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Editorial 
 
 
 
 
 
In this paper, a generalized dynamic factor model is utilized to produce short-

term forecasts of real Austrian GDP. The model follows the frequency domain 

approach proposed by Forni, Hallin, Lippi and Reichlin (2000, 2003). The 

forecasting performance of the model with a large data set of 143 variables has 

been assessed relative to simple univariate time-series forecasts. The results 

show that the factor model can barely outperform the much simpler benchmark 

model, given the usual levels of significance. Thus the authors followed a line of 

research proposed by Boivin and Ng (2003) and Watson (2000), who suggested 

that the use of a small data set may increase the forecasting performance.  

The main finding from their extensive out-of-sample forecasting experiment is 

that the best forecasting performance can be achieved with small data sets with a 

handful of variables only. These models perform significantly better than the 

large model. This result seems to contradict the basic idea of dynamic factor 

models, which have been constructed to exploit the potentially useful 

information of a large data set. 
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Forecasting Austrian GDP using the generalized dynamic

factor model

Martin Schneider, Martin Spitzer∗

September 17, 2004

Abstract

In this paper, a generalized dynamic factor model is utilized to produce short-term
forecasts of real Austrian GDP. The model follows the frequency domain approach pro-
posed by Forni, Hallin, Lippi and Reichlin (2000, 2003). The forecasting performance
of the model with a large data set of 143 variables has been assessed relative to simple
univariate time-series forecasts. The results show that the factor model can barely
outperform the much simpler benchmark model, given the usuall levels of significance.
Thus we followed a line of research proposed by Boivin and Ng (2003) and Watson
(2000), who suggested that the use of a small data set may increase the forecasting
performance. The main finding from our extensive out-of-sample forecasting experi-
ment that we have conducted is that the best forecasting performance can be achieved
with small data sets with a handful of variables only. These models perform signifi-
cantly better than the large model. This result seems to contradict the basic idea of
dynamic factor models, which have been constructed to exploit the potentially useful
information of a large data set.

∗The authors are economists at the Oesterreichische National Bank, Economic Analysis Division. The
views expressed in this paper are those of the authors and not necessarily of the institution with which they
are affiliated.
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1 Introduction

The need for producing accurate forecasts of key macroeconomic variables has been a strong
driving force for empirical research. Much effort has been put in the development of various
kinds of forecasting models utilizing the availability of monthly or quarterly data. Besides
informal methods, which are widely used in most forecasting institutions, short term eco-
nomic forecasts are often based on the results of small-scale time-series models. The family
of time series models ranges from univariate versions as proposed by Kalman (1960) or Box
and Jenkins (1976) to multivariate VARs and cointegrated systems.

Parallel to the theoretical progress in time series modelling researchers face a substantial
increase in the amount and quality of economic data available. However, instead of making
predictions easier, the researcher is immediately confronted with identification problems if
he wants to exploit the potential benefits of a larger data set with a limited amount of
observations. Although economic theory helps and the statistical literature suggests ways
to deal with that problem, the researcher is left with a certain degree of arbitrariness.

The need for novel methods to deal with large data sets has concentrated research efforts
on the field of factor models. The seminal contribution for static factor models came from
Burns and Mitchell (1946). A desirable improvement of the static factor model methodol-
ogy was introduced by Sargent and Sims (1977) and Geweke (1977) by the generalization
to the dynamic case exploiting the dynamic interrelationship of the variables and by re-
ducing the number of common factors even further. Recently, Forni and Reichlin (1998),
Forni, Hallin, Lippi, and Reichlin (2000) and Forni and Lippi (1999) have introduced the
generalized dynamic factor model allowing for a limited amount of cross correlation among
the idiosyncratic components and proposed this method for exploiting the potentially useful
information in large panels of time series.

Generally, factor models offer a tool to summarize the information available in a large
data set by a small number of factors. These factors are weighted linear combinations of
all variables in the data set. The basic idea that stands behind the factor model is that
the movement of a time series can be characterized as the sum of two mutually orthogonal
components: The common component which should explain the main part of the variance of
the time series and is a linear combination of the common factors. The second component,
the idiosyncratic component, contains the remaining variable specific information and is only
weakly correlated across the panel. Obviously, neither the common nor the idiosyncratic
component can be observed directly and have to be estimated. Commonly used estimation
procedures are principal components methods (Stock and Watson, 1998), state space models
(Harvey (1989), Stock and Watson (1998)) and cointegration frameworks (Gonzalo and
Granger (1995)). One recently developed approach, utilized in this paper, is the dynamic
approach using frequency domain analysis as proposed by Forni and Reichlin (1998) and
Forni, Hallin, Lippi, and Reichlin (2000). During the last years there are a growing number
of forecasts of macroeconomic variables which rely on dynamic factor models (see e.g. , Stock
and Watson (1998), Gosselin and Tkacz (2001), Artis, Banerjee, and Marcellino (2002)).

The currently available empirical literature suggests that factor-based forecasts usually
outperform simpler time-series methods such as univariate models and VARs, although
the benefits are not always statistically significant (Artis, Banerjee, and Marcellino (2002),
Dreger and Schumacher (2002)). An important empirical question which has not been
answered thoroughly until yet now concerns the size and the composition of the optimal data
set. Although factor models have been developed to deal with large panels with hundreds
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of variables, there are some results which indicate that increasing the number of variables
over a certain size do not improve or even worsen forecasting results (Boivin and Ng (2003),
Watson (2000)).

The main purpose of this paper is to develop a framework for short-term forecasting
of real Austrian GDP. It utilizes the generalized dynamic factor model proposed by Forni,
Hallin, Lippi and Reichlin (referred to as FHLR) (2000, 2001a, 2001b, 2001c) and embeds it
into the environment needed to conduct short-term forecasting. The paper is organized as
follows. Section 2 gives a brief description of the generalized dynamic factor model. Details
of the model can be found in appendix A. The data set is described in section 3. This section
also presents the method to deal with the problem of different frequencies and timeliness of
the data needed for forecasting. In section 4 the forecasting performance of the factor model
is assessed. The first subsection gives an overview of the out-of-sample forecasting exercise.
The next subsection presents the performance of the model with the full data set, whereas
in the last subsection we propose a method to construct sub sets of the data and assess their
forecasting performance. Section 5 draws some conclusions and puts forward directions for
future improvements.

2 The dynamic factor model

The model utilized in this paper is the so-called generalized dynamic factor model proposed
by Forni, Hallin, Lippi and Reichlin ((2000), (2001), (2003)), henceforth FHLR. The repre-
sentation theory of the dynamic factor model can be found in Forni and Lippi (1999). This
approach has been developed to deal with large panels of time series, i.e. when the number
of variables becomes large compared to the number of observations. Each time series is
represented as the sum of two components: the common component and the idiosyncratic
component. The common component of the time series is driven by a few underlying uncor-
related and unobservable common factors. The estimated factors can be derived by applying
a linear (time-invariant) filter to the data set (possibly with lags). The generalized dynamic
factor model exploits the dynamic covariance structure of the data, i.e. the relation between
different variables at different points in time. This makes an important difference to the fore-
casting model proposed by Stock and Watson (2002). Their forecast is based on a projection
onto the space spanned by the static principal components of the data. Thus, being based
on contemporaneous covariances only, their approach fails to exploit the dynamic relations
between the variables of the panel. FHLR (2003) worked out the theoretical advantage of
the dynamic approach compared to the static one.

In traditional factor analysis ((Sargent and Sims 1977) and (Geweke 1977)), it is assumed
that there is no cross-correlation among the idiosyncratic components at any lead and lag.
This assumptions allows for identification of common and idiosyncratic components but
represents a strong restriction. The following two examples illustrate that this assumption
could represent a serious weakness of traditional factor models. First, consider the output
of two different industries. Each sectoral output consists of a common and an idiosyncratic
component. Now suppose that the industries are linked by input-output relations (possibly
with a lag). An idiosyncratic shock in industry B will therefore propagate to industry A. The
resulting correlation violates the assumption of uncorrelated idiosyncratic shocks. A similar
situation arises for shocks which are neither strictly common nor strictly idiosyncratic. This
might be the case for productivity shocks affecting only a subset of industries. A second
example is given by a regional data set including data for different regional aggregates (e.g.
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employment and income). In the aggregate each variable is driven by a national and a
regional component which is orthogonal to the first. However the two variables are likely to
be correlated for the same region, again violating the above assumption ((Forni and Lippi
1999))1.

The FHLR approach allows for both contemporaneous and lagged correlation between the
idiosyncratic terms and has been increasingly used for business cycle analysis and forecasting
(e.g. ’EuroCoin’, Altissimo et al., 2001 or Cristadoro et al., 2001).

2.1 The model

Our panel consists of i time series, which are assumed to be a realization of a zero mean,
wide-sense stationary process {xit; t ∈ Z}. Stationarity can be achieved by suitable trans-
formations of the raw data. Each process of the panel is thought of as an element from an
infinite sequence, indexed by i ∈ N. All processes are co-stationary, i.e. stationarity holds
for any of the n-dimensional vector processes {xnt = (x1t . . . xnt)′; t ∈ Z, n ∈ N}.

In the dynamic factor model, each variable xit of the panel is decomposed into two
components

xit = χit + ξit = bi(L)ut + ξit =
q∑

j=1

bij(L)ujt + ξit, (1)

where χit is called the common component and ξit the idiosyncratic component.
bi(L) = bi1(L), . . . , biq(L) is a vector of lag polynomials and ut = (u1t, . . . , uqt)′ is a q-
dimensional vector of common shocks. The q-dimensional process {(ui1, . . . , uit); t ∈ Z}
is assumed to be mutually orthonormal white noise with unit variance. ξit is orthogonal
to ut−k for any k and i. The infinite cross-section and two main assumptions are crucial
for identification of the model. The first assumption allows for a limited amount of cross-
correlation between idiosyncratic components and ensures that the variance explained by the
idiosyncratic component vanishes as N → ∞. The second assumption assures a minimum
amount of correlation between the common components. A more accurate definition of the
generalized dynamic factor model (including all assumptions) can be found in appendix A.
For further details see FHLR (2000).

2.2 Forecasting the common component

The common and the idiosyncratic component of a variable are mutually orthogonal. Thus,
forecasting a variable in a dynamic factor model can be split into two separate forecasting
problems, forecasting the common component and forecasting the idiosyncratic component.
Since the idiosyncratic components are mutually orthogonal or only weakly correlated, they
can be forecast easily using standard univariate or low-dimensional multivariate methods
like ARIMA of VAR models.

The h-step ahead forecast of the common component amounts to finding the best lin-
ear predictor for χi,T+h which is the projection onto the space spanned by the common
components obtained by a linear filter of the data matrix

φi,T+h|T ≡ proj(χi,T+h|G(χ, T )) =
q∑

j=1

∞∑
k=h

bij,kujT+h−k. (2)

1See also Forni, Hallin, Lippi, and Reichlin (2003) for an illuminating stylised example on the differences
between the static and the dynamic factor approach.
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However the coefficients bij,k rely on a two sided filter and are therefore not appropriate
for forecasting purposes. Instead one has to estimate the span of G(χ, T ) by a one-sided
filter of the data matrix, say W kT

nt ≡ ZT
nkxnt. Forni, Hallin, Lippi, and Reichlin (2003) show

that the weights ZT
nk can be obtained as the solution of the following generalized eigenvalue

problem:

ZT
nl := arg max

a∈Rn
var
(
aχT

nt

)
subject to var

(
aξT

nt

)
= 1

aξT
nt⊥ZT

nmξT
nt for 1 ≤ m < `, 1 ≤ ` ≤ n.

(3)

a denotes the eigenvalues resulting from the solution of the generalized eigenvalue prob-
lem and ΓχT

n0 and ΓξT
n0 denote the contemporaneous variance-covariance matrices of the com-

mon and the idiosyncratic components, respectively. The intuition behind this approach
is that the solution of the generalized eigenvalue problem gives us weights ZT

nl that max-
imize the ratio between the variance of the common and the idiosyncratic component in
the resulting aggregates. In other words, the two variance-covariance matrices can help to
construct averages of the data matrix which put a larger weight on variables that have a
larger ’commonality’ (Forni, Hallin, Lippi, and Reichlin (2003)). The proposed projection
matrix is then

φn,T
i,T+h|T = ΓχT

nh ZT
n (Z̃T

n ΓxT
n0 ZT

n )−1Z̃T
n xnT (4)

where ΓxT
n0 denotes the contemporaneous variance-covariance matrices of the data matrix.

As the sample size increases, the estimate φn,T
i,T+h|T converges in probability to χit.2.

2.3 Estimating the variance covariance matrices of the common
and the idiosyncratic component

Since the covariance matrices ΓχT
n0 and ΓξT

n0 in the generalized eigenvalue problem in equa-
tion (3) are not known, they have to be estimated in advance in a separate step utilizing
dynamic principal component analysis (Forni and Lippi (1999)). This approach is based on
the spectral density matrices of the data Σ(θ), which are decomposed into common and id-
iosyncratic components by a dynamic principal component decomposition for each frequency
θ. Applying the inverse Fourier transformation to the matrices of eigenvectors gives weights,
bij,k, for the two-sided filter above. With these weights the common and the idiosyncratic
components of each variable can be calculated and this gives the variance-covariance ma-
trices ΓχT

n0 and ΓξT
n0 needed in the eigenvalue problem (3). For a detailed illustration see

appendix A.

2.4 Selecting the number of common factors

In addition to the determination of the size of the lag window for the Fourier transformation
(M) and the number of leads and lags, the number of common factors q has to be chosen.

2Computing a 0-step ahead forecast gives the in-sample estimator of χnT
it
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Table 1: Percentage total variance explained by the first q common factors

q Cumulative % variance explained Contribution to explained variance

1 0.30 0.30

2 0.48 0.18

3 0.58 0.10

4 0.64 0.06

5 0.69 0.05

6 0.73 0.04

7 0.77 0.04

8 0.80 0.03

9 0.83 0.03

10 0.85 0.02

Several strategies are available for determining the ’proper’ q. First, one can use information
criteria such as Akaike’s information criterion or the modification proposed by Bai and Ng
(2002). Second, a scree plot is often used in principal components analysis. The eigenvalues
for each common component are plotted in descending order. Such a graphic usually is
elbow-shaped. The optimal number of common components is determined by the last point
before the kink. In frequency domain analysis, this approach has to be extended to the
different frequencies of the spectral density function. This approach has the disadvantage
that there it has no formal basis and that the number of common components usually varies
over the frequencies (Mansour (2003)). Forni and Lippi (1999) proposed a method based on
a heuristic inspection of the eigenvalues against the number of series n. If T observations are
available for a n variables xit,the spectral density matrices σT

r , r ≤ n can be estimated and
the resulting empirical dynamic eigenvalues λT

rj can be computed for a grid of frequencies.
Two features of the computed eigenvalues are then considered to determine the number of
common factors:

1. The average over frequencies θ of the first q eigenvalues diverges, whereas the average
of the (q + 1)-th eigenvalue remains relatively stable.

2. At r = n there should be a substantial gap between the variance explained by the q-th
principal component and the variance explained by the q + 1-th one.

We have calculated the eigenvalues and the explained variance for our data set (see
section 3). As figure 1 shows, the first three eigenvalues diverge most probably, whereas
the following 140 remain bounded. These first three eigenvalues explain 58 % of the total
variance. The fourth common factor would add only 6 percentage points to the total variance
explained (see table 1).

Another way to determine the number of common factors q is to utilize the out-of-sample
forecasting performance of the model. This approach has been used in this paper.

3 The data set

The data set includes 105 variables of monthly or quarterly frequency. Some variables have
been included in the model in levels as well as in differences. So the total number of series
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Figure 1: The FHLR identification criterion (mean eigenvalues of the spectral density ma-
trices over frequencies)

included in the factor model is 143. The quarterly data set ranges from 1988Q1 until 2003Q2,
i.e. it contains 62 observations. The variables in the list below can be attributed to different
categories. Numbers and letters in parenthesis refer to the number of variables per category
and their frequency (monthly or quarterly). The detailed list of variables can be found in
annex B.

• National account data (15, Q): Real GDP and its components and deflators

• WIFO quarterly survey (8, Q): Quarterly survey of the Austrian Institute of Economic
Research

• Monthly survey data (18, M): Economic sentiment indicator of the European Com-
mission including sub indices, Ifo index for Germany and purchasing manager index
for the US

• Prices (30, M): Consumer prices, producer prices, oil price, exchange rates

• Foreign trade (14, M): Real exports and imports

• Labour market (6, M): Unemployment, employment, vacancies

• Financial variables (13, M): Money aggregates, interest rates, stock prices, credits

• Miscellaneous (1, M): Industrial production

The following steps have been undertaken to prepare the data. First, the data have been
seasonally adjusted using Tramo/Seats. Second, if not already stationary, the variables
have been differenced by taking either first differences or calculating the percentage change.
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Third, outliers have been removed from the data set. This has been done with a semi-
automatic procedure. For every data point, a moving average has been calculated. If the
difference between the point and the moving average exceeds a predetermined threshold
defined in units of the standard deviation of the series, then the point is treated as an
outlier and replaced by an interpolation between its adjacent points. The threshold has
been defined for each variable separately by visual inspection. Finally, the variables have
been standardized to obtain zero mean and unit standard deviation.

One important problem in real-time forecasting is the different timeliness of the variables.
This problem is especially important in factor model applications, because these models
require a complete panel without missing data. Our approach to deal with that problem is
to shift incomplete series in the data matrix so that the latest available observation for each
series can now be obtained at time T . For example, if the variable x is available until period
T − 1 only, it will be shifted such that the last observation is now in the row for period T .
Finally, all periods with missing observations at the beginning of the sample are deleted.
Consequently, the final data set now contains 59 observations only. After performing the
forecast the shifting is then to be reversed in order to re-establish the original ordering of
the data.

A second important problem is that not all variables of the data set are available at the
same frequency. We aggregate monthly series to a quarterly frequency. Missing monthly
observations within the last quarter are forecast by a monthly factor model. These monthly
series are aggregated to quarters and are then concatenated to the quarterly data to build
the final data set.

4 Forecasting Austrian GDP

4.1 Overview

This section presents the performance of the dynamic factor model in forecasting Austrian
real GDP3. Since the results of Boivin and Ng (2003) and Watson (2000) suggest that a
factor model with a small data set might outperform a model with a large data set, we
have conducted an extensive out-of-sample forecasting exercise4 to shed some light on this
topic. This exercise focuses on two main questions. First, which model performs best in
forecasting real GDP? Second, how does this optimal model perform relative to a simple
univariate time-series model (ARIMA) and to the dynamic factor model with the full data
set?

The design of the simulations to answer these two questions is as follows. We have
evaluated the forecasting performance of many different models. These models were obtained
by varying the size of an ordered data set (see section 4.3 for details on the ordering) and the
number of common factors. The forecasting performance for each model was obtained by
performing out-of-sample forecasts for 30 rolling windows. The first window contains data
from 1988Q1 until 2003Q2. The last three observations were omitted for estimation and were
used for evaluating the out-of-sample forecasts. After computing one to three-steps-ahead
forecasts, the last observation of the data set was truncated, the model was reestimated and

3The model has been implemented in GAUSS.
4The forecasting exercise is not an out-of-sample exercise in a strict sense. Although the forecasts for a

given model are based on in-sample information only, out-of-sample information is used to select the best
model.
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new forecasts were computed. This procedure was repeated for all remaining windows. This
gives us one vector with out-of-sample forecasts per forecasting horizon.

4.2 Assessing the forecasting performance with the full data set

In this section the forecasting performance of the factor model with the full data set is
assessed. This is done by comparing the performance of the factor model with the forecasts
produced by an ARIMA model. The forecast accuracy is measured by the root mean squared
error (RMSE), the mean absolute error (MAE) and the Pesaran-Timmerman test. This test
assesses the directional accuracy of a forecast. It has been applied to the first differences of
the growth rates of GDP, i.e. it tests whether an acceleration or deceleration of growth is
correctly predicted. The Diebold and Mariano (1995) test and the Wilcoxon signed rank test
have been used to test for equal forecasting accuracy of the two rivalling forecasts.5 Finally,
the test for multiple forecast encompassing proposed by Harvey, Leybourne and Newbold
(1998) has been used to test whether the factor model forecast encompasses the forecast of
the ARIMA model. Detailed explanations of these tests can be found in the appendix. The
number of AR and MA terms and the use of a constant of the ARIMA model are determined
by the minimum RMSE. Table 2 summarizes the results.

The most important finding is that the only forecasting horizon where the forecasting
performance of the factor model is significantly better than of the ARIMA forecast is one
quarter ahead. In this case, the RMSE of the factor model forecast is by 12.4% smaller
than that of the ARIMA forecast. According to the Diebold-Mariano test, the gains are
significant at the 10% level. For forecasting horizons two and three the factor model is not
able to outperform the ARIMA forecast significantly. For two-steps-ahead the factor model
even performs worse than the ARIMA forecast in terms of the MAE.

4.3 Selecting an optimal sub set of the data set

Factor models have been developed to deal with panels with a large number of variables.
This may tempt the researcher to use as many series as possible. From a theoretical point of
view, a large number of variables is convenient since in theory population results hold for an
infinite cross-sectional dimension. Efficient estimates of the common and the idiosyncratic
components are obtained asymptotically as the number of variables goes to infinity. However,
Boivin and Ng (2003) have put forward some arguments that support the hypothesis that
a carefully chosen subset of variables outperforms the full sample forecasts. Since each
sample is always a subset of the potentially available variables, there is no guarantee that
an arbitrary sample captures correctly the main factors that drive the variable of interest
(in our case GDP).

To illustrate the problem suppose that the whole dataset is entirely driven by two com-
mon factors, u1 and u2, whereas the variable of interest depends on u1 only. If the sample
includes many variables that are dominated by u2, then the space spanned by this sample
is dominated by u2 rather than u1. Estimating and forecasting the common component of
the variable of interest by one factor selected by one of the conventional selection criteria
will thus produce poor results. Boivin and Ng (2003) have entitled this situation where
many variables are included in the dataset which have no predictive power for the variable
of interest as ’oversampling’.

5For a collection of thoughts about the conceptual caveats of this type of test see Kunst (2003).
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Table 2: Forecasting performance of the factor models and the ARIMA model

h = 1 h = 2 h = 3 Average

Factor Model (full data set with n = 143) a

number of dynamic factors q = 2 q = 1 q = 1 -

RMSE 0.886 1.056 1.042 1.008

MAE 0.737 0.871 0.846 0.819

Pesaran-Timmerman ??0.037 ?0.080 ?0.096 -

ARMA

Specification: ARMA(1,1) with constant

RMSE 1.011 1.056 1.070 1.046

MAE 0.809 0.824 0.855 0.829

Pesaran-Timmerman ?0.097 ?0.099 0.122 -

Factor Model (full data set) compared to ARIMA Model

RMSE % gain 12.4 0.0 2.6 3.6

MAE % gain 8.9 -5.7 1.1 1.2

Diebold-Mariano RMSE ?0.088 0.496 0.122 -

Diebold-Mariano MAE 0.177 - 0.376 -

Wilcoxon RMSE 0.191 0.521 0.279 -

Wilcoxon MAE 0.272 - 0.463 -

Model encompassing b 0.283 0.224 0.347 -

aReported values are probabilities with the exception of RMSE, MAE, RMSE gain and MAE gain.
bHarvey et. al. Model encompassing test

Table 3: Cross correlation of variables at different leads with respect to GDP

Variable Transformation a Lead 1 Lead 2 Lead 3 Average

Number of vacancies %d 0.62 0.46 0.25 0.44

Unemployment to vacancies ratio %d -0.58 -0.45 -0.24 -0.42

Construction sentiment indicator d 0.46 0.27 0.27 0.33

Dow Jones Index %d 0.37 0.31 0.18 0.29

Exports of machinery and vehicles %d 0.33 0.41 0.11 0.29

Total exports %d 0.26 0.40 0.15 0.27

DAX %d 0.44 0.28 0.09 0.27

IFO current situation Western Germany d 0.34 0.28 0.19 0.27

Nominal-effective exchange rate %d 0.37 0.25 0.17 0.27

IFO business climate index Western Germany d 0.34 0.28 0.11 0.25

ad . . . difference, %d . . . percentage difference, l . . . level
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In addition to oversampling, Boivin and Ng (2003) have identified two additional situa-
tions, where too many series may worsen forecasting results. The first situation refers to the
dispersion of the importance of the common component. The common factors can be esti-
mated more precisely when the common component is important relative to the idiosyncratic
component. Conversely, adding data with high idiosyncratic errors reduces the precision of
the estimates. The second situation is that cross correlation in the errors seem to have a
negative impact on the forecasting performance. Although the tested model allows for a
limited amount of cross-correlation among the idiosyncratic components, it appears that a
higher amount of cross-correlation leads to less efficient estimates and forecasts of the com-
mon components. Boivin and Ng (2003) have obtained these results with a Stock-Watson
type factor model within a Monte Carlo setting with simulated data. In the Stock-Watson
approach, the common shocks are derived by a static principal component analysis. The
forecasts are then obtained from a forecasting equation, which regresses GDP on its own
history plus the common factors (=’factor-augmented forecast’). They have suggested some
rules to drop, weight or to group the series for the extraction of common factors to overcome
this problem, whereby these rules are rather ’ad-hoc’ rules than derived from theory. Their
main result is that a careful pre-selection of variables based on their rules improves the fore-
cast. But there is no formalized guide to answer the question of variable selection. Since the
approach utilized in this paper differs substantially from the Stock-Watson approach, the
rules cannot be applied one to one to the setting of the generalized dynamic factor model.

The basic methodology to select variables used in this paper can be outlined as follows.
We have reordered the data set according to the absolute value of the average correlation
coefficient of each variable with GDP at different leads (leads one to three). GDP is always
the first variable in the data set. The other variables were arranged in a descending order,
i.e. the variable with the highest correlation to GDP is the second variable and the variable
with the lowest correlation is the last variable.

Table 3 shows the cross correlation between the ten variables with the strongest leading
behaviour with respect to real GDP. The variables with the strongest correlation with GDP
are the number of vacancies and the unemployment to vacancies ratio. Among the other
top ten leading variables three survey series can be found. Two of them (IFO business
climate index and IFO current situation for Western Germany) are related to the situation
of Austria’s most important trading partner, Germany. Foreign trade is also represented
by exports of machinery and vehicles and total exports. Finally, two financial series (Dow
Jones Index and DAX) and the nominal-effective exchange rate are ranked in the top ten
variables. Extensive simulations have been performed with this reordered data set to find a
subset with the lowest out-of-sample root mean squared error (RMSE).

For each subset (n = 1, . . . , 143 variables) of the ordered data set and for q = 1, . . . , 15
common factors6, we have computed the out-of-sample forecast errors for 30 windows begin-
ning at time t = T − 30− 3. For each forecasting exercise, we have reported the RMSE and
MAE of GDP for h = 1, . . . , 3 forecasting steps and the average. The results are summarized
in table 4 and figure 2.

From a methodological point of view, two main results can be pointed out. First and
foremost, the subsets which yield the best forecasting performance are very small. For the
two-steps-ahead forecast, a subset of eleven variables with two common factor provides us
with the best forecasts. Forecasting one-step-ahead is best done with nine variables and
three common factors. The best results for the three-step-ahead forecast are achieved with

6The number of common factors (q) must not exceed the number of variables (n).
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Table 4: Forecasting performance of the smaller factor models compared to the large factor
model

h = 1 h = 2 h = 3 Average

Performance of best subsets a

size of subset n = 9 n = 11 n = 5

number of principal components q = 3 q = 2 q = 5

RMSE 0.871 0.815 0.928 0.871

MAE 0.726 0.629 0.754 0.703

Pesaran-Timmerman ?0.052 ??0.026 ?0.079 -

Factor Model (best subset) compared to ARIMA Model

RMSE % gain 13.8 22.8 13.3 16.7

MAE % gain 10.3 23.7 11.8 15.2

Diebold-Mariano RMSE ?0.054 ??0.020 ??0.012 -

Diebold-Mariano MAE 0.130 ???0.006 ?0.069 -

Wilcoxon RMSE 0.145 ??0.015 ?0.060 -

Wilcoxon MAE 0.175 ???0.009 0.107 -

Model encompassing 0.473 0.122 0.150 -

Factor Model (best subset) compared to factor model with full data set

RMSE % gain 1.7 22.8 10.9 13.6

MAE % gain 1.5 27.8 10.9 14.2

Diebold-Mariano RMSE 0.407 ??0.022 ?0.081 -

Diebold-Mariano MAE 0.423 ???0.007 0.126 -

Wilcoxon RMSE 0.259 ??0.019 0.111 -

Wilcoxon MAE 0.399 ???0.006 0.111 -

Model encompassing b 0.468 0.410 0.473 -

aReported values are probabilities with the exception of RMSE, MAE, RMSE gain and MAE gain.
bHarvey et. al. Model encompassing test
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Figure 2: RMSE of the factor model for one-quarter-ahead forecasts, depending on the
number of variables and dynamic common factors

only five variables and five common factors. These results are in contradiction with the
intention of dynamic factor models, which have been developed to exploit the potentially
fruitful information of a large panel.

The second main result is that for the bulk of subsets the best forecasting performance
can be obtained with one or two dynamic common factors only. Although a higher number
of dynamic common factors results in a better fit, the forecasting performance worsens
if too many factors are chosen. To give an intuition why that might happen, reconsider
the basic steps of the procedure. First, the covariance matrices of the common and the
idiosyncratic components are estimated by means of the frequency domain approach. In a
second step, these covariance matrices are then used to construct linear filters, which are
used for forecasting. By construction, these filters put a higher weight on variables with a
higher commonality. To be more precise, the variables used for forecasting are standardized
by dividing them by the standard deviation of their idiosyncratic component in the second
step (i.e. by solving the generalized eigenvalue problem from page 5) (see also FHLR (2003)).
A variable which is only weakly correlated with the remainder of the data set has a larger
idiosyncratic variance and hence a lower weight in the forecast. For illustrative purposes,
consider a static model with one common factor and with two groups of variables which
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are highly correlated within each group. If the common factor summarizes the first group,
the idiosyncratic components will be larger for the second group. Increasing the number of
dynamic common factors will decrease the variance of the idiosyncratic component for all
variables, but especially for the variables of the second group. Thus increasing q increases
the weight of the the second group of variables relative to the other variables, which will
deteriorate the forecasting performance for variables belonging to the first group.

Figure 3: Factor and ARIMA model forecasts of Austrian GDP (two quarters ahead)

Figure 3 gives a visual impression of the forecasting performance of the best subsets (two
quarters ahead). It shows that the broad movements of the business cycle are predicted cor-
rectly. This can be underlined by the results of the Pesaran-Timmermann test, which show
that the direction of change of GDP growth rates (i.e. an acceleration or deceleration of
growth) is correctly predicted. Naturally, the steep decline in activity in the beginning of
2001 was not predicted to its full extent, since it was mainly caused by a series of unpre-
dictable shocks to the world economy. Nevertheless, the direction of change was correctly
predicted. Another interesting finding is that the forecasting error of the two-steps-ahead
forecast is considerably smaller than for the one-step-ahead forecast.
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5 Conclusions

The aim of this paper was to develop a framework for short-term forecasting of real GDP
for Austria using the generalized dynamic factor model. The forecasting performance of the
model was assessed with an out-of-sample forecasting experiment over 30 windows. The
simulations with the full data set with 143 variables show that the dynamic factor model
was not able to perform significantly better than a simple ARIMA model for two and three
quarters ahead. Hence, an extensive forecasting experiment has been conducted to find
subsets of the data set that perform better. The variables have been ordered according to
their lead properties with respect to GDP.

The following main empirical findings have been obtained from this experiment. First,
the factor model performs significantly better with a small data set of about five to eleven
variables compared with the full data set of 143 variables. Second, the number of dynamic
common factors also impacts heavily on the forecasting performance. A higher number of
common factors tends to worsen the forecasting performance.

Obviously, our results are just a first step in investigating the forecasting behavior of
the generalized dynamic factor model. Necessary next steps in that direction would be to
test the behavior of the model for other data sets. Constructing Monte Carlo simulations
to shed some more light on the relation between the size of the data set and the forecasting
performance would be another promising step forward. Although it is far too early to draw
firm conclusions, our results indicate that the generalized dynamic factor model - although
it is designed to deal with a huge number of variables - does not free the forecaster from the
task of variable selection. It seems that there is plenty of room to improve the forecasting
performance by carefully assembling the data set, which does not need to be huge.
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A Technical annex

A.1 The model

Consider the double sequence
{xit, i ∈ N, t ∈ Z} ,

where
xit = bi1(L)u1t + bi2(L)u2t + . . . + biq(L)uqt + ξit, (5)

L standing for the lag operator, and suppose that the following assumptions 1-4 hold.

Assumption 1.

(I) The q-dimensional process {(u1tu2t . . . uqt)′, t ∈ Z} is orthonormal white noise;

(II) ξ = {ξit, i ∈ N, t ∈ Z} is a double sequence such that, firstly, ξn = {(ξ1tξ2t . . . ξ1t)t ∈
Z} is a zero-mean stationary vector process for any n, and, secondly, ξit⊥ujt−k for
any i, j, t;

(III) the filters bij(L) are one-sided in L and their coefficients are square summable.

Assumption 2. For any i ∈ N, there exists a real ci > 0 such that σii(θ) ≤ ci for any
θ ∈ [−π, π].

Assumption 3. The first idiosyncratic dynamic eigenvalue λξ
n1 is uniformly bounded, i.e.

there exists a real Λ such that λξ
n1(θ) ≤ Λ for any θ ∈ [−π, π] and any n ∈ N.

Assumption 4. The first q common dynamic eigenvalues diverge almost everywhere in
[−π, π], i.e., limn→∞ λχ

nj(θ) = ∞ for j ≤ q, a.e. in [−π, π].

Model (5) under assumptions 1-4 is called the generalized dynamic factor model.

A.1.1 Forecasting the common component

In order to obtain a consistent estimation of the space of common factors it necessary to find
r linear combinations W kT

nt = ZT
nkxnt, where the weights can be obtained as the solution of

a generalized eigenvalue problems:

ZT
nl := arg max

a∈Rn
var
(
aχT

nt

)
subject to var

(
aξT

nt

)
= 1

aξT
nt⊥ZT

nmξT
nt for 1 ≤ m < `, 1 ≤ ` ≤ n.

(6)

where a are the generalized eigenvectors. Intuitively, the formulation above maximizes
the common to idiosyncratic variance ratio in the resulting aggregates W kT

nt . An equivalent
form of (6) is

ZT
nl := arg max

a∈Rn
aΓχT

n0 a′

subject to aΓξT
n0a

′ = 1

aΓξT
n0Z

T ′

nm for 1 ≤ m < `, 1 ≤ ` ≤ n.

(7)
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FHLR (2003) show that the space spanned by the aggregates approximates the space
spanned by the principal components G(F, t). The proposed forecast for χi,T+h is the es-
timated projection of xi,T+h onto the space spanned by the r linear aggregates W kT

nt , k =
1 . . . , r, i.e.

φnT
i,T+h|T :=

[
ΓχT

nh ZT
n

(
Z̃

T

n ΓxT
n0 ZT

n

)−1

Z̃
T

n xnT

]
i

(8)

where ZT
n := (ZT ′

n1 . . .ZT ′

nr)
′. Setting h = 0 yields a consistent one-sided estimation of

χit, which for fixed t avoids the end-of-sample inconsistency problem.

A.1.2 Estimating the variance covariance matrices of the common and the
idiosyncratic component

Consider the double sequence {xit, i = 1, ..., n, t = 1, ..., T}, with zero mean and variance
one. For a fixed integer M compute the sample covariance matrix ΓT

nk = xntx
′
nt−k for

k = 0, 1, ...,M and create the truncated two-sided sequence in form of a stacked matrix:

γ11,−M · · · γ1n,−M
...

. . .
...

γn1,−M · · · γnn,−M


...
...γ11,0 · · · γ1n,0

...
. . .

...
γn1,0 · · · γnn,0


...
...γ11,+M · · · γ1n,+M

...
. . .

...
γn1,+M · · · γnn,+M





=



ΓT
n,−M

...

ΓT
n,0
...

ΓT
n,+M


[n(2M+1))xn].

(9)

The spectral density matrices can be obtained by applying a discrete Fourier trans-
formation to the sample covariance matrices ΓT

nk. In the next step, compute for each
θh = 2πh/(2M + 1), h = 0, 1, ..., 2M, and each n = 1, 2, ...N, the (2M + 1) discrete Fourier
transform of this sequence of covariance matrices. More precisely compute for each n the
sequence

ΣT
n (θh) =

M∑
k=−M

ΓT
n,kωke−ikθh , (10)

where

ωk = 1− |k|
(M + 1)
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are the weights corresponding to the Bartlett lag window of size M = M(T ). We use the
rule M =

√
T/4 which ensures consistent estimation of Σn provided that M(T ) → ∞ and

M(T )/T → 0 as T →∞. Note that, after rearranging the elements, ΣT
n (θh) has the form

σ11(θ0) · · · σ1n(θ0)
...

. . .
...

σn1(θ0) · · · σnn(θ0)


σ11(θ1) · · · σ1n(θ1)

...
. . .

...
σn1(θ1) · · · σnn(θ1)


...
...σ11(θ2M ) · · · σ1n(θ2M )

...
. . .

...
σn1(θ2M ) · · · σnn(θ2M )





=



ΣT
n (θ0)

ΣT
n (θ1)

...

ΣT
n (θ2M )


[n(2M+1))xn].

(11)

The estimated spectral density matrix is then decomposed by a dynamic principal com-
ponent decomposition. For each frequency of the frequency grid, we compute eigenvalues
and eigenvectors. The eigenvectors are ordered in a descending manner according to their
eigenvalues. The first q eigenvectors of each frequency h are then extracted over frequen-
cies. For each h = 0, 1, ..., 2M compute the first q (row-) eigenvectors pT

nj(θh), j = 1, ..., q of
ΣT

n (θh) and construct for i = 1, 2, ..., n the (nxq) matrix

KT
ni(θh) = p̃T

n1,i(θh)pT
n1(θh) + · · ·+ p̃T

nq,i(θh)pT
nq(θh), (12)

where p̃T
nj,i(θh) is the i, jth entry in the complex conjugate of the matrix of eigenvectors.

Defining the qxn matrix of eigenvectors in rows

V(θh) ≡

p11(θh) · · · p1n(θh)
...

. . .
...

pq1(θh) · · · pqn(θh)

 (13)

as the matrix of eigenvectors of ΣT
n (θh) we get the (nxn) matrix of normalized eigenvectors

for h = 0, 1, ..., 2M

KT
n (θh) =

[
V(θh) · Ṽ(θh)

]
(nxn)

, (14)

such that KT
ni(θh) from equation (12) is the ith column vector with dimension (n x 1) in the

matrix KT
n (θh) from equation (14). Creating the stacked vector

(KT
n (θ0), KT

n (θ1), · · · , KT
n (θ2M ))

leads to the matrix K(θh) with the following structure:
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KT

n (θ0)(nxn)

...

KT
n (θ2M )(nxn)


(n(2M+1) x n)

, (15)

which is in more detail




∑q

j=1 p̃T
nj,1(θ0)pT

1j(θ0) · · ·
∑q

j=1 p̃T
nj,n(θ0)pT

1j(θ0)
...

. . .
...∑q

j=1 p̃T
nj,1(θ0)pT

nj(θ0) · · ·
∑q

j=1 p̃T
nj,n(θ0)pT

nj(θ0)


...

∑q
j=1 p̃T

nj,1(θ2M )pT
1j(θ2M ) · · ·

∑q
j=1 p̃T

nj,n(θ2M )pT
1j(θ2M )

...
. . .

...∑q
j=1 p̃T

nj,1(θ2M )pT
nj(θ2M ) · · ·

∑q
j=1 p̃T

nj,n(θ2M )pT
nj(θ2M )




(n(2M+1) x n)

(16)

Extracting the elements over frequencies of equation 15 one gets a row vector for each
element of KT

ni(θh) of matrix 14, which can lead to the proposed estimator by computing
the inverse discrete Fourier transform

KT
ni,k =

1
2M + 1

2M∑
h=0

KT
ni(θh)eikθh (17)

for each i and k. Summing over the leads and lags k = −M, . . . , +M , the estimator of the
filter is given by

KT
ni(L) =

M∑
k=−M

KT
ni,kLk. (18)

The common components are then simply

χnt = KT
ni(L)xnt (19)

A.2 Test for equal forecasting accuracy and forecast encompassing

A.2.1 Wilcoxon’s signed rank test

The non-parametric Wilcoxon signed rank test tests the null hypothesis of equal forecast
accuracy. It is an alternative to the t-test in situations, where the assumption of a normal
distribution is violated, which is typically the case in small samples. The test assumes that
both forecasting errors have identical distributions. Hence the distribution of the differences
dt between the loss functions g(eA

t ) and g(eB
t ) of the forecasting errors eA

t and eB
t is sym-

metric around zero. The null hypothesis is that the loss differential {dt}T
1 = eA

t − eB
t has
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median value zero. The test is illustrated for a squared loss function, although it can be
applied for an absolute loss function as well. The following steps are necessary to perform
the test. Begin with calculating the loss differential series dt

dt =

 (eA
t )2 − (eB

t )2 , if RMSEA < RMSEB

(eB
t )2 − (eA

t )2 , othwerwise
(20)

and remove all zero elements from dt. Next, compute a 0/1 vector with ones for all elements
of dt which are greater than zero.

l+(dt) =

 1 , if dT > 0

0 , othwerwise.
(21)

Determine the rank numbers of all elements of dt, disregarding the sign of dt. Assign
the rank number 1 to the smallest and T to the highest element. If tied values occur, than
rank all elements with the mean of the rank numbers that would have been assigned if they
would have been different. Compute the test statistic W as the sum of the positive ranks
only.

W =
T∑

t=1

l+(dt) ∗ rank(| dt |) (22)

Critical values for W are tabled. If W is smaller than the critical value, reject the null
of equal forecasting accuracy. Asymptotically, W converges to a normal distribution

W ∼ N
(
µ, σ2

)
, with µ =

T (T + 1)
4

and σ2 =
T (T + 1)(2T + 1)

24
.

Therefore, if T > 20, one can compute the transformed test statistic

W =
W − µ

σ
(23)

and use the critical values from the standard normal distribution.

A.2.2 The Diebold and Mariano test

The Diebold and Mariano (1995) test for equal forecasting accuracy tests the null hypothesis
of equal forecast accuracy of two competing forecasts. It uses a forecast error loss differential
dt = g(eB

t )− g(eB
t ), which is assumed to be a weakly stationary process with short memory.

The main rationale underlying this test is that forecast errors are usually serially correlated.
In multi-step forecasting (h > 1), forecasts errors are assumed to be at most (h − 1)-
dependent. This is a plausible assumption, since two consecutive h-steps-ahead forecasts
have h − 1 periods with similar information in common. The Diebold and Mariano test is
a modified t-test, whereby the modification accounts for the serial correlation of the loss
differential. The mean d̄ is assumed to be asymptotically normally distributed:

√
T (d̄− µ)

d
−→ N(0, V (d̄)), (24)
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whereby V (d̄) stands for the serially correlated errors corrected variances of the sample mean
(d̄), given by the sum of the variance and the auto-covariances up to lag h−1 assuming that
there are no auto-correlations at a lag equal to or greater than h:

V (d̄) =
1
T

(
γ0 + 2

h−1∑
τ=1

γτ

)
, (25)

where T stands for the sample size and with autocovariance

γτ =
2
T

T∑
t=τ+1

(dt − d̄)(dt−τ − d̄). (26)

The asymptotically normally distributed test statistic DM can be obtained by

DM =
d̄√
V (d̄)

. (27)

In small samples, the t-distributed modified test statistic DM? should be preferred (Harvey,
Leybourne, and Newbold 1997):

DM? =
DM√

T+1−2h+
h(h−1)

T

T

(28)

If the value of the test statistic is greater than the critical value, the null of equal forecasting
accuracy should be rejected.

A.2.3 Harvey, Leybold, and Newborn test for forecast encompassing

Harvey, Leybourne, and Newbold (1998) proposed a test for forecast encompassing under
the null that forecast A encompasses forecast B, i.e. forecast B adds no predictive power
to forecast A. The test uses a linear combination of two competing forecasts yA

t and yB
t of

variable yt with a combined forecast error εt:

yt = (1− λ)yA
t + λyB

t + εt. (29)

In terms of individual forecast errors ei
t = yt−yi

t, for i = A,B, equation (29) can be written
as

eA
t = λ(eA

t − eB
t ) + εt. (30)

This equation has to be estimated by OLS. If the null of forecast encompassing holds, than
λ should equal zero.

A.2.4 The Pesaran-Timmerman non-parametric test of predictive performance

Let xt = E(yt,Ωt−1) be the predictor of yt found with respect to the information set, Ωt−1,
with n observations (y1, x1), (y2, x2), . . . , (yn, x−n) available. The test proposed by Pesaran
and Timmerman (1992) is based on the proportion of times that the direction of changes in
yt is correctly predicted by xt. The test statistic is computed as
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Sn =
P − P ?√

V (P )− V (P ?)1/2
∼ N(0, 1) (31)

where:

P = Z̄ = 1
n

n∑
i=1

Zi

P ? = PyPx + (1− Py)(1− Px)

V (P ?) = 1
nP ?(1− P ?)

V (P ) = n
[
(2Py − 1)2Px(1− Px) + (2Px − 1)2Py(1− Py) + 4

nPyPx(1− Py)(1− Px)
]

Zi is an indicator variable which takes value of one when the sign of yt is correctly
predicted by xt, and zero otherwise, Py is the proportion of times yt takes a positive value,
Px is the proportion of times xt takes a positive value.
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B List of variables

National account data

GDP, real
Private consumption, real
Gross fixed capital formation, real
Public consumption, real
Changes in inventories, real
Imports, real
Exports, real
GDP deflator
Private consumption deflator
Gross fixed capital formation deflator
Public consumption deflator
Changes in inventories deflator
Import deflator
Export deflator
Terms of Trade

WIFO Quarterly Survey

Assessment of order books
Assessment of export order books
Assessment of stocks of finished products
Selling-price expectations
Assessment of order books - construction
Selling-price expectations - construction
Assessment of current situation - construction
Business situation - construction

Monthly survey data

Economic sentiment indicator
Industrial confidence indicator
Production observed in recent months in industry
Order books in industry
Export order books in industry
Stocks of finished products in industry
Production expectations in industry
Selling-price expectations in industry
Selling-price expectations in construction
Construction confidence indicator
Retail trade confidence indicator
Consumer confidence indicator
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Prices

Ifo - business expectations in Western Germany
Ifo - business climate index in Western Germany
Ifo - assessment of current situation in Western Germany
Purchasing manager index USA
HICP - Overall index
HICP - Food incl. alcohol and tobacco
HICP - Processed food incl. alcohol and tobacco
HICP - Unprocessed food
HICP - Goods
HICP - Industrial goods
HICP - Industrial goods excluding energy
HICP - Energy
HICP - Services
HICP - All items excluding alcoholic beverages, tobacco
HICP - All items excluding energy
HICP - All items excluding energy and food
HICP - All items excluding energy and unprocessed food
Consumer price index - overall index
Consumer price index 86 - housing
Index of agreed minimum wages, overall index
Index of agreed minimum wages, workers
Index of agreed minimum wages, salary earners
Wholesale prices 86 - Overall index
Wholesale prices 86 - excl. seasonal goods
Wholesale prices 86 - consumer goods
Wholesale prices 86 - durable commodities
Wholesale prices 86 - non-durable commodities
Wholesale prices 86 - non-durables
Wholesale prices 86 - consumer goods
Wholesale prices 86 - capital goods
Wholesale prices 86 - intermediate goods
Oil price
Nominal-effective exchange rate
Euro/Dollar exchange rate

Foreign trade

Total exports
Exports SITC 6 (basic manufactures)
Exports SITC 7 (machines, transport equipment)
Exports SITC 8 (misc. manufactured goods)
Total imports
Imports SITC 6 (basic manufactures)
Imports SITC 7 (machines, transport equipment)
Imports SITC 8 (misc. manufactured goods)
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Labour market

Exports of commodities to USA
Exports of commodities to EU
Exports of commodities to Germany
Imports of commodities from USA
Imports of commodities from EU
Imports of commodities from Germany
Unemployment rate, national definition
Unemployment, male
Unemployment, femal
Vacancies
Employees

Financial variables

ATX (Austrian trading index)
Money aggregate M1
Money aggregate M2
Money aggregate M3
DAX
Dow Jones index
3-month money market rate
Secondary market yield on government bonds (9 to 10 years)
Yield spread
Direct credits to private households
Direct credits to private firms
Direct credits to government
Outstanding debt
Direct credits, total

Miscellaneous

Industrial production, overall index (excl. construction and energy)
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