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Abstract

Partial least squares structural equation modeling (PLS‐SEM) is an essential element of

marketing researchers' methodological toolbox. During the last decade, the PLS‐SEM field

has undergonemassive developments, raising the question of whether the method's users

are following the most recent best practice guidelines. Extending prior research in the

field, this paper presents the results of a new analysis of PLS‐SEM use in marketing

research, focusing on articles published between 2011 and 2020 in the top 30 marketing

journals. While researchers were more aware of the when's and how's of PLS‐SEM use

during the period studied, we find that there continues to be some delay in the adoption

of model evaluation's best practices. Based on our review results, we provide re-

commendations for future PLS‐SEM use, offer guidelines for the method's application,

and identify areas of further research interest.

K E YWORD S
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1 | INTRODUCTION

For many years, estimating models with complex inter‐relationships

between observed concepts and their latent variables was equivalent

to executing factor‐based structural equation modeling (SEM). Recent

research, however, demonstrates the rise of partial least squares

(PLS) as a composite‐based alternative (Jöreskog & Wold, 1982).

PLS‐SEM applications have grown exponentially in the past decade

(Hair et al., 2022), especially in the social sciences (e.g., Ali et al., 2018;

Ringle et al., 2020; Willaby et al., 2015), but also in other fields of

scientific inquiry, such as agricultural science, engineering, environ-

mental science, and medicine (e.g., Durdyev et al., 2018; Menni

et al., 2018; Svensson et al., 2018). The availability of comprehensive

software programs with an intuitive graphical user interface (Sarstedt

& Cheah, 2019), application guideline articles (e.g., Chin, 1998; Hair

et al., 2011; Henseler et al., 2009), and textbooks (e.g., Hair

et al., 2022; Ramayah et al., 2018; Wong, 2019), all of which have

made the method available for nontechnical use, have shaped the field

significantly and contributed to PLS‐SEM's dissemination.

An article by Hair et al. (2012) has had a lasting impact on the

marketing and consumer behavior disciplines—as evidenced by its mas-

sive citation count. In this paper, the authors review more than 200

studies using PLS‐SEM and published in top 30 ranked marketing journals

between 1981 and 2010. Based on their evaluation of PLS‐SEM appli-

cations according to a wide range of criteria pertaining to, for example,

model characteristics and assessment practices, Hair et al. (2012, p. 428)

identify “misapplications of the technique, even in top‐tier marketing

journals,” noting that “researchers do not fully capitalize on the criteria
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available for model assessment and sometimes even misapply measures.”

The authors also derive comprehensive guidelines for algorithmic settings,

measurement and structural model evaluation criteria, as well as com-

plementary analyses, which have become an anchor for the method's

follow‐up extensions and applications.

It has been a decade since the publication of Hair et al.'s (2012)

article. During these years, the PLS‐SEM field has undergone ex-

tensive methodological developments (Hwang et al., 2020; Khan

et al., 2019). Research has shaped the method's understanding (e.g.,

Rigdon, 2012), introduced new metrics (e.g., Liengaard et al., 2021),

and clarified aspects related to model specification and data con-

siderations (e.g., Rigdon, 2012; Sarstedt et al., 2016), all of which are

relevant for PLS‐SEM users. Some of these extensions emerged from

controversies about PLS‐SEM's general efficacy (Evermann & Rönk-

kö, 2021), such as guidelines for identifying and treating endogeneity

(Hult et al., 2018), methods for estimating common factor models

(Bentler & Huang, 2014; Dijkstra & Henseler, 2015; Kock, 2019), and

novel means of assessing discriminant validity (Henseler et al., 2015).

In addition, best practices, for example, with regard to measurement

and structural model assessment (Hair et al., 2020b), have solidified in

recent years as part of the PLS‐SEM field's further maturation. But

has PLS‐SEM use truly been understood and accepted in the mar-

keting research field? Have researchers taken the most recent best

practice guidelines on board? Are there still cases of misapplications

as previously pointed out by Hair et al. (2012).

This paper addresses these questions by presenting the results of

a new review of PLS‐SEM use in marketing research, focusing on

articles published between 2011 and 2020 in the top 30 marketing

journals. By applying the same coding scheme as Hair et al. (2012),

our analysis facilitates drawing conclusions about developments in

PLS‐SEM use over time and identifying potential points of concern.

In addition, our review covers recent developments in the field,

such as improved metrics for assessing internal consistency reliability

(Dijkstra & Henseler, 2015), discriminant validity (Henseler et al.,

2015), and predictive power (Shmueli et al., 2016) to explore whether

researchers follow the latest advances in the field. Based on our

review results, we spell out recommendations for future PLS‐SEM

use, offer guidelines for the method's application, and identify areas

of further research interest. Our overarching aim is to improve the

rigor of the PLS‐SEM method's application.

2 | REVIEW OF PLS‐SEM RESEARCH
PUBLISHED BETWEEN 2011 AND 2020

To ensure comparability with Hair et al.'s (2012) article, we reviewed

PLS‐SEM applications in the top 30 marketing journals according to

Hult et al. (2009) journal rankings. Since Hair et al. (2012) examined

the period from 1981 to 2010, we focused our review on the fol-

lowing 10 years (i.e., 2011–2020) to identify possible developments

and provide an overview of PLS‐SEM use in recent marketing studies.

We also used the keywords “partial least squares” and “PLS” to

conduct a full‐text search in the Clarivate Analytics' Web of Science,

EBSCO Information Services, and Elsevier's Scopus databases. We en-

sured that we would retrieve the complete set of relevant articles by

using the same search terms to search the journals' websites. The

search was completed on January 12, 2021.

We excluded all articles matching our keyword list, but not re-

lated to PLS‐SEM (e.g., private labels, PLs). We also excluded articles

applying PLS regression or only mentioning PLS‐SEM, but not ap-

plying the method. Following these adjustments, we conducted a

detailed review of all the articles published in journals with inter-

disciplinary content (Journal of Business Research, Journal of Interna-

tional Business Studies, Journal of Product Innovation Management, and

Management Science) to identify those in marketing. Finally, we ex-

cluded all articles introducing methodological advancements of the

method (e.g., Shmueli et al., 2016) or including simulation studies

comparing PLS‐SEM with other methods (e.g., Hair et al., 2017b).

The search produced a total of 239 articles applying PLS‐SEM in the

last 10 years (Table 1), which is a steep increase compared to the previous

period's 204 articles (Hair et al., 2012). A breakdown of the number of

articles by year (Figure 1) shows that PLS‐SEM use surged substantially in

2019 and 2020, with 37 and 36 articles, respectively—only 2010 saw a

higher number of PLS‐SEM articles. These results clearly indicate an

enduring upward trend in PLS‐SEM use since the early 2000s.

The 239 articles were published in 20 journals, with Journal of

Business Research (58 articles; 24.27%), Journal of Marketing Man-

agement (35 articles, 14.64%), and Industrial Marketing Management

(31 articles, 12.97%) being the top three most used publishing out-

lets. Compared to the previous period, PLS‐SEM was applied far more

frequently in Journal of Product Innovation Management, Journal of the

Academy of Marketing Science, and International Marketing Review. In

contrast, European Journal of Marketing and Journal of Marketing

published fewer articles using PLS‐SEM. Table 2 documents these

results with respect to all journals that published more than one PLS‐

SEM article between 2011 and 2020, also showing the previous

period's corresponding frequencies.

Of the 239 articles, 93 (38.91%) report two or more alternative

models or different datasets (e.g., collected in different years, coun-

tries, target groups, or resulting from a segmentation), yielding a total

number of 486 analyzed PLS path models. In the following, we use

the term “studies” to refer to the 239 journal articles and “models” to

refer to the 486 PLS path models analyzed in these articles. Com-

pared to the previous period, the average number of PLS path models

analyzed per article increased from approximately 1.5 to 2 in more

recent years, showing a shift to multistudy designs that have become

the norm in marketing and consumer research (McShane &

Böckenholt, 2017).

3 | REVIEW OF PLS‐SEM RESEARCH:
2011–2020

We evaluated the 239 articles and the models included therein in terms

of the following criteria, which Hair et al. (2012), follow‐up reviews, and

conceptual articles (e.g., Hair et al., 2020b, 2019b, 2019c) identified as
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TABLE 1 PLS‐SEM studies in the top 30 marketing journals between 2011 and 2020

Advances in Consumer Research* Wauters, Brengman, and Janssens 2011

European Journal of Marketing Akman, Plewa, and Conduit 2019

Aspara and Tikkanen 2011

Carlson, Gudergan, Gelhard, and Rahman 2019

Chen, Peng, and Hung 2015

Coelho and Henseler 2012

Davari, Iyer, and Guzmán 2017

Dessart, Aldás‐Manzano, and Veloutsou 2019

Françoise and Andrews 2015

Gaston‐Breton, and Duque 2015

Huang and Tsai 2013

Krishen, Leenders, Muthaly, Ziółkowska, and LaTour 2019

Mo, Yu, and Ruyter 2020

Nath 2020

Olbrich and Schultz 2014

Ormrod and Henneberg 2011

Piehler, King, Burmann, and Xiong 2016

Šerić 2017

Singh and Söderlund 2020

Vidal 2014

Wijayaratne, Reid, Westberg, Worsley, and Mavondo 2018

Willems, Brengman, and Kerrebroeck 2019

Yu, Ruyter, Patterson, and Chen 2018

Industrial Marketing Management Ali, Ali, Salam, Bhatti, Arain, and Burhan 2020

Berghman, Matthyssens, and Vandenbempt 2012

Camisón and Villar‐López 2011

Faroughian, Kalafatis, Ledden, Samouel, and Tsogas 2012

Ferreras‐Méndez, Newell, Fernández‐Mesa, and Alegre 2015

Genc, Dayan, and Genc 2019

Gupta, Drave, Dwivedi, Baabdullah, and Ismagilova 2020

Harmancioglu, Sääksjärvi, and Hultink 2020

Hazen, Overstreet, Hall, Huscroft, and Hanna 2015

Heirati, O’Cass, Schoefer, and Siahtiri 2016

Hossain, Akter, Kattiyapornpong, and Dwivedi 2020

Inigo, Ritala, and Albareda 2020

Jain, Khalil, Johnston, and Cheng 2014

Joachim, Spieth, and Heidenreich 2018

Lopes de Sousa Jabbour, Vazquez‐Brust, Chiappetta Jabbour, and Latan 2017

Mahlamäki, Rintamäki, and Rajah 2019

Mahlamäki, Storbacka, Pylkkönen, and Ojala 2020

(Continues)
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Nagati and Rebolledo 2013

Nenonen, Storbacka, and Frethey‐Bentham 2019

Ng, Ding, and Yip 2013

Niu, Deng, and Hao 2020

Poucke, Matthyssens, Weele, and Bockhaven 2019

Pulles, Schiele, Veldman, and Hüttinger 2016

Ritter and Geersbro 2011

Rollins, Bellenger, and Johnston 2012

Shahzad, Ali, Takala, Helo, and Zaefarian 2018

Sluyts, Matthyssens, Martens, and Streukens 2011

Stekelorum, Laguir, and Elbaz 2020

Teller, Alexander, and Floh 2016

Vries, Schepers, Weele, and Valk 2014

Yeniaras, Kaya, and Dayan 2020

International Journal of Research in Marketing Miao and Evans 2012

International Marketing Review Andéhn and L’Espoir Decosta 2016

Freeman and Styles 2014

Griffith, Lee, Yeo, and Calantone 2014

Jean, Wang, Zhao, and Sinkovics 2016

Kumar, Singh, Pereira, and Leonidou 2020

Moon and Oh 2017

Oliveira Duarte and Silva 2020

Pinho and Thompson 2017

Rahman, Uddin, and Lodorfos 2017

Rippé, Weisfeld‐Spolter, Yurova, and Sussan 2015

Singh and Duque 2020

Sinkovics, Sinkovics, and Jean 2013

Journal of Advertising Coleman, Royne, and Pounders 2020

José‐Cabezudo and Camarero‐Izquierdo 2012

Journal of Advertising Research Archer‐Brown, Kampani, Marder, Bal, and Kietzmann 2017

Dennis and Gray 2013

Miltgen, Cases, and Russell 2019

Robinson and Kalafatis 2020

Singh, Crisafulli, and La Quamina 2020

Journal of Business Research Ahrholdt, Gudergan, and Ringle 2019

Albert, Merunka, and Valette‐Florence 2013

Ali, Ali, Grigore, Molesworth, and Jin 2020

Ballestar, Grau‐Carles, and Sainz 2016

Banik, Gao, and Rabbanee 2019

Barhorst, Wilson, and Brooks 2020

Blocker 2011

Borges‐Tiago, Tiago, and Cosme 2019
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Caputo, Mazzoleni, Pellicelli, and Muller 2020

Cenamor, Parida, and Wincent 2019

Cervera‐Taulet, Pérez‐Cabañero, and Schlesinger 2019

Chang, Shen, and Liu 2016

Del Sánchez de Pablo González Campo, Peña García Pardo, and
Hernández‐Perlines 2014

Ferrell, Harrison, Ferrell, and Hair 2019

Flecha‐Ortíz, Santos‐Corrada, Dones‐González, López‐González, and Vega 2019

Galindo‐Martín, Castaño‐Martínez, and Méndez‐Picazo 2019

Gelhard and Delft 2016

Gudergan, Devinney, and Ellis 2016

Hernández‐Perlines 2016

Hsieh 2020

Iglesias, Markovic, and Rialp 2019

Japutra and Molinillo 2019

Japutra, Ekinci, and Simkin 2019

Kapferer and Valette‐Florence 2019

Kühn, Lichters, and Krey 2020

Leischnig, Henneberg, and Thornton 2016

Leong, Hew, Ooi, and Chong 2020

Martins, Costa, Oliveira, Gonçalves, and Branco 2019

McColl‐Kennedy, Hogan, Witell, and Snyder 2017

Méndez‐Suárez and Monfort 2020

Merz, Zarantonello, and Grappi 2018

Mourad and Valette‐Florence 2016

Navarro‐García, Arenas‐Gaitán, Javier Rondán‐Cataluña, and Rey‐ Moreno 2016

Navarro‐García, Sánchez‐Franco, and Rey‐Moreno 2016

Ohiomah, Andreev, Benyoucef, and Hood 2019

Oliveira Duarte and Pinho 2019

Padgett, Hopkins, and Williams 2020

Palos‐Sanchez, Saura, and Martin‐Velicia 2019

Peterson 2020

Picón, Castro, and Roldán 2014

Reguera‐Alvarado, Blanco‐Oliver, and Martín‐Ruiz 2016

Rippé, Smith, and Dubinsky 2018

Roy, Balaji, Soutar, Lassar, and Roy 2018

Saleh Al‐Omoush, Orero‐Blat, and Ribeiro‐Soriano 2020

Schubring, Lorscheid, Meyer, and Ringle 2016

Segarra‐Moliner and Moliner‐Tena 2016

Sener, Barut, Oztekin, Avcilar, and Yildirim 2019

Sharma and Jha 2017

(Continues)
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Skarmeas, Saridakis, and Leonidou 2018

Suhartanto, Dean, Nansuri, and Triyuni 2018

Tajvidi, Richard, Wang, and Hajli 2020

Takata 2016

Thakur and Hale 2013

Tran, Lin, Baalbaki, and Guzmán 2020

Valette‐Florence, Guizani, and Merunka 2011

Wu, Raab, Chang, and Krishen 2016

Zhang, He, Zhou, and Gorp 2019

Zollo, Filieri, Rialti, and Yoon 2020

Journal of Interactive Marketing Buzeta, Pelsmacker, and Dens 2020

Divakaran, Palmer, Søndergaard, and Matkovskyy 2017

Journal of International Business Studies Lam, Ahearne, and Schillewaert 2012

Lew, Sinkovics, Yamin, and Khan 2016

Journal of International Marketing Johnston, Khalil, Jain, and Cheng 2012

Journal of Marketing Köhler, Rohm, Ruyter, and Wetzels 2011

Journal of Marketing Management Ashill and Jobber 2014

Balaji and Roy 2017

Barnes and Mattsson 2011

Bennett 2011

Bennett 2018

Bennett and Kottasz 2011

Brettel, Engelen, and Müller 2011

Brill, Munoz, and Miller 2019

Carlson, Rahman, Rosenberger, and Holzmüller 2016

Carlson, Rosenberger, and Rahman 2015

Chiang, Wei, Parker, and Davey 2017

Dall’Olmo Riley, Pina, and Bravo 2015

Falkenreck and Wagner 2011

Fernandes and Castro 2020

Finch, Hillenbrand, O’Reilly, and Varella 2015

Hankinson 2012

Helme‐Guizon and Magnoni 2019

Iriana, Buttle, and Ang 2013

Jack and Powers 2013

King, Grace, and Weaven 2013

Ledden, Kalafatis, and Mathioudakis 2011

Mouri, Bindroo, and Ganesh 2015

Ngo and O’Cass 2012

Papagiannidis, Pantano, See‐To, and Bourlakis 2013

Richard and Zhang 2012

Ross and Grace 2012
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Roy, Balaji, and Nguyen 2020

Roy, Singh, Hope, Nguyen, and Harrigan 2019

Stocchi, Michaelidou, Pourazad, and Micevski 2018

Tabeau, Gemser, Hultink, and Wijnberg 2017

Tafesse and Wien 2018

Taheri, Gori, O’Gorman, Hogg, and Farrington 2016

Teller, Gittenberger, and Schnedlitz 2013

Wu, Jayawardhena, and Hamilton 2014

Wyllie, Carlson, and Rosenberger 2014

Journal of Product Innovation Management Beuk, Malter, Spanjol, and Cocco 2014

Borgh and Schepers 2014

Brettel, Heinemann, Engelen, and Neubauer 2011

Calantone and Rubera 2012

Carbonell and Rodríguez‐Escudero 2016

Carbonell and Rodríguez‐Escudero 2019

Dubiel, Durmuşoğlu, and Gloeckner 2016

Ernst, Kahle, Dubiel, Prabhu, and Subramaniam 2015

Feurer, Schuhmacher, and Kuester 2019

Hammedi, Riel, and Sasovova 2011

Heidenreich and Handrich 2015

Heidenreich, Spieth, and Petschnig 2017

Jean, Sinkovics, and Hiebaum 2014

Kock, Gemünden, Salomo, and Schultz 2011

Kuester, Homburg, and Hess 2012

Langley, Bijmolt, Ortt, and Pals 2012

Lee and Tang 2018

Mahr, Lievens, and Blazevic 2014

Matsuno, Zhu, and Rice 2014

Mauerhoefer, Strese, and Brettel 2017

McNally, Akdeniz, and Calantone 2011

McNally, Durmuşoğlu, and Calantone 2013

Ngo and O’Cass 2012

Nijssen, Hillebrand, Jong, and Kemp 2012

Pitkänen, Parvinen, and Töytäri 2014

Schuster and Holtbrügge 2014

Siahtiri 2018

Spanjol, Mühlmeier, and Tomczak 2012

Spanjol, Qualls, and Rosa 2011

Zobel 2017

Journal of Public Policy and Marketing Hasan, Lowe, and Petrovici 2019

Journal of Retailing Pelser, Ruyter, Wetzels, Grewal, Cox, and Beuningen 2015

(Continues)
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relevant for PLS‐SEM use: (1) reasons for using PLS‐SEM, (2) data char-

acteristics, (3) model characteristics, (4) measurement model evaluation,

(5) structural model evaluation, (6) advanced modeling and analysis

techniques, and (7) reporting. Addressing these seven critical issues, we

provide an update of PLS‐SEM applications in marketing and compare

our findings with those of Hair et al. (2012). Where applicable, we discuss

major shifts in PLS‐SEM use between the two periods under considera-

tion (i.e., 1981–2010 and 2011–2020).

Journal of Service Research Boisvert 2012

Mullins, Agnihotri, and Hall 2020

Journal of the Academy of Marketing Science DeLeon and Chatterjee 2017

Ernst, Hoyer, Krafft, and Krieger 2011

Fombelle, Bone, and Lemon 2016

Hansen, McDonald, and Mitchell 2013

Heidenreich, Wittkowski, Handrich, and Falk 2015

Heijden, Schepers, Nijssen, and Ordanini 2013

Hillebrand, Nijholt, and Nijssen 2011

Houston, Kupfer, Hennig‐Thurau, and Spann 2018

Hult, Morgeson, Morgan, Mithas, and Fornell 2017

Leroi‐Werelds, Streukens, Brady, and Swinnen 2014

Martin, Johnson, and French 2011

Miao and Evans 2013

Nakata, Zhu, and Izberk‐Bilgin 2011

Ranjan and Read 2016

Santos‐Vijande, López‐Sánchez, and Rudd 2016

Steinhoff and Palmatier 2016

Weerawardena, Mort, Salunke, Knight, and Liesch 2015

Wilden and Gudergan 2015

Wolter and Cronin 2016

Marketing Letters Dugan, Rouziou, and Hochstein 2019

Psychology and Marketing Barnes and Pressey 2012

Borges‐Tiago, Tiago, Silva, Guaita Martínez, and Botella‐Carrubi 2020

Devece, Llopis‐Albert, and Palacios‐Marqués 2017

Evers, Gruner, Sneddon, and Lee 2018

Fatima, Mascio, and Johns 2018

Gong and Yi 2018

Hernández‐Perlines, Moreno‐García, and Yáñez‐Araque 2017

Jain, Malhotra, and Guan 2012

Revilla‐Camacho, Vega‐Vázquez, and Cossío‐Silva 2017

Sheng, Simpson, and Siguaw 2019

Verhagen, Dolen, and Merikivi 2019

Zhang and Zhang 2014

Note: California Management Review, Harvard Business Review, Journal of Consumer Psychology, Journal of Consumer Research, Journal of Marketing
Research, Management Science, Marketing Science, Quantitative Marketing and Economics, and Sloan Management Review did not produce any relevant

articles.

Journal of Business ceased publication of the journal at the end of 2006.

Abbreviation: PLS‐SEM, partial least squares structural equation modeling.

*We excluded five studies by Caemmerer and Mogos Descotes (2011), Chen et al. (2011), Kidwell et al. (2012), Luo et al. (2015), and Rippé et al. (2019)
published in Advances in Consumer Research as these were only published as extended abstracts.
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3.1 | Reasons for using PLS‐SEM

Our review shows that 196 (82.01%) of the 239 studies provide a

rationale for using PLS‐SEM instead of factor‐based SEM or sum

scores regression (Table 3). The five most frequently mentioned

reasons are: small sample size (114 studies, 47.70%), nonnormal data

(76 studies, 31.80%), theory development and exploratory research

(73 studies, 30.54%), high model complexity (70 studies, 29.29%),

predictive study focus (61 studies, 25.52%), and formative measures

(56 studies, 23.43%).

The two main reasons mentioned in our study are similar to

those reported by Hair et al. (2012) a decade ago. Given the in-

creasing calls to move beyond data characteristics to motivate the

use of PLS‐SEM and, instead, emphasize the research objective (e.g.,

Hair et al., 2019b; 2019c; Sarstedt et al., 2021), this finding raises

concerns. While PLS‐SEM performs well in terms of statistical power

(Sarstedt et al., 2016) and convergence compared to other methods

when the sample size is small (Henseler et al., 2014; Reinartz

et al., 2009), it is undeniable and axiomatic that small samples ad-

versely affect all statistical techniques, including PLS‐SEM (Benitez

et al., 2020). In fact, more than two decades ago, Chin (1998, p. 305)

warned researchers that “the stability of the estimates can be

affected contingent on the sample size.” Cassel et al. (1999) also

noted that PLS‐SEM analyses should draw on sufficiently large

sample sizes to warrant small standard errors. Numerous others,

such as Marcoulides and Saunders (2006), Hair et al. (2013), and

F IGURE 1 Articles per year

TABLE 2 Journals with more than one publication between 2011 and 2020 compared to 1981–2010

Publications
Journals 1981–2010 (n = 204) Proportion (%) 2011–2020 (n = 239) Proportion (%)

Journal of Business Research 15 7.35 58 24.27

Journal of Marketing Management 6 2.94 35 14.64

Industrial Marketing Management 23 11.27 31 12.97

Journal of Product Innovation Management 11 5.39 30 12.55

European Journal of Marketing 30 14.71 22 9.21

Journal of the Academy of Marketing Science 13 6.37 19 7.95

International Marketing Review 3 1.47 12 5.02

Psychology and Marketing 9 4.41 12 5.02

Journal of Advertising Research 4 1.96 5 2.09

Journal of Advertising 3 1.47 2 0.84

Journal of Interactive Marketing 2 0.98 2 0.84

Journal of International Business Studies 2 0.98 2 0.84

Journal of Service Research 7 3.43 2 0.84
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Rigdon (2016), have clearly advised against relying on the logic of

using PLS‐SEM to derive results from small samples—unless the

nature of the population can justify such a step (e.g., a small popu-

lation size as commonly encountered in B2B research; Benitez

et al., 2020; Hair et al., 2019c). In fact, critics such as Evermann and

Rönkkö (2021), Rönkkö and Evermann (2013), and Rönkkö et al.

(2016) have repeatedly used PLS‐SEM's misapplication as a “straw-

man” argument to criticize the technique itself, rather than the weak

research designs (Petter & Hadavi, 2021; Petter, 2018). Similarly,

simulation studies have shown that PLS‐SEM does not offer sub-

stantial advantages over other SEM methods in terms of parameter

accuracy when the data depart somewhat from normality (Goodhue

et al., 2012; Reinartz et al., 2009). Reflecting this evidence, guideline

articles have emphasized that it is not sufficient to motivate the

choice of PLS‐SEM over alternative methods primarily on the basis of

nonnormality alone (e.g., Hair et al., 2019b, 2019c, 2020b).

Despite their strong emphasis on the data characteristics, our

results also attest to marketing researchers' higher maturity in terms

of motivating their method choice. For example, compared to the

previous period, an increasing number of researchers emphasize

model complexity and their study's predictive focus. Both are valid

arguments, as PLS‐SEM can handle highly complex models with many

indicators, constructs, and model relations without identification

concerns (Akter et al., 2017). When estimating these models,

PLS‐SEM follows a causal‐predictive paradigm aimed at testing the

predictive power of a model developed carefully on the basis of

theory and logic (Liengaard et al., 2021). The underlying theoretical

rationale, also referred to as explanation and prediction‐oriented (EP)

theory, “corresponds to commonly held views of theory in both the

natural and social sciences” (Gregor, 2006, p. 626). Numerous stan-

dard models, such as the various customer satisfaction index (e.g.,

Eklöf & Westlund, 2002; Fornell et al., 1996) or technology accep-

tance models (e.g., Davis, 1989; Venkatesh et al., 2003), follow an EP‐

theoretic approach by aiming to explain the cause‐effect mechanisms

the model postulates, while also generating predictions that underline

its practical usefulness (Sarstedt & Danks, 2021). PLS‐SEM's ability to

strike a balance between machine learning methods, which are fully

predictive but atheoretical by nature (Hair & Sarstedt, 2021), and

factor‐based SEM, which is purely concerned with theory confirma-

tion (Hair, et al., 2021b), makes PLS‐SEM a particularly valuable

method for applied research disciplines like marketing.

Researchers' increased focus on predictive purposes is no coin-

cidence. Seminal articles by Evermann and Tate (2016) as well as Shmueli

et al. (2016) on the method's predictive performance have opened a new

chapter in PLS‐SEM‐based methodological research. For example,

Sharma et al. (2021c) introduced prediction‐oriented model comparison

to the field by identifying metrics that excel at selecting the model with

the highest predictive power and adequate fit from a set of competing

TABLE 3 Reasons for using PLS‐SEM

1981–2010 2011–2020
Number of
studies (n = 204) Proportion (%)

Number of
studies (n = 239) Proportion (%)

Nonnormal data 102 50.00 76 31.80

Small sample size 94 46.08 114 47.70

Formative measures 67 32.84 56 23.43

Explain variance in the endogenous constructs 57 27.94 – –

Theory development and exploratory research 35 17.16 73 30.54

High model complexity 27 13.24 70 29.29

Categorical variables 26 12.75 5 2.09

Theory testing 25 12.25 11 4.60

Predictive study focus – – 61 25.52

PLS‐SEM's popularity and standard use in the field – – 14 5.86

Moderation effects – – 12 5.02

Higher‐order constructs – – 8 3.35

Simultaneous use of multi‐ and single‐items constructs – – 6 2.51

Latent variable scores availability – – 5 2.09

Mediation effects – – 3 1.26

Other reasons (e.g., small number of indicators per construct, model
comparison assessment, higher statistical power than factor‐
based SEM)

– – 19 7.95

Abbreviation: PLS‐SEM, partial least squares structural equation modeling.
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models. Liengaard et al.'s (2021) cross‐validated predictive ability test and

its recent extension (Sharma et al., 2021a) enable researchers to test a

model's predictive power relative to that of competing models and on a

standalone basis. Other studies have extended prior research by com-

paring PLS‐SEM's predictive power with that of Hwang and Takane's

(2004) generalized structured component analysis, identifying situations

that favor each method's use from a prediction point of view (Cho

et al., 2021). Guideline articles that make these techniques accessible to a

broader audience have accompanied these methodological extensions

(Chin et al., 2020; Hair, 2021; Shmueli et al., 2019). Our review of the

reasons given for the choice of PLS‐SEM reflects some of these devel-

opments, but we expect a further shift toward emphasizing the method's

causal‐predictive focus in the future.

Finally, and unlike in the previous period, researchers also suggest

additional reasons, such as PLS‐SEM's popularity and standard use in the

field (14 studies, 5.86%), the estimation of moderation effects (12 studies,

5.02%), mediation effects (3 studies, 1.26%) and higher‐order constructs

(8 studies, 3.35%). Indeed, recent research emphasizes the method's ef-

ficacy regarding estimating conditional process models combining med-

iating and moderating effects in a single analysis (Cheah et al., 2021;

Sarstedt et al., 2020a), and clarifies the specification, estimating, and

evaluation of higher‐order constructs by means of PLS‐SEM (Sarstedt

et al., 2019). At the same time, fewer studies motivate their choice of

PLS‐SEM on the grounds of formative measurement—a finding that the

studies' model characteristics, which we discuss later, also mirror.

3.2 | Data characteristics

Of the 486 models, 476 report the sample size (97.94%). The average

sample size (5% trimmed mean =279.19) and the median (199) of the

models in our review are higher than those that Hair et al. (2012) reported

for the 1981–2010 period (5% trimmed mean=211.29; median =159).

Four studies in our review were conspicuous due to their very large

sample sizes of between n=8876 and n=26,576. At the same time, 85

of the 476 models (17.86%) rely on sample sizes of less than 100 (i.e., the

smallest sample size was n=29). Only 17 of the 476 models (3.57%) fail

to meet the ten times rule (Barclay et al., 1995), which is a very rough

guideline for determining the minimum sample size required to achieve an

adequate level of statistical power (for details and alternatives, see Hair

et al., 2022, Chap. 1). Those models that do not meet the ten times rule

draw on sample sizes that are, on average, only 10.98% below the re-

commended level (Table 4).

These results are encouraging compared to those in Hair et al.

(2012), who reported a greater share of models estimated with

less than 100 observations (24.44%), more models that failed the

ten times rule (9.00%), and a higher relative deviation from the

recommended sample size (45.18%). Marketing researchers—

despite their reporting of PLS‐SEM's efficacy regarding estimat-

ing models with small sample sizes as motivating their method

choice—seem to be more concerned about sample size issues

than previously. Critical accounts of the method (Goodhue

TABLE 4 Data characteristics

1981–2010 2011–2020
Models (n = 311) Proportion (%) Models (n = 486) Proportion (%)

Sample size: no. of models reporting 311 100% 476 97.94

5% trimmed mean 211.29 – 279.19 –

Median sample size 159 – 199 –

Sample size below 100 76 of 311 24.44 85 of 476 17.86

Ten times rule of thumb not met 28 of 311 9.00 17 of 476 3.57

Average deviation from the recommended
sample size

45.18% 10.98%

Number of
studies (n = 204)

Proportion (%) Number of
studies (n = 239)

Proportion (%)

Missing values: No. of studies reporting – – 41 17.15

Casewise deletion – – 39 of 41 95.12

Mean replacement – – 2 of 41 4.88

Outliers: No. of studies reporting – – 7 2.93

Nonnormal data: No. of studies reporting 19 9.31 24 10.04

Degree of nonnormality reported – – 5 of 24 20.83

Use of discrete variables: No. of studies reporting 57 27.94 24 10.04

Binary variables 43 of 57 75.44 15 of 24 62.50

Categorical variables 14 of 57 12.28 9 of 24 37.50
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et al., 2012; Rönkkö & Evermann, 2013) and conceptual discus-

sions (Hair et al., 2019c; Rigdon, 2016) have certainly contributed

to this increased awareness. Nevertheless, empirical research

almost never discusses the statistical power arising from a con-

crete analysis, despite the available tutorials on power analyses in

a PLS‐SEM context (Aguirre‐Urreta & Rönkkö, 2015). For sample

size determination, researchers can also draw on Kock and Ha-

daya's (2018) inverse square root method, which is relatively easy

to apply and offers a more accurate picture of minimum sample

size requirements than the ten times rule does.

Missing values are a primary concern in the data collection and

processing phases. Nevertheless, only 41 studies (17.15%) acknowledge

missing values in their data, while almost all of them (39 of 41 studies,

95.12%) used casewise deletion to treat them (Table 4). Grimm and

Wagner (2020) have recently shown that PLS‐SEM estimates are very

stable when using casewise deletion on datasets with up to 9% missing

values. However, when doing so researchers need to ensure the missing

value patterns are not systematic, and that the final model estimation

yields sufficient levels of statistical power. None of the relevant studies in

our review offer such information. While casewise deletion seems to be

the default setting for researchers using PLS‐SEM, extant guidelines re-

commend using mean replacement when less than 5% values are missing

per indicator or applying more complex procedures, such as maximum

likelihood and multiple imputation (Hair et al., 2022). However, while the

efficacy of more complex imputation procedures has been tested in a

factor‐based SEM context (Graham & Coffman, 2012; Lee & Shi, 2021),

their impact on PLS‐SEM's parameter accuracy and predictive perfor-

mance remains a blind spot in methodological research.

Even though outliers influence the ordinary least squares re-

gressions in PLS‐SEM, only seven studies (2.93%) explicitly con-

sidered them. In one of these studies, the authors did not try to

identify outliers but used an interval smoothing approach to mitigate

the effect of corresponding observations. Of the remaining six stu-

dies that considered outliers, three did not mention the specific

method used to detect outliers, whereas the remaining three studies

included brief descriptions of the approaches: univariate and multi-

variate outlier detection, inconsistent or overly consistent response

patterns, and univariate outlier detection using boxplots followed by

detecting incongruence in response patterns. Most of these studies

(5 out of 6) removed outliers from their dataset; the other study did

not identify any outliers. While the presence of outliers might influ-

ence results substantially (Sarstedt & Mooi, 2019), our findings in-

dicate that applied PLS‐SEM research generally disregards outlier

detection and treatment.

Nonnormal data is the second most frequently mentioned reason

for using PLS‐SEM. Nevertheless, only 24 studies (10.04%) ac-

knowledge the nonnormal distribution of their data with few studies

quantifying the degree of nonnormality by means of, for example,

kurtosis and skewness (5 studies; Table 4). This is generally un-

problematic, since PLS‐SEM is a nonparametric method and, as such,

robust in terms of processing nonnormal data (Hair et al., 2017b;

Reinartz et al., 2009). While Hair et al. (2022, Chap. 2) note that

highly nonnormal data may inflate standard errors derived from

bootstrapping, Hair et al.'s (2017b) simulation study results suggest

that such data do not impact Type I or II errors negatively.

Using discrete variables (i.e., binary and categorical variables) when

measuring models is a final area of concern in PLS‐SEM applications. Of

the 239 studies, only 24 (10.04%) use binary or categorical variables as

elements in measurement models (i.e., not as a grouping variable to split

the dataset as part of a multigroup analysis), which is considerably less

than what Hair et al. (2012) reported (27.94%). In line with Hair et al.'s

(2012) recommendations, which raised concerns regarding their general

applicability, especially when used as binary single‐item indicators of

endogenous constructs (e.g., to represent a choice situation), recent

studies primarily use binary and categorical variables to perform multi-

group analyses. However, research on the handling of discrete variables in

PLS‐SEM has progressed since 2012. For example, Hair et al. (2019a)

document how to process data from discrete choice experiments where

binary indicators representing a choice situation (e.g., buy/not buy)

measure the constructs. Similarly, Cantaluppi and Boari (2016) extended

the original PLS‐SEM algorithm to accommodate ordinal variables when

researchers cannot assume equidistance between the scale categories

(see also Schuberth et al., 2018b). Given these developments, we expect

the use of discrete variables in PLS path models, such as when estimating

data from choice experiments, to gain traction in the future.

To summarize, while our results point to improvements in re-

searchers' awareness of sample size issues in PLS‐SEM use, they

devote too little effort toward quantifying the degree of statistical

power associated with the model estimation. Missing data are not

routinely discussed, and their treatment in PLS‐SEM is still an area of

potential concern, which methodological research should address.

Researchers should also be aware of recent extensions that facilitate

the inclusion of discrete variables in PLS path models.

3.3 | Model characteristics

The number of constructs and indicator variables that define model

complexity and the use of formative measurement models are the

key reasons for PLS‐SEM's attractiveness (Hair et al., 2022, Chap. 1).

Table 5 offers an overview of these and other model characteristics,

contrasting our results with those of Hair et al.'s (2012) review of the

1981–2010 period.

The average number of latent variables in the path models is

7.39, which is only slightly lower than in the previous period (7.94).

Similarly, the average number of indicators per model is similar in

both periods (1981–2010: 29.39; 2011–2020: 29.55), suggesting

there has been no change in the model complexity over the years.

The average number of structural model relationships, which in-

creased only slightly from 10.56 to 11.90 from the initial period to

the most recent, also supports this finding. In addition, we do not

observe any substantial changes in the model types considered in the

studies; that is, whether the models are focused versus unfocused by

comprising a higher versus lower share of exogenous constructs than

endogenous constructs. Specifically, the share of focused, unfocused,

and balanced models is almost the same and very similar to those
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TABLE 5 Model characteristics
1981–2010 2011–2020

Criterion
Results
(n = 311) Proportion (%)

Results
(n = 486) Proportion (%)

Number of latent variables

Mean 7.94 – 7.39 –

Median 7.00 7.00

Range (2; 29) (2; 24)

Number of structural model
relations

Mean 10.56 – 11.90 –

Median 8.00 10.00

Range (1; 38) (1; 70)

Model typea

Focused 109 35.05 161 33.13

Unfocused 85 27.33 149 30.66

Balanced 117 37.62 176 36.21

Measurement modelb

Only reflective 131 42.12 374 76.95

Only formative 20 6.43 7 1.44

Reflective and formative 123 39.55 105 21.60

Not specified 37 11.90 233 47.94

Number of indicators per

reflective construct

Mean 3.99 – 3.85 –

Median 3.50 3.00

Range (1; 27) (2; 30)

Number of indicators per
formative construct

Mean 4.62 – 4.28 –

Median 4.00 3.00

Range (1; 20) (2; 38)

Total number of indicators in
models

Mean 29.55 – 29.39 –

Median 24.00 24.00

Range (4; 131) (3; 222)

Number of models with

single‐item constructs

144 46.30 177 36.42

aFocused model: number of exogenous constructs at least twice as high as the number of endogenous
constructs in the model; unfocused model: number of endogenous constructs at least twice as high as

the number of exogenous constructs in the model; balanced model: all remaining models.
bThis paper's authors classified models with missing information about the measurement mode
ex post.
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reported in Hair et al. (2012). We therefore repeat Hair et al.'s (2012)

call to consider focused and balanced models, also because these

model types should meet PLS‐SEM's prediction goal better.

PLS path models, depending on their measurement model spe-

cifications, can be classified as either only reflective, only formative,

or a combination of both.1 We find the majority of the 486 models'

constructs (374 models, 76.95%) are only reflectively measured,

followed by models with both reflective and formative measures (105

models, 21.60%)—a much higher share of reflective measures com-

pared to Hair et al. (2012). Only 7 of the 486 models' constructs

(1.44%) are purely formatively specified. Somewhat surprisingly, a

large percentage of the models (233 models; 47.94%) lack a de-

scription of the constructs' measurement modes, which is much

higher than in Hair et al.'s (2012) review (11.90%). Classifying these

models ex post by means of Jarvis et al. (2003) guidelines suggests

the overwhelming majority (227 models; 97.42%) should be con-

sidered as only comprising reflectively specified constructs. While

this result suggests that researchers consider reflective measures the

default option, the consequences of measurement model mis-

specification should not be taken lightly. The impact of mis-

specifications on downstream estimates are generally not

pronounced (Aguirre‐Urreta et al., 2016), but the primary problem of

such misspecifications arises from content validity concerns, since

both measurement types rely on fundamentally different sets of in-

dicators (Diamantopoulos & Siguaw, 2006). In line with Hair et al.

(2012), researchers should ensure the measurement model specifi-

cation is explicit to preempt criticism arising from potential mis-

specification claims. The confirmatory tetrad analysis for PLS‐SEM

(Gudergan et al., 2008; CTA‐PLS; Hair et al., 2018, Chap. 3) provides

a statistical test to confirm the choice of measurement model.

However, only six studies (2.51%) used this approach to assess the

adequacy of their measurement model specification.

The average number of indicators for reflectively measured con-

structs is 3.85 and 4.28 for formatively measured ones, which is similar to

those in the previous period (Table 5). Contrary to their reflective coun-

terparts, formative measurement models need to cover a much broader

content bandwidth, as they are not conceived as interchangeable (i.e.,

highly correlated) measures of the same theoretical concept

(Diamantopoulos & Winklhofer, 2001). Consequently, formative mea-

surement models should have more indicators than reflective models do.

Our review supports this notion, but the comparably small, albeit sig-

nificant (t=2.037, p=0.044) difference in the average number of in-

dicators is surprising, suggesting that future studies should devote more

attention to content validity concerns in formative measurement.

We also find the share of single‐item constructs decreased from

46.30% to 36.42% from one period to the next. On the one hand, this

finding is encouraging, as it suggests researchers have become aware

of single‐item measures' limitations in terms of explanatory power.

Specifically, Diamantopoulos et al. (2012) show that, due to the ab-

sence of multiple indicators of the same concept, the lack of mea-

surement error correction deflates the model estimates, potentially

triggering Type II errors in the model estimates (Sarstedt et al., 2016).

On the other hand, single items are still too prevalent in PLS path

models, which is particularly problematic when measuring en-

dogenous target constructs. Researchers should generally refrain

from using single items unless they measure observable character-

istics, such as is commonly done in the form of control variables (e.g.,

income, sales, and number of employees).

To summarize, we observe a clear shift toward reflective mea-

surement in PLS‐SEM studies. The various controversies about for-

mative measures' use (Howell et al., 2007; Rhemtulla et al., 2015;

Wilcox et al., 2008) probably triggered this development, prompting

researchers to “take the safe route” and rely on standard reflective

measures. By following this mantra, researchers forego the oppor-

tunity to offer marketing practice differentiated recommendations.

Contrary to their reflective counterparts, formative measures offer

practitioners concrete guidance on how to “improve” certain target

constructs—an important consideration in light of the growing con-

cerns about marketing research's relevance for business practice

(Homburg et al., 2015; Jaworski, 2011; Kohli & Haenlein, 2021;

Kumar, 2017). At the same time, we see some improvement in the

model specification practices, with researchers relying less on single‐

item measures. Nevertheless, the percentage of studies using single

items is still high, providing an opportunity for improvement.

3.4 | Model evaluation

Since Hair et al.'s (2012) review, research has proposed various im-

provements in the model evaluation metrics for both measurement

and structural models. In the following, we assess whether re-

searchers consider best practices, while acknowledging that some of

these improvements have only recently been introduced. We dis-

tinguish between reflective and formative measurement models,

since their validation—as extensively documented in the literature—

relies on totally different sets of criteria (Hair et al., 2021a, 2022;

Ramayah et al., 2018; Wong, 2019).

3.4.1 | Reflective measurement models

A total of 479 of the 486 models (98.56%) included at least one

reflectively measured construct (Table 5). Of these 479 models, 390

models (81.42%) reported the indicator loadings and 386 models

(80.59%) reported at least one measure of the internal consistency

reliability (Table 6). The majority of the models reported composite

reliability ρC in conjunction with Cronbach's alpha (190 models,

39.67%). Composite reliability ρC was the only reliability metric re-

ported in 132 models (27.56%), and Cronbach's alpha was the only

reliability metric in 49 of the 479 models (10.23%). While these re-

porting practices reflect previous recommendations in the literature

1Note that this distinction refers to the measurement‐theoretic perspective. To estimate

formative measurement models, PLS‐SEM uses composite indicators that define the con-

struct in full. The method does not allow for estimating a formative construct's error term

using causal indicators (Cho et al., 2021; Sarstedt et al., 2016).
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TABLE 6 Measurement model evaluation

Panel A: Reflective measurement models
1981–2010 2011–2020

Empirical test criterion in
PLS‐SEM

Number of models
reporting (n = 254)

Proportion
reporting (%)

Number of models
reporting (n = 479)

Proportion
reporting (%)

Indicator reliability Indicator loadingsa 157 61.81 390 81.42

Internal consistency
reliability

Only Cronbach's alpha 35 13.78 49 10.23

Only ρc 73 28.74 132 27.56

Only ρA – – 3 0.63

Cronbach's alpha & ρc 69 27.17 190 39.67

Cronbach's alpha & ρA – – 1 0.21

ρc & ρA – – 2 0.42

All three – – 9 1.88

Convergent validity AVE 146 57.48 371 77.45

Other 7 2.76 16 3.34

Discriminant validityb Only Fornell‐Larcker (FL)
criterion

111 43.70 176 36.74

Only cross‐loadings 12 4.72 8 1.67

Only HTMT – – 25 5.22

FL criterion & cross‐loadings 31 12.20 81 16.91

FL criterion & HTMT – – 38 7.93

Cross‐loadings & HTMT – – 3 0.63

All three – – 12 2.51

Panel B: Formative measurement models
1981–2010 2011–2020

Empirical test criterion in
PLS‐SEM

Number of models
reporting (n = 143)

Proportion
reporting (%)

Number of models
reporting (n = 112)

Proportion
reporting (%)

Reflective criteria used to

evaluate formative
constructs

33 23.08 10 8.93

Collinearity Only VIF/tolerance 17 11.89 43 38.39

Only condition index 1 0.70 1 0.89

Both 4 2.80 9 8.04

Convergent validity Redundancy analysis – – 6 5.36

Indicator's relative
contribution to the
construct

Indicator weights 33 23.08 74 66.07

Significance of weights Standard errors, significance
levels, t values/p values

25 17.48 36 32.14

Only confidence intervals – – 0 0.00

Both – – 2 1.79

Abbreviation: PLS‐SEM, partial least squares structural equation modeling.
aSingle item constructs were excluded in 1981–2010 and 2011–2020.
bProportion reporting (%) for 2011–2020 uses all 479 models as the base even though the HTMT criterion has only been proposed in 2015.
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(Hair et al., 2017a), more recent guidelines call for using ρA (Dijkstra &

Henseler, 2015) as an additional appropriate measure of internal

consistency reliability. However, only 15 models rely on this criterion,

either exclusively (3 models; 0.63%) or in conjunction with one or

more other metrics (12 models, 2.51%). Compared to the previous

period, a larger percentage of researchers consider both the indicator

reliability and internal consistency reliability (Table 6). The internal

consistency reliability assessment more frequently relies on Cron-

bach's alpha, whose use in the PLS‐SEM context is criticized due to

the metric assuming a common factor model (Rönkkö et al., 2021).

When used in composite models, however, Cronbach's alpha un-

derestimates internal consistency reliability, making it a conservative

reliability measure. Consequently, when Cronbach's alpha does not

raise concerns in a PLS‐SEM analysis, the construct measurement can

a fortiori be expected to exhibit sufficient levels of internal con-

sistency reliability.

Of the 479 models, 371 (77.45%) assessed the convergent va-

lidity correctly by using the average variance extracted. The re-

maining models either established convergent validity incorrectly by

using criteria such as cross‐loadings and composite reliability (16

models, 3.34%) or did not comment on this aspect of model eva-

luation (92 models, 19.21%).

Discriminant validity is arguably the most important aspect of

validity assessment in reflective measurement models (Farrell,

2010), because it ensures each construct is empirically unique and

captures a phenomenon that other constructs in the PLS path model

do not represent (Franke & Sarstedt, 2019). Against this back-

ground, it is surprising that only 343 of the 479 models (71.61%)

assessed their discriminant validity. The most frequently used

metric is the well‐known Fornell‐Larcker criterion (Fornell &

Larcker, 1981), either as a standalone metric (176 models, 36.74%),

or in conjunction with other criteria (131 models, 27.35%). The

second most used criterion is an analysis of the indicator cross‐

loadings, which 104 of the 479 models (21.71%) report. Recent

research has shown, however, that both criteria are largely un-

suitable on conceptual and empirical grounds to assess discriminant

validity. Henseler et al. (2015) propose the heterotrait‐monotrait

(HTMT) ratio of correlations as an alternative metric to assess dis-

criminant validity, and a series of follow‐up studies have confirmed

its robustness (Franke & Sarstedt, 2019; Radomir & Moisescu, 2020;

Voorhees et al., 2016). We find that 78 models of the 326 (23.93%)

models that have been published since the publication of Henseler

et al. (2015) draw on this criterion, either exclusively (25 models,

7.67%) or jointly with at least one other criterion (53 models,

16.26%). Of the 78 models applying the HTMT, 47 (60.26%) com-

pare its values with a fixed cutoff value, two models (2.56%) rely on

inference testing based on bootstrapping confidence intervals, and

23 models (29.49%) apply both approaches.

While our findings demonstrate some improvements in the re-

flective measurement model assessment compared to the previous

period, concerns about the discriminant validity assessment remain.

Given methodological innovations' diffusion latency in applied re-

search, the strong reliance on the Fornell‐Larcker criterion and

cross‐loadings seems understandable. However, future studies

should only draw on the HTMT criterion and use bootstrapping to

assess whether its values deviate significantly from a predetermined

threshold. This threshold depends, however, on the conceptual si-

milarity of the constructs under consideration. For example, a higher

HTMT threshold, such as 0.9, can be assumed for conceptually similar

constructs, whereas the analysis of conceptually distinct constructs

should rely on a lower threshold, such as 0.85 (Franke &

Sarstedt, 2019; Hair et al., 2022). Roemer et al. (2021) recently

proposed the HTMT2, which relaxes the original criterion's assump-

tion of equal population indicator loadings. Their simulation study

shows that the HTMT2 produces a marginally smaller bias in the

construct correlation estimates when the indicator loading patterns

are very heterogeneous; that is, when some loadings are 0.55 or

lower while others are close to 1. The small differences between the

values of HTMT and HTMT2 are, however, extremely unlikely to

translate into different conclusions when using the criterion for

inference‐based discriminant validity testing—as recommended in the

extant literature (Franke & Sarstedt, 2019). For common loading

patterns, where loadings vary between 0.6 and 0.8, the regular HTMT

actually performs better than the HTMT2, unless one assumes ex-

tremely high construct correlations that would violate discriminant

validity, regardless which criterion is being used. Hence, while the

notion of an “improved criterion for assessing discriminant validity”

appears appealing, the HTMT2 does not offer any improvement over

the original metric.

3.4.2 | Formative measurement models

The assessment of formative measurement models draws on differ-

ent criteria than those used in the context of reflective measurement

due to the conceptual differences between the two approaches.

Specifically, while reflective measurement treats the indicators as

error‐prone manifestations of the underlying construct, formative

measurement assumes that indicators represent different aspects

of a construct that jointly define its meaning (Diamantopoulos

et al., 2008).

Overall, 112 of the 486 models (23.05%) include at least one

formatively measured construct (Table 5). In 10 of these 112 models

(8.93%), the researchers use reflective measurement model criteria to

evaluate formative measures (Table 6). This practice is very proble-

matic, however, because formatively measured constructs' indicators

do not necessarily correlate highly, which renders standard con-

vergent and internal consistency reliability metrics meaningless

(Diamantopoulos & Winklhofer, 2001)—even though corresponding

metrics may occasionally reach satisfactory values, since strong in-

dicator correlations may also occur in formative measurement models

(Nitzl & Chin, 2017). Instead, researchers need to (1) run a re-

dundancy analysis to assess the formative construct's convergent

validity, (2) ensure the formative measurement model is not subject

to collinearity, and (3) evaluate the formative indicator weights.

Table 6 shows the results of this aspect of our review.
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In only 6 of the 112 models (5.36%) with formative measures, the

authors reported the results of a redundancy analysis. This analysis

establishes a formative measure's convergent validity by showing

that it correlates highly with a reflective multi‐item or single‐item

measure of the same concept (Cheah et al., 2018). Chin (1998) in-

troduced the redundancy analysis in a PLS‐SEM context more than

20 years ago, but extant guidelines only adopted this method more

recently (Hair et al., 2022; Ramayah et al., 2018), which could explain

its limited use.

Conversely, collinearity assessment is much more prevalent in

formative measurement model evaluation, with about half of the

models (53 models, 47.32%) assessed in this regard. The variance

inflation factor is the primary criterion for collinearity assessment and

applied in most studies (Table 6).

Formative measurement model assessment's main focus is inter-

preting the indicator weights, which represent each indicator's relative

contribution to forming the construct's (Cenfetelli & Bassellier, 2009).

Slightly less than two‐thirds of the models in our review (74 models,

66.07%) report the formative indicator weights, and researchers also

assess the indicators' statistical significance in 44 of the 74 models

(59.46%). In six of these 44 models (13.63%), researchers only comment

on the weights' significance, whereas they report inference statistics in 38

models (86.26%). A detailed analysis shows that 21 of the

44 models (47.73%) include nonsignificant weights. Rather than deleting

corresponding indicators, extant guidelines suggest analyzing the for-

mative indicators' loadings, which represent their absolute contribution to

the construct (Hair et al., 2019b, 2022). Only five of the 21 models

(23.81%) follow this recommendation.

Overall, our results regarding formative measurement model

evaluation are encouraging, as they suggest researchers have become

more concerned about applying criteria dedicated to this measure-

ment mode. In comparison, in the previous period, less than one‐third

of all models analyzed the formative indicator weights and far fewer

tested for potential collinearity issues. Nevertheless, in absolute

terms our results offer room for improvement. There is virtually no

redundancy analysis in PLS‐SEM research, which is problematic, since

it offers an empirical validation that the formative measure is similar

to established measures of the same concept. In addition, many of

the models still do not report collinearity statistics. This finding is

surprising, since collinearity assessment has long been acknowledged

as an integral element of formative measurement model assessment

(Cenfetelli & Bassellier, 2009; Diamantopoulos & Winklhofer, 2001;

Petter et al., 2007). Researchers should consider these aspects

carefully before focusing on indicator weight assessment.

3.4.3 | Structural model

Once the measures' reliability and validity have been established, the

next step is to assess the structural model's explanatory and pre-

dictive power, as well as the path coefficients' significance and re-

levance (Hair et al., 2020b). Table 7 documents our review's

corresponding results.

In a first step, researchers need to ensure that potential collinearity

between sets of predictor constructs in the model does not negatively

impact the structural model estimates. Our review results show that

marketing researchers generally omit this step, as only 100 of the

486 models (20.58%) mention inspecting collinearity in the structural

model.

Not surprisingly, almost all the models (480 models, 98.77%)

report path coefficients and their significance (473 models,

97.33%). Inference testing relies primarily on t tests with standard

errors derived from bootstrapping (419 models, 86.12%). In

keeping with recommendations in the more recent literature

(Streukens & Leroi‐Werelds, 2016), 54 models (11.11%) report

bootstrapping confidence intervals either alone (11 models, 2.26%)

or together with t values (43 models, 8.85%). Aguierre‐Urreta and

Rönkkö's (2018) simulation study suggests that researchers should

primarily draw on percentile confidence intervals or, alternatively,

on bias‐corrected and accelerated confidence intervals. Both ap-

proaches perform very similarly, but the bias‐corrected confidence

intervals achieve slightly better results when the bootstrap dis-

tributions are highly skewed. Researchers seem to have inter-

nalized these recommendations, since 39 of 54 models (72.22%)

rely on the percentile method, while 15 models (27.78%) apply the

bias‐corrected and accelerated confidence intervals. Supplement-

ing the path coefficient reporting, 86 of 486 models (17.70%) also

express the structural model effects in terms of the f2 effect size,

which provides evidence of an exogenous construct's relative im-

pact on an endogenous construct in terms of R2 changes.

While earlier guidelines called for the routine reporting of the

f2 (Chin, 1998), more recent research emphasizes that this statistic

is redundant in terms of path coefficients, and concluding that

reporting it should be optional (Hair et al., 2022).

The majority of the models report the R2 (430 models, 88.48%)

to support the structural model's quality, which is almost identical to

what occurred in the previous period (88.42%). During our review,

we noticed that some authors view the R2 as a measure of their

models' predictive power. However, the R2's computation draws on

the entire dataset and, as such, indicates a model's explanatory power

(Shmueli, 2010). Assessing the PLS path model's predictive power

requires estimating the parameters by means of a subset of

observations, and using these estimates to predict the omitted ob-

servations' case values (Sarstedt & Danks, 2021; Shmueli &

Koppius, 2011). Our review shows that only 11 of the 239 studies

(4.60%) use holdout samples to validate their results, possibly be-

cause research has only recently offered clear guidelines on how to

run a holdout sample validation in a PLS‐SEM context (Cepeda

Carrión et al., 2016). Alternatively, researchers could draw on

Shmueli et al.'s (2016) PLSpredict procedure, which implements k‐fold

cross‐validation to generate case‐level predictions on an indicator

level. The procedure partitions the data into k subsets and uses k‐1

subsets to predict the indicator values of a specific target constructs

in the remaining data subset (i.e., the holdout sample). This process is

repeated k times such that each subset once serves as a holdout

sample.
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PLSpredict is a relatively new procedure and research has only

recently offered guidelines for its use (Shmueli et al., 2019). It is

therefore not surprising that only 23 of the 295 models (7.80%) that

have been published after Shmueli et al.'s (2016) introduction of

PLSpredict apply the procedure. Instead, many researchers (162 of the

486 models, 33.33%) rely on the blindfolding‐based Q2 statistic,

which scholars had long considered a suitable means of assessing

predictive power (Sarstedt et al., 2014)—a far greater percentage

than in the previous period, when only 16.40% of all models included

this assessment. However, recent research casts doubt on this in-

terpretation, noting that this statistic confuses explanatory and pre-

dictive power assessment (Shmueli et al., 2016). We, therefore,

advise against its use and that of the q2, which is a Q2‐based

equivalent of the f2 effect size that 15 of the 486 models (3.09%)

report.

A controversial and repeatedly raised issue in research is whe-

ther model fit—as understood in a factor‐based SEM context—is a

meaningful evaluation dimension in PLS path models. While some

researchers strongly advocate the use of model fit metrics (e.g.,

Schuberth & Henseler, 2021; Schuberth et al., 2018a), others point to

the available metrics' conceptual deficiencies and question their

performance in the context of PLS‐SEM (e.g., Hair et al., 2019c; Hair

et al., 2022; Lohmöller, 1989). Our review shows that model fit as-

sessment does not feature prominently in recent PLS‐SEM applica-

tions as researchers report model fit metrics for only 103 of the 486

models (21.19%). Most researchers rely on Tenenhaus et al. (2004)

GoF metric (60 models, 12.35%), which Henseler and Sarstedt (2013)

debunked as ineffective for separating well‐fitting models from

misspecified ones. Some researchers (additionally) report SRMR (40

models, 8.23%), relying on thresholds proposed by Henseler et al.

(2014). The reporting of distance‐based measures dULS and dG as well

as the RMStheta is practically nonexistent in PLS‐SEM research (1

model each, 0.21%). Scholars have conceptually discussed (Schuberth

& Henseler, 2021) and empirically tested (Schuberth et al., 2018a) the

SRMR, which lend this metric some authority. However, given

SRMR's performance in research settings commonly encountered in

TABLE 7 Structural model evaluation

1981–2010 2011–2020

Criterion
Empirical test criterion in
PLS‐SEM

Number of models
reporting (n = 311)

Proportion
reporting (%)

Number of models
reporting (n = 486)

Proportion
reporting (%)

Path coefficients Values 298 95.82 480 98.77

Significance of path

coefficients

Standard errors, significance

levels, t values/p values

287 92.28 419 86.21

Confidence intervals 0 0.00 11 2.26

Both 0 0.00 43 8.85

Effect size f2 16 5.14 86 17.70

Explanatory power R2 275 88.42 430 88.48

Predictive power PLSpredict
a – – 23 4.73

Predictive relevance

(blindfolding)

Q2 51 16.40 162 33.33

q2 0 0.00 15 3.09

Model fit GoF 16 5.14 60 12.35

SRMR – – 40 8.23

dULS – – 1 0.21

dG – – 1 0.21

RMStheta – – 1 0.21

1981–2010 2011–2020

Criterion
Empirical test criterion in
PLS‐SEM

Number of studies
reporting (n = 204)

Proportion
reporting (%)

Number of studies
reporting (n = 239)

Proportion
reporting (%)

Observed heterogeneity Categorical moderator 47 23.04 57 23.85

Continuous moderator 15 7.35 58 24.27

Unobserved
heterogeneity

Latent class techniques
(e.g., FIMIX‐PLS)

0 0.00 10 4.18

aProportion reporting (%) for 2011–2020 uses all 486 models as the base even though PLSpredict has only been proposed in 2016.
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applied research, Hair et al. (2022, Chap. 6) comment critically on its

practical utility. Specifically, in PLS path models with three constructs,

the SRMR requires sample sizes of approximately 500 to detect

misspecifications reliably. Our review shows that the vast majority of

PLS path models are far more complex (Table 5) and rely on much

smaller sample sizes, therefore supporting the raised concerns. The

same holds for the bootstrap‐based test for exact model fit, whose

use recent research advocates (Benitez et al., 2020; Henseler

et al., 2016a; Schuberth & Henseler, 2021), but which none of the

studies in our review applies.

To summarize, we observe some improvements in PLS‐SEM‐

based structural model assessment, with more researchers seeming

to be concerned about predictive power evaluations. In this respect,

researchers have made increasing use of the Q2 statistic, which is,

however, not a reliable indicator of a model's predictive power. The

latter practice is not surprising, since concerns regarding Q2's suit-

ability have only been raised in rather recent research (e.g., Shmueli

et al., 2016). Researchers should therefore follow the most recent

recommendations and apply k‐fold cross‐validation by using PLSpredict

or drawing on holdout samples. Researchers should also be aware of

the controversies surrounding the efficacy of extant model fit metrics

in PLS‐SEM, and carefully check whether their model and data con-

stellations favor their use. Judging by Schuberth et al.'s (2018a)

findings, the SRMR and exact fit test will exhibit very weak perfor-

mance on the average model identified in our review with seven

constructs and 280 observations.

3.5 | Advanced modeling and analysis techniques

With the PLS‐SEM field's increasing maturation (Hwang et al., 2020;

Khan et al., 2019), researchers can draw on a greater repertoire of

advanced modeling and analysis techniques to support their conclu-

sions' validity and to identify more complex relationships patterns

(Hair et al., 2020a).

For example, many researchers use PLS‐SEM because of its

ability to accommodate higher‐order constructs without identifica-

tion concerns. Analyzing the prevalence and application of higher‐

order constructs, we find that 71 of the 239 studies (29.71%) in-

cluded at least one such construct. The majority of these studies

considered second‐order constructs (65 studies), while the remaining

studies included third‐order constructs (5 studies) or both (1 study).

Analyzing the measurement model specification of the second‐order

constructs (Wetzels et al., 2009), we find that most of the studies

employ Type I (reflective‐reflective; 30 studies), Type II (reflective‐

formative; 26 studies), or both (4 studies). Only five studies employ

Type IV (formative‐formative), while no study draws on a Type III

(formative‐reflective) measurement specification. Analyzing the spe-

cification, estimation, and evaluation of the higher‐order constructs

in greater detail, gives rise to concern in two respects. First, 47 of the

studies that employed higher‐order constructs do not make the

specification and estimation transparent.2 Those that do, either draw

on the repeated indicators approach (15 studies) or the two‐stage

approach (9 studies). This practice is problematic as endogenousType

II and IV higher‐order constructs cannot be reliably estimated using

the standard repeated indicators approach (Becker et al., 2012).

Second and more importantly, only eight studies correctly evaluate

the higher‐order constructs using criteria documented in the extant

literature (e.g., Sarstedt et al., 2019). The majority of the 71 studies

do not evaluate the higher‐order constructs at all (30 studies) or

incompletely apply the relevant criteria (21 studies), typically dis-

regarding discriminant validity assessment in reflective (i.e., Type I)

and the redundancy analysis in formative higher‐order constructs

(i.e., Types II and IV). Finally, 12 studies misapply the evaluation cri-

teria by erroneously interpreting the relationships between lower‐

and higher‐order components as structural model relationships.

Overall, our findings suggest that researchers need to provide much

more care in their handling of higher‐order constructs by considering

the most recent guidelines (Sarstedt et al., 2019).

The identification and treatment of observed and unobserved

heterogeneity is another aspect that has attracted considerable at-

tention in methodological research (Memon et al., 2019; Rigdon

et al., 2010; Sarstedt et al., 2022). Our review shows that researchers'

use of PLS‐SEM also mirrors this development. A total of 115 studies

(48.12%) in our review took observed heterogeneity into account by

either considering continuous (58 studies 24.27%) or categorical

(57 studies 23.85%) moderating variables. The strong increase in the

percentage of studies using continuous moderating variables com-

pared to the previous period, when only 7.35% undertook corre-

sponding moderation analyses, demonstrates the growing interest in

more complex model constellations. Although a total of 57 studies

investigated the categorical moderators' impact by means of multi-

group analysis (Sarstedt et al., 2011), only 12 address the issue of

measurement invariance by using the MICOM procedure (Henseler

et al., 2016b). This practice is problematic as establishing measure-

ment invariance is a requirement for any multigroup analysis.

By establishing (partial) measurement invariance, researchers are

assured that the group differences in the model estimates are not

the result of, for example, group‐specific response styles

(Hult et al., 2008).

While the consideration of moderators facilitates the identifica-

tion and treatment of observed heterogeneity, group‐specific effects

can also result from unobserved heterogeneity. Since failure to

consider such unobserved heterogeneity can be a severe threat to

PLS‐SEM results' validity (Becker et al., 2013), researchers call for the

routine use of latent class procedures. Recent guidelines recommend

the tandem use of finite mixture PLS (FIMIX‐PLS; Hahn et al., 2002)

and more powerful latent class techniques, such as PLS prediction‐

oriented segmentation (PLS‐POS; Becker et al., 2013), PLS genetic

algorithm segmentation (PLS‐GAS; Ringle et al., 2014), and PLS

iterative reweighted regressions segmentation (PLS‐IRRS; Schlittgen

2In most cases, the descriptions suggest that the authors averaged the items of the lower‐

order components to generate indicators of the higher‐order construct. This practice is,

however, problematic as it ignores the biasing effect of measurement error that PLS‐SEM's

differential indicator weighting accounts for.
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et al., 2016). While FIMIX‐PLS allows researchers to reliably de-

termine the segments to extract from data (Sarstedt et al., 2011),

techniques such as PLS‐POS reproduce the actual segment structure

more effectively. Recent research calls for the routine application of

latent class techniques to ensure that heterogeneity does not impact

the aggregate level results adversely (Sarstedt et al., 2020b). Despite

these calls, only 10 of the 239 studies in our review (4.18%) conduct

a latent class analysis. All these studies apply FIMIX‐PLS, which, while

detecting heterogeneity issues well, clearly lags behind in terms of

treating the heterogeneity.

Researchers have long noted the need to explore alternative ex-

planations for the phenomena under investigation by considering dif-

ferent model configurations. Such explanations will allow researchers

to compare the emerging models by using well‐known regression lit-

erature metrics (Burnham & Anderson, 2002) to select the best‐fitting

model in the set. Only 10 of our review studies (4.18%) compare

alternative models by using the same data set. By disregarding alter-

native theoretically plausible model configurations, researchers could

fall prey to confirmation biases, since they only look for configurations

that support “their” model (Nuzzo, 2015), and miss out on opportu-

nities to fully understand the mechanisms at work (Sharma

et al., 2019). Further, very few studies compare multiple models by

drawing on a large set of criteria, therefore, applying between one and

nine different criteria. However, none of the studies applies the

Bayesian Information Criterion (Schwarz, 1978) or the Geweke and

Meese (1981) criterion, which prior research identified as superior in

PLS‐SEM‐based model comparisons (Danks et al., 2020; Sharma

et al., 2019; Sharma et al., 2021c). With further recent developments

in these directions (e.g., based on the cross‐validated predictive ability

test, CVPAT), we expect the popularity and relevance of the predictive

model assessment (Sharma et al., 2021a) and model comparison

(Liengaard et al., 2021) to increase.

While our review results point to some progress in terms of applying

advanced analysis techniques, there is still ample room for improvement.

First, researchers need pay greater attention to the specification, esti-

mation and particularly the validation of higher‐order constructs. Second,

measurement invariance assessment should precede any multigroup

analysis (Henseler et al., 2016b), since failure to establish at least partial

measurement invariance renders any multigroup analysis meaningless.

Third, researchers should routinely apply latent class analyses to check

their aggregate level results' robustness. Failure to do so may result in

misleading interpretations when unobserved heterogeneity affects the

model estimates. Finally, researchers should more often compare theo-

retically plausible alternatives to the model under consideration. Con-

sidering alternative explanations is a crucial step before making any

attempt to falsify a theory (Popper, 1959).

3.6 | Reporting

Hair et al.'s (2012) review emphasized that the algorithm settings used in

the analysis needed to be transparent to facilitate its replicability. Our

review shows some improvements compared to the previous period,

most notably with regard to documenting the software used for the

analysis. Whereas less than half of all the studies in the previous period

report the software (49.02%), the percentage is much higher in recent

PLS‐SEM research (193 studies, 80.75%). Most PLS‐SEM studies (166

studies, 69.46%) apply SmartPLS, with PLS‐Graph following far behind

(18 studies, 7.53%). Other rarely used software programs include XLSTAT

(4 studies, 1.67%), WarpPLS (3 studies, 1.26%) and ADANCO (2 studies,

0.84%). In addition, two studies (0.82%) use the plspm package of the R

software.

Only five studies (2.09%) mention the parameter or algorithm

settings, seven studies (2.93%) the computational options (e.g.,

weighting schemes), and 12 studies (5.02%) the maximum number

of iterations. Although making these algorithm settings trans-

parent is certainly useful, different algorithm settings do not

normally induce significant deviations in the estimation results.

This, however, differs in bootstrapping settings; Rönkkö et al.

(2015), for example, show that the use of sign change options can

trigger considerable Type I errors, whereas Streukens and Leroi‐

Werelds (2016) emphasize the need to draw many bootstrap

samples (i.e., at least 10,000) from the original data. In this regard,

it is encouraging that 175 studies (73.22%) mention the use of

bootstrapping, 141 of which provided additional details of the

algorithmic settings, such as the number of bootstrap samples

used. None of the studies use jackknifing as an alternative means

of deriving standard errors, which is likely due to this method

only being implemented in the early PLS‐Graph software that

only a few researchers still use.

Research has produced various variants of the original PLS‐SEM al-

gorithm (Becker & Ismail, 2016). One prominent research stream deals

with the original PLS‐SEM's extensions, to estimate common factor

models. While researchers have introduced various such extensions

(Bentler & Huang, 2014; Kock, 2019), consistent PLS‐SEM (PLSc‐SEM)

has become the primary technique in this stream (Dijkstra &

Henseler, 2015). The use of PLSc‐SEM has triggered discussions with

certain researchers, who call for its routine application (Benitez

et al., 2020; Evermann & Rönkkö, 2021; Henseler et al., 2016a), while

others conclude the method “adds very little to existing knowledge of

SEM” (Hair et al., 2019c, p. 570). PLS‐SEM users seem to share this

skepticism as only five studies (2.09%) apply PLSc‐SEM.

Finally, we see no increase in the share of studies reporting in-

dicator covariance or correlation matrices. This practice is proble-

matic, because it hinders the results' replicability and checking

whether model evaluation metrics, such as the HTMT, are adequate.

On the contrary, studies routinely report construct‐level correlation

matrices (180 studies, 75.31%), largely due to their relevance for

Fornell‐Larcker‐based discriminant validity assessment.

To summarize, reporting practices regarding the software and algo-

rithm settings used have improved since Hair et al.'s (2012) review.

Nevertheless, more studies need to make the software and, particularly,

the bootstrap settings transparent. Furthermore, SmartPLS (Ringle

et al., 2015) is currently the most widely applied software, likely due to its

user friendliness (Sarstedt & Cheah, 2019), features, and functionalities

(Memon et al., 2021). However, with new software packages, such as

1054 | SARSTEDT ET AL.



TABLE 8 Checklist for the application of PLS‐SEM

Aspect Recommendation/rules of thumb Suggested references

General

Motivate the use of PLS‐EM Motivating the use of PLS‐SEM on the grounds of “small
sample size” should be done with caution, as small samples
affect the method adversely. Do not motivate PLS‐SEM
use on the grounds of nonnormal data alone.

Hair et al. (2019b); Rigdon (2016)

Emphasize the causal‐predictive nature of the analysis, model

complexity, the estimation of conditional process models,
and the use of formative measures.

Hair et al. (2019b); Sarstedt et al.

(2020a); Sarstedt et al. (2016)

Data characteristics

Sample size Run power analyses to determine the required sample size
prior to the analysis or, alternatively, apply the inverse
square root method. The ten times rule offers only very
rough guidance regarding the minimum sample size

requirements and should not be used as a justification.

Aguirre‐Urreta and Rönkkö (2015);
Kock and Hadaya (2018)

Missing values Report missing values and the use of imputation procedures. Hair et al. (2022)

Outliers Detect outliers using univariate or multivariate methods.
Delete outliers if necessary or treat them as a separate
segment.

Sarstedt and Mooi (2019)

Use of discrete variables Discrete variables may be used as grouping variables in
multigroup analyses or be included as dummy variables.
PLS‐SEM can process discrete choice modeling data.

Hair et al. (2019a); Hair et al. (2019b)

Model characteristics

Model type Specify funnel‐like models where the number of predictor
constructs in the model's partial regressions are larger than

the endogenous constructs. Avoid chain‐like models. Use
CB‐SEM for unfocused models.

Hair et al. (2012); Hair et al. (2021b)

Description of the measurement
models

Provide a detailed list of indicators in the appendix; distinguish
between reflective and formative measurement.

Hair et al. (2022)

Single items Generally, refrain from using single items unless measuring
observable characteristics, which is commonly done in the
form of control variables (e.g., income, sales, number of
employees, etc.).

Cheah et al. (2018); Diamantopoulos
et al. (2012)

Measurement model evaluation:
reflective

Internal consistency reliability

Cronbach's alpha, composite
reliability ρc and ρA

Consider Cronbach's alpha as the lower and ρC as the upper

boundary of internal consistency reliability. ρA should be
considered the best point estimate of internal consistency
reliability.

Dijkstra and Henseler (2015); Hair

et al. (2022)

Thresholds of all reliability measures: 0.70‐0.90 (0.60 in

exploratory research, max. 0.95 to avoid indicator
redundancy).

Convergent validity Interpret the average variance extracted (AVE). Sarstedt et al. (2021)

Threshold:

AVE ≥0.50

Discriminant validity Do not use the Fornell‐Laker criterion or cross‐loadings, but
the HTMT.

Franke and Sarstedt (2019); Henseler
et al. (2015)

Thresholds:

HTMT <0.90 for conceptually similar constructs

HTMT <0.85 for conceptually different constructs

In addition, test whether the HTMT is significantly lower than
the threshold value.

(Continues)
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TABLE 8 (Continued)

Aspect Recommendation/rules of thumb Suggested references

Measurement model evaluation:

formative

Convergent validity (redundancy

analysis)

Use the redundancy analysis to assess the convergent validity;

a global single‐ item or a reflectively measured multi‐item
scale can be used as an alternative measurement. The
construct correlation should be ≥0.70

Cheah et al. (2018); Chin (1998)

Collinearity Use the variance inflation factor (VIF) to assess collinearity in
all sets of formative indicators.

Hair et al. (2019b)

Thresholds:

VIF≤3: no collinearity issues

VIF 3–5: possible collinearity issues

VIF ≥5: critical collinearity issues

Indicator weights Report the indicator weight estimates and information

regarding their significance.

Aguirre‐Urreta and Rönkkö (2018); Hair

et al. (2022)

For inference testing, report the t values, p values with
standard errors or, preferably, the bootstrapping
confidence intervals. Use the percentile method to
construct confidence intervals; use the bias‐corrected and
accelerated bootstrap method for highly asymmetric

bootstrap distributions.

Consider the indicator loadings of nonsignificant weights.

Indicators with nonsignificant and low loadings (<0.5)
should be removed from the measurement model.

Structural model evaluation

Collinearity Use the variance inflation factor (VIF) for the collinearity
assessment of all sets of predictor constructs in the
structural model.

Thresholds:

VIF≤3: no collinearity issues

VIF 3–5: possible collinearity issues

VIF ≥5: critical collinearity issues

Path coefficients Report the path coefficient estimates and information on their

significance.

Aguirre‐Urreta and Rönkkö (2018); Hair

et al. (2022)

For inference testing, report t values, p values with standard
errors or, preferably, the bootstrapping confidence
intervals. Use the percentile method to construct
confidence intervals; if the bootstrap distributions are

highly asymmetric, use the bias‐corrected and accelerated
(BCa) bootstrap method.

Explanatory power Report the R2, but do not consider the metric as indicative of
predictive power.

Hair (2021); Hair et al. (2019b); Shmueli
and Koppius (2011)

The R2 values depend on the model complexity and the

phenomena under research. Note that very high R2 values
such as 0.90 are usually indicative of model overfit when
measuring theoretical concepts.

Hair et al. (2019b)

Predictive power Use PLSpredict to compare the predictions generated by the PLS

path model with those of a naïve linear benchmark model.

Shmueli et al. (2016); Shmueli

et al. (2019)
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cSEM (Rademaker & Schuberth, 2021) and SEMinR (Ray et al., 2021), as

well as the detailed documentation on them (Hair et al., 2021a;

Henseler, 2021), we expect the use of R packages to gain traction. Finally,

in light of the growing concerns about social science research's replic-

ability (Rigdon et al., 2020), reporting indicator and construct‐level cor-

relation matrices should become mandatory.

4 | CONCLUSION

The substantial increase in the number of articles applying PLS‐SEM

during the last decade shows that PLS‐SEM has become an essential

element in marketing researchers' methodological toolbox. Our

review covers 239 articles published in the top 30 marketing journals

between 2011 and 2020—a significant increase compared to those in

Hair et al.'s (2012) study, which covered 204 articles published in the

same journals between 1981 and 2010.

We find that researchers are currently more aware of the

stumbling blocks of PLS‐SEM use. Recent research uses PLS‐SEM to

estimate models with similar average complexity as in the previous

period, but drawing on larger datasets, which favors the analyses'

statistical power. Our results also suggest that researchers have be-

come more aware of single‐item measures' limitations

(Diamantopoulos et al., 2012) and of more complex modeling options,

like higher‐order constructs (Sarstedt et al., 2019) and moderation

(Memon et al., 2019). Similarly, researchers have started

TABLE 8 (Continued)

Aspect Recommendation/rules of thumb Suggested references

Model fit Do not use the GoF index. Apply the SRMR or the bootstrap‐
based test for an exact model fit, but only if the model
complexity and sample size support this step.

Hair et al. (2022); Schuberth and
Henseler (2021); Schuberth et al.
(2018b)

Advanced modeling and analysis techniques

Higher‐order constructs The specification, estimation, and evaluation of higher‐order
constructs require particular scrutiny. Follow the most

recent guidelines.

Sarstedt et al. (2019)

Observed heterogeneity Consider recent guidelines on moderator, multigroup, and
conditional process model analyses.

Klesel et al. (2019); Memon et al.
(2019); Sarstedt et al. (2020a)

Unobserved heterogeneity Use latent class analyses as a robustness check to ascertain
that unobserved heterogeneity does not adversely impact
the aggregate level results.

Becker et al. (2013); Sarstedt et al.
(2022); Sarstedt et al. (2020b),

Use finite mixture PLS in combination with more advanced
latent class procedures, such as PLS prediction‐oriented
segmentation.

Measurement Invariance Use the MICOM procedure to at least establish partial
measurement invariance as a necessary condition for any

multigroup analysis.

Henseler et al. (2016b)

Model comparisons Consider different model configurations as representations of
alternative explanations of the phenomena under
consideration.

Liengaard et al. (2021); Sharma et al.
(2019); Sharma et al. (2021b)

Use the Bayesian information criterion (BIC) to select the best
model.

Consider using BIC‐based Akaike weights to quantify each
model's relative suitability. Alternatively use the cross‐
validated predictive ability test (CVPAT).

Reporting

Software Mention the software applied and correctly cite its use,
especially if required by the license agreement.

Hair et al. (2012)

Algorithm settings Report, at least, the following bootstrapping settings: the
number of bootstrap samples used (recommendation:
10,000) and the type of bootstrapping confidence interval.

Do not use sign change options.

Correlation matrix Report the indicator and construct correlation matrices. Hair et al. (2012)

Abbreviation: PLS‐SEM, partial least squares structural equation modeling.
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accommodating recently introduced model evaluation metrics, like

the ρA, to assess internal consistency reliability (Dijkstra &

Henseler, 2015), the HTMT to assess discriminant validity (Henseler

et al., 2015), and Shmueli et al.'s (2016) PLSpredict procedure to

evaluate a model's predictive power.

At the same time, we also observe a certain degree of latency in

other areas of PLS‐SEM use. For example, researchers still rely

strongly on the Fornell‐Larcker criterion (Fornell & Larcker, 1981) and

on cross‐loadings to assess discriminant validity; they also hardly use

a redundancy analysis to establish formative measures' convergent

validity. The use of more advanced analyses, such as latent class

techniques, is still lacking in applied PLS‐SEM research despite per-

sistent calls for their routine use to ensure the results' validity (Becker

et al., 2013; Sarstedt & Danks, 2021a; Sarstedt et al., 2017, 2022).

Reporting practices in terms of, for example, the software used and

the bootstrapping algorithm settings, are still inadequate. The latency

with which methodological innovations diffuse in applied research

might explain some of these findings, but certainly not all of them.

Researchers, reviewers, and editors should pay greater attention to

current developments and the latest best practices in PLS‐SEM use

(e.g., Hair et al., 2022). Table 8 summarizes these best practices in

keeping with the aspects covered in our review and serves as a

checklist for future applications of PLS‐SEM. We also offer common

rules of thumb, which offer initial guidance for estimating and as-

sessing models, and provide supporting references for further read-

ing. Figure 2 visualizes the specific aspects that researchers need to

F IGURE 2 A systematic procedure for reporting PLS‐SEM results. PLS‐SEM, partial least squares structural equation modeling
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consider in their application of PLS‐SEM, focusing on the illustration

of the model evaluation and all relevant metrics.

As evidenced by PLS‐SEM's numerous extensions (e.g., Liengaard

et al., 2021; Rasoolimanesh et al., 2021; Richter et al., 2020) and by

controversial debates (Hair et al., 2021b; Rönkkö et al., 2021), research in

the field is highly dynamic (Hwang et al., 2020; Khan et al., 2019). This

rapid progress makes it difficult for researchers to keep up with the latest

developments and to make up their minds regarding which research

stream to follow. For example, our review points to some confusion in

terms of model fit assessment. Some researchers seem to be tempted to

report a model fit metric, which has become the sine qua non in factor‐

based SEM research, adopting the GoF index prematurely which, how-

ever, cannot separate correctly specified models from misspecified ones

(Henseler & Sarstedt, 2013). Very few researchers apply metrics, like the

SRMR, which have been tested in simulation studies (Schuberth

et al., 2018a), but whose users seem to disregard their quite weak per-

formance in typical model and data constellations. Future research

should, therefore, develop better model fit metrics that detect model

TABLE 9 Advanced analysis techniques

Procedure Description Suggested references

Agent‐based simulation The combination with agent‐based simulation (ABS) makes
PLS‐SEM results dynamic and extends their predictive
range. The PLS‐SEM agent uses a static path model and

PLS‐SEM results to determine the ABS settings at the agent
level. Then, the dynamic ABS modeling method extends
PLS‐SEM's predictive capabilities from the individual level
to the population level by modeling the diffusion process in
a network (e.g., consumers).

Schubring et al. (2016)

Endogeneity Methods for identifying and treating endogeneity, which
occurs when a predictor construct is correlated with the

error term of the dependent construct to which it is related.

Hult et al. (2018)

Fuzzy‐set qualitative comparative analysis
(fsQCA) and necessary condition
analysis (NCA) and

In fsQCA, both the independent and dependent variables are
calibrated into set membership scores in order to identify
(calibrated) independent variables that are sufficient but not
necessary for an outcome of the dependent variable. This

approach has been transferred to PLS‐SEM to analyze
necessary conditions in the structural model. Different from
the fsQCA, the NCA does not rely on binary necessity
statements and therefore considers that an outcome or a
certain level of an outcome can only be achieved if the

necessary cause is in place or is at a certain level.

Leischnig et al. (2016), Rasoolimanesh
et al. (2021), Richter et al. (2020)

Importance‐performance map analysis Allows researchers to gain more insights from the PLS‐SEM
analysis by contrasting constructs' total effects with their
(rescaled) average scores.

Ringle and Sarstedt (2016)

Latent class analysis techniques to identify
segments with distinct construct
scores

Partial least squares k‐means facilitates identifying groups of
data that maximize score differences while at the same time
accounting for structural and measurement model

heterogeneity.

Fordellone and Vichi (2020)

Latent class techniques to identify

segments with distinct model relations

Response‐based segmentation techniques that identify distinct

segments that differ in terms of structural or measurement
model relations (e.g., FIMIX‐PLS, PLS‐IRRS, PLS‐POS).

Becker et al. (2013), Sarstedt et al.

(2021a), Schlittgen et al. (2016)

Model comparisons Empirically compare a set of theoretically plausible models. Danks et al. (2020), Liengaard et al.
(2021), Sharma et al. (2019)

Moderated mediation and conditional
process analysis

This approach combines the moderator analysis and mediator
analysis into a moderated mediation and conditional
process analysis in PLS‐SEM.

Cheah et al. (2021), Sarstedt et al.
(2020a; 2020b)

Nonlinear effects estimation PLS‐SEM assumes linear relationships. In some instances,
however, this assumption does not hold in that
relationships may be nonlinear and require nonlinear
estimations of coefficients in PLS‐SEM.

Basco et al. (2021), Sarstedt et al.
( 2020b)

Weighted PLS‐SEM (WPLS) The WPLS algorithm is a modified version of the original PLS‐
SEM algorithm that incorporates sampling weights.

Becker and Ismail (2016), Cheah
et al. (2021)

Abbreviation: PLS‐SEM, partial least squares structural equation modeling.
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misspecifications reliably in standard data and model settings, which re-

flect those of the various customer satisfaction indices (e.g., Fornell

et al., 2020) and technology acceptance models (e.g., Venkatesh

et al., 2012).

Recent research also presents various developments that

could soon play very important roles in the PLS‐SEM field. Hwang

and Cho (2020) recently addressed a criticism of the PLS‐SEM

algorithm by introducing a variant that draws on a single opti-

mization criterion. This extension has the potential to solve var-

ious criticisms of the original PLS‐SEM method in terms of its

modeling options (e.g., introducing model constraints) and model

fit assessment. Future studies should further explore this global

PLS‐SEM method's efficacy for applied research.

Researchers should also advance recently proposed methodological

extensions, which we document in Table 9. For example, Richter et al.

(2020) subject the PLS‐SEM‐produced construct scores to a necessary

condition analysis (NCA). By following a necessity logic, NCA implies that

an outcome—or a certain level of an outcome—can only be achieved if

the necessary cause is in place, or is at a certain level (see also

Rasoolimanesh et al., 2021). PLS‐SEM‐based construct scores have also

been used in other contexts, such as in the identification and treatment of

endogeneity (Hult et al., 2018). Other advances in PLS‐SEM address

nonlinear effects estimation (Basco et al., 2021) and ensuring the validity

of results by uncovering unobserved heterogeneity (Becker et al., 2013;

Sarstedt & Danks, 2021). Future research should build on these initial

efforts to develop more comprehensive methods that consider the ne-

cessity logic and endogeneity before initially computing the construct

scores. Such efforts would further enhance PLS‐SEM's capabilities and

lead to its even more accelerated use in the decade to come.
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