
Raunig, Burkhard

Working Paper

Testing for Longer Horizon Predictability of Return
Volatility with an Application to the German

Working Paper, No. 86

Provided in Cooperation with:
Oesterreichische Nationalbank (OeNB), Vienna

Suggested Citation: Raunig, Burkhard (2003) : Testing for Longer Horizon Predictability of
Return Volatility with an Application to the German, Working Paper, No. 86, Oesterreichische
Nationalbank (OeNB), Vienna

This Version is available at:
https://hdl.handle.net/10419/264678

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/264678
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


≈√

O e s t e r r e i c h i s c h e  Nat i ona l b a n k

W o r k i n g  P a p e r  8 6

Te s t i n g  f o r  L o n g e r  H o r i z o n

P r e d i c t a b i l i t y  o f  R e t u r n

Vo l at i l i t y  w i t h  a n  A p p l i c at i o n

t o  t h e  G e r m a n  D A X

B u r k h a r d R au n i g



    

 

 
Editorial Board of the Working Papers 
 
 
Eduard Hochreiter, Coordinating Editor  
Ernest Gnan, 
Guenther Thonabauer 
Peter Mooslechner 
Doris Ritzberger-Gruenwald 
 
 
 
 
 

 
 
 
 
 

 
Statement of Purpose 
 
The Working Paper series of the Oesterreichische Nationalbank is designed to disseminate 
and to provide a platform for discussion of either work of the staff of the OeNB economists or 
outside contributors on topics which are of special interest to the OeNB. To ensure the high 
quality of their content, the contributions are subjected to an international refereeing process. 
The opinions are strictly those of the authors and do in no way commit the OeNB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Imprint: Responsibility according to Austrian media law: Guenther Thonabauer, Secretariat of 
the Board of Executive Directors, Oesterreichische Nationalbank 
Published and printed by Oesterreichische Nationalbank, Wien. 
The Working Papers are also available on our website:  
http://www.oenb.co.at/workpaper/pubwork.htm 
 



    

 

 
 
 

Editorial 
 
 
 
 
 
Volatility of financial returns as a measure of risk is a key parameter in asset 

pricing and risk management and holding periods for financial instruments of 

several weeks or month are common. Nevertheless, little is known about the 

predictability of return volatility at longer horizons. In the present paper, the 

author investigates the predictability of return volatility of the German DAX for 

forecasting horizons from one day to 45 days with a new model-free test 

procedure that avoids joint assessments of predictability and assumed volatility 

models. In Monte Carlo simulations the new test is compared with two 

alternative model-free test procedures. The simulations indicate that the new test 

has good statistical properties and is more powerful then the other two tests if 

the distribution of returns is fat tailed.  
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Abstract 
 
Volatility of financial returns as a measure of risk is a key parameter in asset pricing and risk 
management and holding periods for financial instruments of several weeks or month are 
common. Nevertheless, little is known about the predictability of return volatility at longer 
horizons. This paper investigates the predictability of return volatility of the German DAX for 
forecasting horizons from one day to 45 days with a new model-free test procedure that 
avoids joint assessments of predictability and assumed volatility models. In Monte Carlo 
simulations the new test is compared with two alternative model-free test procedures. The 
simulations indicate that the new test has good statistical properties and is more powerful then 
the other two tests if the distribution of returns is fat tailed. Contrary to earlier findings 
according to which the return volatility of the DAX is only predictable for 10 to 15 trading 
days, the empirical evidence provided in this study suggests that the volatility of DAX returns 
is predictable for horizons of up to 35 trading days and may be forecastable at even longer 
horizons.   
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1 Introduction 
 
Volatility, defined as the standard deviation of financial returns, is an important measure of 

financial risk and forecasts of future volatility play a key role in the area of asset pricing, 

portfolio selection and risk management. For the accurate pricing, hedging and risk analysis 

of financial instruments traders and risk managers need accurate forecasts of volatility. 

Economists are also interested in volatility because volatility forecasts can serve as useful 

indicators of the future trend of the economy.1 Volatility measures of major financial series 

are indeed routinely analyzed by Central Banks as for example in the monthly bulletin of the 

European Central Bank.  

 A number of studies have examined the forecasting performance of a variety of 

different volatility models, typically at short horizons (for a recent survey, see Poon and 

Granger, 2001). However, still little is known about the predictability of volatility over longer 

horizons such as weekly or monthly. This is unfortunate because the issue is important. For 

example, risk managers frequently have to deal with assets where the assumption of a holding 

period of one month or longer appears to be much more appropriate than the standard 

assumption of a one day- or ten day holding period (Chorafas, Ch. 11, 1998). In such a 

situation the longer horizon predictability of volatility becomes an important question. If 

volatility is predictable at longer horizons then more sophisticated models like GARCH, 

stochastic volatility or related approaches should be useful for forecasting volatility (for a 

survey of these models, see Campbell, Lo and McKinlay, 1997, Mills, 1999, Gourieroux and 

Jasiak, 2001). However, if volatility is unpredictable at longer horizons then an estimate of the 

unconditional standard deviation is probably the best that one can hope for and more 

complicated forecasting models may not be beneficial.2  

                                                 
1 For example Annert, De Ceuster and Valckx (2001) find that estimates of recession probabilities improve when 
financial volatility is taken into account. 
2 If an option contract on the asset with a time to maturity equal to the desired forecasting horizon is available 
then the implicit volatility backed out of the theoretical formular for the option price could be used as an 
alternative forecast of the volatility of the underlying asset returns.    
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Some studies, including Pagan and Schwert (1990), Figlewski (1997) West and  Cho ( 

1995), Brailsford and Faff (1996), evaluate the forecasting performance of different volatility 

models over weekly, monthly or even longer horizons. Such model-based evaluations are 

informative but problematic if one is interested in the predictability of volatility per se 

because the results can vary not only with the forecasting horizon but also with the assumed 

model. To avoid this joint hypothesis problem, Christoffersen and Diebold (2000) examine 

the predictability of volatility of a number of financial return series for forecasting horizons of 

up to 20 trading days with the help of a model-free test procedure. They also ask how strong 

the predictability at different horizons might bee. Their main findings are that volatility is 

largely unpredictable for horizons beyond 10-15 trading days and that the degree of 

predictability decreases quickly with increasing horizon. 

This paper proposes an alternative model-free test procedure to assess the 

predictability of return volatility at longer horizons using a definition of predictability 

developed in Clements and Hendry (1998). The new test procedure utilizes recent results from 

the density forecast evaluation literature (Crnkovic and Drachman, 1997, Diebold, Gunther 

and Tay, 1998 and Clements and Smith, 2000) and empirical distribution functions (EDF’s) of 

nonoverlapping financial returns. Because the test procedure uses empirical distribution 

functions it is named EDF-predictability test. A simple measure of the strength of 

predictability is also proposed. In a simulation study the power and the size of the test 

procedure is examined and compared with the asymptotic version of the runs test of 

Christoffersen and Diebold (2000) and the classical ARCH test (Engle, 1982). The 

simulations suggest that the EDF-predictability test is more powerful than the runs test and 

virtually as powerful as the ARCH test if the returns are conditionally normally distributed. If 

the conditional return distributions are fat-tailed, the simulations indicate that the EDF-

predictability test is more powerful then the other two tests. It is further pointed out that under 

certain distributional assumptions the EDF-predictability test is equivalent to the classical 
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ARCH test. In an empirical application, the three test procedures are used to examine the 

predictability and the strength of predictability of the German stock index DAX for 

forecasting horizons ranging from 1 day to 45 trading days. The empirical evidence from the 

EDF procedure points towards a predictability of volatility for horizons of up to 30-35 trading 

days.   

The rest of the paper is organized as follows. Section 2 discusses the notion of 

predictability used in this paper. The new test procedure and its relationship to the classical 

ARCH test as well as a simple measure of the strength of predictability are described in 

Section 3. The results of a Monte Carlo Study concerning the power and the size of the EDF-

predictability-, runs- and the classical ARCH test are reported in Section 4. The findings 

about the predictability- and the strength of predictability of the volatility of the DAX return 

series are presented in Section 5. Some conclusions are provided in section 6. 

 

2 Predictability  

This section introduces a notion of unpredictability developed in Clements and Hendry 

(1998). Unpredictability of a random variable yt with distribution function 
tyF with respect to 

an information set Ωt-1 can be defined as follows: 

Definition: A random variable yt is unpredictable with respect to an information set Ωt-1 if the 

conditional and the unconditional distributions coincide: 

                                                     ( ) ( )ty1tty yFΩyF
tt

=− .                                                         (1) 

 

This definition of unpredictability is intuitive and requires that the information set Ωt-1 does 

not improve the prediction of yt. If Ωt-1 is assumed to be the history of yt i.e. Ωt-1 = (yt-1, yt-

2,...) then the definition implies that the realizations of a stochastic process T}t,{y t ∈  up to 
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time t-1 do not help to predict values of yt for time t.3 From this definition, a criterion for the 

predictability of volatility of a return series {rt, t = 1,…,n} can be developed. Assume that a 

sample n}1,...,t,{e t =  of an already centered covariance stationary return process is available 

(i.e. et = rt – E[rt│Ωt-1]). The joint distribution F(en, en-1,…,e1) of this sample can always be 

factored into the product of n-1 conditional distributions and a marginal distribution: 

                                         )Ω(eF)e,...,e,F(e
n

1t
1tte11nn t∏

=
−− = .                                                  (2) 

Putting Ωt-1 = (et-1,…,e1), it follows that {et, t = 1,…,n} is unpredictable with respect to its 

own past if the definition of unpredictability holds for each  member of the series, i.e. 

                                          )F(e)e,...,e,F(e
n

1t
t11nn ∏

=
− = ,                                                         (3a) 

which is just the definition of statistical independence. This (strong) version of 

unpredictability assumes that the marginal distributions are the same for all et and equal to the 

unconditional distribution of the centered return series, hence the data should be 

independently and identically distributed (iid) with distribution function Fh(.) and constant 

standard deviation hσ  if volatility is unpredictable at horizon h. Condition (3a) implies that all 

existing conditional moments are unpredictable from past observations. A weaker form of 

(3a) requires that the conditional variance of the centered returns et is constant and equal to 

the unconditional variance 2
hσ  at a forecasting horizon h, i.e.  

                                          )Var(e)ΩVar(e h1tt =−  for all t.                                                   (3b) 

Note that (3b) does not rule out that higher moments than the second are predictable. 

Volatility is said to be predictable at horizon h if conditions (3a) or (3b) do not hold. 

 

                                                 
3 Unpredictability is defined relative to the information set used, therefore, unpredictability of yt with respect to 
Ωt-1 does not imply that yt could not be predicted with the help of another information set Ψt-1 ≠  Ωt-1. The 
volatility of a return series could, for example, be unpredictable from past returns but predictable from quoted 
option prices. 
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3 Methods 

The test procedures and the measure of the strength of predictability outlined below assess the 

predictability of volatility at various horizons from observed returns without conditioning on 

specific models of volatility; thus they are model-free. All tests use nonoverlapping centered 

returns to avoid dependencies in the data induced by temporal aggregation of overlapping 

returns. For example, to investigate predictability for a 20 day forecasting horizon, 

nonoverlapping 20 day returns are used. 

 

3.1 The EDF-Predictability Test   

The proposed new test procedure utilizes recent ideas from density forecast evaluation 

developed in Crnkovic and Drachman (1997), Diebold, Gunther and Tay (1998), Clements 

and Smith (2000)-, and surveyed in Tay and Wallis (2000). A short digression into this 

literature is necessary to explain the procedure. The basic result on which density forecast 

evaluations are built dates back to Rosenblatt (1952) and is given by the probability integral 

transformation 

                                                )(yPp(u)duz tt

y

t

t

∫
∞−

== ,    t = 1,…,n.                                    (4a) 

In (4a) Pt(yt) denotes the predicted conditional distribution and pt(.) denotes the predicted 

conditional density of realization yt of the stochastic process {yt, t = 1,…,n}. If conditioning is 

with respect to the past of yt, Diebold et al. show that the resulting transformed series {zt, t = 

1,…,n} must be a sequence of independent and uniformly distributed U(0,1) random variables 

if the forecasted distributions {Pt(yt), t = 1,…,n} and the true distributions {Ft(yt), t = 1,…,n} 

coincide. Frühwirth-Schnatter (1996) and Berkowitz (2000) suggest a subsequent application 

of a quantile transformation, based on the inverse of a standard normal distribution  

                                               )(zΦn t
1

t
−= ,    t = 1,…,n                                                       (4b) 
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to the members of a z-series that yields a sequence {nt, t = 1,…,n} of independent and 

identically distributed standard normal N(0,1) random variables provided the predicted 

conditional distributions are correct.  

 Condition (3a) suggests a direct test for predictability of volatility. Recall that 

unpredictability of volatility of a return series {et, t = 1,…,n} requires that the conditional 

distribution of each et is equal to the unconditional distribution of {et, t∈T). Hence, a series of 

nonoverlapping centered returns-, transformed with respect to its unconditional distribution 

P(.) 

                 { ])(eP[Φn)],...,(eP[Φn)],(eP[Φn 1
1

111-t
1
1t1-tt

1
tt

−−
−

− === , t = 1,…,n}                     (5) 

should be iid N(0,1) if volatility is unpredictable at horizon h (i.e. )P(e)F(e)(eF tt1-ttet
==Ω  

holds for all t). Since the unconditional distribution P(.) is unknown, it can only be estimated. 

One strategy would be to assume a certain parametric family of distributions, to estimate the 

parameters from the data, and to transform the centered returns with respect to the estimated 

unconditional distribution. The properties of the transformed data would then crucially 

depend on the assumptions about the unconditional distribution of the return series, however.  

 A more attractive nonparametric alternative that requires no assumption about a 

particular family of distributions is the empirical distribution function (EDF) of a centered 

return series. The value )(eP i

∧

of the EDF for a particular ei , n]1,...,t[i =∈ , is given by 

                                                }e{en)(eP i

n

1t
t

1
i ≤= ∑

=

−
∧

1 ,                                                          (6) 

where 1 is an indicator function that takes on the value 1 if it ee ≤  and 0 otherwise. The 

empirical distribution function carries all the information about the sample, except the order 

of the observed data. Given a sample of nonoverlapping returns, the strategy of the testing 

procedure is:  
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a) to transform the centered returns via their empirical distribution function, i.e. to 

compute zt = )(eP̂ t  for each et. This computation is the empirical counterpart to the 

probability integral transformation (4a). 

b) to create an n-series by transforming the zt’s resulting from step a) via the inverse of 

the standard normal distribution function (4b). 

c) to examine the properties of the resulting n-series.  

Note that the transformations always produce an unconditionally standard normally 

distributed n-series because an unconditional U(0,1) distribution is induced by the 

transformations via the empirical distribution function. However, if volatility is predictable, 

then the true conditional distributions differ from the unconditional distribution. The 

conditional distributions tend to be too wide during times of high volatility and too tight 

during times of low volatility. This means that the resulting nt’s will fall into certain regions 

of the unconditional standard normal distribution in a non-random fashion. In other words, the 

transformed data will not be independent if volatility is predictable. In particular, if volatility 

is predictable, then the sequence of squared transformed returns n}1,...,t,{n 2
t =  will display 

clusters similar to the clusters observed in the original squared returns. On the other hand, if 

volatility is unpredictable then the nt
2’s must be uncorrelated and cannot be predictable from 

past squared transformed returns. This reasoning suggests an ARCH-type test applied to the 

squared transformed returns. In a regression 

                                                t
2

dtd
2

1t10
2
t εnα...nααn ++++= −− ,                                          (7) 

where the error term tε  is assumed to be a martingale difference sequence and d denotes the 

specified lag length, an F-test should not reject the hypothesis 0α...αα d21 ====  at 

conventional significance levels if volatility is unpredictable at horizon h. 



  

 9

3.2 Relationship Between the EDF-Predictability Test and the Classical ARCH Test 

The well-known ARCH test for conditional heteroskedasticity-, developed in Engle (1982) 

uses the original centered squared returns. One version of the test consists of testing the null 

of homoskedasticity, implied by the restriction 0β...ββ m21 ====  with an F-test against 

the alternative of heteroskedasticity in the regression 

                                                t
2

mtm
2

2t2
2

1t10
2
t ηeβ...eβeββe +++++= −−− ,                             (8) 

where 2
te  denotes squared centered returns, m is the chosen lag length, and the error term tη  

is assumed to have zero mean and constant variance. An F-statistic that does not reject the 

hypotheses of homoskedasticity at conventional significance levels can be interpreted as 

evidence against predictability of volatility.  

 Observe the similarity between equations (7) and (8). The EDF-predictability 

regression in equation (7) simply replaces the original squared centered returns by the 

corresponding 2
tn s and there is indeed a connection between (7) and (8) in the density 

forecast evaluation framework. Running the classical ARCH regression (8) is the same thing 

as running regression (7) if the original observations are transformed under the assumption of 

an unconditional normal distribution. To see this, assume that et can be written as the product 

ttt Xσe = , where σt is the conditional standard deviation and the Xt’s are uncorrelated 

random variables following some arbitrary distribution D(0,1) with zero mean and unit 

variance. Then under the assumption of unconditionally normally distributed density forecasts 

transformations (4a) and (4b) produce a series ( ) ttt X/σσn =  via the relationship 

( )[ ] /σe/σeΦΦn tt
1

t == −  where σ denotes the unconditional standard deviation. Hence, in this 

special case equation (7) is simply equation (8) scaled by 2/1 σ . Both regressions produce 

exactly the same R-squares and hence exactly the same F-statistics under this particular 

distributional assumption.   
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 Having shown that the classical ARCH test and the EDF-predictability test are 

equivalent under the assumption of an unconditional normal distribution (this is the implicit 

assumption for the error process under the null hypothesis of homoskedasticity made in Engle 

(1982) in the original derivation of the ARCH-test, see also Bollerslev, Engle and Nelson, 

1994, p 2974 ff) it can now be seen that both procedures differ under alternative 

distributional assumptions. Whereas the classical ARCH test assumes a normal distribution 

under the null of homoskedasticity, the EDF-predictability test takes the unconditional 

distribution of the data and compares it with the true conditional distributions. The 

distribution under the null of unpredictability of volatility in the EDF-predictability test is 

therefore given by a nonparametric estimate of the unconditional distribution of centered 

returns. The auxiliary regression (7) based on squared nt’s then examines whether the 

variances of the conditional distributions of the centered returns differ in a predictable way 

from the variance of the unconditional distribution of the centered returns.         

 

3.3 Strength of Predictability 

It is not only important to know whether volatility is predictable or not, but also whether the 

predictability of volatility at different horizons is strong or weak.  Equation (7) suggests a 

simple measure sh of the strength of predictability of return volatility at a particular horizon h 

by summing up the values of the coefficients αi from the lagged nt
2’s considered in the 

regression, i.e. 

                                                                  ∑
=

=
d

1i
ih αs .                                                             (9) 

This measure is easy interpreted. If predictability of volatility from past returns is strong then 

the sum of coefficients of the lagged nt
2’s should be large because the lagged nt

2’s should then 

be highly correlated with current nt
2’s. On the other hand, this sum should be close to zero if 

volatility is unpredictable at horizon h because past nt
2’s should then not help to predict 
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current nt
2’s which implies coefficients close to zero.4 Confidence intervals for sh are very 

easy to simulate for any sample size and forecasting horizon. Any desired confidence interval 

at horizon h for a sample of size T can be obtained from the appropriate quantiles of a 

simulated distribution of sh, obtained from the coefficients from regressions (7) based on 

samples of size T of randomly generated squared nt’s where the nt’s are drawn from a 

standard normal distribution.    

 

4 Simulation Study 

The power and the size of the EDF-predictability test at different horizons is investigated in a 

Monte Carlo experiment and compared with the power and size of the classical ARCH test 

and the asymptotic version of the runs test proposed in Christofersen and Diebold (2000).5 

Four standard models of daily returns that have been examined in Christoffersen and Diebold 

are considered. To analyze the power of the tests, a GARCH(1,1)-n process with Gaussian 

innovations and a GARCH(1,1)-t process with innovations that follow a fat tailed t-

distribution with five degrees of freedom are specified for  

daily returns.  

 

                                                t
2
tt xσe =                                                                         (10a) 

                                                2
1t

2
t

2
t βσαeγσ −++=                                                            (10b) 

                                                tx ~ iid N(0,1), for GARCH(1,1)-n                                    (10c) 

                                                 
4 A similar measure of the strength of predictability could also be defined from the ARCH test regression (9) and 
a measure in the same spirit is developed in Christoffersen and Diebold (2000) for the runs test.  
 
5 The runs test for the predictability of volatility is based on the theory of interval forecast evaluation 
(Christoffersen, 1998) and considers a pre specified (symmetric) interval [-c, c] of the unconditional return 
distribution where c is a multiple of the standard deviation of the unconditional return distribution. In this test an 
indicator sequence {It} defined as It = 1, if et ∈  [-c, c], and It = 0, otherwise, is examined. Unpredictability of 
volatility implies an independent indicator sequence. The independence of the indicator sequence is assessed 
with a runs test that can be derived from combinatorial arguments (Wolfowitz,1943, Feller, 1968). For further 
details, see Christoffersen an Diebold (2000).    
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                                                tx ~ iid t5, for GARCH(1,1)-t                                             (10d) 

In the simulations the same parameters (α = 0.06 and β = 0.93) as in Christoffersen and 

Diebold are used. These parameters generate a highly persistent volatility dynamics of daily 

returns (α + β = 0.99) with non trivial volatility persistence at longer horizons.6 To asses the 

size of the test statistics the processes xt ~ iid N(0,1) and xt ~ iid t5 with zero mean and 

constant volatility are simulated. 

 The experiments are carried out as follows. First, 10,000 observations of logarithmic 

daily returns (which is close to the number of available daily observations of the DAX in the 

empirical analysis) are generated with each process. Then the daily returns are aggregated to 

nonoverlapping h-day returns, h = 1,…,45. On each aggregated return series the runs-, EDF-

predictability-, and ARCH tests are carried out assuming a 5% significance level. For the runs 

test a fixed +/- 1σh interval, where σh denotes the estimated unconditional standard deviation 

at horizon h, is assumed. In the ARCH- and EDF-predictability tests 10 lags of the squared 

returns and squared n-transformed returns are considered at each horizon, respectively. This 

procedure is repeated 10,000 times. Figure 1 and Figure 2 show the estimated power of the 

tests for the GARCH-n and the GARCH-t model. 

INSERT FIGURES 1 AND 2 ABOUT HERE 

As to be expected, the power of the three tests decreases with horizon due to the diminishing 

persistence in volatility at longer horizons and the declining number of observations involved 

in the test procedures. The power of all tests is quite high for short horizons and still 

acceptable at longer horizons. However, figures 1 and 2 show that for both GARCH models 

the power of the runs test is lower then the power of the other tests at horizons between 10 to 

                                                                                                                                                         
 
6 The theoretical persistence in variance for the GARCH(1,1) process, computed with the aggregation formulars 
in Drost and Nijman (1993) assuming a kurtosis of 3 for xt , after 45 trading days is still α + β =0.636.   
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30 days.7 The ARCH test and the EDF-predictability test have virtually the same power to 

detect volatility predictability in the GARCH-n model. Note that for the GARCH-t model the 

power of the EDF-predictability test clearly exceeds the power of the ARCH test and the runs 

test at all but the shortest horizons. Hence, the EDF-predictability test appears to be more 

powerful then the other two tests at all but the shortest horizons for data that are characterized 

by fat-tailed conditional distributions, the latter being rather the norm than the exception for 

many financial return series. 

 The estimated size of the test statistics for aggregated returns from the homoskedastic 

processes xt ~ iid N(0,1) and xt ~ iid t5, based on 10,000 simulations and computed at a 

significance level of 5%, are displayed in figures 3 and 4.  

INSERT FIGURES 3 AND 4 ABOUT HERE 

In the case of the iid N(0,1) process the size of the ARCH test and the EDF-predictability test 

is virtually identical and in general quite close to the theoretical level of 5% with a slight 

downward trend in size with growing horizon. The size of the runs test appears to be correct 

only at very short horizons and compared to the size of the other test the size of the runs test 

decreases much more at longer horizons. The size patterns are somewhat different for the 

simulated iid t5 process. The size of the EDF-predictability test is again invariably very close 

to the theoretical level at all investigated horizons (albeit a slight downward trend is again 

visible). The same is true for the size of the ARCH test at horizons beyond 10 to 15 trading 

days. At shorter horizons the estimated rejection rates for the ARCH test tend to be somewhat 

too conservative. The size pattern of the runs test for the iid t5 model again displays 

significant size distortions at longer forecasting horizons.  

 

 

                                                 
7 The results for the runs-test are quite similar to the simulation results for the exact version of the runs test 
investigated in Christoffersen and Diebold (2000) over a period of 20 trading days for the same parameters in the 
GARCH(1,1)-n and GARCH(1,1)-t models.  
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5 Empirical Analysis of Volatility Predictability of DAX returns 

This section reports the results from the three model-free tests about the predictability of the 

return volatility of the German stock market index DAX for forecasting horizons ranging 

from 1 to 45 trading days. Daily values of the index starting at 12/31/1964 and ending at 

09/05/2001, obtained from Datastream, are used to calculate daily logarithmic returns which 

results in a sample of 9484 observations. The daily returns are then used to compute 

nonoverlapping h-day returns for h = 1,…, 45 trading days. Since the focus of this study is on 

conditional volatility, possible predictability in the conditional mean is removed by first 

estimating a sixth order autoregression for each of the 45 return series. The residuals resulting 

from these regressions are then called centered returns, or simply returns, and are used to 

assess predictability. To verify whether the procedure has successfully removed predictability 

in mean the correlograms of the individual centered return series are examined. The 

correlograms indicate no sign of autocorrelation. To gain some information about the 

distributional properties of the nonoverlapping return series at different horizons the 

skewness- and kurtosis coefficients of the return distributions are computed. The results of 

these calculations are displayed in figure 5 and 6. It is easy to see that the return distributions 

are negatively skewed and fat-tailed at all horizons.8   

  INSERT FIGURES 5 AND 6 ABOUT HERE 

 Let us now turn to the results about the predictability of volatility. Figure 7 displays 

the p-values resulting from the runs test. It also contains lines that indicate 5% and 10% 

significance levels.  

INSERT FIGURE 7 ABOUT HERE 

The p-values are quite low for horizons of up to 14 trading days suggesting that the volatility 

of the DAX is forecastable within this horizon. The pattern of the p-values is quite erratic for 

                                                 
8 Statistical tests (not reported but available upon request) reveal that the skewness coefficients are virtually 
always significantly different from 0 at conventional significance levels and that the kurtosis coefficients are 
always strongly significantly different from 3.    
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horizons from 15 to 34 trading days, however. High p-values-, rejecting predictability-, are 

frequently followed by p-values below conventional significance levels of 5% and 10%, again 

suggesting predictability. Given the erratic behavior of the p-values for horizons beyond 14 

trading days, the evidence from the runs test does not lead to a clear conclusion as to whether 

volatility is predictable or not at these longer horizons. Beyond 34 trading days the p-values 

from the runs test never hit the conventional significance levels, however. Hence, it seems 

somewhat safer to conclude that volatility is unlikely to be predictable at horizons longer than 

35 to 40 trading days. The results from the ARCH test summarized in Figure 8 are 

qualitatively similar to the findings obtained with the runs test and lead to the same 

conclusions. 

INSERT FIGURE 8 ABOUT HERE 

 A much clearer picture emerges from figure 7, where the p-values from the EDF-

predictability tests are plotted against the number of trading days. For horizons shorter then 25 

trading days the p-values never cross the 5% line and for horizons between 25 and 35 trading 

days the p-values are only three times slightly above the 10% level of significance and well 

below the 20% level. Thus, in contrast to the runs- and ARCH tests, the EDF-predictability 

test provides much stronger evidence for predictability of volatility for holding periods of up 

to 34 trading days. At horizons larger than 34 trading days the p-values stay above the 10% 

line pointing towards potential unpredictability of volatility.  

INSERT FIGURE 9 ABOUT HERE 

 It is interesting that the p-values of the runs- and ARCH tests behave quite erratic for 

horizons between 15-35 days whereas the p-values of the EDF-predictability test do not. 

Possible explanations are lower power of both tests and additionally in the case of the 

classical ARCH test the sensitivity of the test against violations of the normal distribution 

assumption. To gain some insights into these issues the p-values for the period from 15-35 

trading days obtained from the different tests are regressed on the corresponding skewness- 
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and kurtosis coefficients of the return distributions. If a test is robust against skewed and/or 

fat-tailed data then one would expect that the skewness- and kurtosis coefficients do not help 

to explain the p-values of the test statistic. Table 1 shows the results from the regressions. 

  INSERT TABLE 1 ABOUT HERE   

The estimated regression coefficients for skewness and kurtosis are clearly statistically 

insignificant in the case of the EDF-predictability test and the runs test and both variables 

have no explanatory power as indicated by the low R2’s. This finding supports the conjecture 

that low power might be a possible explanation for the erratic behavior of the runs test. Things 

are different for the ARCH test. The coefficient for skewness is negative and significant at the 

5% level implying that the p-values tend to rise with more negative skewness. Moreover, the 

rather high R2 of 0.62 (the adjusted R2 is 0.58) indicates that the results from the classical 

ARCH test are driven by violations of the symmetry of the return distributions to a substantial 

degree.9    

 Let us finally discuss the results about the strength of the predictability of return 

volatility. Figure 10 contains the sums of the estimated coefficients sh for the forecasting 

horizons of h = 1,…,45 trading days, obtained from the EDF-predictability test regressions 

based on 10 lags of squared transformed returns. The figure also shows simulated 95%- and 

90% confidence intervals (10,000 simulations) for unpredictability based on the exact number 

of available nonoverlapping returns for the corresponding forecasting horizons with the 

method described in section 3.3.  

INSERT FIGURE 10 ABOUT HERE 

The pattern of sh indicates that the degree of predictability of the return volatility of the DAX 

decreases rather slowly with horizon. As expected, predictability appears to be quite strong at 

short horizons, more interestingly, the moderate decline in the strength of predictability 

                                                 
9 This finding is consistent with the Monte Carlo evidence provided in Gregory (1989). He finds that the ARCH 
test is fairly robust against leptokurtic error distributions but sensitive to departures from symmetry of the error 
distribution.  
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suggests that the predictability of volatility is not weak on average for much longer 

forecasting horizons such as 25 to 35 days. Beyond 38 trading days volatility predictability 

seems to diminish significantly.   

 

6 Conclusions 

This paper introduced a model-free test procedure that avoids joint assessments of 

predictability and assumed forecasting models to examine two questions of vital importance 

in finance. Is the volatility of financial returns predictable for forecasting horizons beyond a 

few trading days? If yes, to what a degree is it predictable? The model-free test procedure 

makes it possible to assess predictability of volatility without postulating any particular 

volatility model. A simple measure of the strength of volatility predictability was also defined. 

In a simulation experiment the new test, named the EDF-predictability test, was compared 

with two alternative model-free test procedures, namely the classical ARCH test and a runs 

test. The results point towards better statistical properties of the EDF-predictability test (more 

power, more accurate size) if the conditional distributions of the data are fat-tailed. It was also 

shown that the classical ARCH test arises as a special case in the density forecast evaluation 

framework underlying the EDF-predictability test if one assumes unconditionally normally 

distributed density forecasts.  

 The three tests where then applied to nonoverlapping centered returns of the DAX for 

horizons from 1 to 45 trading days. The empirical results about the predictability of the DAX 

return volatility from the runs- and ARCH tests are qualitatively similar and suggest that the 

volatility of the DAX returns is at least predictable for forecasting horizons below 15 to 17 

trading days. Both tests provide no clear answer for horizons between 15 to 35 days, however. 

Predictability is sometimes rejected and sometimes not. A simple regression analysis suggests 

that lower power in the case of the runs test and a combination of lower power and sensitivity 

to departures from normality in the case of the ARCH test might be responsible for these 
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results. In contrast, the evidence from the EDF-predictability test strongly suggests that the 

volatility of DAX returns is predictable from past returns for horizons of up to 35 trading days 

and the proposed measure of the strength of predictability indicates that the degree of 

predictability of the DAX return volatility decreases rather slowly, implying some 

predictability even at horizons of 30 to 35 trading days. From the practitioners point of view, 

the findings suggest that better forecasts of the DAX return volatility than estimates of the 

unconditional standard deviation can potentially be made for holding periods beyond two or 

three weeks.  

 An obvious extension to this study would be to apply the EDF-predictability test to 

other financial series to gain a more comprehensive body of empirical evidence concerning 

the predictability of return volatility as well as it’s strength at longer horizons. It might also be 

interesting to compare longer horizon volatility forecasts from more sophisticated forecasting 

models with simple unconditional volatility forecasts using alternative statistical and 

economic metrics. Finally, the EDF-predictability test could also be used as a diagnostic test 

for ARCH effects in time series data. It might therefore be interesting to explore the 

usefulness of the EDF-prdictability test under non standard distributions of the error terms and 

different volatility processes along the lines of Van Dijk, Fransens and Lucas (1999) and 

Peguin-Feissolle (1999). These are issues for future research.  



  

 19

References 

Annaert, J., De Ceuster, M. J.K. & Valckx, N. (2001). Financial Market Volatility : 

Informative in Predicting Recessions. Bank of Finland Discussion Paper No. 14. 

 

Berkowitz, J. (2000). Testing Density Forecasts, with Applications to Risk Management. 

Working Paper, University of California, Irvine (forthcoming in the Journal of Business and 

Economic Statistics).  

 

Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992). ARCH Modeling in Finance: A Review 

of the Theory and Empirical Evidence. Journal of Econometrics, 52, 5-60. 

 

Bollerslev T., Engle, R. F. & Nelson, D. B. (1994). ARCH Models. In Handbook of 

Econometrics, Volume 4, Engle R. F. and McFadden D. L. eds. 

 

Brailsford, T. J. & Faff, R. W. (1996). An Evaluation of Volatility Forecasting Techniques. 

Journal of Banking and Finance, 20, 419-438. 

 

Campbell, J. Y., Lo, A. W. & McKinlay, A. C. (1997). The Econometrics of Financial 

Markets. Princeton. Princeton University Press 

 

Clements, M. P. & Hendry, D. F. (1998). Forecasting Economic Time Series. Cambridge. 

Cambridge University Press. 

 

Clements, M. P., & Smith, J. (2000). Evaluating the Forecast Densities of Linear and Non-

linear Models: Applications to Output Growth and Unimployment. Journal of Forecasting, 19, 

255-276. 

 

Chorafas, D. N. (1998). The Market Risk Amendment: Understanding the Marking-to-Model 

and Value-at-Risk.McGraw-Hill: New York, Chicago, etc.  

 

Christoffersen, P. F. (1998). Evaluating Interval Forecasts. International Economic Review, 

39, 841-862. 

 



  

 20

Christoffersen, P. F. & Diebold, F. X. (2000). How Relevant is Volatility Forecasting for 

Financial Risk Management. The Review of Economics and Statistics, 82(1), 12-22. 

 

Crnkovic, C., & Drachman, J. (1997). Quality Control. In VaR: Understanding and Applying 

Value-at-Risk. London: Risk Publications. 

  

Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Evaluating Density Forecasts, with 

Applications to Financial Risk Management. International Economic Review, 39, 863-883. 

 

Drost, F. & Nijman, T. (1993). Temporal Aggregation of GARCH processes. Econometrica, 

61, 909-927. 

 

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasicity with Estimates of the 

Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007. 

 

Figlewski, S. (1997). Forecasting Volatility. Financial markets, Institutions and Instruments. 

Monograph. New York University Salomon Center. 

 

Frühwirth-Schnatter, S. (1996). Recursive residuals and model diagnostics for normal and 

non-normal state space models. Environmental and Ecological Statistics, 3, 291-309. 

 

Gourieroux, C. & Jasiak, J. (2001). Financial Econometrics. Princeton University Press. 

Princeton and Oxford. 

 

Gregory, A. W. (1989). A Nonparametric Test for Autoregressive Conditional 

Heteroscedasticity: A Markov-Chain Approach. Journal of Business and Economic Statistics, 

7(1), 107-115. 

 

Mills, T. C. (1999). The Econometric Modelling of Financial Time Series. 2nd Edition. 

Cambridge University Press. 

 

Pagan, A. R. & Schwert, W. G. (1990). Alternative Models for Conditional Volatility. Journal 

of Econometrics, 45, 267-290. 

 



  

 21

Peguin-Feissolle, A. (1999). A Comparison of the Power of some Tests for Conditional 

Heteroscedasticity. Economics Letters, 63, 5-17. 

 

Poon, S.H. & Granger, C. (2001). Forecasting Financial Market Volatility. Working Paper. 

 

Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. Annals of Mathematical 

Statistics, 23, 470-472. 

 

Feller, W. (1968). An Introduction to Probability Theory and its Applications. New York, 

etc., John Wiley & Sons. 

 

Tay, A. S. & Wallis, K. F. (2000). Density forecasting: A Survey. Journal of Forecasting, 19 

(4), 235-254. 

 

Van Dijk, D., Fransens, P. H. & Lucas, A. (1999). Testing for ARCH in the Presence of 

Additive Outliers. Journal of Applied Econometrics, 14, 539-562. 

 

West. K. D. & Cho, D. (1995). The Predictive Ability of Several Models of Exchange Rate 

Volatility. . Journal of Econometrics, 69, 367-391 

 

Wolfowitz, J. (1943). On the Theory of Runs with some Applications to Quality Control. 

Annals of Mathematical Statistics, 14, 280-288. 



  

 22

Figures 

 
Figure 1: Power of runs-, EDF-predictability- and ARCH tests, GARCH(1,1)-n model. 
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The graph shows rejection rates (MC p-value) of the null hypothesis of unpredictability of volatility  
with significance level of 5% based on 10,000 replications. In the runs test the interval defining the 
indicator sequence is  +/- 2σh, where σh denotes the estimated unconditional standard deviation  
at horizon h. In the EDF-predictability- and ARCH tests the first 10 lags of the dependent variable are used as 
 regressors. For further details, see text. 
 

 

Figure 2: Power of runs-, EDF-predictability- and ARCH tests, GARCH(1,1)-t model. 
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The graph shows rejection rates (MC p-value) of the null hypothesis of unpredictability of volatility 
with significance level of 5% based on 10,000 replications. In the runs test the interval defining  
the indicator sequence is  +/- 2σh, where σh denotes the estimated unconditional standard  
deviation at horizon h. In the EDF-predictability- and ARCH tests the first 10 lags of the dependent variable 
are used as regressors. For further details, see text. 
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Figure 3: Size of runs-, EDF-predictability- and ARCH tests, iid N(0,1) model. 
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The graph shows rejection rates (MC p-values) of the null hypothesis of unpredictability of volatility 
with significance level of 5% based on 10,000 replications. In the runs test the interval defining  
the indicator sequence is  +/- 2σh, where σh denotes the estimated unconditional standard 
deviation at horizon h. In the EDF-predictability- and ARCH tests the first 10 lags of the dependent variable  
are used as regressors. For further details, see text. 
 

Figure 4: Size of runs-, EDF-predictability- and ARCH tests, iid t5 model. 
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The graph shows rejection rates (MC p-value) of the null hypothesis of unpredictability of volatility with 
significance level of 5% based on 10,000 replications. In the runs test the interval defining  
the indicator sequence is +/- 2σh, where σh denotes the estimated unconditional standard  
deviation at horizon h. In the EDF-predictability- and ARCH tests the first 10 lags of the dependent variable 
 are used as regressors. For further details, see text. 
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Figure 5: Skewness coefficients of centered DAX return series 
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Skewness is defined by SK = m3/m2

3/2, where mj = n-1Σnej and n is the number of effective  
observations. 
 

 

 
 
 
 
 
Figure 6: Kurtosis of centred DAX returns 
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Kurtosis is defined by K = m4/m2

2, where mj = n-1Σnej and n is the number of effective observations.  
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Figure 7: P-values from runs tests of volatility predictability of centred DAX return series. 
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In the runs test the interval defining the indicator sequence is +/- 1σh, where  
σh denotes the estimated unconditional standard deviation at horizon h. 
 
 
 
 
Figure 8: P-values from ARCH tests of volatility predictability of centred DAX return series. 
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In the ARCH tests the first 10 lags of the dependent variable are used as regressors.  
For further details, see text. 
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Figure 9: P-values from EDF-predictability tests of volatility predictability of centred DAX return series. 
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In the EDF-predictability tests the first 10 lags of the dependent variable are used as regressors.  
For further details, see text. 
 
 
 
Figure 10: Strength of predictability of volatility of centered DAX return series 
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The Figure shows the sum of estimated coefficients (Sh) from equation (8) assuming 
10 lags together with simulated  95%- and 90% confidence intervals (10,000 simulations)  
of unpredictability.  For further details, see text. 
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Table 1: Regression of p-values from predictability tests for 15-35 trading days 
on skewness- and kurtosis measures. 
 
No. of  observations: 21 
 
dependent variable   regression coefficients 
   
  intercept  skewness kurtosis   R2   
 
p-EDF-pred. 0.072  -0.013  -0.010  0.046 
  (0.091)  (0.941)  (0.736) 
 
p-runs   0.022  0.322  0.072  0.073 
  (0.917)  (0.711)  (0.500) 
 
p-ARCH -0.164  -1.472  -0.077  0.620 
  (0.230)  (0.017)  (0.269) 
 
Notes: p-values of t statistics in brackets below coefficients.   
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