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Abstract

The information contained in a large panel data set is used to date historical turning
points of the Austrian business cycle and to forecast future ones. We estimate groups
of series with similar time series dynamics and link the groups with a dynamic
structure. The dynamic structure identifies a group of leading and a group of
coincident series. Robust results across data vintages are obtained when series
specific information is incorporated in the design of the prior group probability
distribution. The results are consistent with common expectations, in particular
the group of leading series includes Austrian confidence indicators and survey data,
German survey indicators, some trade data, and, interestingly, the Austrian and the
German stock market indices. The forecast evaluation confirms that the Markov
switching panel with dynamic structure performs well when compared to other
specifications.
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1 Introduction

The model suggested in the present paper allows to identify business cycle turning points
by using the information contained in a large set of economic, real and financial, variables.
The information about the cyclical stance is extracted by estimating groups of series, i.e.
by classifying those series together, that follow a similar time series process over time.
Within each group, we allow for group-specific parameter heterogeneity. This means
that the parameters are shrunk towards a group-specific mean rather than pooled, which
is usually done in panel estimation. Two groups of series are additionally linked by
a dynamic structure, whereby one group leads the other one in the business cycle. If
the dynamic structure between the groups is not known a priori, that is if the leading
and the coincident group of series are not known, then the model can be generalized to
estimate the appropriate dynamic structure of the groups in the panel. Obviously, not all
series can be classified into one of both the coincident and the leading group of variables.
Therefore, the remaining group, which collects all the series not following the coincident
or the leading group of series, is moving independently from the other two groups.

The methodological approach pursued in the paper is based on the idea of model-based
clustering of multiple time series (Frühwirth-Schnatter and Kaufmann, 2008). An ex-
tension is introduced here that links two groups in the panel by a dynamic structure.
How to form the groups and which groups are linked by the dynamic structure may be
subject to estimation. The series are transformed to non-trending series, and demeaned
and standardized before the analysis. Therefore, the estimation yields an inference on
growth cycles. The growth cycle itself is modelled by a process which identifies periods
of above-average and below-average growth. These periods usually cannot be identified a
priori with certainty, therefore we introduce group-specific unobservable state indicators
which follow a first-order Markov process.

Recently, research on the euro area business cycle has intensified. The areas which numer-
ous papers deal with are dating business cycle turning points, assessing the current stance
of the business cycle, forecasting the cycle itself and the probability of turning points as
well. The issues also relate to defining an appropriate group of leading indicators which
permits a timely assessment of the current business cycle state and an accurate forecast
of turning points (see Marcellino, 2006, for an overview). The model of the present pa-
per is related to Bengoechea and Pérez-Quirós (2004) who estimate a bivariate Markov
switching model for the euro area industrial production index and the industrial confi-
dence indicator. With the so-called filter probabilities of the state indicator, which reflect
the state probability in period t given the information up to period t, they assess the
current state of the euro area business cycle and form a forecast on the probability of a
turning point. While they base the inference on a model for two aggregate variables, here
the cyclical stance is extracted from the information contained in a large cross-section of
economic series. Moreover, while they are modelling the state indicators of each series as
switching either independently or jointly, here, the state indicator of the leading group
switches before the state indicator of the coincident group.

A closely related paper to capture the dynamic structure of time series is Paap, Segers,
and van Dijk (2007). The series-specific state indicators of a bivariate Markov switching
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VAR model for US industrial production and the Conference Board’s Composite Index
of Leading Indicators (CLI) are linked together by allowing asynchronous cycles with
different lead times for peaks and troughs in the CLI. The lead times are not restricted,
allowing in principal different durations of business cycle phases in both series, such that
cycle phases of even different cycles may overlap. We capture the different lead times for
peaks and troughs directly in the transition probability matrix of an encompassing state
indicator. The transition between states of the encompassing state indicator is restricted
to ensure that the coincident group of series has first to switch into the actual state of
the leading group of series before the latter can switch back to the other state.

With the multi-level panel STAR model proposed in Fok, van Dijk, and Franses (2005)
one can also capture common non-linear dynamics across individual series. Although the
parameters driving the regime switches are series-specific, they are determined by time-
invariant properties of the individual series. Thus, the model is an alternative between
estimating a STAR model for each individual series and between a fully pooled model, in
which the parameters governing the regime changes are equal across series. The results for
US industrial production sectors confirm that regime switches occur in different periods
at different frequencies. The results also suggest that some series follow similar switching
processes. In the present paper, we classify series into groups and estimate group-specific
state-indicators, assuming the series to be in the same phase of the business cycle.

Another method of dimension reduction is factor analysis as pursued in Forni et al. (2000)
and Stock and Watson (2002). Forni et al. (2001) suggest to use dynamic principal com-
ponents to extract the coincident and the leading index of euro area economic activity.
From a large cross-section, they choose a set of core variables usually considered to be
the most relevant to describe the business cycle stance, and include additional variables
that are most correlated with this core and have only minor idiosyncratic dynamics. The
common component extracted from these series allows to compute a coincident indicator
for the euro area as a whole and for each individual country as well. The Austrian series
they include in the core are GDP, investment, consumption and industrial production.
Austrian orders is the only series additionally taken into consideration in the final esti-
mation. Generally, all financial and monetary variables are not sufficiently correlated to
the core to be included in the final estimation, and neither are the price series and the
share prices. Not surprisingly, orders turn out to be strongly correlated to the common
component of the core series. Finally, the country-specific comparison of turning points
with the euro area aggregate reveals that Germany, and also Austria, are not leading the
euro area coincident indicator.

These results are of interest as the ones reported in the present paper using recent data
depart from the previous evidence. Some financial variables like M1, interest rates and,
interestingly, asset prices like the Austrian ATX and the German DAX stock market
indices fall into the leading group of series. Orders, Austrian and German confidence
indicators and survey data as well, fall also into the leading group of variables.

Another possibility to predict turning points is suggested in Canova and Ciccarelli (2004).
Based on the estimation of a Bayesian panel VAR for the G7 countries, forecasts in the
growth rates of GNP are used to predict turning points and the probability of turning
points. In principle, one could use the approach for a single country and form several
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VARs for related series in the panel, like business surveys, labor market series, trade
series etc. Nevertheless, panel VARs appear most attractive to capture cross-country or
country-specific inter-industry interdependencies. Our data set does not include many
foreign variables, nor are the included series very disaggregate. Therefore, we use the
“basic” panel approach described in the following section.

Finally, a very specific approach is described in Bruno and Lupi (2004). Using early
released reliable indicators, specifically a business survey series on future production
prospects and the quantity of goods transported by railways, the authors specify a par-
simonious forecasting model to produce a forecast of actual industrial production which
then is used in an unobserved components model to assess the actual stance of the busi-
ness cycle. In the present paper, however, we want to exploit the information of many
series, of which many are also timely released, to form an expectation about turning
points. Missing data on actual industrial production or other national account series can
be handled as missing values and replaced by an estimate given the information we have
on other timely released series (see also the appendix in Kaufmann and Kugler, 2007).

The paper is organized as follows. Section 2 introduces the model, section 3 outlines the
estimation procedure. The data and the results are summarized in section 4. Section 5
shows the effectiveness of using informative prior group probabilities in obtaining robust
results across data vintages. Section 6 evaluates the in-sample and out-of-sample one-
step-ahead forecast performance of the model and compares it to other related model
specifications. Section 7 concludes.

2 The econometric model

2.1 The group-specific time series model

In business cycle studies analyzing large cross-section of time series with different trend
and volatility levels (Forni et al., 2000, Stock and Watson, 2002) it is usual to work
with detrended, demeaned and standardized series. Therefore, let yit represent the mean-
adjusted and standardized growth rate or change of time series i, i = 1, . . . , N in period
t, t = 1, . . . , T in a panel of economic variables. Each time series is assumed to follow an
autoregressive process with switching intercept:

yit = µi
Iit

+ φi
1yi,t−1 + · · ·+ φi

pyi,t−p + εit, (1)

where εit ∼ i.i.dN(0, σ2/λi). The unobservable state indicator Iit takes on the value 1
or 2 and indicates the switches between periods of above- and below-average conditional
growth rates:

µi
Iit

=

{
µi

1 if Iit = 1
µi

2 if Iit = 2
. (2)

As the purpose is to estimate business cycle turning points, we define state 1 as periods
of below-average growth and state 2 as periods of above-average growth. Thus µi

1 ≤ 0
and µi

2 > 0. The autoregressive process is assumed to lie in the stationarity area, such
that it also follows µi

1/(1−
∑p

j=1 φi
p) ≤ 0 and µi

2/(1−
∑p

j=1 φi
p) > 0
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The superscript i is used to denote that each time series, in principle, can follow an inde-
pendent process. However, efficiency gains in estimation might be exploited by grouping
the series which follow a similar time series process (see e.g. Hoogstrate et al., 2000, and
Frühwirth-Schnatter and Kaufmann, 2008). The difficulty is to form the appropriate
groups of series. If we do not have a priori certain information, we may estimate the
appropriate grouping of the series. To this aim, an additional latent indicator, a group
indicator, Si, i = 1, . . . , N , is defined which relates to group-specific parameters. If we
assume to have K distinct groups of series in the panel, Si takes one out of K different
values, Si = k, k = 1, . . . , K, and indicates into which group a specific time series is
classified.

There are various possibilities to specify the group-specific model. In each group, we may
pool the time series and restrict the parameters to be identical for all time series. To be less
restrictive, we may assume that in each group, the series-specific parameters are shrunk
towards a group-specific mean, allowing for group-specific parameter heterogeneity:

µi
ISi,t

∼
{ N (

µk
1, q

k
1

)
if Si = k and Ikt = 1

N (
µk

2, q
k
2

)
if Si = k and Ikt = 2

(3)

(
φi

1, . . . , φ
i
p

) ∼ N (
φk, Qk

φ

)
if Si = k, k = 1, . . . K

Generally, the autoregressive parameters may also be modelled as state-dependent. Larger
autoregressive parameters during periods of below-average growth would reflect the fact
that business cycle downturns are steeper than business cycle upturns. This pattern,
however, is not found in the data used for the empirical investigation. Therefore, and also
for expositional convenience, in model (3) the autoregressive parameters are modelled
only group-specific.

2.2 The model for the state and the group indicators

Both latent indicators are discrete variables with different distributional assumptions.
The model for each group-specific state indicator Ikt takes into account that the duration
of above-average growth periods may differ from periods of below-average growth. We
specify Ikt to follow a Markov switching process of order one, P (Ikt = l|Ik,t−1 = j) = ξk

jl,

j, l = 1, 2, with the restriction
∑2

l=1 ξk
jl = 1, j = 1, 2. Thus, for a single time series, the

model comes close to the one estimated in Hamilton (1989) for US GNP. The Markov
switching specification is also appropriate to capture business cycle turning points in real
time. Recent evidence in Chauvet and Piger (2008) shows that both the algorithm of
Harding and Pagan (2006) and a small-scale dynamic Markov switching factor model are
able to date NBER turning points of the US business cycle in real time.

For the group indicator we assume a multinomial logit model to include prior information
on a particular series into the estimation of the group probability:

P (Si = k|γ1, . . . , γK−1, γz1, . . . , γz,K−1) =
exp(γk + Ziγzk)

1 +
∑K−1

l=1 exp(γl + Ziγzl)
, (4)

where the last group K is the baseline group with γK = γzK = 0. The variable Zi may be
a vector of any series-specific features which are thought to determine the classification
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into a specific group, and the parameters γ· are unknown but group-specific values. In
the empirical application we will use correlation with GDP and with order books in the
industrial sector as variables determining the prior group probability when specifying an
informative prior for the model. Zi may also be a set of dummy variables reflecting one’s
belief whether a variable like GDP, its components or industrial production pertain to
the group of coincident series or whether a variable like a survey or a confidence indicator
should fall into the group of leading series.

If no series-specific information is available, the (prior) group probabilities are constant
across series and are assumed to be equal to the relative size of the groups:

P (Si = k|γ1, . . . , γK−1) =
exp(γk)

1 +
∑K−1

l=1 exp(γl)
= ηk. (5)

2.3 Modelling a leading group of time series

The last ingredient of the model is the dynamical structure between two groups of series.
Assume that the second group of series, i.e. that all series for which Si = 2, are leading the
cycle of the coincident series, which, let us again assume, are all series for which Si = 1.
Then, we define the encompassing state variable I∗t which captures all J∗ = 4 possible
constellations of both state indicators 1 and 2 in period t (see also Phillips, 1991):

I∗t = 1 := (I1t = 1, I2t = 1)

I∗t = 2 := (I1t = 1, I2t = 2)

I∗t = 3 := (I1t = 2, I2t = 1) (6)

I∗t = 4 := (I1t = 2, I2t = 2).

If the state indicator of group 2 is leading the state indicator of group 1,1 eight of the 16
elements of the transition distribution of I∗t will in fact be restricted to zero:

ξ∗ =




ξ∗11 ξ∗12 0 0
0 ξ∗22 0 ξ∗24

ξ∗31 0 ξ∗33 0
0 0 ξ∗43 ξ∗44


 (7)

If state 1 identifies periods of below-average growth, 1/(1− ξ∗22) will be the expected lead
of group 2 out of a trough, and, correspondingly, 1/(1−ξ∗33) the expected lead in reaching
a peak.

From (6) we can recover the group-specific indicators I1t and I2t. The group-specific
transition probabilities implied by (7) are ξ1

11 = (1 + ξ∗22)/2 and ξ1
22 = (1 + ξ∗33)/2 for I1t,

and ξ2
11 = (1 + ξ∗11)/2 and ξ2

22 = (1 + ξ∗44)/2 for I2t.

1The leading behavior of state 2 is modelled in a strict form in the sense that a switch in the state
indicator of group 2 will be followed by a switch in the state indicator of group 1 before the state indicator
of group 2 may switch back to the initial state.
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2.4 Unknown dynamic structure

For expositional convenience we assumed so far that group 2 is leading group 1, while the
remaining K − 2 groups would behave independently over time. If there is uncertainty
about which two groups may be linked by a dynamic structure, we can generalize the
model by introducing a dynamic structure indicator ρ∗, which characterizes the dynamic
structure between the groups. The indicator ρ∗ takes on one realization ρl of the L =
K(K−1) possible permutations of {1, 2, 0K−2}.2 The element in ρ∗ which takes the value
1 refers to the group of coincident series, the element which takes the value 2 refers to the
leading group, and all other elements refer to the groups that behave independently. If we
have no a priori knowledge on the dynamic structure between groups, each permutation
is given a priori equal weight ηρ = 1/(K(K − 1)).

3 Bayesian estimation and forecasts

The following notation is adopted to describe the Bayesian estimation method in a con-
venient way. While yit denotes observation t for time series i, yt

i gathers all observa-
tions of time series i up to period t, yt

i = {yit, yi,t−1, . . . , yi1}, i = 1, . . . , N . The vari-
ables Yt and Y t denote the observations in and up to period t of all time series, re-
spectively, Yt = {y1t, y2,t, . . . , yNt} and Y t = {Yt, Yt−1, . . . , Y1}. Likewise, the vectors
SN = (S1, . . . , SN) and IT = (IT

1 , . . . , IT
K), where IT

k = (IkT , Ik,T−1, . . . , Ik1), k = 1, . . . , K,
and λN = (λ1, . . . , λN) collect the group and the state indicators and the series-specific
weights, respectively. Finally, all model parameters are gathered in θ.3 By using Markov
chain Monte Carlo simulation methods we obtain a posterior inference on the augmented
parameter vector ψ = (θ, SN , IT , λN , ρ∗) which additionally includes the two latent indi-
cators, the weights and, if also estimated, the dynamic structure variable ρ∗.

3.1 MCMC estimation

The posterior distribution π(ψ|Y T ) is obtained by updating the prior distribution π(ψ)
with the information given in the data by the likelihood L(Y T |ψ):

π(ψ|Y T ) ∝ L(Y T |ψ)π(ψ). (8)

2The vector 0K−2 denotes a vector of K − 2 zeros.
3That is: θ = (µ1

1, µ
1
2, . . . , µ

K
1 , µK

2 , φ1, . . . , φK , Q1, . . . , QK , σ2, ξ∗, ξρ∗(k)=0, γ, γz), where Qk includes
all within-group heterogeneity,

Qk =




qk
1 0 0
0 qk

2 0
0 0 Qk

φ


 .

ξρ∗(k)=0 = {ξk} has as elements the transition probabilities of the independent group-specific state indi-
cators, ξk = (ξk

11, ξ
k
12, ξ

k
21, ξ

k
22). The last two vectors include γ = (γ1, . . . , γK−1), γz = (γz1, . . . , γz,K−1).
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Conditional on SN and IT , the likelihood L(Y T |ψ) can be factorized as

L(Y T |ψ) =
T∏

t=p+1

N∏
i=1

f(yit|yt−1
i , µSi

ISit
, φSi , QSi , λi, σ

2), (9)

where f(yit|·) denotes the density of the normal distribution:

f(yit|yt−1
i , µSi

ISit
, φSi , QSi , λi, σ

2) =

1√
2πνSi

it

exp



−

1

2νSi
it

(
yit − µSi

ISit
−

p∑
j=1

φSi
j yi,t−j

)2


 . (10)

The observation density in (10) is the density for the model marginalized with respect to
the random effects:

yit = XSi
it βSi + ε∗it, ε∗it ∼ N

(
0, νSi

it

)
(11)

νSi
it = XSi

it QSiXSi
it

′
+ σ2/λi

where XSi
it =

(
D

I(Si)
1t , D

I(Si)
2t , yi,t−1, . . . , yi,t−p

)
with D

I(Si)
jt = 1 if ISi,t = j and D

I(Si)
jt = 0

otherwise, j = 1, 2. The vector of coefficients is βSi =
(
µSi

1 , µSi
2 , φSi

)
.

If the dynamic structure ρ∗ is known, the prior distribution π(ψ) is designed in way
which assumes that the encompassing state indicator I∗T , the remaining K − 2 state
indicators IT

k , the group indicator SN and the weights λN are independent of each other
and independent of the model parameters θ:

π(ψ) = π(I∗T |ρ∗, ξ∗)
∏

ρ∗(k)=0

π(IT
k |ρ∗, ξk)π(SN |γ, γz, Z

N)π(λN)π(θ), (12)

with known densities for π(I∗T |ρ∗, ξ∗), π(IT
k |ρ∗, ξk) and π(SN |γ, γz, Z

N), respectively. The
weights are independent a priori and follow a Gamma distribution. To specify π(θ), the
parameter vector θ is further broken down into parameter blocks, for all of which we
assume standard prior distributions (see appendix A).

The sampling scheme to draw from the posterior π(ψ|Y T ) follows Frühwirth-Schnatter
and Kaufmann (2008) and involves the following steps (see appendix B for the derivation
of the posterior distributions):
(i) π(SN |Y T , IT , ρ∗, λN , θ),
(ii) π(IT |Y T , SN , ρ∗, λN , θ),
(iii) π(λN |Y T , IT , SN , θ),
(iv) π(θ|Y T , SN , IT ).

In step (i), the group indicator can be sampled individually for each time series. Given
the dynamical structure ρ∗, we obtain a draw for the group-specific state indicators in
step (ii) by multi-move sampling, using in particular the encompassing specification I∗ for
the state indicators of the coincident and the leading group. In step (iii) the series-specific
weights are sampled independently from Gamma distributions. All posterior distributions
in (iv) are conjugate to the priors, except for the posterior distribution of γ and γz, the
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parameters influencing the group probabilities. These posterior distributions are not of
closed form and therefore, a Metropolis-Hastings step is used to sample them (see Albert
and Chib, 1993 and Scott, 2006). In order to sample the covariance matrices Q, step (iv)
additionally involves sampling of the series-specific random effects βi−βSi from a normal
distribution or using the filter form derived in Frühwirth-Schnatter (2006, p. 266). Note
however, that the extension to group-heterogeneity in parameters depending on the group-
specific state indicator (the Markov switching mean intercept term) renders the predictor
vector XSi

it in the marginal model (11) group-specific, which is not the case for the random
effects model without a latent state indicator. This has to be taken into account when
deriving the moments of all posterior distributions and for the filter form. Finally, given
that the prior of the transition distributions ξ∗ and ξk is Dirichlet, the posterior simulation
stems also from a Dirichlet (see also Sims, Waggoner, and Zha, 2008).

We sample from the constrained posterior which means that we restrict µk
1 ≤ 0 and µk

2 > 0,
k = 1, . . . , K while sampling the model parameters. In step (iii), we therefore only accept
draws that fulfill the latter state identifying restriction. If a priori other parameters
in the time series model would be switching and we would not know with certainty with
which one the states could uniquely be identified, we could apply the random permutation
sampler (Frühwirth-Schnatter, 2001).

3.2 Estimating the dynamic structure

If the dynamic structure between the groups is not known a priori, we can estimate ρ∗

from the data. Step (ii) of the sampling scheme described above is extended to:
(ii.a) π(ρ∗|Y T , SN , λN , θ),
(ii.b) π(IT |Y T , SN , ρ∗, λN , θ).

If each permutation ρl, l = 1, . . . , L, out of the L = K(K − 1) possible ones from
{1, 2, 0K−2} is given equal prior probability ηρ = 1/(K(K−1)), the posterior distribution
of the dynamic structure ρ∗ is discrete:

π(ρ∗ = ρl|Y T , SN , λN , θ) ∝ L(Y T |SN , λN , θ, ρl) · ηρ, (13)

for l = 1, . . . , K(K − 1). The marginal likelihood associated to the dynamic structure ρl

is derived in detail in appendix C.

The issue of label switching traditionally encountered in mixture models also arises when
the dynamic structure is unknown a priori. The likelihood L(Y T |SN , λN , θ, ρ∗) is invariant
to any permutation φ of the groups {1, . . . , K}, associated with a dynamic structure ρl:

L(Y T |SN , λN , θ, ρ∗) = L(Y T |φ(SN), λN , φ(θ−σ2), φ(ρ∗)), (14)

where φ(θ−σ2) means that all group-specific parameters are re-ordered according to per-
mutation φ, except σ2 which is the only parameter being group-independent. We obtain
an estimate of the unconstrained model by concluding each sweep of the sampler by a
permutation step:
(v) SN := φ(SN), θ := φ(θ−σ2),

IT := φ(IT ), ρ∗ := φ(ρ∗)
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Drawing randomly φ ensures that we visit all modes of the posterior distribution. To
identify a unique specification, the simulations from the unconstrained distribution are
then re-ordered according to a group-identifying restriction. Such restrictions can usually
easily be find by means of graphical tools. A detailed description of the approach can be
found in Frühwirth-Schnatter and Kaufmann (2006).

3.3 Forecasting

Given the model estimate, we may simulate recursively future paths of the encompassing
state indicator between T +1 and T +H from the posterior predictive density π(I∗T+h|Y T ),
for h = 1, . . . , H. We simulate the distribution recursively from

π(I
∗(m)
T+h |Y T , I

∗(m)
T+h−1, ξ

∗(m)), (15)

which is equal to the jth column of ξ∗(m)′ if I
∗(m)
T+h−1 = j at T +h− 1. The superscript (m)

indicates the mth parameter draw of the MCMC output and I
∗(m)
T |T = I

∗(m)
T .

We obtain a conditional probabilistic forecast I∗T+h|Y T , I∗T by averaging over the sampled
values:

I∗T+h|Y T , I∗T =
1

M

M∑
m=1

I
∗(m)
T+h , h = 1, . . . , H. (16)

By relating the states of the encompassing state indicator I∗T+h|T to the group-specific

state indicators Ik,T+h|T according to (6), we can make a probabilistic forecast of reaching
a turning point within the next h periods ahead, conditional on the state prevailing at T .

The simulated future paths for the encompassing state indicator can be used to ob-
tain forecasts of a specific time series in the panel from the joint predictive density
π(yi,T+1, . . . , yi,T+H |Y T ), with k = S

(m)
i in the following:

y
(m)
i,T+h|T = µ

k,(m)

I
(m)
k,T+h|T

+ φ
k,(m)
1 y

(m)
i,T+h−1|T + · · ·+ φk,(m)

p y
(m)
i,T+h−p|T + ε∗(m)

i,T+h|T . (17)

If T +h− j ≤ T we insert observed values y
(m)
i,T+h−j|T = yi,T+h−j, and ε∗(m)

i,T+h|T corresponds

to a draw from the error distribution N
(
0, ν

(m)
i,T+h|T

)
,

ν
(m)
i,T+h|T = Xk

i,T+h|T QkXk
i,T+h|T

′
+ σ2(m)/λ

(m)
i with

Xk
i,T+h|T =

(
D

I(m)(k)
1,T+h|T , D

I(m)(k)
2,T+h|T , y

(m)
i,T+h−1|T , . . . , y

(m)
i,T+h−p|T

)
,

and D
I(m)(k)
j,T+h|T = 1 if I

(m)
k,T+h|T = j and 0 otherwise.
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4 Results using prior information on classification

4.1 Data

The analysis is done with a large cross-section of Austrian quarterly time series covering
the period of the first quarter of 1988 through the fourth quarter of 2006. To assess
the robustness of the method, we will compare the results with those obtained with a
dataset ending in 2003 as it was available at the beginning of 2004 (see section 5.1 below).
The data include GDP, its components and industrial production, economic confidence
indicators and survey data for Austria, Germany and the US, the consumer price index,
the harmonized consumer price index as well as its components, wholesale prices, wages
and labor market series, trade series and exchange rates; finally, monetary and credit
aggregates, and financial variables also containing the ATX, the DAX and the Dow Jones
index. The complete set is found in table 1 in appendix D. Before the estimation, the
data are transformed to non-trending series by taking first differences or first differences
of the logarithmic level multiplied by 100 (see also table 1).4 All series are mean-adjusted
to remove long-run trends and standardized to account for the different volatility levels.
Finally, those series that have a significant negative correlation with GDP or with order
books total in the industrial sector (KTAUF), a series that is commonly seen as leading
the cycle, are multiplied by -1 (see figure 1).

Some basic data properties are displayed in figure 1. For expositional convenience, only
those series are plotted for which the contemporaneous correlation with GDP or with
orders in the industrial sector is significant. In panel (a), we see that all series have
distinct above-average and below-average mean growth rates, which justifies the two-
state specification (this is also the case for the series not reported). Panel (b) plots the
mean against the standard deviation of each series. The different volatility level of the
series justifies the normalization and the specification of series-specific error variances.
The correlations in panel (c) give a first hint about the series that might be coincident or
leading the business cycle. Obviously, the components of GDP and industrial production
are correlated with GDP. Some confidence and economic sentiment indicators correlated
with order books, in particular the German IFO indices, some trade series and labor
market series are also significantly correlated with GDP. The correlation with GDP is
negative for various unemployment rates. In many cases, however, the correlation is
higher with order books in the industrial sector. We do not find significant correlation
with GDP for the price series except for the wholesale price of intermediate goods. Among
the financial variables, we find the 3-month interest rate and the government bond yield
that are positively correlated with GDP.

4The survey and confidence indicators are also taken in differences or growth rates because increases
or decreases indicate whether periods of recovery or downturn are prevailing, respectively.
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4.2 Model specification

The model is estimated for three groups, K = 3, and the lag length is set to p = 2, after
having checked that higher order autocorrelation is insignificant. We link group 1 and
group 2 by the dynamic structure described in section 2.3, which means that we fix ρ∗ in a
first round. We put additional information onto the model by pre-classifying GDP and its
components, except for government consumption, into the first group. Some series, which
are traditionally acknowledged to lead the business cycle, namely production in recent
months (KTPROL), the expectations about orders (QTAUF), order books (KTAUF) and
the confidence survey in the industrial sector (EINDSE), are pre-classified into group 2.
These series are thought to determine the processes of the coincident and the leading
group, respectively. For all other series, we will assume that the prior group probability
depends on the correlation with GDP and with order books in the industrial sector. Given
that in this setting GDP and order books are exogenously pre-classified into group 1 and
2, respectively, the posterior distribution of the group indicator for each series is discrete
and remains independent of all other series. Thus, the sampler discussed in section 3.1
remains unchanged (see also (22) in appendix B).

It proved necessary to impose these three pieces of information on the model specification
to obtain robust results across the two data vintages for the Austrian economy. In section
5.2 we will show the results for the model estimation without a priori information on the
group structure, the group processes and the prior group probability. In section 5.3 we
will additionally assess which of all three elements of the prior information is necessary
to obtain robust results across vintages.

To estimate the model, we iterate 13,000 times over the sampling steps (i)-(iv) described
in section 3. The first 8,000 iterations are discarded to remove dependence on starting
conditions.

One characteristic feature of the model specification is its explicit modelling of series-
specific heterogeneity. To illustrate the importance of it, figure 2 displays the marginal
posterior distributions of the error variance σ2, of the conditional rate in the above-average
growth state, µk

2, and the first autoregressive coefficient φk
1 of group 1 and 2, respectively.

In panel (a), the dots plotted at the height of 10 ·σ2 show the mean of the weighted series-
specific variance σ2/λi. Despite that the series have been standardized before estimating
the model, the dispersion of the error variances across series is significant. In panel (b)
and (c) the dots , plotted at the height of 3 times the respective mean of the group-
specific parameter, 3 ·µk

2 and 3 ·φk
1, represent the series-specific mean parameter estimate

µi
2 and φi

1, respectively. The panels represent two situations. Panel (b), in which within-
group heterogeneity may not be that significant, given that most of the series-specific
mean estimate µi

2 lie within the region with highest posterior density of the marginal
posterior distribution of the group-specific mean. In panel (c), we see that within-group
heterogeneity is significant.

The significance of the informative prior on classification probability is shown in figure 3.
For the prior probability of classification into group 1 (solid line) the posterior distribution
of the effects of both GDP and order books correlation is clearly shifted away from zero
while for the probability of classification into group 2 (solid dotted) only the correlation
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with order books is significant. Table 3 panel (a) contains the moment estimates of the
posterior distributions.

Figure 4 visualizes the effect of GDP and order books correlation on the prior probability
of classification into group 1 (left panel) and 2 (right panel). The mesh represents P (Si =
j|Zi) obtained by marginalizing over (γ, γz) using the simulations from the posterior
distribution. The prior probability of classification into group 1 is low but nevertheless
positive for series perfectly correlated with GDP and negatively correlated with order
books. The prior probability of classification increases as the negative correlation with
order books decreases, reaching the highest level at zero correlation with order books.
Interestingly, the prior probability decreases again when correlation with order books
turns positive, but it does not fall below 0.5. The prior probability of classification into
group 2 is positive for series perfectly correlated with order books. In contrast to before,
it further monotonically increases as correlation with GDP decreases.

The height of the lines in figure 4 represent P (Si = j|Zi, Y
T ), the posterior probability of

series i to pertain to group 1 or 2. We observe that, for most series, the probabilities of
classification are clearly updated towards 1 or 0 with the additional information contained
in the data.

Overall, the results obtained for the series-specific error variance, for the within-group
heterogeneity of model-parameters and the significance of the effect of GDP and order
books correlation for the prior probability on classification, convey the model’s ability to
capture data specific features.

4.3 The classification of series

Table 2 panel (a) lists the variables falling into the coincident and the leading group of
series. Comparing with table 1, we observe that with some exceptions, variables of the
same kind fall into the same group. As already mentioned, GDP and its components are a
priori classified into the coincident group of variables. Besides some trade data, minimum
wages and the index of wholesale prices are classified into group 1.

The series which are traditionally seen as leading the business cycle fall into the group
of leading variables. The actual situation and the expectations in industrial production
and the construction sector fall into this group, confidence indicators and survey data of
the industry and the construction sector as well. As the Austrian economy heavily relies
on exports, it does not surprise that also the German IFO economic indicators are in the
leading group of series. For this data vintage, some HICP components, like processed
food, energy and services prices, and some wholesale price components, are also classified
into group 2. The classification of some labor market data, like vacancies and number of
employees into the leading group is intuitive, whereas for unemployment it is less intuitive.
However, the classification of price and labor market series turns out to vary across data
vintages. The explanation of this fact is left for future research. Finally, it is interesting
to note that the ATX, the DAX and other financial market data like M1, the 3-month
money market rate and direct credits to government are also classified as leading the
business cycle.
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4.4 Cycle duration and turning points

Figure 5 depicts the posterior state probabilities P (IT
k = 1|Y T ) of the coincident (Si = 1)

and of the leading group (Si = 2) of series. They are obtained by averaging over the M
simulated values IT,(m), m = 1, . . . , M . The inference is quite clear as nearly all posterior
probabilities are either one or zero. For both groups, the switches into and out of state
1 clearly identify turning points in the business cycle (see also table 4). For this sample
period, we observe that the lead into periods of below-average growth rates is nearly
equal to the lead into recovery, except for the most recent upturn in 2001/2002. This is
reflected in the mean posterior estimate of the transition probability matrix ξ∗, obtained
by averaging over the MCMC draws:

E(ξ∗|Y T )




0.78 0.22 0 0
0 0.27 0 0.73

0.76 0 0.24 0
0 0 0.16 0.84


 . (18)

The expected lead of the leading group into a downturn, 1/(1− ξ̂∗33) = 1.32, is somewhat
less than 4 months while the lead out of a trough, 1/(1− ξ̂∗22) = 1.37, is somewhat more
than 4 months.

Based on figure 5 which plots the posterior probabilities of being in the below-average
growth state, we may date turning points on the basis of the posterior state probabilities
of the coincident group of series (Si = 1). Period t will be identified as a peak if P (Ik,t−1 =
1, Ik,t = 1|Y T ) < 0.5 and P (Ik,t+1 = 1, Ik,t+2 = 1|Y T ) > 0.5; likewise, period t will be
identified as a trough, if P (Ik,t−1 = 1, Ik,t = 1|Y T ) > 0.5 and P (Ik,t+1 = 1, Ik,t+2 =
1|Y T ) < 0.5, where k refers to the group of the coincident variables, in our case group 1.

The turning points identified with this rule are found in table 4, on the line labelled “PDS
88-06”. As no official dates are available for Austria, we compare the dates with those
reported by the Economic Cycle Research Institute (ECRI, www.businesscycle.com). The
last ECRI release of a turning point dates back to 2004. Therefore, we will compare the
estimated chronologies up to that period.

Up to 2001, the two chronologies are similar, which can also be seen in the first two panels
of figure 6. However, PDS 88-06 usually identifies turning points one or two quarters later
than ECRI. ECRI dates an additional cycle in 2003/2004, which is not identified by PDS
88-06 (nor by PDS 88-03). In table 5, first line, the concordance index between both state
indicators of 0.7 is nevertheless quite considerable. The overall net lag of 7 quarters in
identifying the four peaks is mainly due to the later identification of the fourth peak in
the last quarter of 2000.

We also compare the dates to those obtained with other model specifications. We estimate
(i) a Markov switching panel with shrinkage only for the series of the coincident group
(PP), (ii) a Markov switching bivariate model with a dynamic structure (BDS) for GDP
and order books total, and (iii) a Markov switching univariate model (UNI) for GDP. The
business cycle phases are depicted in figure 6 in the last three panels. These other three
models identify chronologies which are consistent with those identified by the PDS model.
The periods of below-average growth identified by PP and BDS, with the exception of
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the downturn in 1991/1992 for PP, are longer than those identified by PDS. Also PP and
BDS identify additional turning points in 2003/2004. The univariate specification only
identifies two periods of below-average growth which relate to the recession in 1992/93
and the latest slowdown in 2000/01.

In the last three lines of table 5 we see that the concordance index between the state
indicators estimated by the BDS and UNI models and the one estimated by PDS is
higher than between the former two and the one identified with ECRI. The concordance
between BDS and PDS is highest with 0.80. Relative to ECRI, all models identify the
peaks and troughs later, except for the troughs identified by PP. Worth mentioning is
that, except for PP, the dates of troughs are more consistent across the various model
specifications than the peaks.

4.5 Probabilistic forecasts of turning points

At the end of 2006, according to PDS, both groups are in the above-average growth
state with probability 1. Thus, we are in state 4 of I∗T . Given the mean estimate of the
transition probability matrix in (18), the mean conditional forecast E(I∗T+h|T |Y T , I∗T , ξ∗)
two quarters ahead can be estimated as:

E(I∗T+2|Y T , I∗T , ξ∗) =
(
E(ξ∗′)

)2 · π(I∗T |Y T ), (19)

which would yield a 71% probability of staying in the above-average growth state over
the next half year and a 12% probability of reaching a below-average growth state in both
groups within the same time span.

Another formulation would be that the expected duration of the above-average growth
state at the end of 2006 is 1/(1− ξ̂∗44) = 3.45 periods, i.e. between 10 and 11 months. If
the leading group of series would switch into the below-average growth state, which can
happen with a 16% probability within the next quarter, we expect the coincident group
of series to follow after further 1/(1− ξ̂∗33) = 1.32 periods, hence after further 4 months.

5 Effectiveness of informative prior classification

In this section we assess the effectiveness of informative prior classification by comparing
the results to those obtained with a data vintage ending in 2003 in two ways. We first show
that turning points are consistently estimated across data vintages when we impose the
three pieces of information on the model, namely the fixed dynamic structure ρ∗ = (1, 2, 0);
the fixed classification of GDP and its main components into the coincident group of
series, and the fixed classification of expectations about orders, recent production, order
books and the confidence survey in the industrial sector into the group of leading series;
informative prior group probability depending on the correlation with GDP and with
orders in the industrial sector.

In a second step we remove all prior information and estimate the model for both data
vintages. We show that the results obtained for the turning point chronologies, the
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dynamic structure and the classification of series are not consistent across the vintages
without prior information.

Finally, we assess which element forming the informative prior is relevant to obtain con-
sistent estimates across data vintages by comparing results for estimations with different
levels of prior information.

5.1 Estimation for data vintage ending in 2003

The results obtained with the data vintage ending in 2003 (vintage 2003 henceforth) are
broadly consistent with those obtained with the data vintage ending in 2006 (vintage 2006
henceforth). Table 2 panel (b) shows that there are fewer series falling into the leading
group. In particular, all HICP components, most of the wholesale price series and the
financial variables, with the exception of the ATX and the DAX, are not classified into
the leading group. Most trade data remain consistently in the coincident group across
vintages while the classification of price and labor market series changes across vintages.

Table 3, panel (b) contains the estimates of the parameters for the prior group proba-
bility. The effect of the correlation with GDP is significant for the prior probability for
classification into the coincident group while it is insignificant for the prior classification
probability into the leading group. The effect of the correlation with order books in the
industrial sector is marginally significant and significant for the prior classification into
the coincident and the leading group, respectively.

We essentially obtained the same results for the vintage 2006, although the effect of the
correlation with order books in the industrial sector on the prior classification probability
into the coincident group becomes significant, but remains smaller than the estimated
effect on the prior classification probability into the leading group.

The posterior state probabilities of being in below-average growth are depicted in figure
7. We see that the downturn period at the beginning of the 1990s is estimated to begin
a year later than estimated from the vintage 2006. Otherwise, when we compare the
turning point estimates across the vintages (see table 4, the lines labelled PDS 88-06 and
PDS 88-03) the chronologies are quite consistent.

5.2 Estimation without prior information

To illustrate the usefulness of a specification with informative prior classification, we
estimate the model without any prior information on classification. These results confirm
that for Austrian data prior information is necessary to obtain robust results across data
vintages. Removing prior classification information means that no series are classified
a priori into one of the groups, the dynamical structure is not fixed a priori but also
estimated from the data, and finally, that we use the non-informative prior distribution
on group probabilities (see specification (5)).

Table 6 briefly characterizes the classification and the dynamical structure that is esti-
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mated from the data. We see that the classification of GDP and its components across
data vintages is not robust. For the data vintage 2006, GDP and the components are
classified into the leading group of series, while the leading indicators fall into the group
interpreted as coincident. For the data vintage 2003, GDP, consumption and exports fall
together with the leading indicators into the coincident group. Government consumption
together with some price series and financial variables are classified as the leading group.
It is obvious that these estimated dynamic structures cannot be interpreted in a business
cycle context and that turning points will not be robust across data vintages. The chang-
ing pattern of the estimated dynamic structure also reflects the fact that the frequency of
turning points is quite high for the relatively short sample period. Moreover, given that
the coincident group usually closely follows the leading group of series (see table 4), it
is difficult to estimate a robust dynamic structure across data vintages without setting
prior classification information.

5.3 Robustness across vintages with different levels of prior in-
formation

Table 9 complements the differences between the estimations obtained with different levels
of prior information on classification reported so far. In the first two lines we find the
setting with informative priors and non-informative priors in which ρ∗ is additionally
estimated, respectively. We report three concordance indices. The concordance across
the vintages of the estimates for the state indicator of the coincident group of series, and
the concordance of series classification into the coincident and the leading group of series.
While the estimates of the state indicator do not differ that much, the low concordance
indices of group classification reflect the results presented so far for the non-informative
prior specification.

The next two lines report the results obtained for different levels of a priori information.
First, the logit prior on classification is substituted for the non-informative prior (5) and
then, pre-classification of GDP and its components and of some leading indicators into,
respectively, the coincident and leading group is dropped. Pre-classification of series is
important to obtain consistent estimates of the state indicators across vintages, given
that the concordance decreases from 0.81 to 0.63 when pre-classification is dropped. The
informative logit prior turns out to be important for consistent estimation of the classi-
fication of series across vintages. Dropping the logit prior leads to a deterioration of the
concordance index from 0.85 and 0.86 to 0.48 and 0.55 for the coincident and the leading
group, respectively. Finally, note that the concordance for the classification of the leading
group is higher under each prior information level than the one for the classification of
the coincident group.

The last two lines report the results obtained when only GDP and order books in the
industrial sector are pre-classified into group 1 and 2 (partial pre-classification). The
conclusions drawn so far are corroborated. Pre-classification of series is important to
obtain consistent estimates of the state indicators across vintages. We observe that the
concordance decreases from 0.8 with full pre-classification to around 0.7 with partial pre-
classification. The logit specification for the prior classification probability is important
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for the grouping of the series, in particular for the consistent classification of the coincident
group. As in the setting with full pre-classification, the concordance for the coincident
group decreases when the logit prior is dropped.

6 Forecasting turning points

We evaluate the ability of the model to forecast turning points from an in-sample and an
out-of-sample perspective. Given that the usefulness of a model lies in its timeliness to
recognize at the end of the sample a turning point, we focus on one-step-ahead forecasts
of the state indicator by using equation (15). The forecast period in both the in-sample
and out-of-sample exercises runs from 2001 to the end of 2006. We produce forecasts
based on all models estimated in section 4.4 to date turning points, that is for the Markov
switching PDS, PP and UNI models. The state indicator forecasts are evaluated against
the own model-based state indicator and against the state indicators identified according
to ECRI dates and according to PDS by assessing how many states out of the 24 forecasts
and how many turning points are correctly predicted.

6.1 In-sample evaluation

For the in-sample evaluation, we estimate the parameters and the model-based state
indicators using all information available up to the end of 2006. Then, for each quarter t
from the first quarter of 2001 to the fourth quarter of 2006, we forecast the one-step-ahead
state indicator based on the posterior state distribution π(I∗t−1|Y T ).

Table 7 presents the forecast evaluation. Overall, the in-sample performance is best for
PDS and UNI, for which the states are correctly forecasted in 24 and 23 out of 24 periods,
respectively. BDS follows with 22 and PP ranks last with 20 out of 24 forecasted states.
PDS identifies two turning points over the forecast period, both of which are correctly
forecasted. PP and BDS have a similar performance, both identify two out of two and
three turning points. BDS even identifies the trough in the third quarter of 2005 a quarter
earlier.

When compared against ECRI identified states, we observe that all models have a low
overall performance. In only half or even less of the quarters, the forecasts coincide with
ECRI states, the exception being PP with 17 out of 24 states coinciding with ECRI
states. Likewise, all models miss all turning points identified by ECRI. Of course, this is
due to the low concordance between the model-based estimated state-indicators and the
ECRI states. This is nevertheless worth mentioning, given that he concordance between
the PDS and the ECRI state indicators is 0.7. Against the state identified by PDS, the
performance is best for BDS with 20 out of 24 quarters being forecasted correctly. The
overall forecast is still considerable for UNI with 17 equally identified states while PP
forecasted states only coincide in 10 out of 24 periods. None of both models can forecast
turning points identified by PDS.
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6.2 Out-of-sample evaluation

The out-of-sample forecast evaluation is based on rolling estimations respectively extend-
ing the sample window up to the last quarter before the one to be forecasted. We thus
forecast the one-step-ahead state indicator I∗t based on the posterior state distribution
π(I∗t−1|Y t−1). The evaluation is then performed against the model-based state indicator
estimated for the whole sample and against ECRI and PDS states, respectively.

The evaluation in table 8 conveys the same picture as for the in-sample forecast evaluation.
The overall performance is best for PDS and BDS. PDS forecasts one out of the two
estimated turning points correctly. The peak at the end of 2000 is missed by one quarter.
BDS forecasts two out of three turning points correctly. The performance against ECRI is
low, both in terms of overall performance and forecasting turning points. The overall out-
of-sample performance against the PDS state indicator is best for BDS, which forecasts 18
out of 24 states correctly. None of the three models forecasts the trough in 2002 identified
by PDS. This is due to the fact that all three models identify the downturn to last until
2003 rather than being short-lived as estimated by PDS.

It is obvious that the number of turning points identified by PDS available for evaluating
the models’ forecasting performance is very small. However, these are restricted by degrees
of freedom considerations. The forecast performance may be reassessed in the future as
time series become longer.

7 Conclusion

In the present paper the information contained in a large panel of quarterly economic
and financial variables is used to estimate business cycle turning points for Austria. The
econometric model is based on the idea of model-based clustering of multiple time series,
which suggests to group those series together which display similar time series and busi-
ness cycle dynamics, whereby the appropriate classification of series is also part of the
estimation method. Within a group, we allow for parameter heterogeneity by shrinking
the series-specific parameters towards a group-specific mean rather than pooling all series
within a group and assuming the same parameters for all of them. To account for the
fact that some series are leading the business cycle, two groups are explicitly linked by
a dynamic structure by defining one of them as leading the other one. To obtain ro-
bust results across data vintages, it is useful to design an informative prior for the group
probability. In particular, GDP and its components except government consumption are
classified a priori into the group of coincident series, while production in recent months,
the expectations about orders and order books are pre-classified into the group of leading
series. Series that are negatively correlated with either GDP or with order books in the
industrial sector are multiplied by -1. Finally, for all series not pre-classified into a group,
the prior group probability depends on the correlation with GDP and with order books
in the industrial sector.

The results are broadly consistent with expectations. GDP and its components, some
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trade series, the wholesale price index (excluding seasonal goods) and agreed minimum
wages fall into the coincident group. The group of leading series consists of Austrian
confidence indicators and survey data in the industrial and the construction sectors, labor
market data like unemployment rates, job vacancies and the number of employees, and
some components of the HICP and the wholesale price index. Given that Germany is
a major trading partner of Austria, it is intuitive that German survey indicators (IFO
business cycle indicator) also fall into the leading group. Finally, it is interesting that
some financial market series like M1, the Austrian and the German stock market indices,
interest rates and direct credits to government fall into the leading group.

Based on the posterior state probabilities we date growth cycle turning points which
closely correspond to those identified by the Economic Cycle Research Institute. Based
on the posterior estimate of the transition probabilities and of the state indicator we can
make a probabilistic forecast of reaching a turning point in the future. The ability of
the model to predict turning points is evaluated in an in-sample and an out-of-sample
forecast exercise. Out-of-sample, the model is able to predict one out of two turning points,
whereby one is missed by one quarter. The performance is compared to other models.
The Markov switching bivariate model with dynamic structure for GDP and order books
in the industrial sector and the Markov switching panel for the group of coincident series
predicts 2 out of 3 and 1 out of tow turning points, respectively. The univariate Markov
switching model for GDP does not correctly predict out-of-sample turning points.

One feature not addressed in the paper and left for future research is to capture the
changing pattern of the business cycle. The results suggest that recently the periods
of below-average growth have become shorter. This may be modelled in various ways.
One possibility would be to allow for time-varying transition probabilities (Diebold, Lee,
and Weinbach, 1994, Filardo and Gordon, 1998). Another issue left for future research
is the evaluation of the appropriate sample length to produce the forecasts of turning
points (Pesaran and Timmermann, 2007). Model estimates of different sample length can
additionally take into account the changing composition of the groups of series. Averaging
over forecasts produced with these models would take into account changing business cycle
features and group composition uncertainty.
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A The prior distribution of (λN , θ, ρ∗)

To specify the prior on θ in a compact way, write model (1) as:

yit = XSi
it βi + εit, εit ∼ N(0, σ2/λi) (20)

βi ∼ N
(
βSi , QSi

)
, if Si = k, k = 1, . . . , K

where βi = (µi
1, µ

i
2, φ

i
1, . . . , φ

i
p)
′ and XSi

it =
(
D

I(Si)
1t , D

I(Si)
2t , yi,t−1, . . . , yi,t−p

)
with D

I(Si)
jt =

1 if ISi,t = j and D
I(Si)
jt = 0 otherwise, j = 1, 2.

The prior distribution of the group-specific parameter vectors βk, k = 1, . . . , K consists
of two parts:

• (
µk

1, µ
k
2

) ∼ N(m0,M0) · I(µk
1≤0,µk

2>0), , where I(·) is the indicator function.

• (
φk

1, . . . , φ
k
p

) ∼ N(0, κIp) · I(Pp
j=1 φk

j <1), where Ip is the identity matrix of dimension
p,

which leads to the prior

βk ∼ N

((
m0

0

)
,

[
M0 0
0 κIp

])
· I(µk

1≤0,µk
2>0,

Pp
j=1 φk

j <1).

In general, βk ∼ TN(b0, B0), TN meaning truncated normal.

Group-specific parameter heterogeneity Qk a priori follows an inverse Wishart distribution

Qk ∼ W−1 (c0, C0)

The variance of the error terms and the series-specific weights, σ2 and λi, a priori follow
an inverse Gamma and a Gamma distribution, respectively:

σ2 ∼ IG (g0, G0) λi ∼ G
(ν

2
,
ν

2

)
, i = 1, . . . , N

The parameters governing the prior group probabilities, γ = (γ, γz) are assumed to have
a normal prior N(0, τIg), where g is the dimension of the vector γ.

The transition distribution ξ∗ of the encompassing state indicator is specified by indepen-
dent Dirichlet distributions

ξ∗ ∼ D(e∗11,0, e
∗
12,0)D(e∗22,0, e

∗
24,0)D(e∗31,0, e

∗
33,0)D(e∗43,0, e

∗
44,0).

The transition distribution of the independent groups is also Dirichlet, ξρ∗(k)=0 ∼ Π2
j=1D(ej1,0, ej2,0),

k = 1, . . . , K.

The hyperparameters we choose are: m0 = (−0.25, 0.25) and M0 = 2.22 · I2; κ = 0.25;
c0 = 12 and C0 = 0.1 · Ip+2; g0 = 1, G0 = 1 and ν = 8; τ = 20; (e∗11,0, e

∗
12,0) =
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(5, 2), (e∗22,0, e
∗
24,0) = (3, 7), (e∗31,0, e

∗
33,0) = (7, 3), (e∗43,0, e

∗
44,0) = (3, 7), (e11,0, e12,0) = (2, 1),

(e21,0, e22,0) = (1, 2). The hyperparameters governing the prior transition distribution of
the encompassing state yield a mean persistence of the coincident group to remain in the
below-average and in the above-average state of 0.59 and 0.65, respectively. The lead out
of a trough and into the below-average growth state of the leading group is 1.4 periods,
i.e. about four and a half months.

If ρ∗ is estimated, the prior distribution is discrete, and each permutation ρl, l = 1, . . . , L,
out of the L = K(K − 1) possible ones from {1, 2, 0K−2} is given a prior probability of
ηρ = 1/(K(K − 1)).

B Posterior distributions

In the following, we assume that the dynamic structure ρ∗ is known. In case ρ∗ is not
known, the sampler involves an additional step. This extension is described in the next
appendix.

Some posterior distributions will be derived using the marginal model in which the series-
specific random effects are integrated out (see also equation (11)):

yit = XSi
it βSi + ε∗it, ε∗it ∼ N

(
0, νSi

it

)
(21)

νSi
it = XSi

it QSiXSi
it

′
+ σ2/λi

where XSi
it is defined as in (21). The difference to the model with group-specific param-

eter heterogeneity discussed in Frühwirth-Schnatter (2006, pp. 260-269) appears in the
predictor matrix XSi

it , which is group-specific due to the group-specific state indicator
determining the time-varying intercept term µi

ISi,t
.

We estimate model (20) by sampling from the following posterior distributions:
(i) π(SN |Y T , IT , ρ∗, λN , θ),
(ii) π(IT |Y T , SN , ρ∗, λN , θ),
(iii) π(λN |Y T , SN , IT , θ),
(iv) π(θ|Y T , SN , IT , λN).

(i) Simulating SN out of π(SN |Y T , IT , ρ∗, λN , θ) using the marginal model (21). The group
indicator is simulated for each series independently, given that the posterior distribution
can be factorized:

π(SN |Y T , IT , ρ∗, λN , θ) ∝
N∏

i=1

π(Si|Y T , IT , ρ∗, λN , θ).

For each series, Si is sampled from the discrete distribution

P (Si = k| ·) ∝
T∏

t=p+1

f(yit|Xk
it, β

k, Qk, σ2, λi)P (Si = k|γk, γzk), (22)

where the observation density f(yit| ·k) is given in (10).
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(ii) Simulating IT out of π(IT |Y T , SN , ρ∗, λN , θ). For a given dynamic structure ρ∗, the
posterior distribution of IT can be factorized as

π(IT |Y T , SN , λN , ρ∗, θ) = π(I∗T |Y T , SN , λN , ρ∗, θ)
∏

ρ∗(k)=0

π(IT
k |Y T , SN , λN , θ),

k = 1, . . . , K, and where I∗T and IT
k are the four-state encompassing and the two-state

independent state-indicators, respectively. The terms can typically be factorized as

π(IT |Y T , SN , λN , ρ∗, θ) = π(IT |Y T , SN , λN , ρ∗, θ)×
T−1∏
t=0

π(It|Y t, It+1, S
N , λN , ρ∗, θ).

The encompassing state indicator I∗T and each of the K− 2 remaining independent state
indicators IT

k can thus be simulated independently of each other. For all indicators, the
sampling densities can be derived from the multi-move sampler described in Chib (1996).
Note that the typical element π(It|Y t, It+1, S

N , ρ∗, θ), is proportional to

π(It|Y t, It+1, S
N , λN , ρ∗, θ) ∝ π(It|Y t, SN , λN , ρ∗, θ) · ξIt,It+1 . (23)

The first factor π(It|Y t, SN , λN , ρ∗, θ) corresponds to the filter density

π(It|Y t, SN , λN , ρ∗, θ) ∝
∏

Si= ·
f

(
yit|XSi

it βSi , λi, σ
2, QSi , ISi,t

) · π (
ISi,t|t−1

)
(24)

where the product is build over Si = k if ρ∗(k) = 0, or jointly for the coincident and the
leading group of series, Si = {k, k̃}, which are indicated by ρ∗(k) = 1 and ρ∗(k̃) = 2, re-
spectively, k = 1, . . . , K. Conditional on state j, the observation density f (yit| ·, ISi,t = j)
is normal

f (yit| ·, ISi,t = j) =
1√

2πν
Si(j)
it

exp

{
− 1

2ν
Si(j)
it

(
yit −X

Si(j)
it βSi

)2
}

where X
Si(j)
it =

(
D

I(Si)
1t , D

I(Si)
2t , yi,t−1, . . . , yi,t−p

)
, with D

I(Si)
jt = 1 if ISi,t = j and 0 other-

wise, j = 1, 2. In analogy to (21), ν
Si(j)
it = X

Si(j)
it QSiX

Si(j)
it

′
+ σ2/λi.

The term π
(
ISi,t|t−1

)
is obtained by extrapolation

π
(
ISi,t|t−1

)
=

∑
It−1

π(It−1|Y t−1, SN , λN , ρ∗, θ) · ξSi
It−1,It

. (25)

Given the filter densities π
(
It|Y t, SN , λN , ρ∗, θ

)
, t = 1, . . . , T , beginning in T , we sample

IT from π(IT |Y T , SN , λN , ρ∗, θ). Then, the recursion in (23) is used to simulate It for
t = T − 1, . . . , 0.

(iii) The weights λN are simulated from π(λN |Y T , SN , IT , θ) using the model (20). Details
can be found in Frühwirth-Schnatter and Kaufmann (2008).
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(iv) Given SN and IT , the vector θ is blocked appropriately to simulate the model pa-
rameters out of their posterior conditional distributions.

Simulating the group-specific parameter vectors from π
(
β1, . . . , βK |Y T , SN , IT , λN , Q, σ2

)
.

We use the marginal model (21) and write it

yit = Xitβ + ε∗it ε∗it ∼ N
(
0, νSi

it

)

with β = vec
(
β1, . . . , βK

)
and, this time, XSi

it =
(
D

G(1)
i X1

it, . . . , D
G(K)
i XK

it

)
, where

D
G(k)
i = 1 if Si = k and 0 otherwise. Xk

it and νSi
it are defined as in (21). The poste-

rior distribution can be derived as

π (β| ·) ∼ N (b, B) · I(µk
1≤0,µk

2>0,
Pp

j=1 φk
j <1,∀k)

with

B =

(∑
i

∑
t

Xit
′Xit/ν

Si
it + B−1

0

)−1

b = B

(∑
i

∑
t

Xit
′yit/ν

Si
it + B−1

0 b0

)

and appropriately inflated vector and matrix b0 and B0, respectively.

Simulating group-specific parameter heterogeneity Q. To derive the posterior distribution
we first have to simulate the series-specific random effects βi − βSi . Re-write model (20)
as

yit = XSi
it

(
βSi +

(
βi − βSi

))
+ εit εit ∼ N

(
0, σ2/λi

)
.

Given the normal prior for the random effects, βi − βSi ∼ N
(
0, QSi

)
, the posterior is

normal N (bi, Bi) with

Bi =

(
λi

σ2

∑
t

XSi
it

′
XSi

it + QSi
−1

)−1

bi = B−1
i

(
λi

σ2

∑
t

XSi
it

′ (
yit −XSi

it βSi
)
)

Alternatively, the filter form proposed in Frühwirth-Schnatter (2006, p. 266) can be
adjusted appropriately.

The posterior distributions of group-specific parameter heterogeneity Qk are then indepen-
dent of each other. We can sample from π

(
Qk|Y T , SN , IT , λN , β, βi, σ2

)
which is inverse

Wishart W−1
(
ck, Ck

)
with

ck = c0 + Nk/2 Nk = # {Si = k}
Ck = C0 + 1/2

∑

Si=k

(
βi − βk

)′ (
βi − βk

)

Simulating the transition probabilities ξ∗, ξk, the variance σ2 and the parameters governing
the prior group probability, (γ, γz), is standard (including a Metropolis-Hastings step for
the latter) and is discussed in Frühwirth-Schnatter and Kaufmann (2008).
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C Sampling the dynamic structure ρ∗

If the dynamic structure is not known, the sampler involves an additional step in (ii):
(i) π(SN |Y T , IT , λN , θ),
(ii.a) π(ρ∗|Y T , SN , λN , θ),
(ii.b) π(IT |Y T , SN , λN , ρ∗, θ),

(iii) π(λN |Y T , SN , IT , θ),
(iv) π(θ|Y T , SN , IT , λN , ).

(ii.a) Simulating ρ∗ out of π(ρ∗|Y T , SN , λN , θ). The posterior of the dynamic structure is
discrete:

π(ρ∗ = ρl|Y T , SN , λN , θ) ∝ L(Y T |SN , λN , θ, ρl) · ηρ,

for l = 1, . . . , K(K − 1). The marginal likelihood associated with the dynamic structure
ρl, L(Y T |SN , λN , θ, ρl) is given by:

L(Y T |SN , λN , θ, ρl) = Lρl(k) 6=0(Y
T |SN , λN , θ) · Lρl(k)=0(Y

T |SN , λN , θ), (26)

whereby the first factor is the likelihood part of the coincident and the leading group of
series marginalized over the state indicator, and the second factor is the part contributed
by the remaining groups of series. The second factor can be written

Lρl(k)=0(Y
T |SN , λN , θ) =

T∏
t=p+1

Lρl(k)=0(Yt|Y t−1, SN , λN , θ)

=
T∏

t=p+1

∏

ρl(k)=0

∏

Si=k

f(yit|yi,t−1, Si, λi, θ), k = 1, . . . , K,

where the term f(yit|yi,t−1, Si, θ) turns out to be the normalizing constant of the filter
distribution :

∏

ρl(k)=0

∏

Si=k

f(yit|yi,t−1, Si, λi, θ) =

∏

ρl(k)=0

∏

Si=k

2∑
j=1

f(yit|yt−1
i , Si, λi, Ikt = j, θ) · π(Ikt = j|Y t−1, SN , λN , θ),

k = 1, . . . , K.

The first factor of the marginal likelihood in (26) can analogously be derived using the
filter distribution for the encompassing state I∗T driving the coincident group k, ρl(k) = 1,
and the leading group k̃, ρl(k̃) = 2, respectively:

Lρl(k)6=0(Y
T |SN , λN , θ) =

T∏
t=p+1

∏
ρl(k) 6=0

Si=k

f(yit|yi,t−1, Si, λi, θ), k = 1, . . . , K,

=
T∏

t=1

∏
ρl(k) 6=0

Si=k

4∑
j=1

f(yit|yt−1
i , Si, λi, I

∗
t = j, θ) ·

π(I∗t = j|Y t−1, SN , λN , θ), k = 1, . . . , K.
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(ii.b) Simulating IT out of π(IT |Y T , SN , λN , ρ∗, θ). Given the dynamic structure param-
eter ρ∗ and the group indicator SN , the group-specific state indicators can be simulated
as described in appendix B.
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Table 2: Series classification, informative prior

(a) data vintage 1988-2006
coincident group leading group

YER PCR ITR GCR MTR XTR
TLIARG86 TLIANG86 GHPIOS
EXPG EXP7 EXP8 IMPG IMP6
IMP7 EXP-US EXP-EU EXP-
DE IMP-US IMP-EU IMP-DE

QTAUF QTEXPA QTLAG
QTPR QTPRO QTBAUF
QTBPR QTBBGL QTBAGL
KTPROL KTAUF KTAUSL
KTLAG KTPRON KTVPN
BAUVPN EECOS EINDSE
EBAUSE EHANSE EKONSE
IFOERW IFOKL IFOGL PMI
HICP-PF HICP-E HICP-S
HICP-XF GHPIG GHPIGK GH-
PIVBG GHPIINT OEL EXP6
ALQNSA ALOSM ALOSW
OFST STANDR INDPROD
ATX M1 DAX STI SEKMRE
DCR-G

(b) data vintage 1988-2003
coincident group leading group

YER PCR ITR MTR XTR
TOT EEN HICP-E GHPIG GH-
PIOS GHPIVBG GHPIKONG
EXP7 IMPG IMP6 IMP7 EXP-
EU EXP-DE IMP-US IMP-EU
IMP-DE INDPROD SEKMRE

QTAUF QTEXPA QTLAG
QTPR QTPRO QTBAUF
QTBPR QTBBGL QTBAGL
KTPROL KTAUF KTAUSL
KTLAG KTPRON KTVPN
BAUVPN EECOS EINDSE
EBAUSE EHANSE EKONSE
IFOERW IFOKL IFOGL PMI
GHPIGK GHPIINTG OEL
EXPG EXP6 EXP-US ALQNSA
ALOSM OFST STANDR ATX
DAX
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Table 3: Posterior distribution of the parameters influencing the group probabilities,
π(γ, γz|ZN , Y T ), γz includes first the effect of GDP correlation and second the effect of
the correlation with orders in the industrial sector. Mean estimate and standard deviation.

(a) data vintage 1988-2006

coincident group leading group

E(γ, γz) (-2.66, 5.86, 7.56) (-1.95, 1.20, 11.59)

SD(γ, γz) (0.74, 2.23, 2.10) (0.67, 1.92, 2.22)

(b) data vintage 1988-2003

coincident group leading group

E(γ, γz) (-2.01, 7.47, 4.44) (-3.44, 1.68, 14.09)

SD(γ, γz) (0.60, 2.12, 2.00) (0.92, 2.34, 2.69)

Table 4: Growth cycle peak (P) and trough (T) dates (YY:Q, M/YY) identified by various
models and by the Economic Cycle Research Institute (ECRI).

P T P T P T P T P T P T P T
PDS 88-06 90:2 93:3 95:1 96:2 98:3 99:1 00:4 02:1
PDS 88-03 91:2 93:4 95:1 96:2 98:1 99:1 00:4 03:2
ECRIb)

quarterly 90:1 93:1 94:4 96:1 98:2 99:1 99:3 01:4 03:1 03:4 04:3
monthly 2/90 3/93 11/94 3/96 5/98 2/99 7/99 12/01 1/03 12/03 8/04

PP 91:2 92:3 94:4 95:3 97:3 98:4 00:2 03:2 04:2
BDS 90:2 93:4 95:1 96:3 98:1 99:1 00:3 03:3 04:4 05:3
UNI 92:1 93:4 00:2 03:3
b)The ECRI dates growth cycles on a monthly basis. The quarterly dates are derived from
the monthly ones (www.businesscycle.com).
PDS: Markov switching panel with dynamic structure; PP: Markov switching panel esti-
mation (with shrinkage) of coincident group; BDS: Bivariate Markov switching model for
GDP and Order books total with dynamic structure; UNI: Univariate Markov switching
model for GDP.

34



Table 5: Properties of turning points 1989:3-2005:4. Comparison of various models relative
to ECRI turning points and to turning points identified by the Markov switching panel
with dynamic structure (PDS).

Model Relative to ECRI Relative to PDS
concordance Peaks Troughs concordance Peaks Troughs

index
PDS 0.71 +7/4∗ +4/4 - - -
PP 0.59 +4/5 -6/4 0.55 -3/4 -8/3
BDS 0.73 +6/5 +4/4 0.80 -3/4 +2/3
UNI 0.52 +11/2 +2/2 0.65 +5/2 +1/1
∗ Net lag (+) or lead (-) of all identified peaks or troughs relative to the ECRI
or PDS cycle.
PP: Markov switching panel estimation (with shrinkage) of coincident group;
BDS: Bivariate Markov switching model for GDP and Order books total with
dynamic structure; UNI: Univariate Markov switching model for GDP.

Table 6: Series classification, non-informative prior

(a) data vintage 1988-2006

E(ρ∗(1)) = 1.93 E(ρ∗(2)) = 0.93 E(ρ∗(3)) = 0.14

STD(ρ∗(1)) = 0.33 STD(ρ∗(2)) = 0.36 STD(ρ∗(3)) = 0.37

leading group coincident group independent group

GDP and components leading series other series

trade with US and Germany financial variables

(b) data vintage 1988-2003

E(ρ∗(1)) = 1.49 E(ρ∗(2)) = 0.32 E(ρ∗(3)) = 1.18

STD(ρ∗(1)) = 0.50 STD(ρ∗(2)) = 0.63 STD(ρ∗(3)) = 0.79

coincident group independent group leading group

government cons., GDP and components leading indicators

price series trade series exports

financial variables stock prices
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Table 7: In-sample one-step ahead forecasts, 2001:1-2006:4. Model-based evaluation and
relative to the state indicators identified by ECRI and by the Markov switching panel
with dynamic structure (PDS).

Model Model-based estimate Relative to ECRI Relative to PDS
overall turning points overall turning points overall turning points

PDS 24/24 2/2 11/24 0/4 - -
PP 20/24 2/2 17/24 0/4 10/24 0/1
BDS 22/24 2/3 9/24 0/4 20/24 0/1

identified T
in 05:02

UNI 23/24 0/1 10/24 0/4 17/24 0/1

PP: Markov switching panel estimation (with shrinkage) of coincident
group; BDS: Bivariate Markov switching model for GDP and Order books
total with dynamic structure; UNI: Univariate Markov switching model
for GDP.

Table 8: Out-of-sample one-step ahead forecasts, 2001:1-2006:4. Model-based evaluation
and relative to the state indicators identified by ECRI and by the Markov switching panel
with dynamic structure (PDS).

Model Model-based estimate Relative to ECRI Relative to PDS
overall turning points overall turning points overall turning points

PDS 20/24 1/2 9/24 0/4
identified P
in 01:1

PP 19/24 1/2 16/24 0/2 11/24 0/1
BDS 20/24 2/3 13/24 1/4 18/24 0/1

missed T in
03:3

identified T
in 03:4

UNI 19/24 0/1 10/24 0/4 13/24 0/1

PP: Markov switching panel estimation (with shrinkage) of coincident
group; BDS: Bivariate Markov switching model for GDP and Order books
total with dynamic structure; UNI: Univariate Markov switching model
for GDP.
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Table 9: Evaluation of prior information

Concordance index between vintages

Identification of

Prior information setting state indicator coincident group leading group

ρ∗ fixed, logit prior

full pre-classificationa)
0.80 0.85 0.86

ρ∗ estimated

no pre-classification
0.86 0.30 0.49

ρ∗ fixed

full pre-classification
0.81 0.48 0.55

ρ∗ fixed

no pre-classification
0.63 0.27 0.89

ρ∗ fixed, logit prior

partial pre-classificationb)
0.68 0.57 0.35

ρ∗ fixed

partial pre-classification
0.71 0.45 0.70

a) GDP and its components, except government consumption, are in the co-
incident group, production in recent months, expectations about orders, order
books and the confidence survey in the industrial sector are in the leading
group
b) GDP is in the coincident group, order books in the industrial sector is in
the leading group
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E Figures

Figure 1: Data properties
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Figure 2: Series-specific heterogeneity. Group 1 (solid line), group 2 (dash-dotted).
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Figure 3: π(γ, γz|Y T ), group 1 (solid line), group 2 (dash-dotted).

−5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

corr with GDP
0 10 20

0

0.05

0.1

0.15

0.2

corr with KTAUF

Figure 4: Prior and posterior group probabilities, P (Si = j|Zi) and P (Si = j|Zi, Y
T )
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Figure 5: Posterior probabilities, P (Ikt = 1|Y T ), of the coincident (Si = 1) and the
leading group (Si = 2), 1988-2006, informative prior classification.
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Figure 6: Business cycle phases identified by various models. Ikt = 1 identifies periods of
below-average growth, 1988-2006.

1990 1992 1994 1996 1998 2000 2002 2004 2006
0

0.5

1

E
C

R
I

1990 1992 1994 1996 1998 2000 2002 2004 2006
0

0.5

1

P
D

S

1990 1992 1994 1996 1998 2000 2002 2004 2006
0

0.5

1

P
P

1990 1992 1994 1996 1998 2000 2002 2004 2006
0

0.5

1

B
D

S

1990 1992 1994 1996 1998 2000 2002 2004 2006
0

0.5

1

U
N

I

PDS: Markov switching panel with dynamic structure; PP: Markov switching panel esti-
mation (with shrinkage) of coincident group; BDS: Bivariate Markov switching model for
GDP and Order books total with dynamic structure; UNI: Univariate Markov switching
model for GDP.
Turning points are identified using the dates of ECRI and applying the rule: P (Ik,t−1 =
1, Ik,t = 1|Y T ) < 0.5 and P (Ik,t+1 = 1, Ik,t+2 = 1|Y T ) > 0.5 for a peak and vice versa for
a trough.
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Figure 7: Posterior probabilities, P (Ikt = 1|Y T ), of the coincident (Si = 1) and the
leading group (Si = 2), 1988-2003, informative prior classification.
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