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Editorial 
 
 
 
This working paper was previously presented at one of the regular joint research 

workshops of the Deutsche Bundesbank and the Oesterreichische Nationalbank. 

It is also available as Bundesbank Working Paper No. 08/02. 

 

Abstract: 
Density forecasts have become quite important in economics and finance. For example, such 

forecasts play a central role in modern financial risk management techniques like Value at 

Risk. This paper suggests a regression based density forecast evaluation framework as a 

simple alternative to other approaches. In simulation experiments and an empirical application 

to in- and out-of-sample one-step-ahead density forecasts of daily returns on the S&P 500, 

DAX and ATX stock market indices, the regression based evaluation strategy is compared 

with a recently proposed methodology based on likelihood ratio tests. It is demonstrated that 

misspecifications of forecasting models can be detected within the proposed regression 

framework. It is further demonstrated that the likelihood ratio methodology without additional 

misspecification tests has no power in many practical situations and therefore frequently 

selects incorrect forecasting models. The empirical results provide some evidence that 

GARCH-t models provide good density forecasts. The results further suggest that extensions 

of statistical models with fat-tailed conditional distributions to models that incorporate higher 

order conditional moments beyond the conditional variance might be appropriate to capture 

the empirical regularities in financial time series in some cases.        
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1 Introduction 
 
A density forecast is a forecast of the entire probability distribution of a random variable. Recently, 

such forecasts have become quite important in the financial industry because they form the backbone 

of modern risk measures like Value at Risk (VaR) which are derived from forecasts of entire 

profit/loss distributions of financial portfolios (for details on VaR, see Jorion, 1997). Apart from risk 

management, density forecasts have also come to play a role in macroeconomic forecasting. Density 

forecasts of inflation are assessed in Diebold, Tay and Wallis (1999), density forecasts of output 

growth and unemployment are examined in Clements and Smith (2000) and Kaufmann (2000) 

evaluates the statistical adequacy of a dynamic Markov switching factor model for the business cycle 

using the predictive densities implied by the model (for a survey about density forecasting, see Tay 

and Wallis, 2000). Given the rapidly growing importance of density forecasts for economic 

forecasting in general and risk management in particular, techniques to evaluate the quality of density 

forecasts are of vital practical importance. 

Recently, Crnkovic and Drachman (1997) and Diebold, Gunther and Tay (1998) have 

introduced methodologies to evaluate the accuracy of density forecasts based on a probability integral 

transformation in Rosenblatt (1952). Applied to the realizations of a stochastic process, the 

transformation implies iid U(0,1) data if a sequence of density forecasts coincides with the sequence of 

true conditional densities. Frühwirth-Schnatter (1996) and Berkowitz (2000) extend this framework by 

utilizing a second transformation that implies iid N(0,1) data if a sequence of density forecasts is 

correct. Whereas Frühwith-Schnatter proposes certain indices to explore the adequacy of forecasting 

models, Berkowitz suggests a likelihood ratio (LR) framework to test for iid N(0,1). He further finds 

that the LR-framework is quite powerful even in small samples. However, the LR-framework 

maintains the assumption of normality and therefore does not cover the complete hypothesis.  

Unfortunately, under standard statistical assumptions about a forecasting model situations may 

arise where deficiencies in density forecasts cannot be detected within the LR-framework. An 

important case are density forecasts derived from GARCH-models with correctly specified first- and 

second moments estimated with quasi-maximum likelihood methods. This paper demonstrates that 

deficient density forecasts derived from such models may not be detected within the LR-framework. It 
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is further shown that the LR-methodology also has no power under the weaker condition of a correct 

specification of the conditional mean of a forecasting model, if normally distributed density forecasts 

are assumed.    

To overcome these problems, this paper proposes a regression framework in conjunction with 

tests for normality to evaluate the quality of density forecasts. The approach is motivated through a 

probabilistic reduction argument (Spanos, 1999, ch.15) and covers the alternative hypotheses of the 

LR-tests proposed in Berkowitz (2000) as a special case. Given a reasonable sample size, the 

regression framework does not require the assumptions of normality and homoskedasticity in tests 

concerning the correlation structure of a transformed series and the additional tests for normality 

provide further important information about deficiencies of density forecasts and hence about 

misspecifications of the models that were used to generate the forecasts. Since neglected conditional 

volatility dynamics in a forecasting model induces heteroskedasticity into the transformed series used 

for density forecast evaluation, tests that help to identify such effects are an integral part of the 

evaluation framework. Simulation experiments indicate that the proposed methodology has good 

statistical properties.          

In an empirical application the regression methodology is used to evaluate in-sample and out-

of-sample one-step-ahead density forecasts from econometric models that are popular in the financial 

industry and the results are compared with the results from the LR-approach. The different forecasting 

models are applied to daily stock market returns from the S&P 500, the DAX and the ATX. The 

empirical results provide some support for GARCH-models with fat tailed distributed errors for the 

purpose of density forecasting and GARCH-models in general for the purpose of volatility forecasting. 

The results further suggest that for financial return series an adequate model for the relevant 

conditional moments as well as proper distributional assumptions are needed to produce good density 

forecasts.   

The rest of the paper is organized as follows. Section 2 covers some theory about density 

forecast evaluation, reviews the LR-framework, discusses properties of transformed series obtained 

from misspecified forecasting models and provides conditions under which LR-tests will fail to detect 

incorrect density forecasts. Section 3 outlines the regression based evaluation approach. Section 4 
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reports simulation experiments concerning the size and the power of LR-tests and the regression based 

evaluation methodology. The data and the models used in the empirical study are presented in section 

5. Section 6 describes the setting of the forecasting experiments and discusses the in- and out-of-

sample forecast evaluation results. Section 7 comprises the concluding remarks. Proofs are collected in 

an appendix.  

 

2 Density Forecast Evaluation  

Let {xt}t = 1,..., m be a time series generated from the series of conditional densities {f(xt| It-1)}t = 1,..., m 

where It-1 denotes the information set available at time t-1 and let {p(xt| It-1)}t = 1,..., m be a series of one-

step-ahead density forecasts for {xt}t = 1,..., m (in what follows, ft(xt) and pt(xt) are sometimes used as 

shorthand notations for the true and the predicted conditional densities, respectively). Assume that a 

series of one-step-ahead density forecasts has been generated. Such forecasts can be evaluated through 

a probability integral transformation (Rosenblatt, 1952) applied to each observed xt with respect to its 

predicted density pt(xt). The probability integral transformation for a single xt is given by 

).()(∫
∞−

==
tx

tttt xPduupz      (1) 

Diebold, Gunther and Tay (1998) show that a transformed series {zt}t = 1,...,m is iid U(0,1) if a series of 

one-step-ahead density forecasts {pt(xt)}t = 1, ..., m coincides with the series of the true densities {ft(xt)}t = 

1,..., m. This result can be further exploited to evaluate multivariate density forecasts- and multi-step 

ahead forecasts, respectively (Diebold, Hahn and Tay, 1999, Clements and Smith, 2000). It is also 

worth noting that this result does in no way depend on how the density forecasts were generated. 

Correct density forecasts, however obtained, imply a transformed series that is iid U(0,1).   

Diebold et al. suggest graphical methods to assess the iid U(0,1) property of transformed data 

and Crnkovic and Drachman (1997) advocate Kupier’s statistics to test for uniformity and Brock-

Dechert-Scheinkman (BDS) tests for iid. Berkowitz (2000) emphasizes that nonparametric tests 

require rather large sample sizes to be reliable. He therefore suggests a further well known 

transformation (the so called quantile transformation) to the individual zt's. The transformation for a 

single zt is given by 
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)(1
tNt zFn −= .          (2) 

This transformation produces data that are standard normal if zt is U(0,1) and FN
-1 is the inverse of a 

standard normal distribution function. If a series of zt's is iid U(0,1) it follows from the iid property of 

the z-series that the corresponding n-series must also be iid N(0,1). Berkowitz proposes likelihood-

ratio tests against the first order autoregressive alternative  

( ) ,1 ttt nn εµρµ +−=− −                       (3) 

to test for iid N(0,1) data. In this framework a test for independence is given by (3a) and a joint test for 

independence, a mean of zero and a variance of one is given by (3b) 

( ) ( )( )ρσµσµ ))))) ,,0,,2 22
1 LLLR −−=  ∼ χ2(1)                   (3a) 

( ) ( )( )ρσµ ))) ,,0,1,02 2
2 LLLR −−=  ∼ χ2(2),                                    (3b) 

where σ2 is the variance of εt and L(.) denotes a Gaussian log-likelihood function. A test concerning µ 

= 0 can be constructed analogously to (3a). In simulation experiments he demonstrates that the test 

statistics have good small sample properties. However, Berkowitz himself points out that the LR tests 

have only power to detect non normality through the first two moments of the distribution and that 

additional distributional tests might be useful.  

There are indeed good reasons to examine an n-series of a forecasting model for normality and 

also for heteroskedasticity because the LR-tests outlined above maintain the assumption of normality 

and do not cover the possibility of heteroskedasticity. If density forecasts are deficient in such a way 

that they do not lead to a violation of µ = 0, ρ = 0 and σ = 1, then these deficiencies will not be 

detected within the LR-framework an incorrect forecasting models may be selected. Propositions 1 

and 2 below state that this will happen under standard statistical assumptions about a forecasting 

model.     

 

Proposition1: Assume that the forecasting model can be represented in the form Xt = µ(It-1) +σ(It-1)Yt, 

where µ(It-1) is the conditional mean and σ(It-1) is the conditional standard deviation of Xt. The random 

variable Yt is iid with some arbitrary distribution D(0,1) with zero mean and unit variance. Further 

assume that the forecasted densities p(XtIt-1) adequately capture the first two conditional moments of 
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Xt. Then the n-series implied by the forecasting model will also be iid D(0,1) if the forecasted 

densities {p(XtIt-1)}t = 1, ... , m are assumed to be normal densities. 

 

Proof: see appendix 

 

Proposition 2: Assume a forecasting model of the form Xt = µ(It-1) +σ(It-1)Yt, where µ(It-1) is the 

conditional mean and σ(It-1) is the conditional standard deviation of Xt. Further assume that the 

(constant) unconditional standard deviation σ exists. Then the n-series {nt}t = 1, ... ,m resulting from the 

forecasting model is 

 

a) conditionally heteroskedastic 

b) uncorrelated, has conditional mean and unconditional mean 0  

c) and has unconditional standard deviation 1  

 

if the density forecasts {p(XtIt-1)}t = 1, ... , m adequately capture the conditional mean, are assumed to be 

normal and are based on unconditional standard deviation σ.  

 

Proof: see appendix 

 

Propositions 1 implies that the LR-tests given in (3a) and (3b) and other tests that do not cover the 

distributional part of the iid N(0,1) hypotheses of correct density forecasts will have no power in 

detecting incorrect density forecasts if the stated conditions apply. An important practical case arises 

in the context of quasi-maximum likelihood estimation (QML) of GARCH models. It is well known 

that under mild regularity conditions the parameters of a GARCH model estimated under the incorrect 

assumption of a normal distribution are consistent if the conditional mean- and the conditional 

variance functions are correctly specified (for details, see Bollerslev and Wooldridge, 1992, and 

Lumsdaine, 1996). Hence a GARCH model might approximate the first two conditional moments 

quite well, but deliver poor density forecasts under the incorrect assumption of normality. Proposition 
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1 states that in such a situation the LR-tests will virtually never reject the null-hypotheses of correct 

density forecasts because the iid, mean 0 and variance 1 property of the derived n-series will not be 

violated. Without additional tests for normality even very poor density forecasts may not be detected 

and an incorrect forecasting model may be selected.  

 Proposition 2 says that the LR-tests described above (which focus on the unconditional 

standard deviation of an n-series) and other tests that do not cover the possibility of heteroskedasticity 

will tend to have no power to detect incorrect density forecasts if the forecasting model correctly 

specifies the conditional mean of the target variable but the forecaster incorrectly assumes normally 

distributed density forecasts based on the unconditional standard deviation. Propositions 1 and 2 

further imply that in such situations attempts to refine the alternative hypotheses about an n-series 

given in (3) by including for example various powers of a n-series or other variables will not help to 

detect incorrect density forecasts.  

What else can be said about the properties of an n-series under a misspecified forecasting 

model? It can be shown (Diebold, Hahn and Tay, 1999, proposition 1)  that a z-series keeps the iid 

property but is not uniformly distributed anymore if a sequence of true conditional densities f(xtIt-1) 

belongs to a location-scale family (i.e. Xt = µ(It-1) +σ (It-1)Yt  is an affine transformation of a random 

variable Yt with a distribution D, independent of the information It-1, σ(It-1) > 0) and the forecasted 

densities p(xtIt-1) adequately capture the dynamics of the first two conditional moments but belong to 

another location-scale family. It can easily be shown that this result extends to the corresponding n-

series. It can also be demonstrated (Berkowitz, 2000, proposition 2) that if h(nt) is the density of nt 

generated under the density forecast p(xt) and φ(nt) is the standard normal density, then log[f(xt)/p(xt)] 

= log[h(nt)/φ(nt)], which implies that deviations of a density forecast from the true density will be 

preserved in the corresponding regions of a standard normal density.  

Taken together, the discussion in this section suggests that a) misspecifications of a 

forecasting model will be preserved in the corresponding n-series and b) that density forecast 

evaluation procedures based on n-series should cover the possibility of conditional heteroskedasticity 

(i.e. incorporate higher conditional moments of an n-series) and tests about the distribution of an n-

series.  
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3 Regression Framework 

It is well known that for a random variable Y (with E[Y2 ]< ∞) the orthogonal decomposition Y = 

E(YΗ) + (Y- E(YΗ)), where E(YΗ) denotes the expectation of Y conditional on the information 

set Η, is well defined relative to Η (for details see Spanos, 1999, ch.15, or Karr, 1992, ch. 8). Thus the 

statistical generating mechanism for the first conditional moment for Y can be stated as Y = E(YΗ) + 

u. A similar orthogonal decomposition can be applied to Y2 assuming that the required moments exist. 

If the transformed series {nt} t = 1,...,m is iid N(0,1), then the first two conditional moments take the form 

E(NtΗt) = µ = 0 (independence) and E(Nt
2Ηt) = Var(Nt) = σ2 = 1 (conditional homoskedasticity and 

unit variance). The setting obviously also implies that Nt = ut must be distributed N(0,1) if the iid 

N(0,1) property holds.  

In the context of density forecast evaluation many choices for variables ∈ Ηt  are possible. For 

example Ηt could contain various lags of an n-series as well as various powers and cross-products of 

an n-series, other variables of interest could also be included. The important point is that a) the more 

general model which forms the alternative hypothesis contains the H0 of iid N(0,1) as a special case 

and is based on a set of internally consistent probabilistic assumptions and that b) the more general 

model covers important departures from iid N(0,1) that are interesting for the purpose of density 

forecast evaluation. In the light of the results from the last section, the two regression functions are 

specified as 

tktktt unnßn ++++= −− ββ ...110                                              (4a) 

    tststt vnnn ++++= −−
22

110
2 ... γγγ                    (4b) 

where {ut} and {vt} are martingale difference sequences (i.e. non-autocorrelated with zero expectation 

conditional on it’s own past). In this framework the hypotheses of an iid N(0,1) n-series implies the 

restrictions β0 = β1 = ... = βk = 0 (zero mean and independence) and nt ∼ N(0,1) (normal distribution 

with mean zero and unit unconditional variance) in (4a) and γ0 = 1, γ1 = ... = γs = 0 (constant 

conditional unit variance, i.e. conditional homoskedasticity) in (4b). Note that for k = 1 equation (4a) 

is similar to the alternative hypothesis of the LR-methodology defined in equation (3) above, but there 

are also important differences. In contrast to (3), model (4a) accommodates conditional 
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heteroskedasticity and does not assume normality. Hence, the model given by (4a) is more general 

than model (3) and includes it as a special case. In addition, equation (4b) incorporates second order 

dependence of nt explicitly and includes the possibility of conditional heteroskedasticity. Hence, a test 

of the restriction γ1 = ... = γs = 0 can be interpreted as an ARCH test. The restrictions on the 

coefficients in (4a) and (4b) can easily be tested using heteroskedasticity consistent Wald tests. Under 

the assumptions made in (4a) and (4b) these tests can be justified asymptotically (for details, see 

Hayashi, ch. 2).  A joint Wald test of all β and γ restrictions under the possibility of heteroskedasticity 

can be carried out using standard system estimation methods.1  

 As discussed in section 2, detected deviations of an n-series from normality indicate problems 

with the distributional assumptions on which the density forecasts are built and tests concerning the 

normality of an n-series are therefore essential for the proper selection of a forecasting model. In 

principal one could extend the regression framework by including autoregressions of third and fourth 

powers of an n-series and run a joint Wald test on the restrictions implied by iid N(0,1) in the enlarged 

system of equations. If only a few restrictions are violated, a joint Wald test of this type is likely to 

have low power for typical sample sizes, however. One strategy is to test the relevant set of 

restrictions on each equation individually to explore possible directions of misspecifications more 

closely. This is done in the empirical applications as a further step if normality of an n-series is 

rejected by a Jarque-Bera normality test (Jarque and Bera, 1980) and separate tests about skewness 

and kurtosis in the first step of the analysis.  

 

4. Simulation Study 

This section explores the power and size of LR-tests based on (3b), joint Wald tests (W) on the system 

(4a) and (4b) and the JB-test for a data generating processes that is realistic for financial return series. 

The data generating mechanism is specified to be a GARCH(1,1) processes of the form 

ννν thy tt
2/12/1 )]2/([)( −−=  

                                           
1 In large samples and in absence of heteroskedasticity the test results obtained from t- and F-tests in (4a) will be virtually 

identical to the results obtained from LR-tests based on (3a) since then the tests are asymptotically equivalent. In the 
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2

110 −− ++= ttt hyh ααα  

with zero conditional mean and innovations drawn from a fat-tailed t-distribution with ν = 5 degrees 

of freedom. This process displays the typical features often found in financial time series, namely 

conditional heteroskedasticity, fat-tailed conditional distributions and fat-tailed unconditional 

distributions.  

 The data generating process is investigated for four different parameter vectors of the variance 

equation. In model 1 and model 2  the parameters α0 and α1 are set to 0.004 and 0.06, respectively. 

The processes differ in their persistence parameter α2 of the conditional variance. In model 1, α2 is set 

to 0.75 which is a value closer to the lower end of the range of persistence parameters typically found 

for financial return series, whereas model 2 assumes α2 = 0.90 which is a more typical value. 

However, empirical studies sometimes report estimates for α2  close to one. Model 3 and model 4 take 

this findings into account by assuming α1 = 0.03 and α2 = 0.95 and α1 = 0.01 and α2 = 0.98, 

respectively. 

 The power of the different tests are investigated under two alternative scenarios. The first case 

(qml) corresponds to proposition 1 and assumes that the forecaster correctly specifies the functional 

form of the econometric model, but estimates the GARCH(1,1) model under the wrong assumption of 

gaussian innovations (i.e. performs quasi maximum likelihood estimation of the model) and hence 

issues normally distributed density forecasts instead of fat-tailed t-distributed forecasts. The second 

case (uc. normal) corresponds to proposition 2 and assumes normally distributed density forecasts 

based on the unconditional standard deviation of yt, thereby wrongly neglecting conditional 

heteroskedasticity in addition to the incorrect distributional assumption. Each experiment is based on 

10000 simulations and the rejection ratios of the different test statistics applied to nt series resulting 

from one step ahead density forecasts are calculated for sample sizes of 200, 500, 1000 and 1500 

observations. To investigate the size of the test statistics, the rejection ratios are also calculated for the 

correct models. 

 

                                                                                                                                    
regression framework the equivalent to the joint LR-test based on (3b) is a test of the restriction β0 = β1 = 0, γ0 =1, in the sub 
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INSERT TABLE 1 ABOUT HERE 

 

 Table 1 reports the results of the simulation experiments. Consistent with the implications of 

proposition 1, the LR-test and the joint W-test (based on the first lag of nt in (4a) and the first six legs 

of nt
2 in (4b)) have virtually no power in detecting incorrect density forecasts under the qml scenario 

for all four models and all sample sizes. For example, in the qml scenario for model 3 (with a 

significance level α = 0.05) the power of the LR-test is ranging between 0.031 for a sample size of 200 

and 0.022 for the largest sample size of 1500 observations and is therefore extremely low. The same is 

true for the W-test under the same scenario. It’s power is only between 0.031 for a sample size of 200 

and 0.038 for a sample size of 1500 observations. Note that the JB tests are quite powerful (about 0.74 

to 1.0) in all cases, however, indicating significant deviations from normality and therefore incorrect 

density forecasts. Without the additional JB-tests which virtually always reject normality, one would 

nearly always accept the wrong model and hence deficient density forecasts.  

The simulation results suggest that the LR-test also has no power in the four models under the 

alternative uc. normal scenario, as predicted by proposition 2. For example, looking at model 3 again 

(significance level α = 0.05) the power of the LR-test is again very low and only in a range of 0.026 to 

0.038. In contrast to the results for the LR-test, the joint W-test (which includes a test for conditional 

heteroskedasticity) has now reasonable power in detecting incorrect density forecasts for sample sizes 

of 1000 (power = 0.411) and 1500 observations (power = 0.543). With respect to the different 

persistence parameters, the simulations under the scenario uc.normal show that the W-test tends to 

have reasonable power for α2 = 0.75, α2 = 0.90 and α2 = 0.95 and sample sizes of 1000 or more 

observations. However, the power of the W-test decreases rather sharply for α2 = 0.98, suggesting that 

additional distributional tests are important for successful density forecast evaluations. The simulation 

results for uc. normal again highlight this point. Like in the qml scenario, the JB-test rejects normality 

for all four models with rejection rates between 0.84 to 1.0, thereby correctly indicating deficient 

density forecasts most of the time.  

                                                                                                                                    
system nt = β0 + β1nt-1 + ut, nt

2 = γ0 + vt.        
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With respect to the size of the different test statistics the simulations show that the LR and the 

W-test have virtually always the correct size for all models and sample sizes. The size of the JB-test is 

found to be slightly too low for the sample sizes considered. Taken together, the results of the 

simulation experiments suggest that the regression based density forecast evaluation methodology in 

conjunction with normality tests is a quite powerful tool for the analysis of density forecasts and 

model specifications. 

               

5. Data and Forecasting Models 

The analysis of the density forecasts from the forecasting models outlined below is based on daily time 

series of the S&P 500, DAX and ATX stock market indices. The data set obtained from Datastream 

covers the period from 1/26/1990 to 1/26/2000 and contains 2,609 observations per index. Daily 

logarithmic returns are calculated as xt = ln(Pt) - ln(Pt-1) where Pt denotes the level of the index at day 

t. 

One-step-ahead density forecasts of daily returns are generated from seven popular models. 

The first model is an equally weighted moving average (MA) of squared returns with a rolling time 

window of 250 trading days. The MA forecast of the variance of a return at time t is given by  

∑
−

−=

=
1

22 /
t

nti
it nxσ .                   (5) 

The second model is the exponentially weighted moving average (EWMA) of squared returns with a 

smoothing parameter λ = 0.94 as proposed by J.P. Morgan.2  

2
1

2
1

2 )1( −− +−= ttt x λσλσ .          (6) 

In (5) and (6) it is assumed that the mean of the daily returns are approximately zero.3 It is further 

assumed that the returns are conditionally normal with variance σt
2. Therefore, both models imply 

normal density forecasts with mean zero based on the variances generated from (5) and (6), 

respectively. 

                                           
2 For further details, see RiskMetricsTM (1996). 
3 This assumption is often made in practical applications of MA and EWMA models because it is argued that incorporation of 

the rather imprecise estimates of the mean of a daily return series (which are often close to zero) tend to produce inferior 

volatility predictions. For a discussion of this issue, see Figlewski (1994). 
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The next four forecasting models are all variants of GARCH(1,1) models. In contrast to MA 

and EWMA specifications, which can be applied to squared returns directly, the coefficients of 

GARCH models must be estimated with maximum likelihood methods. For all GARCH models the 

equation for the conditional mean is specified as an AR(1) process  

ttt xx ηωω ++= −110            (7) 

to capture aggregation effects and other sources that might induce correlation into a return series. The 

dynamics of the conditional variances are specified as  

12
2

110 −− ++= ttt hh αηαα         (8a) 

and      121
2

1
2

110 −−−− +++= ttttt hdh αγηηαα            (8b) 

 dt = 




otherwise
if t

  0
0    1 pη

.  

Variant (8a) is the standard GARCH (1,1) specification (Bollerslev, 1986) where positive and negative 

innovations are treated symmetrically. Specification (8b) is the GARCH model proposed in Glosten, 

Jagannathan and Runkle (1993), which allows for asymmetric reactions to news on the stock market. 

Equation (7) together with (8a) or (8b) determine the location and shape of the density 

forecasts from GARCH models. In equation (7) the coefficients ω0 and ω1 determine the conditional 

mean of the return xt and hence the location of a density forecast at time t and the coefficients in (8a) 

or (8b) specify the dynamics and the size of the conditional second moments of the forecasts. The 

distributional form of the density forecasts is given by the distribution assumed for the disturbance 

term ηt. In the empirical applications the GARCH-models are estimated under the assumption of 

normally distributed errors and under the assumption of t-distributed error terms. In each application 

of the t-distribution, the degrees of freedom parameter of the t-distribution is estimated jointly with the 

other model coefficients. The reason for assuming a Student-t distribution is that although in the 

GARCH framework conditionally normal distributions produce fat-tailed unconditional distributions, 

often not all of the excess kurtosis is captured under the assumption of conditional normality. Since 

the Student’s-t distribution is able to produce (symmetric) fat-tailed conditional densities, forecasts 

based on the Student-t distribution might be better able to capture excess kurtosis in the data.  
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The last model is the scaled Student’s t distribution, for which the density is given by  

                                    
2

)1(

2
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2 1)(

2
1
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
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
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νπσ
ν
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η t

tf                  (9) 

with expectation E(ηt) = 0 and variance Var(ηt) = σ2(ν/ν-2). In (8) Γ(.) represents the gamma function, 

ν is the degrees of freedom parameter and σ2 denotes the scale parameter. We allow for a time 

dependent first moment of the density forecasts since (9) is applied to the residuals obtained from the 

mean equation (6). Hence the location of the density forecasts based on (9) can change over time, but 

the shape of the forecasted densities remains the same (i.e. constant conditional variance is assumed).  

The intention behind this model is to analyze the consequences of neglected second moment dynamics 

if a an unconditional fat-tailed distribution is already assumed. The properties of the resulting density 

forecasts should provide valuable information about the relative importance of distributional 

assumptions versus assumptions about the dynamics of second moments.   

 

6 Empirical Results  

It is interesting how well the individual models perform in-sample as well as out-of-sample. Therefore, 

the data available for each daily index return series are divided into two subsamples. The first sample 

(1/29/1990 to 1/26/1996), contains 1,564 observations and is reserved for the estimation of the various 

GARCH models, the scaled t distributions and for the in-sample evaluation of the density forecasts. 

The remaining 1,044 observations of the data set, covering the period from 1/29/1996 to 1/26/2000, 

are used to evaluate out-of-sample density forecasts. The density forecasts of the MA models are 

based on a rolling window of 250 trading days shifted each day. EWMA density forecasts are obtained 

from the recursive expression (6). The in-sample density forecasts from the GARCH models are based 

on parameters estimated from the in-sample period data. The out-of-sample density forecasts are based 

on coefficients updated once a year using a sample of fixed length containing the latest 1564 

observations available at the time of updating. The parameters for the scaled t distributions are 

estimated from the in-sample period data and both the in- and out-of-sample density forecasts are 

based on these parameters.  
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Table 2 provides a summary statistic on each daily return series for both samples. 

 

INSERT TABLE 2 ABOUT HERE 

 

The summary statistics indicate that all return series display a significant amount of excess kurtosis 

(the kurtosis of a normal distribution is 3) in both samples. Hence, all unconditional distributions have 

fatter tails than the normal distribution, which implies that extreme events tend to occur more 

frequently than a normal distribution would predict. This result is typical for most financial time 

series. Note that all return distributions over the out-of-sample period show greater negative skewness 

than over the in-sample period.  

Tables 3, 4 and 5 report the in-sample and out-of-sample evaluation results about the quality 

of the one-step-ahead density forecasts generated by the different models. In the tables LR denotes the 

joint likelihood ratio test LR2 of correct density forecasts given by (3b) and Wj denotes a joint test of 

the restriction β0 = β1 = γ1 = ... = γ6 = 0, γ0 = 1 in the system given by (4a) and (4b) with the first lag of 

nt and the first six lags of nt
2 under the possibility of heteroskedasticity. Estimated coefficients and p-

values from individual t-tests for zero β coefficients are reported under β0 and β1. These estimates and 

tests come from regressions (4a) under the assumption of homoskedasticity. Because of the large 

sample size and the assumption of homoskedasticity the reported p-values of the t-statistics are 

virtually identical to the p-values from corresponding individual LR-tests and hence directly 

comparable. Under σ chi-square tests of the hypothesis of an unconditional unit variance of an n-series 

are reported and J-B and ARCH-F denote Jarque-Bera normality tests of an n-series and F-tests for 

conditional homoskedasticity in regressions (4b).  

 

INSERT TABLES 3, 4 AND 5 ABOUT HERE 

 

The tests of the n-series for the simple MA and the EWMA models indicate a rather poor 

performance in-sample as well as out-of-sample. The Wj tests, which in contrast to the LR2-test, also 

cover the dynamics of the conditional second moments do not always reject the hypotheses of correct 
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density forecasts for the EWMA-models because due to the similarity with GARCH-models, EWMA-

models often provide a good approximation of the volatility dynamics which leads to more frequent 

non-rejections. In fact, all n-series from the EWMA-models pass the separate ARCH-F tests. 

However, all n-series generated from MA and EWMA models clearly do not pass the J-B normality 

test, as indicated by the rather large values of the Jarque-Bera test statistics. In addition, the individual 

t-rests sometimes indicate problems with the location and the dynamics of the density forecasts.  

The results for the GARCH- and GJR-models with normally distributed errors clearly 

highlight the danger of using only LR tests without additional tests for normality. The LR tests support 

the hypotheses of correct density forecasts all times over the in-sample period. The J-B normality 

tests, however, strongly reject normality in all cases indicating severe problems with the assumption of 

normally distributed density forecasts. Without the additional tests for normality one would have 

incorrectly accepted all GARCH-models with normally distributed errors over the in-sample period. 

Without normality tests the Wj statistic alone would of course also lead to incorrect conclusions. In 

conjunction with normality tests, however, the results do not support normally distributed density 

forecasts from GARCH models.  Over the out-of-sample period the results are somewhat mixed. The 

LR tests reject, except for the ATX where the Wj statistics also accept due to the absence of ARCH-

effects. The Wj statistics also weakly support the GARCH-n and GJR-n models for the S&P 500. 

However, the additional J-B tests strongly reject normality again.    

The results for GARCH- and GJR-models with t-distributed errors are quite different form the 

models with normally distributed errors. Both models pass all tests over the in-sample-period 

indicating good density forecasts. In the case of the S&P 500 and the DAX, the GARCH-t and GJR-t 

models are not supported by the LR and Wj statistics over the out-of sample period and the J-B 

normality test rejects normality at conventional significance levels in all three cases. However, the 

value of the J-B test statistic is small and by far lower, compared to the models that assume normally 

distributed density forecasts.4  

                                           
4 Another interesting point is that the incorporation of an asymmetric reaction of volatility to positive and negative 

innovations into the econometric specification does not seem to be crucial for the purpose of density forecasting, although we 

found some evidence for significant positive γ coefficients for the GJR models implying a larger impact of negative 

innovations on volatility. 
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Individual chi-square statistics for skewness SK = 0 and kurtosis K = 3 for the out-of-sample 

n-series of the GARCH-t and GJR-t models reported in table 5 provide additional insights about likely 

directions of misspecification. The statistically significant negative skewness coefficients for the n-

series suggests that the main deficiency of the density forecasts from these models might result from 

the symmetry imposed by the t-distribution. Additional F-tests (F) of the restriction δ1 = δ2 = ... =δ5 = 

0 from the regression n3
t = δ0 + δ1n3

t-1 + . . . + δ5n3
t-5 + et of the cubed n’s on it’s first five lags provide 

information about time dependence of skewness of the n-series. If there is no time dependence, than 

the lagged cubed nt’s should not help to predict actual cubed nt’s. The F-tests does not reject the 

hypotheses of time independent skewness for the transformed DAX and ATX series. The F-tests for 

n3-series from the GARCH-t and GJS-t models for the S&P 500 series indicate time dependent 

skewness. Density forecasts from models along the lines of Hansen (1994) that allow for time 

dependent skewness might therefore be more appropriate for the S&P 500. Such models are beyond 

the scope of this paper, however.                 

 

INSERT TABLE 6 ABOUT HERE 

 

The last model to be discussed is the scaled t-distribution with a constant conditional second 

moment. This model, neglecting the time dependence in the conditional second moments, is always 

strongly rejected by the LR and Wj statistics, although the J-B-statistics looks good in all cases, often 

supporting normality. The ARCH-F tests clearly indicate serious heteroskedasticty. A comparison of 

the test results for the GARCH-t and GJR-t models with scaled t-distributions shows that both, proper 

distributional assumptions and a reasonable model of the dynamics of the relevant conditional 

moments are necessary to obtain good density forecasts.  

   

7 Conclusions  

Based on the fact that correct density forecasts for a stochastic process imply iid N(0,1) data under 

certain transformations of the realizations of a process with respect to the corresponding predicted 

conditional densities, a simple regression framework in conjunction with normality tests was proposed 
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to evaluate the quality of density forecasts obtained from econometric time series models. The 

methodology is not only useful to examine the quality of density forecasts per se, because it is also 

applicable to identify the nature of misspecifications of the forecasting model being used. It was 

further demonstrated theoretically, as well as in simulation experiments and in empirical applications 

that likelihood ratio tests focusing only on the mean, correlation and unconditional variance of a 

transformed series may lead to misleading conclusions about the quality of density forecasts and the 

associated forecasting models if no additional normality- and heteroskedasticity tests are conducted.  

 The empirical results about the quality of in- and out-of-sample one-step-ahead density 

forecasts of daily returns form the S&P 500, DAX and ATX suggest that GARCH-models with t-

distributed errors are able to produce good density forecasts over the in-sample period. Experiments 

with unconditional t-distributions (thereby ignoring the dynamics in the second moments) show that 

the choice of a fat-tailed distribution alone is not enough to obtain acceptable density forecasts. 

Distributional assumptions as well as the correct specification of conditional moments play an 

important role. The performance of GARCH-t and GJR-t models is weaker out-of-sample, but still 

better compared to the other models. Separate skewness- and kurtosis tests and an analysis of the 

correlation structure in the third conditional moments of the transformed series indicates that GARCH-

models with skewed fat-tailed conditional distributions might be more appropriate to describe the 

return series over the out-of sample period. In the case of the S&P 500, skewness was also found to be 

time varying. Extensions of statistical models of financial returns to higher order conditional moments 

beyond the conditional variance might therefore be an interesting direction for future research.  
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Appendix 

Proof of Proposition1: 

The random variable Xt in it’s standardized form is given by St = (Xt - µ(It-1))/σ(It-1) and the 

probability integral transformation (1) can be written as Zt = Pt(St) where Pt(.) is the assumed 

distribution function of the density forecasts. The n-transformation applied to St can then be expressed 

as Nt =  FN
-1 [Pt(St)]. Since the density forecast p(XtIt-1) is assumed to be a normal density it follows 

that Nt =  FN
-1 [Pt(St)] = FN

-1 [FN(St)] = St. The fact that the predicted densities p(XtIt-1) adequately 

capture the first two conditional moments of the density forecasts implies that St = Yt for all t. But then 

Nt = Yt is iid D(0,1) and the result follows. 

 

Proof of Proposition 2: 

a) Assume a normally distributed density forecast for Xt based on the unconditional standard 

deviation σ. The random variable Xt in it’s standardized form can be expressed as  

σ
σ

σ
µ tttt

t
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)()( 11 −− =

−
=          (A1) 

Since Nt =  FN
-1 [Pt(St)] = FN

-1 [FN(St)] = St  holds for a normal distribution function we can substitute 

Nt for St in (A1).  

The conditional second moment of Nt is given by 
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Since σ(It-1)2 varies across t it follows that the second conditional moment of Nt varies across t which  

proofs conditionally heteroskedasticity.  
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b) conditional mean 0:  
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 uncorrelatedness: 
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Since Nt has mean zero conditional on It-j and It-j of course contains Nt-j , it follows that E(NtNt-j) = 0 

and hence E(NtNt-j) = 0.  

 

unconditional mean 0: 

0)( =tNE follows immediately from E(Yt) = 0. 

 

c) unconditional standard deviation of 1: 
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Write the model for Xt in the form Xt = µ(It-1) + εt, where εt ∼ D(0, σ(It-1)). Then 

22
1

22
1 )()]([])([ σεεσ === −− tttt EIEEIE . 

Since E(Yt
2) = 1 by assumption, it follows that E(Nt

2) = 1 which proofs point c. 
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Table 1: Power and size of density forecast evaluation methodologies based on n-series from simulated GARCH-t models  
 
model 1    yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.75ht-1 
 
               LR                                                       W                                                      JB 
  α = 0.10 α = 0.05  α = 0.10 α = 0.05  α = 0.10 α = 0.05 
power: qml         
t = 200  0.057 0.028  0.053 0.033  0.798 0.758 
t = 500  0.050 0.024  0.058 0.038  0.992 0.989 
t = 1000  0.040 0.020  0.053 0.033  1.000 1.000 
t = 1500  0.044 0.020  0.055 0.035  1.000 1.000 
          
power: uc. normal         
t = 200  0.067 0.035  0.204 0.161  0.894 0.864 
t = 500  0.070 0.040  0.348 0.289  0.997 0.995 
t = 1000  0.071 0.039  0.516 0.446  1.000 1.000 
t = 1500  0.077 0.042  0.652 0.583  1.000 1.000  
          
          
model 2 yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.90ht-1       
  
power: qml 
t = 200 0.052 0.023  0.057 0.033  0.796 0.756  
t = 500  0.049 0.023  0.059 0.035  0.992 0.989 
t = 1000  0.045 0.022  0.060 0.038  1.000 1.000 
t = 1500  0.040 0.017  0.059 0.039  1.000 1.000 
          
power: uc. normal         
t = 200  0.064 0.033  0.273 0.216  0.893 0.865 
t = 500  0.077 0.041  0.540 0.473  0.998 0.996 
t = 1000  0.088 0.050  0.800 0.749  1.000 1.000 
t = 1500  0.095 0.056  0.922 0.890  1.000 1.000 
 
 
model 3 yt = √ht*t5, ht =  0.004 + 0.03yt-1 + 0.95ht-1 
 
power: qml         
t = 200  0.061 0.031  0.052 0.031  0.782 0.740  
t = 500  0.051 0.028  0.060 0.038  0.993 0.989 
t = 1000  0.052 0.023  0.060 0.038  1.000 1.000 
t = 1500 0.044 0.022  0.059 0.039  1.000 1.000 
 
power: uc. normal 
t = 200 0.053 0.026  0.146 0.105  0.875 0.842  
t = 500  0.060 0.029  0.288 0.227  0.997 0.996  
t = 1000  0.062 0.032  0.476 0.411  1.000 1.000 
t = 1500  0.067 0.038  0.609 0.543  1.000 1.000 
 
 
model 4 yt = √ht*t5, ht =  0.004 + 0.01yt-1 + 0.98ht-1 
  
power: qml         
t = 200  0.067 0.033  0.050 0.029  0.786 0.744   
t = 500  0.062 0.032  0.047 0.030  0.993 0.988 
t = 1000  0.059 0.034  0.049 0.033  1.000 1.000 
t = 1500  0.061 0.034  0.053 0.034  1.000 1.000 
          
power: uc. normal  
t = 200 0.050 0.023  0.081 0.055  0.882 0.846  
t = 500  0.046 0.022  0.107 0.075  0.997 0.994  
t = 1000  0.041 0.020  0.146 0.112  1.000 1.000 
t = 1500  0.053 0.027  0.185 0.142  1.000 1.000 
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Table 1 (continued): Power and size of density forecast evaluation methodologies based on n-series from simulated GARCH-
t models  
 
 
model 1    yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.75ht-1 
 
               LR                                                       W                                                      JB 
  α = 0.10 α = 0.05  α = 0.10 α = 0.05  α = 0.10 α = 0.05 
 
size:  
t = 200  0.100 0.052  0.093 0.049  0.078 0.045  
t = 500  0.098 0.049  0.099 0.051  0.090 0.049 
t = 1000  0.099 0.051  0.103 0.051  0.092 0.048 
t = 1500  0.100 0.052  0.100 0.051  0.091 0.047 
          
 
model 2 yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.90ht-1  
 
size:  
t = 200  0.102 0.052  0.099 0.055  0.079 0.047  
t = 500  0.100 0.049  0.100 0.051  0.090 0.048 
t = 1000  0.101 0.052  0.099 0.051  0.092 0.046 
t = 1500  0.096 0.047  0.095 0.048  0.097 0.051 
 
 
model 3 yt = √ht*t5, ht =  0.004 + 0.03yt-1 + 0.95ht-1 
 
size:  
t = 200  0.102 0.050  0.092 0.050  0.080 0.044   
t = 500  0.102 0.050  0.095 0.049  0.084 0.046 
t = 1000  0.101 0.051  0.097 0.049  0.095 0.051 
t = 1500  0.099 0.051  0.102 0.055  0.092 0.050 
 
 
model 4 yt = √ht*t5, ht =  0.004 + 0.01yt-1 + 0.98ht-1 
 
size:  
t = 200  0.098 0.049  0.096 0.054  0.075 0.043  
t = 500  0.104 0.053  0.101 0.055  0.089 0.049 
t = 1000  0.101 0.050  0.100 0.051  0.090 0.047 
t = 1500  0.100 0.052  0.100 0.050  0.096 0.046 
 
 
Notes: For all simulated GARCH-t models t5 denotes a t-distributed random variable with mean zero and five degrees of 
freedom, ht denotes the conditional variance and yt stands for the generated returns. LR is the short cut for a joint likelihood 
ratio test as defined in (3b) of zero mean, zero correlation and unit variance of an n-series derived from the model. W denotes 
a joint Wald test of an n-series for iid N(0,1) as implied by the system (4a) and (4b). JB denotes the Jarque-Bera test statistic. 
The  acronym qml indicates that the n-series on which the different tests are carried out are derived from quasi maximum 
likelihood estimates (i.e. conditionally normally distributed density forecasts) of the model, uc. normal indicates that the n-
series from the model is generated under the assumption of unconditionally normally distributed density forecasts. For all 
models y1 = 0 and the implied unconditional variance are used as starting values in the simulations.       
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Table 2: Summary Statistics of Return Series   
  
                   in-sample period 1/14/1991-1/26/1996                    out-of-sample period 1/29/1996-1/26/2000 
        
 S&P 500 DAX ATX  S&P 500 DAX ATX 
        
mean 0.000523 0.000461 9.56E-05  0.000778 0.001005 6.67E-05 
maximum 0.036642 0.072875 0.076139  0.049887 0.061057 0.052623 
minimum -0.037272 -0.098707 -0.074695  -0.071127 -0.083822 -0.086995 
std. dev 0.006373 0.009683 0.011174  0.010891 0.014343 0.011651 
        
skewness 0.056141 -0.475196 0.373809  -0.482427 -0.581209 -0.907929 
kurtosis 5.908284 14.41501 10.75624  7.638396 6.321387 8.761885 
Jarque-Bera 463.7719 7183.514 3324.317  974.5155 537.6211 1584.563 
 
 
 



    

31 

Table 3: Test statistics of n-series of density forecasts of daily S&P500 stock market returns 
 
  in-sample period 1/14/1991 – 1/26/1996   
        
 MA-N EWMA-N GARCH-N GJR-N GARCH-t GJR-t Scaled-t 
        
LR 13.314 

(0.004) 
17.391 
(0.001) 

0.675 
(0.879) 

0.828 
(0.843) 

3.926 
(0.270) 

2.656 
(0.448) 

16.399 
(0.001) 

        
Wj 29.570 

(0.001) 
13.647 
(0.135) 

1.619 
(0.996) 

2.316 
(0.985) 

9.421 
(0.421) 

10.143 
(0.339) 

59.272 
(0.000) 

        
β0 0.076 

(0.004) 
0.081 
(0.006) 

0.002 
(0.951) 

0.013 
(0.620) 

0.013 
(0.615) 

0.008 
(0.780) 

0.013 
(0.606) 

        
β1 0.006 

(0.817) 
0.035 
(0.205) 

-0.012 
(0.671) 

-0.017 
(0.537) 

-0.032 
(0.248) 

-0.027 
(0.327) 

-0.056 
(0.044) 

        
σ2 0.911 

(0.009) 
1.104 
(0.005) 

0.974 
(0.252) 

0.983 
(0.334) 

0.942 
(0.066) 

0.952 
(0.107) 

0.871 
(0.000) 

        
J-B 261.91 

(0.000) 
438.18 
(0.000) 

353.91 
(0.000) 

386.25 
(0.000) 

0.075 
(0.963) 

0.21 
(0.898) 

0.60 
(0.741) 

        
ARCH-F 2.946 

(0.007) 
0.231 
(0.967) 

0.161 
(0.987) 

0.242 
(0.962) 

0.754 
(0.606) 

1.167 
(0.321) 

6.209 
(0.000) 

        
  out-of-sample period 1/29/1996 – 1/26/2000   
     
LR 29.815 

(0.000) 
15.718 
(0.001) 

21.893 
(0.000) 

38.574 
(0.000) 

21.532 
(0.000) 

35.531 
(0.000) 

213.885 
(0.000) 

        
Wj 49.769 

(0.000) 
13.887 
(0.126) 

13.272 
(0.151) 

12.971 
(0.164) 

26.258 
(0.002) 

42.946 
(0.000) 

201.513 
(0.000) 

        
β0 0.079 

(0.021) 
0.063 
(0.056) 

0.010 
(0.764) 

0.021 
(0.557) 

0.031 
(0.368) 

0.028 
(0.415) 

0.061 
(0.143) 

        
β 0.028 

(0.367) 
0.052 
(0.091) 

0.008 
(0.785) 

0.002 
(0.955) 

0.044 
(0.155) 

0.051 
(0.103) 

-0.004 
(0.906) 

        
σ2 1.221 

(0.000) 
1.132 
(0.002) 

1.219 
(0.000) 

1.297 
(0.000) 

1.201 
(0.000) 

1.270 
(0.000) 

1.778 
(0.000) 

        
J-B 878.01 

(0.000) 
553.44 
(0.000) 

699.38 
(0.000) 

547.63 
(0.000) 

10.51 
(0.005) 

12.54 
(0.002) 

20.25 
(0.000) 

        
ARCH-F 6.253 

(0.000) 
0.669 
(0.675) 

1.208 
(0.299) 

0.375 
(0.895) 

1.007 
(0.419) 

1.799 
(0.096) 

7.315 
(0.000) 

        

 
Notes: P-values in parenthesis 
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Table 4: Test statistics of n-series of density forecasts of daily DAX stock market returns 
 
  in-sample period 1/14/1991 – 1/26/1996   
        
 MA-N EWMA-N GARCH-N GJR-N GARCH-t GJR-t Scaled-t 
        
LR 7.219 

(0.065) 
37.772 
(0.000) 

2.675 
(0.444) 

2.122 
(0.547) 

3.100 
(0.376) 

3.137 
(0.371) 

16.088 
(0.001) 

        
Wj 30.428 

(0.000) 
6.245 
(0.715) 

0.945 
(0.999) 

1.010 
(0.999) 

10.421 
(0.317) 

11.732 
(0.229) 

80.725 
(0.000) 

        
β0 0.041 

(0.125) 
0.035 
(0.250) 

0.005 
(0.859) 

0.019 
(0.486) 

0.023 
(0.388) 

0.023 
(0.397) 

0.029 
(0.261) 

        
β1 0.042 

(0.131) 
0.049 
(0.072) 

-0.012 
(0.671) 

-0.005 
(0.867) 

0.022 
(0.417) 

0.021 
(0.436) 

0.006 
(0.818) 

        
σ2 0.934 

(0.060) 
1.241 
(0.000) 

0.941 
(0.062) 

0.952 
(0.106) 

0.951 
(0,102) 

0.949 
(0.094) 

0.857 
(0.000) 

        
J-B 1171.01 

(0.000) 
56697.15 
(0.000) 

20615.00 
(0.000) 

19143.43 
(0.000) 

2.05 
(0.358) 

1.81 
(0.404) 

0.04 
(0.981) 

        
ARCH-F 4.053 

(0.000) 
0.036 
(0.999) 

0.054 
(0.999) 

0.039 
(0.999) 

1.164 
(0.323) 

1.380 
(0.219) 

9.520 
(0.000) 

        
     
  out-of-sample period 1/29/1996 – 1/26/2000   
        
LR 27.463 

(0.000) 
15.238 
(0.002) 

19.880 
(0.000) 

28.404 
(0.000) 

14.200 
(0.003) 

15.780 
(0.001) 

118.587 
(0.000) 

        
Wj 106.456 

(0.000) 
14.727 
(0.099) 

21.682 
(0.010) 

21.667 
(0.010) 

17.508 
(0.041) 

19.118 
(0.024) 

280.119 
(0.000) 

        
β0 0.094 

(0.006) 
0.100 
(0.007) 

0.045 
(0.187) 

0.054 
(0.121) 

0.069 
(0.037) 

0.069 
(0.039) 

0.109 
(0.005) 

        
β1 -0.026 

(0.397) 
-0.008 
(0.809) 

-0.000 
(0.989) 

-0.002 
(0.938) 

0.013 
(0.679) 

0.015 
(0.635) 

-0.001 
(0.965) 

        
σ2 1.199 

(0.000) 
1.121 
(0.004) 

1.197 
(0.000) 

1.239 
(0.000) 

1.138 
(0.001) 

1.150 
(0.001) 

1.524 
(0.000) 

        
J-B 497.75 

(0.000) 
232.47 
(0.000) 

140.22 
(0.000) 

154.81 
(0.000) 

19.10 
(0.000) 

18.14 
(0.000) 

19.76 
(0.000) 

        
ARCH-F 15.277 

(0.000) 
0.641 
(0.698) 

1.909 
(0.076) 

1.361 
(0.227) 

0.645 
(0.694) 

0.709 
(0.642) 

29.059 
(0.000) 

 
Notes: P-values in parenthesis 
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Table 5: Test statistics of n-series of density forecasts of daily ATX stock market returns 
 
  in-sample period 1/14/1991 – 1/26/1996   
        
 MA-N EWMA-N GARCH-N GJR-N GARCH-t GJR-t Scaled-t 
        
LR 46.595 

(0.000) 
71.368 
(0.000) 

2.793 
(0.425) 

1.841 
(0.606) 

3.137 
(0.373) 

3.293 
(0.349) 

21.939 
(0.000) 

        
Wj 111.679 

(0.000) 
68.190 
(0.000) 

7.010 
(0.636) 

9.267 
(0.413) 

8.088 
(0.325) 

8.742 
(0.461) 

190.188 
(0.000) 

        
β0 0.001 

(0.956) 
-0.019 
(0.506) 

-0.006 
(0.833) 

0.017 
(0.519) 

0.001 
(0.980) 

-0.000 
(0.996) 

0.012 
(0.649) 

        
β1 0.176 

(0.000) 
0.202 
(0.000) 

-0.010 
(0.708) 

-0.008 
(0.779) 

-0.019 
(0.499) 

-0.019 
(0.496) 

-0.053 
(0.056) 

        
σ2 0.914 

(0.012) 
1.162 
(0.000) 

0.939 
(0.057) 

0.956 
(0.128) 

0.938 
(0.055) 

0.937 
(0.050) 

0.844 
(0.000) 

        
J-B 902.64 

(0.000) 
4692.83 
(0.000) 

4356.85 
(0.000) 

2788.45 
(0.000) 

0.079 
(0.961) 

0.040 
(0.980) 

0.880 
(0.644) 

        
ARCH-F 11.214 

(0.000) 
1.548 
(0.159) 

1.015 
(0.414) 

1.191 
(0.308) 

0.927 
(0.475) 

0.811 
(0.561) 

26.090 
(0.000) 

        
     
  out-of-sample period 1/29/1996 – 1/26/2000   
        
LR 6.210 

(0.102) 
16.127 
(0.001) 

4.262 
(0.235) 

4.464 
(0.215) 

2.039 
(0.564) 

1.646 
(0.649) 

34.580 
(0.000) 

        
Wj 117.892 

(0.000) 
21.880 
(0.009) 

9.805 
(0.367) 

7.868 
(0.547) 

6.216 
(0.718) 

5.443 
(0.794) 

295.028 
(0.000) 

        
β0 0.017 

(0.606) 
0.019 
(0.556) 

0.000 
(0.994) 

0.015 
(0.635) 

0.021 
(0.502) 

0.018 
(0.565) 

0.042 
(0.163) 

        
β1 0.038 

(0.220) 
0.094 
(0.002) 

-0.064 
(0.039) 

-0.064 
(0.040) 

-0.029 
(0.342) 

-0.023 
(0.453) 

-0.175 
(0.000) 

        
σ2 1.096 

(0.017) 
1.116 
(0.005) 

0.999 
(0.493) 

1.007 
(0.429) 

1.038 
(0.193) 

1.039 
(0.183) 

0.965 
(0.212) 

        
J-B 2419.55 

(0.000) 
353.21 
(0.000) 

161.35 
(0.000) 

125.51 
(0.000) 

9.24 
(0.010) 

8.63 
(0.013) 

6.90 
(0.032) 

        
ARCH-F 19.190 

(0.000) 
1.600 
(0.144) 

0.924 
(0.477) 

0.568 
(0.756) 

0.692 
(0.656) 

0.629 
(0.707) 

43.289 
(0.000) 

 
Notes: P-values in parenthesis 
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Table 6: Skewness and kurtosis of transformed stock market returns, 1/29/1996 – 1/26/2000 
 
   K  SK  F-test 

S&P500 GARCH-t  2.699 
(0.041) 

 -0.191 
(0.012) 

 4.031 
(0.001) 

 GJR-t  2.633 
(0.016) 

 -0.196 
(0.010) 

 3.793 
(0.002) 

        

DAX GARCH-t  2.843 
(0.300) 

 -0.322 
(0.000) 

 0.857 
(0.509) 

 GJR-t  2.850 
(0.323) 

 -0.315 
(0.000) 

 0.794 
(0.554) 

        

ATX GARCH-t  2.839 
(0.289) 

 -0.216 
(0.004) 

 1.587 
(0.161) 

 GJR-t  2.808 
(0.206) 

 -0.201 
(0.008) 

 1.426 
(0.212) 

        

 
Notes: P-values in parenthesis  
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