevant variables.

To this end, one needs to specify a social welfare function. As stated above, this involves

a number of intricate questions that have to do with welfare economics in general and

with population ethics in particular. For example, one has to make assumptions about

the form of the social welfare function (utilitarian, egalitarian etc.) and also about the

relevant concept of utility. In our context the latter issue is of particular interest. De

la Croix & Ponthiére (2010), e.g., argue that in the presence of increasing longevity it is

no longer clear whether a social planner should maximize total utility of the succeeding

generations (which they term the “complete view of welfare”) or rather their respective

per period levels. “A social planner may want to maximize the level of welfare per period

lived [. . .] It is not obvious that such an intensity view of welfare can be a priori regarded

as more or less plausible than the complete view” (p.235). In the following I will also take

13This has also been shown in a setting with uncertain survival by Sheshinski (2006).
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the intensity view of welfare and assume that this is the criterion that guides the choices

of the social planner. While for the complete view it would not be possible to refer to

steady state utility since longevity is not converging to a constant value the intensity view

allows for a meaningful discussion of stationary utility and of a golden rule allocation (i.e.

the allocation that yields the highest per period utility).14

I am thus looking for a situation with C(t) = C and Rc(t) = µωc(t) that gives

the highest intensity of utility U(t)
ωc(t)

= ln(C) − υµ. The social planner maximizes this

expression subject to the aggregate resource constraint Rp(t)W = ωp(t)C + S(t). Since

in this economy savings are completely unproductive and are basically only stored goods

the social planner will choose a level of S(t) = 0. This implies that the golden rule

consumption level is given by:

CSP =
Rp(t)

ωp(t)
W =

µ(1 + γ)

1 + γµ
W, (28)

where I use the relations Rp(t) = µωc(t)
1+γµ

and ωp(t) = ωc(t)
1+γ

. The first-best retirement age

(or rather working span µ) is then given by the maximization of ln
(
µ(1+γ)
1+γµ

W
)
− υµ with

respect to µ. This leads to a quadratic equation with a positive root given by:

µSP ≡

√
4γ+υ
υ
− 1

2γ
≈ 1

υ
− γ

υ2
. (29)

For γ = 0 it follows that the social optimum coincides with the private optimum and

µSP = µ∗ and CSP = C∗. In this case there exists no scope to improve on the laissez-

faire allocation. For increasing longevity (γ > 0), on the other hand, the social planner

will choose a shorter working life (µSP < µ∗) and a lower per period consumption level

(CSP < C∗). Note, however, that even if the social planner would choose a level of

µSP = µ∗ the per period utility would be larger than in the private optimum. This

follows from the fact that CSP = µ∗(1+γ)
1+γµ∗

W > µ∗W = C∗ while the disutility of labor

would be the same as in the private optimum (since µSP = µ∗).

4.3 Implementation of the social optimum

The next question is how the socially optimal allocation could be implemented in a de-

centralized manner. In this section I will show that it would be possible to do so by

14Note, however, that I am using a small open economy framework with exogenously given factor prices
while golden rule allocations are typically analyzed in the context of general equilibrium models.
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installing a PAYG pension system that combines a Bismarckian NDC (notional defined

contribution) system with a Beveridgean flat minimum pension. The NDC system is

characterized by a fixed contribution rate τ while the pension is calculated as the total

of all contributions divided by remaining life expectancy at the moment of retirement

(see Palmer 2012). In Knell (2012) I show that in the case of increasing life expectancy

a NDC system can use period life expectancy in order to be compatible with a balanced

budget. In the present case this means that the standard annual NDC pension for co-

hort t is given by PNDC(t) = τWRc(t)
ωp(t+Rc(t))−Rc(t) . The denominator can also be written as

ωp(t+Rc(t))−Rc(t) = ωc(t)−Rc(t)
1+γ

. Furthermore, one can again conjecture that the optimal

retirement age will be proportional to the life span, i.e. Rc(t) = µωc(t). The NDC pension

can thus be written as PNDC(t) = τWµ(1+γ)
1−µ .15 In addition to this NDC pension, however,

there also exists a minimum pension that is proportional to the wage level and that is

paid unconditionally in every pension period, i.e. PM(t) = mW . In order to finance these

outlays for the flat pension the amount of the NDC pension is reduced by a factor κ.

Taken together, the pension payment for cohort t is thus given by:

P (t) = PNDC(t) + PM(t) =
κτWµ(1 + γ)

1− µ
+mW, (30)

which is constant across generations (P (t) = P ). Using the individual budget constraint

one can thus write the cohort-specific consumption level as:

C(t) =
Rc(t)(1− τ)W + (ωc(t)−Rc(t))

(
κτWRc(t)(1+γ)
ωc(t)−Rc(t) +mW

)
ωc(t)

= W

(
µ(1− τ) + (1− µ)

(
κτµ(1 + γ)

1− µ
+m

))
, (31)

which is again constant across generations (C(t) = C). The individual maximizes U(t) =

ωc(t) lnC − υRc(t) = ωc(t) (lnC − υµ) with respect to µ. This comes out as:

µ =
1

υ
− m

1−m− (1− κ(1 + γ))τ
, (32)

15In order to see that a pure NDC system (without a flat pension) designed along these lines is in balance

one has to note that total revenues are given by τWRp(t) = τW µωc(t)
1+γµ , while total expenditures come

out as (ωp(t)−Rp(t)) τWµ(1+γ)
1−µ which can be simplified to (1−µ)ωc(t)

(1+γµ)(1+γ)
τWµ(1+γ)

1−µ = τW µωc(t)
1+γµ . The use of

cohort life expectancy to calculate the pension annuity would, on the other hand, lead to a permanent
surplus since then PNDC(t) = τWµ

1−µ .
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which confirms the conjecture that the optimal retirement age is proportional to longevity

and can be written as Rc(t) = µωc(t). This result shows that even in the presence of a

mixed pension system, policy A (as studied in section 3) can be regarded as an individually

optimal policy under the given set of assumptions.

Note that for m = 0 equation (32) implies that µ = 1
υ
. In the absence of a flat pension

a NDC system would therefore give rise to the same individually optimal retirement age

µ = µ∗ that would also be chosen in a situation without a pension system (cf. equation

(27)) which is longer than the social optimum given in (29). The introduction of a flat

pension PM(t) = mW , however, shortens the optimal length of working life ( ∂µ
∂m

< 0) and

can be used by the social planner to steer the economy towards the first best solution.

In particular, the social planner wants to implement a retirement period µSP (given by

(29)) and a constant consumption level (given by (28)), together with a balanced pension

system. The balanced pension budget requires τWRp(t) = P (ωP (t)−Rp(t)) which implies

τµ =
(
κτµ(1+γ)

1−µ +m
)

1−µ
1+γ

. A constant consumption profile, on the other hand, requires

P = (1 − τ)W which implies κτµ(1+γ)
1−µ + m = 1 − τ . The latter two equations together

with (32) can be used to express the pension parameters τ , m and κ as a function of the

working span µ (a choice parameter) and the exogenously given parameters υ and γ. This

comes out as:

τ =
1− µ

1 + γµ
,

m =
(1 + γ)µ(1− µυ)

1 + γµ
,

κ = µυ.

This can be illustrated by using the values γ = 0.2 and υ = 4/3. If the social planner

wants to implement µ = µ∗, i.e. a working span that corresponds to the private optimum

without pensions, one gets that µ = 0.75, τ = 0.22, m = 0 and κ = 1. The consumption

level in this case is given by C = 0.78W which is larger than the laissez-faire optimum

where it is given by C = µW = 0.75W . Note that in the case of constant longevity a flat

consumption profile would be associated with τ = 0.25. The fact of increasing longevity

thus allows a reduction of the contribution rate by three percentage points.

If the social planner implements the golden rule allocation given by (29) then this

leads to µ = 0.66, τ = 0.3, m = 0.08 and κ = 0.88. Compared to the case with µ = µ∗

the social planner thus implements a shorter working life. The cohort with a life span

of 80, e.g., will retire at the age of 60 instead of 65. This is accompanied by a higher
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contribution rate (30% instead of 22%) and a flat pension that amounts to 8% of gross

income W . The consumption level is now lower than before and given by C = 0.7W ,

although per period utility is of course higher for the golden rule allocation.

Summing up, this section has established three main results. First, under certain

assumptions concerning individual preferences it can be shown that a situation where

the retirement increases in proportion to increases in longevity is individually optimal.

Second, the individual optimum does not correspond to the social optimum. Third, the

social optimum can be implemented by using a PAYG pension scheme that combines a

NDC system with a flat minimum pension.

In section 3 of the paper I have abstracted from these issues related to optimal policy

and I have studied the consequences of increasing longevity on the internal rate of return

for specific constellations of pension schemes and exogenously given retirement ages. I

have looked there at an arbitrary pension system with some contribution rate τ̂ while in

this section I have derived the optimal contribution rate given by τSP = 1−µSP
1+γµSP

. The

fact that even for g = n = 0 both policies A and B involved a positive IRR is just a

mirror image of the results of this section. In the absence of a PAYG pension system

and in the presence of a storage technology with an interest r = 0 the rate of return of

private savings is just zero. The positive IRR of the public pension system thus allows for

Pareto improving intergenerational transfers as has been elaborated above for the case of

proportionally increasing retirement ages (policy A). Section 3 has shown, however, that

even for the extreme case of a constant retirement age (policy B) the IRR due to increasing

longevity is positive which indicates that it allows for improvements as compared to the

laissez-faire situation.

5 Conclusions

In this paper I have studied the impact of increasing longevity on the rate of return and

the role of PAYG pensions. In the first part I have presented an approximation for the IRR

under different assumptions about the retirement age and the adjustment policy. In the

case of the first policy the retirement age is changed in a way such that the dependency

ratio is held constant. The paper has derived explicit solutions for the determination

of the generation-specific reference retirement age that is needed in order to hold the

dependency ratio constant. It has been shown that an increase in longevity requires a less

than 1:1 increase in the retirement age in order to keep the pension system in balance. As
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an alternative policy regime I have also looked at the case where the retirement age is held

constant and the pension level is adjusted in order to keep the pension system in balance.

The approximate solutions for the IRR have a similar form and similar properties for both

policy regimes. In particular, under both assumptions the IRR increases in the growth

rate of wages g, in the growth rate of the cohort size n and in the speed γ with which

longevity increases. I have also shown, however, that the impact of increasing longevity on

the IRR is larger for the adjustment policy that involves an increase in the retirement age.

This is due to the fact that increases in the retirement age broaden the contribution base

which allows to distribute additional “windfall profits” among the retired population. It

is important to note, however, that even for the case of a constant retirement age (where

the extra “introductory gains” are absent) the contribution of increasing longevity to the

internal rate of return is non-negligible.

In the second part of the paper I have introduced a model where individual make op-

timal consumption and retirement decisions. It turns out that under specific assumptions

the optimal retirement age is proportional to individual longevity thus corresponding to

policy A that has been studied in the first part. In the social optimum, the proportion

of the total life span that is spend in the labor market is, however, shorter than in the

private optimum. Finally, I have also demonstrated that this golden rule allocation can

be implemented by a specific pension policy that combines a Bismarckian pillar (where

pension benefits are conditioned on the retirement age) and a Beveridgean pillar (which

is an unconditional pension payment). The optimal policy crucially depends on the as-

sumption about the disutility of labor. In this paper I have chosen a particularly simple

specification that is compatible with a stationary situation. For future research it would

be interesting to look at socially optimal policies and their possible implementation in

PAYG systems for different assumptions concerning this crucial factor.
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Appendices

A Derivations and Proofs

A.1 Population growth

One can insert ωp(t) = ωc(t)
1+γ

= ωc(0)+γt
1+γ

and N(t− a) = N(t)e−an into (8). The population

growth rate gT (t) can be calculated as:

gT (t) =
Ṫ (t)

T (t)
= n+ n

γ

1 + γ

1

en
ωc(t)
1+γ − 1

.

Using the approximation that ex ≈ 1 + x one can rewrite this as:

Ṫ (t)

T (t)
≈ n+

γ

ωc(t)
.

For a linear increase in the cohort growth rate N(t) = N(0) + n · t one gets that:

gT (t) = n

(
1

N(t)
+

γ

1 + γ

1

en
ωc(t)
1+γ − 1

)
≈ n

N(t)
+

γ

ωc(t)
.

For an exponential increase in longevity, i.e. ωc(t) = ωc(0)eγt one gets:

gT (t) = n+ n
Π(γωc(t))

e
nΠ(γωc(t))

γ
−1(1 + Π(γωc(t)))

,

where Π(z) is the product log defined as the principal solution for x in z = xex. One can

approximate the growth rate in this case as gT (t) ≈ n+ γ.

A.2 Proposition 1

For n = 0 a stabilization of the dependency ratio at z(t) = ẑ requires to set ωp(t)−Rp(t)
Rp(t)

= ẑ.

Solving this expression for Rp(t) gives equation (13).

Similarly, (14) follows from the solution to e−nR
p(t)−e−nωp(t)

1−e−nRp(t) = ẑ. The Taylor approxi-

mation (used in the second part of equation (14)) is around n = 0.
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A.3 Proposition 2

The starting point for the proof of the case where n = 0 is the (identity) relation between

period and cohort retirement age given by Rp(t + Rc(t)) = Rc(t). The left-hand side of

this expression can be calculated as Rp(t+ Rc(t)) = ωp(t+Rc(t))
1+ẑ

= ωc(t)+γRc(t)
(1+ẑ)(1+γ)

, where I use

(13) for the first equality and (5) for the second. Equating this with Rc(t) and solving for

Rc(t) gives equation (15).

For the case with n 6= 0 one can use equation (14) to write the expression Rp(t+Rc(t))

as:

Rp(t+Rc(t)) =
ωc(t) + γRc(t)

1 + γ
+

1

n
ln

[
1 + ẑ

1 + en
ωc(t)+γRc(t)

1+γ ẑ

]
.

I take a linear approximation (around n = 0) of this expression, set it equal to Rc(t) and

solve for Rc(t). This (rather lenghty) solution for Rc(t) is again linearized around n = 0

which leads to the expression in equation (16).

A.4 Proposition 3

For the proof of proposition 3 I use the guess-and-verify approach. In particular, I start

with the definition of the IRR in equation (12). For policy A the dependency ratio

is constant at z(t) = ẑ. Since the contribution rate is also constant at τ̂ it follows

that also the pension level is constant at q̂. Therefore equation (12) can be written

as:τ̂
∫ Rc(t)
0

e(g−σ(t))a da = q̂
∫ ωc(t)
Rc(t)

e(g−σ(t))a da. One can then insert the guessed solution

σ(t) = g + n + γ 2
ωc(t)

(see equation (17)) into both sides of this equation. The left-hand

side (the present value of contributions (PVC)) comes out as:

PV C =
τ̂ωc(t)

(
1− e−R

c(t)(n+ 2γ
ωc(t)

)
)

2γ + nωc(t)
,

while the right-hand side (the present value of benefits (PVB)) simplifies to:

PV B =

τ̂
ẑ
ωc(t)

(
e−R

c(t)(n+ 2γ
ωc(t)

) − e−2γ−nωc(t)
)

2γ + nωc(t)
,

where I have used the equation q̂ = τ̂
ẑ
. In the next step I insert

Rc(t) ≈ ωc(t)

1 + ẑ(1 + γ)

[
1− nẑ(1 + ẑ)(1 + γ)ωc(t)

2 (1 + ẑ(1 + γ))2

]
(33)
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from equation (16) into PVC and PVB and approximate these expressions around n = 0

and γ = 0. One gets that the approximations for the present value of contributions and

benefits are equal and given by PV C ≈ PV B ≈ τ̂ωc(t)(2−2γ−nωc(t))
2(1+ẑ)

. This verifies the initial

conjecture that σ(t) ≈ g + n+ γ 2
ωc(t)

.

It has to be noted, however, that the approximation is rather crude since γ is typically

not small (as stated in section 2 empirical estimates are arounbd γ = 0.2). In appendix

B I therefore compare the exact values for the IRR with the approximations given in

equations (17) and (19). As can be seen there, the approximations are not completely

accurate but they provide the right order of magnitude.

A.5 Proposition 4

I use again the guess-and-verify approach to proof proposition 4 following similar steps as

in appendix A.4. For policy B the retirement age (and the contribution rate) is constant

while the pension level is changed according to (18). The IRR in equation (12) can be

thus be written as:τ̂
∫ R̂
0
e(g−σ(t))a da = q̂

∫ ωc(t)
R̂

ẑ
z(t+a)

e(g−σ(t))a da. One can then insert the

guessed solution (19), i.e. σ(t) = g + n + γ 1
ωc(t)

into both sides of this equation. The

left-hand side (the PVC) comes out as:

PV C =
τ̂ωc(t)

(
1− e−R̂(n+ γ

ωc(t)
)
)

γ + nωc(t)
.

In order to get a closed-form solution for the right-hand side of the equation I use the

approximation that e(g−σ(t))a ≈ 1 + (g − σ(t))a. The resulting expression is lengthy and

is omitted here (but is available upon request).

In the final step I approximate the expressions for PVC and PVB around n = 0 and γ =

0. These approximations are again equal and given by PV C ≈ PV B ≈ τ̂ R̂((2−nR̂)ωc(t)−γR̂)
2ωc(t)

.

This verifies the initial conjecture that σ(t) ≈ g + n+ γ 1
ωc(t)

.

B Approximate versus exact solutions

In the course of deriving equations (17) and (19) a number of linear approximations has

been used (see appendix A). In order to check the quality of these approximations I

have used numerical methods to directly solve for σ(t) in equation (12) for both policy
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0.010
σ(t)
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Figure 1: The figure shows the internal rate of return for policy A (changes in the retirement age)
and policy B (changes in the pension level). The solid lines refer to the exact (numerical) solutions for
σ(t) while the dashed lines correspond to the approximations given by (17) and (19), respectively. The
parameters were chosen as follows: ẑ = 1/3, n = 0, g = 0, γ = 0.2 and ωc(0) = 60.

regimes.16 These exact solutions for the IRR are illustrated together with their approxi-

mate counterparts in Figure 1 for all generations with a life expectancy between 80 and

100.17

Comparing the values one can note that the approximations in equations (17) and (19)

are not perfect, in particular in as far as the starting values for ωc(0) = 60 are concerned.

Nevertheless, the approximations provide the right order of magnitude and they also

track quite accurately the slope of the IRR over time. Different numerical examples have

confirmed this conclusion.18

I have also looked at a third policy that is a mixture of policies A and B. In particular,

16In doing so I have also used (for policy A) the exact values for Rc(t) (based on Rp(t) = ωp(t) +
1
n ln

[
1+ẑ

1+enωp(t)ẑ

]
in equation (14)).

17Note again that a value of ωc(t) = 60 corresponds to a life expectancy of 80 and a value of ωc(t) = 80
to a life expectancy of 100.

18 Only for extreme cases one can observe some change of patterns. In contrast to the approximated
expressions (17) and (19) it comes out, e.g., that for large values of n and ωc(t) the exact internal rates
of return might decrease in γ. For reasonable parameter values, however, this is not likely to happen and
for decreasing cohort size (n < 0) it can be precluded altogether.
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this policy stipulates an increase in the retirement age as would be stabilizing for the

case where n = 0 (i.e. Rp(t) = ωp(t)
1+ẑ

) while achieving the rest of the adjustment needs by

relying on changes in the pension level according to (18). This can be viewed as a policy

that uses increases in the retirement age to counter increases in longevity and changes

in pension benefits to deal with fluctuations in cohort sizes. For constant cohort sizes

(n = 0) this policy obviously coincides with policy A. For n 6= 0 approximations similar

to the ones used for (17) lead to an IRR that is identical to the one of policy A, i.e.

σ(t) ≈ g+n+γ 2
ωc(t)

. If one calculates exact numerical solution, however, one can observe

that for n > 0 the IRR lies above the value for policy A while for n < 0 the opposite

is the case. This is due to the fact that for n > 0 (n < 0) the increase in Rp(t) given

by (14) is smaller (larger) than Rp(t) = ωp(t)
1+ẑ

and therefore also the “introductory gains”

are smaller (larger) than for policy A. Summing up one can state that the impact of

increasing longevity is largest for the pension policy that involves the fastest extension of

the contribution base.

C Longevity has an upper limit

It is possible to doubt whether the assumption about a constantly increasing longevity (cf.

(4)) is reasonable. Taken literally it seems inconceivable to assume that life expectancy

or the maximum age increases without bound. On the other hand, even though one

would not believe that such development can go on forever, the history of the last decades

and the forecast over the next 50 years is nevertheless best described by the assumption

of a constant linear increase.19 In fact, a similar controversy has already been raised

by the publication of Samuelson’s original article where the population growth rate has

been the focus of the discussion. In particular, Lerner has criticized the assumption of a

constantly growing population as a “mirage” and a “chain letter swindle” , arguing that

the biological interest rate will collapse once the growth will come to an end (Lerner 1959,

p.523f.). While a thorough treatment of this issue is beyond the scope of this paper, I

want to briefly sketch in this appendix the result for the case where one assumes that

longevity reaches a maximum age ωmax in some period t̂. In particular this means that

ωc(t) = ωc(0) + γ · t for t < t̂ and ωc(t) = ωc(t̂) = ωmax for t ≥ t̂.

In order to study the impact of this alternative life expectancy development one has

to first consider what it implies for the pattern of period life expectancy. For t < t̂ it still

19On this discussion see, e.g., Oeppen & Vaupel (2002), Carnes et al. (2003) and the literature cited
therein.
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holds (cf. (5)) that ωp(t) = ωc(t)
1+γ

. For t̂ ≤ t < t̂ + ωmax period life expectancy continues

to grow at speed γ
1+γ

, i.e. ωp(t) = ωp(t̂) + γ
1+γ

(t − t̂). Finally, for t ≥ t̂ + ωmax one has

that period life expectancy is constant at ωp(t) = ωmax.

Under policy A (and for the case where n = 0) until the stop in longevity people will set

their retirement age according to (15), i.e. (written in terms of ωp(t)): Rc(t) = (1+γ)ωp(t)
1+ẑ(1+γ)

.

From period t = t̂+ωmax onwards period longevity does not increase anymore and it settles

at ωmax. The retirement age in this period is given by: Rp(t̂ + ωmax) = ωp(t̂+ωmax)
1+ẑ

and

from this one can calculate that the generation that retires in this moment is generation

t̂+ωmax−Rp(t̂+ωmax) = t̂+ ẑ
1+ẑ

ωmax. The cohort-specific retirement ages are thus given

by: Rc(t) = ωp(t)(1+γ)
1+ẑ(1+γ)

for t < t̂+ ẑ
1+ẑ

ωmax, and Rc(t) = ωmax

1+ẑ
for larger t.

From these values one can derive approximate value for the internal rate of return σ(t)

as:
σ(t) ≈ g + γ 2

ωc(t)
for t ≤ t̂,

σ(t) ≈ g + γ 2
ωmax

(
1− (t− t̂) 1+ẑ

ẑωmax

)
for t̂ < t ≤ t̂+ ẑ

1+ẑ
ωmax,

σ(t) = g for t > t̂+ ẑ
1+ẑ

ωmax.

In other words, if longevity reaches an upper limit then the internal rate of return will

decrease from the higher level σ(t) ≈ g + γ 2
ωc(t)

(see equation (17)) to the normal steady

state level (σ(t) = g) in a smooth fashion. The longevity-related part of the biological

interest will have a positive effect on all generations up to generation t̂+ ẑ
1+ẑ

ωmax without

involving below-normal rates of return for any other generation.

D Optimal behavior

In order to derive the optimality conditions for the standard retirement model I follow the

set-up presented in Bloom et al. (2007). As stated in section 4 the intertemporal utility

function for the representative member of generation t is given by:

U(t) =

∫ ωc(t)

0

e−δa [U(C(t, a))− χ(t, a)V (ωc(t), a)] da, (34)

where δ is the rate of time preference, C(t, a) the level of consumption of cohort t at

age a, χ(t, a) is an indicator variable with χ(t, a) = 1 for a ∈ [0, Rc(t)] and χ(t, a) = 0

for a ∈ [Rc(t), ωc(t)] and V (ωc(t), a) is the disutility of labor schedule that might also

depend on longevity ωc(t). Bloom et al. (2007) assume that at each age the health status

improves proportionally with longevity. In other words, disutility of labor V (ωc(t), a) is
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assumed to be homogeneous of degree 0, i.e. V (αωc(t), αa) = V (ωc(t), a) for α > 0. For

later derivations they assume a simple explicit form that possesses this property:

V (ωc(t), a) = υeψ
a

ωc(t) . (35)

In the paper I have focused on the case where ψ = 0 and V (ωc(t), a) = υ. The budget

constraint is given by (23) in the text and repeated here for convenience:

dA(t, a)

da
= χ(t, a)W (t+ a) + rA(t, a)− C(t, a), (36)

where A(t, a) are the assets of generation t at age a and r is the (exogenously given)

interest rate.

Individuals must take decisions about their consumption path and their retirement

age (i.e. their control variables are C and χ). Bloom et al. (2007) state the Hamiltonian

for this problem and they show that the first-order conditions can be summarized as:

Ċ(t, a) =
dC(t, a)

da
= (r − δ) U ′(C(t, a))

−U ′′(C(t, a))
(37)

χ(t, a) = 1⇐⇒ U ′(C(t, a))W (t+ a) ≥ V (ωc(t), a). (38)

If one assumes that agent have constant relative risk aversion with U(C(t, a)) = C(t,a)1−β

1−β

for β ≥ 0 and U(C(t, a)) = ln(C(t, a)) for β = 1 the first condition (37) can be written

as:
Ċ(t, a)

C(t, a)
=
r − δ
β

. (39)

This implies that:

C(t, a) = C(t, 0)e
r−δ
β
a.

The initial level of consumption can be calculated from the intertemporal budget con-

straint: ∫ ωc(t)

0

e−raC(t, a) da =

∫ Rc(t)

0

e−raW (t+ a) da =⇒∫ ωc(t)

0

e−raC(t, 0)e
r−δ
β
a da = W (t)

∫ Rc(t)

0

e−raega da =⇒

C(t, 0)
β
(

1− e−
ωc(t)(δ−(1−β)r)

β

)
δ − (1− β)r

= W (t)
−e−(r−g)Rc(t) + 1

r − g
. (40)
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where W (t+ a) = W (t)ega.

The second first-order condition (38) states that individuals will work at age a if the

utility gain from consumption purchased by the wage exceeds the disutility of work. The

retirement age is thus given by V (ωc(t), Rc(t)) = U ′(C(t, Rc(t)))W (t+Rc(t)). Using the

functional form (35) this can be written as:

υeψ
Rc(t)
ωc(t) = W (t)eR

c(t)g
(
C(t, 0)e

r−δ
β
Rc(t)

)−β
. (41)

Equations (40) and (41) are two equations in two unknowns (the retirement age Rc(t)

and the initial consumption level C(t, 0)). The solutions to these equations together with

the equation C(t, a) = C(t, 0)e
r−δ
β
a determines the path of consumption and the optimal

retirement age. Bloom et al. (2007) derive approximate solutions for specific parameters

(β = 2 and β = 1).

One can also look at the special case with δ = r = g = 0 and ψ = 0. In this case

it holds that C(t, a) = C(t), ∀a and the two conditions reduce to C(t) = W Rc(t)
ωc(t)

and

υ = WC−β. This can be solved as Rc(t) = ωc(t)(W )
1−β
β ( 1

υ
)

1
β . One can see that in general

changes in wages will have an income and a substitution effect for the retirement age. A

higher wage increases the incentive to prolong the working period (the substitution effect)

while at the same time also raising lifetime income which increases the demand for earlier

retirement (the income effect). For the log utility function (β = 1) these two effects cancel

and the retirement choice is independent of the wage level. This has been assumed in

section 4 of the paper.
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