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Abstract

Economic theory predicts the price dynamics of an unbacked asset to be

inherently unforecastable. The same applies to exchange rates of unbacked

currencies. Albeit, empirically investors are found to be driven by online and

offline news media. This study analyzes the Bitcoin cryptocurrency price series

and web search queries with regard to their mutual predictability and cause-

effect delay structure. Chinese Baidu engine searches and compounded

Baidu–Google search statistics predict Bitcoin price dynamics at relatively high

frequencies ranging from 2 to 5 months. In the other direction, Granger-

causality runs from the cryptocurrency price to queries statistics across nearly

all frequencies. In both directions, the reaction time computed from a phase

delay measure for the relevant frequency bands with significant causality

ranges from about 1 to 4 months. For either direction, out-of-sample forecasts

are more accurate than forecasts of a benchmark stochastic process. Bivariate

models including the Baidu Search Index slightly outperform competing

models that include a Baidu–Google composite index. Predictive power seems

less diluted if the September 2017 trade regulations by the Chinese government

are controlled for.
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1 | INTRODUCTION

Terms like cryptocurrency, crypto-token, and blockchain
technology are on everyone's lips. Most prominently, this
applies to Bitcoin (BTC); see Cheah and Fry (2015) and
Bariviera et al. (2017). The currently high-pitched online
as well as offline media interest can be interpreted as a
hype in the sense of an overintensified publicity or pro-
motion of the BTC. In February 2021, the supposedly
richest man on earth at the time, Elon Musk, by commu-
nicating his support for the crypto-token through his

social media channels, let the BTC price skyrocket to an
all time high in the first few weeks of the trading year.
There is a lot of narrative on the relationship between
popularity in the form of news coverage—in particular,
conveyed through social media—and BTC trading as well
as pricing. Prominent in this context is, for instance, the
case of Nasdaq-listed Long Island Iced Tea Corp (LTEA)
in the last quarters of 2017. In the third quarter of 2017,
LTEA faced a net loss amounting to US dollars (USD) 3.9
million. When LTEA announced its realignment of
business and its renaming into Long Blockchain Corp
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(LBCC) on December 21, 2017, its shares soared and tri-
pled in value within hours; see Figure 1. To the present,
LBCC continues a non-alcoholic beverage subsidiary.

This zeitgeisty phenomenon motivates the general
research question of the present study: Is the allocation
of funds to virtual currencies or risky assets such as the
BTC increasing with public interest, attention, and popu-
larity of the financial vehicle or its publicity in general?
Or is it the other way around? Taking into account query
statistics of the dominant search engine in China, the
present study investigates the mutual predictability of
BTC price dynamics and attention measures. The latter
are chosen to be more adequate and comprehensive than
the ones previously used in the literature. At first, this is
done in an in-sample analysis. The general finding is that
the BTC price is helpful in predicting the hype more or
less immediately. However, search data are still a good
predictor at frequencies with intra-one-quarter periodic-
ities and a delay of about 2 months giving room for pur-
suing anticyclical investment strategies. In a second part
of the analysis, this is generally also confirmed in an out-
of-sample predictive power assessment.

The overarching research question in a more narrow
sense is to quantitatively assess how helpful internet data
from “secondary sources” (Edelman, 2012) are in
predicting and, ultimately, in modeling and out-of-sample
forecasting Fintech-related price dynamics at the
beginning of the 2020s. The existing literature does not
provide clear-cut answers. On the one hand, theory
(e.g., Manuelli & Peck, 1990.) predicts price dynamics of an
unbacked asset or currency to be inherently unfor-
ecastable. On the other hand, recent models find it,
irrespective of fundamentals, optimal for investors to
delegate the collection of information to news media when
facing attention constraints (Nimark & Pitschner, 2019).

That news holds the potential to drive the performance of
an asset is empirically confirmed, among others, by
Solomon et al. (2014). In particular, in the context of
cryptocurrencies that are traded online, it is highly proba-
ble that news, in turn, is driven by web searches. To some
extent, this relates the present paper to empirical models of
contemporary finance. See, for example, Antweiler and
Frank (2004) and Chen et al. (2014) who study online and
offline traded stocks and their interaction with internet
message boards and social media attention. However, the
perspective chosen here is macroeconomic or “macro-
finance” with a focus on predictability, cause-effect struc-
ture, and future theoretical modeling relying on a monthly
observation frequency (e.g., Jermann, 2018.).

The methods of the present study comprise a battery of
multivariate time series techniques in the time and fre-
quency domain such as testing for Granger-causality in the
frequency domain (Breitung & Candelon, 2006) and fore-
cast accuracy testing between models in the time domain
(Diebold & Mariano, 1995; Harvey et al., 1997). They have
been successfully applied in diverse contexts; see, among
many others, Tastan (2015), Aluko and Adeyeye (2020),
and Fromentin and Tadjeddine (2020) for spectral
Granger-causality applications and Carstensen et al. (2011)
and Duarte and Süssmuth (2018) for applications of
forecasting ability tests across models. To assess the cause–
effect reaction time for frequency bands with significant
Granger-causality, a phase delay measure recently devel-
oped by Breitung and Schreiber (2018) is computed.

2 | LITERATURE REVIEW

The related literature to analyze the sketched phenome-
non is growing and predominantly, though not

FIGURE 1 Nasdaq US dollars (USD)

opening value of LTEA (LBCC) stock, 2017.

LBCC, Long Blockchain Corp; LTEA, Long

Island Iced Tea Corp

436 SÜSSMUTH



exclusively, published in economics journals. It com-
prises, among others, the survey by Böhme et al. (2015),
the studies by Cheah and Fry (2015), Urquhart (2017),
and Akyildirim et al. (2021) treating BTC as financial
asset prone to speculative bubbles and price clustering,
and Brandvold et al. (2015) as well as Gandal et al. (2018)
treating BTC as globally exchange-traded currency. The
most recent study by Akyildirim et al. (2021) comes close
to the present one by its focus on predictability. In con-
trast to the approach chosen here, Akyildirim
et al. (2021) analyze not only the price dynamics of the
BTC but also of the other 11 most liquid contemporary
cryptocurrencies. What is more, in a horse race fashion,
the relative performance of a battery of four different
machine learning algorithms is comprehensively investi-
gated. Other seminal interdisciplinary contributions ema-
nating either from the information systems or the
econophysics field of study include Garcia et al. (2014),
Bariviera et al. (2015), Kristoufek (2015), Li and Wang
(2017), and Alvarez-Ramirez et al. (2018). The pioneering
study on web search queries and BTC prices by
Kristoufek (2013) referred to BTC as a currency but
treated it rather as an asset. Although it is a seminal
study, it can be seen as suffering from two crucial draw-
backs that the present analysis overcomes. First, it only
covers the seed phase or early trading period of the BTC
from mid-2011 to mid-2013. Secondly, it relies on web
search queries on Google and Wikipedia only. Both were
and still are blocked in the People's Republic of China.
Thus, they were and still are inaccessible for a substantial
share of investors, users, and miners of BTC at the time
and to the present.1 During November and December
2013, for example, roughly half of all BTC trades were
made in Chinese yuan (Brandvold et al., 2015, p. 20).
Ciaian et al. (2018, p. 178) note regarding the regional
distribution and the trading currency composition for the
BTC that—while the United States and the USD domi-
nated the BTC market in the first years after its
introduction—nowadays “almost all [BTC] trading is
done in China.” The authors document the “staggering
rise of China as the dominant trader” of BTC by showing
that from less than a 10% share in January 2012, the yuan
made up nearly 100% of all BTC trading by the end of
2016. Although this share declined at the latest since fall
2017, when the Chinese government announced to block
the access to foreign ICO and crypto-to-fiat exchanges, it
seems fair to state that over the period of analysis of the

present study (from mid-2011 to the first quarter of 2018),
the average share is at least 50%. This fact renders Google
and Wikipedia series a seriously incomplete measure of
attention allocation or (potential) investors' interest.

In contrast, the present study does not only rely on
Google Trends Statistics (GTS)—provided in normalized
terms within the frequency of choice of one month by
Google Inc./LLC—for “Bitcoin” searches as, for example,
in Cheah and Fry (2015). Chinese web search engine
Baidu non-normalized query statistics for “ ”
(i.e., “Bitcoin”) is also used. The Baidu Zhishu or Baidu
Search Index (BSI) is the query statistics of the by far
most commonly used web search engine in China given
the Google ban that preceded the BTC launch by a couple
of months. BSI data cannot be directly downloaded, but
are accessible on a selective basis and report absolute
query figures. The observation frequency of BSI data
available for this study is monthly. Its informative con-
tent has been recently approved by Liu et al. (2016), Shen
et al. (2017), and He et al. (2018) using it to successfully
predict dengue fever outbreaks, Chinese stock returns,
and HIV incidences in contemporary China, respectively.
According to NetMarketShare (netmarketshare.com),
tracking usage shares of web technologies, the market
shares of Google and Baidu in August 2018 amounted to
about 70% and 20% for mobile devices and 76% and 11%
for desktop/laptop devices, respectively. None of the
other engines even just nears a double digit usage share.

To sum up the crucial point made in the last para-
graphs, the previous literature suffers from a substantial
deficiency by more or less completely disregarding the
regional origin and distribution of BTC-related activity.
Ignoring that since mid-2011 about half of BTC trades
and investments on average emanate from China lets
indicators for attention allocation and investors' curiosity,
which are exclusively based on online services such as
Google, Wikipedia, or Twitter known as blocked or cen-
sored in China, appear as unsatisfactory. This concerns
all of the most recent and of the most related studies
(Aalborg et al., 2019; Ciaian & Rajcaniova, 2016;
Kjærland et al., 2018; Kristoufek, 2013; Garcia
et al., 2014).

This study is the first to overcome this deficiency by
explicitly considering BSI series in the context of the
mutual predictability of BTC dynamics and web search
statistics.

3 | DATA

BTC price series of daily frequency are obtained from
CoinDesk (https://coindesk.com) denoted in USD.
CoinDesk provides the data as Greenwich Mean Time

1An exemplary more recent study, covering the period from January
2013 to February 2018, in the tradition of Kristoufek (2013) is Kjærland
et al. (2018). However, it representatively also suffers from relying
exclusively on web queries performed by means of the Google web
search engine.
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(GMT) end-of-day closing index price, where the latter is
aimed to capture the standard retail price reference for
industry participants and accounting professionals. It rep-
resents an average of leading global BTC exchanges that
conform to certain minimum criteria for price discovery
and validity.2 The historical index data commence on
July 1, 2013. Any data prior to that date are based on the
Mt. Gox price data (see, e.g., Cheung et al., 2015.). As
the frequency of the analysis is monthly—as is, for
instance, also the case in Jermann (2018)—monthly aver-
ages of daily prices are constructed. Ultimately, the rea-
son why this study uses monthly data is that the provided
BSI series are monthly figures. However, it also avoids
critical issues of possibly heteroskedastic inter-weekly
and intra-weekly regularities in BTC trading. These
include, among others, bias due to weekends, secular hol-
idays, and festivities. The conditional heteroskedasticity
issue against the backdrop of temporal aggregation will
be discussed in somewhat more detail at the end of this
section. GTS for search string “Bitcoin”3 can be retrieved
in monthly frequency and solely with the maximum
value of monthly reported queries automatically normal-
ized to 100 within the sample period. Monthly arithmetic
averages of the CoinDesk BTC prices are taken and the
resulting series analogously to the GTS series normalized
in order to conform prices to normalized query statistics
and to avoid to induce spurious cointegration through
nonconformity.

To express the CoinDesk BTC monthly price averages
in yuan units of Chinese Renminbi (CNY), that is, to
measure the BTC/CNY exchange rate in quantity quota-
tion, CNY/USD exchange rate series are obtained at
monthly frequency from the online database of the Fed-
eral Reserve Bank of St. Louis (FRED) coded as
EXCHUS. Based on the argument of market liquidity,
that is, “there was practically no liquidity” in the BTC
market prior to May 2011 according to the quantitative
assessment in Kristoufek (2013, p. 2), the start of the
overall sample period is set to May 2011. This concerns
both the BTC series and the Baidu Zhishu/Index queries
for search string “ ” (i.e., the Chinese word for
“Bitcoin”). The latter is obtained from https://zhishu.
baidu.com; see the Appendix A1 for a bit more detail on
retrieval.

For reasons of illustration and comparability, one can
proceed in analogy to the USD and GTS series and index
both series such that the respective monthly maximum

value within the sample period corresponds to 100. The
overall sample period runs from May 2011 to either
January or March 2018. Ending the sample for the
mutual BSI queries BTC/CNY exchange rate relationship
in January 2018 is justified as by February 2018 the
Chinese government announced to block the access to all
foreign cryptocurrency exchanges' websites. As the ban
took effect during February 2018, it is reasonable to
assume that this structural break mostly affected the web
search behavior for “ ” in China. Presumably, it
induced a confounding downward bias in queries
statistics.

Figure 2 shows in its left schedule the GTS series
depicted on the left ordinate. The monthly BTC/USD
exchange rates in indirect, that is, quantity, quotation,
before normalization, is depicted on the right ordinate of
this schedule for the period from May 2011 to March
2018. The right schedule displays the normalized BSI
series depicted on the left ordinate and the BTC/CNY
exchange rate series, also in quantity quotation and
before normalization, depicted on the right vertical axis,
respectively. The series in this schedule run from May
2011 to January 2018.

There is no reasonable BTC price index or deflator in
order to transform nominal BTC exchange rates into real
terms. As Foley et al. (2019) find in a recent empirical
study identifying darknet marketplaces and combining
them with seizures of BTC by law enforcement agencies
in their projections, about 25% of all BTC users are
engaged in criminal business. Additionally, the study
shows that about 50% of all transactions in BTC are
related to illegal activities such as drug trade, illegal
pornography, and murder-for-hire. As there exist no legal
market and corresponding prices for the latter, the
construction of an adequate price index or an other rea-
sonable device to express nominal BTC exchange rates in
real terms is infeasible. Moreover, to treat BTC as a cur-
rency and to ex post date possibly short-lived bubble
dynamics as in Cheah and Fry (2015), Cheung
et al. (2015), Su et al. (2018), Li et al. (2019), and
Hafner (2020) seems unsatisfactory. However, growth
rates of historical BTC exchange rate series, expressing
the value of the BTC in USD or in CNY, might vary with
growth rates of corresponding web search engine queries
(“Bitcoin” in case of Google trends and “ ” in case of
the Baidu Zhishu) over time with some negative feed-
back, such that they can be tested to be cointegrated over
longer periods of time.4 If then for the queries series an

2See https://www.coindesk.com/coindesk-launches-proprietary-bitcoin-
price-index.
3As noted in Kristoufek (2013, p. 3), the reported query frequency is not
“case sensitive” in the sense that various search string versions of the
word (such as “BitCoin” or “bitcoin”) are included.

4The idea of feedbacks with digital traces of collective social behavior is,
generally, also taken up in quantitative studies emanating from
computational linguistics and social and information networks; see, for
example, Loughran and MacDonald (2011) and Garcia et al. (2014).
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adequate bubble detection test finds a date preceding the
date of the one of the exchange rate series, the impending
web searches' bubble burst foreshadows the one in the
respective exchange rate series. Hence, if dynamics in
BTC exchange rates and web searches share a long-run
stochastic trend and the hype measure is related to the
price across high and medium term frequencies, short-
term forecasts of the dynamics in web searches may act
as an early warning device for a bubble burst in the BTC
rates. Given the mere popularity of the latter, which sees
many hundreds of millions of USD (or CNY) worth of
transactions across its system on a daily basis, let the
above sketched strategy look more promising than a
strategy solely resting on ex post bubble detection testing.
However, at least for the present period of analysis and
time series, this strategy turns out as a futile endeavor.
This is due to the fact that explosive dynamics in BTC
exchange rates can be shown to generally antedate

explosive behavior in web queries for BTC search terms
irrespective of any cointegrating relationships. For
details, see section 2 in Süssmuth (2019).

In the following, we therefore rather choose to inter-
pret the BTC in a global asset perspective. In fact, there
are several recent indications speaking in favor of such a
treatment of the BTC, that is, rather as an asset, in the
sense of an actual investment or a precursor of an
investment,5 than as a digital currency. These include the
discussion of BTC as part of the underlying technology of
near future investment opportunities such as the
so-called “internet of payments” for the “internet of
things.” Corresponding examples comprise future ver-
sions of Amazon's “dash button,” possible future
payment options of Tesla e-vehicles, or any other form of
the blockchain economy in general. An indication

5That is neither in the narrow sense of a security nor of a commodity.

FIGURE 2 Normalized queries and Bitcoin (BTC) exchange rates, 05/2011 to 01/2018 (03/2018). Note: Exchange rates in indirect/

quantity quotation are based on monthly means of daily closing prices. Sources: FRED, CoinDesk, Google, Baidu; Summary statistics:

Table 1

TABLE 1 Descriptive statistics of used time series

Mean Std. dev. Min Max N obs Range

BTC/USD 1182.98 2723.23 2.68 15,065.28 83 05/2011–03/2018

979.41 2420.78 2.68 15,065.28 81 05/2011–01/2018

EXCHUS 6.39 0.24 6.05 6.92 81 05/2011–01/2018

BTC/CNY 6418.4 15,865.47 17.05 99,328.39 81 05/2011–01/2018

GTS 6.92 13.98 0 100 83 05/2011–03/2018

6.31 13.53 0 100 81 05/2011–01/2018

BSI 414,064.6 597,153.6 3686 2,794,942 81 05/2011–01/2018

BSI (norm.'ed) 14.81 21.37 0.13 100 81 05/2011–01/2018

B-G-C 0.106 0.153 0.001 0.820 81 05/2011–01/2018
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pointing in this direction is the registering of domain
names amazonbitcoin.com in March 2013 and
amazoncryptocurrency.com in October 2017 by
Amazon Technologies Inc.; see, for example, https://
www.whois.com/whois/amazonbitcoin.com. Addition-
ally, there exists a growing number of financial market
securities that are based on the BTC as central
underlyer such as Australian Apollo Capital Fund
launched in February 2018, the Postera fund launched
in Liechtenstein in March 2018, or the different products
and services provided by Crypto Fund AG approved in
2018 by Switzerland's principal stock exchange (Six
Swiss Exchange) and the Swiss Financial Market
Supervisory Authority (FINMA). For the manifold future
role of BTC and its current role as a pioneering new
technology in the financial industry in general, see
Yermack (2017).

For treating BTC as a global asset, there is no neces-
sity to separate Google from Baidu queries (i.e., GTS from
BSI series). This is due to the fact that BTC price series
need not to be analyzed as exchange rate series in either
USD or in yuan units of CNY. It also seems straightfor-
ward to compound the two query series to a composite

index. Even if this strategy would come at the cost of a
dilution of the information contained in the raw BSI
series, a Baidu–Google composite (B-G-C) index of
queries simplifies the analysis.

As argued above, a B-G-C index captures about 90%
of total web search engine usage in recent times. Due
to a potential structural break in the series induced by
Chinese governmental blocking of the access to non-
domestic online BTC trading platforms in February
2018, the period of analysis is in the following restricted
to run from May 2011 to January 2018. An equal
weightening in the construction of the B-G-C index is
justified as in the period of observation, on average,
about half of BTC trades and investments emanate from
China. BSI queries are normalized in the same way as
are the retrieved GTS series summed up and divided by
200; see the upper row of diagrams and the lower left
diagram in Figure 3. The lower right diagram shows
the series in the lower left diagram with a linear trend
removed.

A monthly frequency of series may be
unconventional—though, not unique; see, for example,
Jermann (2018)—in the context of modeling trading data.

FIGURE 3 Constituent and composite queries benchmarked to BTC price, 05/2011–01/2018. Note: Log levels of BTC price, GTS-, BSI-,

B-G-C-queries; BTC price, B-G-C-queries cycle components. Sources: CoinDesk, Google, Baidu; Summary statistics: see Table 1
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However, it avoids taking into account the issue of condi-
tional heteroskedastic (CH) effects. As shown in Drost
and Nijman (1993), low order GARCH processes are not
closed in the sense of surviving an increasing sampling
interval, that is, the temporal aggregation of underlying
time series. If price and popularity series result from
aggregating more and more, CH effects disappear. Gener-
ally, for example, monthly exchange rate series are found
to be homoskedastic while corresponding daily and
weekly series are not; see Baillie and Bollerslev (1989).
Hafner (2008, p. 476) shows that this result of
unclosedness also holds for multivariate—including the
following case of bivariate—processes if series represent
flow variables. This reasoning lets us refrain from consid-
ering CH effects in the following vector autoregressive
(VAR) estimations.6

4 | IN-SAMPLE ANALYSIS

Since the dynamics in the focus of this section hinge,
as opposed to central parts of the analysis in
Süssmuth (2019), not on a long-run equilibrium relation-
ship but rather represent dynamic relationships at busi-
ness cycle, or even higher, frequencies, cointegration is
not an issue.7 Our choice of method, that is spectral
Granger-causality testing, generally requires stationarity
of the series underlying the constituent bivariate models.
However, as will be argued in more detail below, for
certain specifications in levels of the variables
pretesting for integration is obsolete (Breitung &
Candelon, 2006; Dolado & Lütkepohl, 1996 and Toda &
Yamamoto, 1995).

A standard VAR process of order p, that is, a VAR
(p), generating two series xt and yt, in reduced
form will serve as our methodological starting point.
That is

xt
yt

� �
¼Ddtþ

Xp
i¼1

a11,i a12,i
a21,i a22,i

� �
xt�i

yt�i

� �
þ εxt

εyt

� �
, ð1Þ

where dt denotes a deterministic vector containing con-
stants, trend component, and possibly other exogenous
variables,8 akl, i denote coefficients and εxt,εyt

� �0
serially

uncorrelated reduced form errors.
In this bivariate system, Granger-causality or predict-

ability is defined as follows. There is no Granger-causality
given if the prediction of x is not improved by lagged
values of y. As y does not help to predict x, it is not
“Granger-causing” y. Thus, if a12,i ¼ 0 for i¼ 1,…,p, y is
found to be not Granger-causal for x. Therefore, the ade-
quate choice of tests stems from the F/χ2 class and, as
applied in block-form, represents Wald tests. In general,
cointegration implies Granger-causality but not the other
way around.

4.1 | Spectral Granger-causality tests

In the following, Breitung–Candelon–Granger- (BCG-)
causality testing in the frequency domain (Breitung and
Candelon, 2012) is considered as a more adequate
method in the context of the present study. This is due
to its potential to continuously quantify mutual
predictability at classical business cycle and higher
frequencies.

Any n-dimensional stationary process Yt has a
spectral representation at frequencies ω� �π,π½ � in the
form of a spectral density matrix F(ω). It is given by the
Fourier transform of the covariance function γjk(τ),
τ¼ 0,�1, �2,…, for all j¼ 1,…,n; k¼ 1,…,n. As F(ω) is
even, it is sufficient to examine it in 0,π½ �.

It can be written as

FðωÞ¼ 1
2π

Xþ∞

τ¼�∞
GðτÞe�iωτ, �π≤ω≤ π with ð2Þ

6In this context, it is noteworthy that Jermann (2018) recently tests a
model of hyperdeflation for the BTC price also relying on time series
that are averaged to a monthly period and abstracting from
modeling CH.
7Readers interested in a comprehensive cointegration analysis,
including bubble detection testing based on the methodology proposed
by Phillips et al. (2011) and Homm and Breitung (2012), of the series at
stake are referred to section 2 in Süssmuth (2019).

8The recent findings of Kjærland et al. (2018) speak in favor of a
parsimonious specification of these exogenous factors as these authors
identify no significant impact neither from the technological factor
“hashrate” (i.e., the variable speed at which a computer can complete
an operation in the BTC code) nor from oil or gold. Additionally and in
contrast to autoregressive terms and publicity measured by—in the
present study also allowed to be acting as endogenous—Google web
search queries, a popular volatility index (VIX) and the BTC transaction
volume turn out throughout their specifications as statistically
insignificant exogenous determinants of BTC return dynamics.
Jermann (2018, p. 6) notes that fluctuations in the BTC price have been
essentially uncorrelated with stock markets (empirically also justifying
the abstraction from excess returns and risk premiums). For the
predictability of a range of BTC risk measures, using high-frequency
data, the reader is referred to the comprehensive study by
Trucıós (2019).
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GðωÞ¼
γ11ðωÞ … γ1n ωð Þ
..
. . .

. ..
.

γn1ðωÞ … γnn ωð Þ

0
BB@

1
CCAand

FðωÞ¼
f 11ðωÞ … f 1nðωÞ
..
. . .

. ..
.

f n1ðωÞ … f nnðωÞ

0
BB@

1
CCA:

An implementation of Equation (2) can be achieved by a
VAR estimation with coefficient matrix A. In this case,

FðωÞ¼ 1
2π

A ωð Þ�1ΣAðωÞ� ∗ , where ð3Þ

Σ is the positive-definite covariance matrix of errors;
A(ω) denotes the Fourier transform of matrix lag polyno-
mial A(L) and “*” its conjugate complex transpose,
respectively. According to Wold's theorem

ΓðLÞYt ¼ εt ,
xt
yt

� �
¼ΨðLÞ η1t

η2t

� �
, where ð4Þ

ηjt denotes Choleski factorized errors and Ψ Lð Þ¼ ~Γ
�1
.

Geweke (1982) is the first to make use of this property by
equating a respective measure of linear feedback to zero
under the null in a test of linear dependence and feed-
back between multiple time series. That is, for instance,
for testing for linear feedback to run from y to x across all
ω� 0,π½ �

H0:My!xðωÞ¼ log 1þ ψ12 e�iωð Þj j2
ψ11 e�iωð Þj j2

 !
¼ 0,where ð5Þ

y ! x denotes y is helpful in predicting x.
Analogously, one may rewrite (1) using lag polyno-

mial notation as

a11ðLÞ a12ðLÞ
a21ðLÞ a22ðLÞ

� �
xt
yt

� �
¼ εxt

εyt

� �
: ð6Þ

In this notation, xt is not Granger-causal for yt if
H0 : a21ðLÞ¼ 0. To test this hypothesis, the second equa-
tion of system (6), that is,

yt ¼ α1yt�1þ :::þαpyt�pþβ1xt�1þ :::þβpxt�pþ εyt

¼ αðLÞyt�1þβðLÞxt�1þ εyt,
ð7Þ

where αi ¼ a22, i and βi ¼�a21,i, is used. Following
Breitung and Candelon (2006), the definition of the falsi-
fied BCG-causality under the null then reads as
follows.

Definition 1. xt is not a cause of yt at
frequency ω if the gain function of the filter
β(L) equals zero at frequency ω, that is,

H0 : βeωi
�� ��¼ Xp

j¼1

βj cos jωð Þþ
Xp
j¼1

βj sin jωð Þi
�����

�����¼ 0:

The necessary and sufficient conditions for the inexis-
tence of BCG-causality running from xt to yt, thus,
are

Xp

j¼1
βj cos jωð Þ¼ 0^

Xp

j¼1
βj sin jωð Þ¼ 0. The usual

F-test logic for a linear combination of RðωÞβ¼ 0 applies.
For the standard representation of a VAR(p) extended

to a VARX(p), as shown in (1) above, it is straightforward
to extend the framework of spectral Granger-causality to
the case of an additional exogenous variable z, that is,
typically to the case of a deterministic trend function

xt ¼ c1þ
Xp
j¼1

αjxt�jþ
Xp
j¼1

βjyt�jþ
Xp
j¼1

δjzt�jþ et: ð8Þ

It turns null hypothesis (16) into a conditional one,
that is, into H0: My!xjz ωð Þ¼ 0 (Tastan, 2015, pp. 1159–
1160). A mere eyeballing of time series shown in Figure 2
is suggestive for the BTC as well as the queries level
series to follow an exponential trend. For natural log
expressions of the corresponding levels series (Figure 3),
it thus appears appropriate to test for a linear trend to be
considered in z. The VAR approach generally presup-
poses stationarity of included series or the use of first-
differenced I(1) variables requiring a comprehensive
range of pretests for cointegrating relationships. The
modified Wald test for Granger-causality proposed
by Toda and Yamamoto (1995) and Dolado and
Lütkepohl (1996) does not necessitate pretesting for
cointegration. These authors suggest that the usual Wald
statistics will be valid for Granger-causality on p lags of a
variable in an overfitted VAR pþdmaxð Þ with dmax

denoting the highest order of integration in the
system of possibly integrated processes. Breitung and
Candelon (2006) propose this strategy to be also
followed in the present frequency domain context.
Assuming that dmax > 0, the corresponding test regression
is written as
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xt ¼ c1þ
Xp
j¼1

αjxt�jþβjyt�j

	 

þ
Xpþdmax

k¼pþ1

αkxt�kþβkyt�kð Þþ et,

ð9Þ

where null hypothesis My!xðωÞ¼ 0 involves βj for j¼
1,…,p only. It can be tested using the standard Wald sta-
tistics. As the coefficients on the additional lagged vari-
ables are not included in the computation of the test
statistics, the same χ2 -distributed Wald statistics can be
used as in the case without lag-augmentation. The same
applies to the VARX pþdmaxð Þ model

xt ¼ c1þ
Xp
j¼1

αjxt�jþβjyt�jþδjzt�j

	 


þ
Xk¼pþ1

αkxt�kþβkyt�kð Þþ et,

ð10Þ

where x and y series represent natural log expressions of
levels, z denotes a deterministic linear trend, and H0:
My!xjzðωÞ¼ 0, that we will also use in the following to
test for spectral Granger-causality.

4.2 | Spectral delay assessment

The diagonal elements f 11ðωÞ,…, f nn ωð Þ of F(ω) in (2) are
the real valued autospectra or power spectra. The
off-diagonal elements represent cross spectra
f jk ωð Þ¼ cjkðωÞ� iqjk ωð Þ, consisting of cjk(ω) cospectra and
qjk(ω) quadrature spectra. The cross-spectra are complex
valued functions in ω, but simple manipulations yield the
more readily interpretable real phase shift measure

ϕjkðωÞ¼ arctan
�qjkðωÞ
cjkðωÞ : ð11Þ

Both in the autospectral and in the pairwise bivariate
case, ϕ(ω) and ϕjkðωÞ¼ϕxyðωÞ, the phase shift can be
visualized either on circular scale or on linear scale or on
both scales at a time. For the latter, see, for example,
Heer and Süssmuth (2013, p. 406). As the phase shift cor-
responds to the phase angle –also referred to as angular
coordinate or polar angle– in the circular space, it repeats
every 2π periods due to the circular diameter equaling
2π. It is, thus, said to be only defined mod 2π. Addition-
ally, as illustrated in detail in Heer and Süssmuth (2013),
there is a frequency, where the phase shift reaches π, that
is, where the counterclockwisely rotated phase angle
coincides with the horizontal originating from the circle
center. It is this phase shift that cannot be distinguished

from ϕxyðωÞ¼�π. In this case, there is no difference
between the statement “series y leads series x with half a
cycle length” and the statement “series y lags series
x with half a cycle length.” A discontinuity at the angular
frequency corresponding to this phase shift results.

A solution using the four-quadrant version of the
inverse tangent, that is, of the arctan, function that is
usually referred to as atan2 is recently proposed by
Breitung and Schreiber (2018, p. 64). Reconsider VAR
representation (7) above and rearrange, given
invertibility of αðLÞ¼ 1�Pp

j¼1αjL
j, to obtain

yt ¼
βðLÞ
αðLÞxt�1þνt ¼ ρðLÞxtþνt, ð12Þ

where ρðLÞ¼ βðLÞL=αðLÞ and νt ¼ αðLÞ�1εyt. According
to Breitung and Schreiber (2018), the phase shift induced
by filter ρ(L), for non-zero gains of implied filters β(L)L
and α(L) and for the atan2 definition space (0, 2π], is
given by

ϕρðωÞ¼ atan2
qρ ωð Þ
cρðωÞ , sgn qρðωÞ

h i
, sgn cρ ωð Þ� �� �

, ð13Þ

where, for two general arguments (a, b), atan2 in terms
of the standard arctan function can be expressed as
follows:

atan2ða,bÞ¼

arctan
a
b

	 

if a>0,

arctan
a
b

	 

þ2π if a<0 and b≥ 0,

2π if a¼ 0 and b>0,

undefined if a>0 and b¼ 0:

8>>>>>><
>>>>>>:

ð14Þ

Using (13) in combination with (14), the spectral
delay measure by Breitung and Schreiber (2018) is calcu-
lated as

dðωÞ¼
~ϕρðωÞ
ω

, ð15Þ

where ~ϕρðωÞ denotes “unwrapped” phase delay. With
phase unwrapping, Breitung and Schreiber (2018,
pp. 64–65) refer to the following strategy. If at some
frequency ω the term qρ(ω) switches its sign for cρ(ω) > 0
the resulting phase shift will show a discontinuous jump
down from (or up to) 2π to (or from) an arbitrarily close
to zero value. As the phase shift in principle is only
identified up to adding integer multiples of 2π, the
implied delay function will jump between 2π/ω and zero;
see (14) in combination with (15). By definition, however,
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all phase shifts measured by (13) are to be mapped into
the interval 0,2πð �. The “ unwrapping” workaround is to
remove discontinuities in the phase shift function by
adding or subtracting integer multiples of 2π where
needed. As the unwrapping procedure is independent of
the estimation of ϕρ(ω), it does not bias the sampling
uncertainty of locally identified measures.

In analogy to the general requirement of the underlying
VAR in the preceding subsection to be of order p≥2, a VAR
order in excess of two lags, that is, p≥3, is necessary for esti-
mating spectral delay; see Breitung and Schreiber (2018).

4.3 | Findings and interpretation

As argued above, the starting point of the analysis is the
estimation of a bivariate VAR(p) system as specified by
Equations (1), (4) and (6), (7) considering a linear trend
as exogenous variable as captured by Ddt in Equation (1)
or analogously by z in Equation (8). Throughout, the nat-
ural log transformed BTC price series in USD serves as xt

series. For yt, let us consider first natural log expressions
of absolute BSI queries (dashed series in the upper left
window of Figure 3) and as an alternative ln-transformed
B-G-C series (dashed series in the lower left schedule of
Figure 3), which by construction are logs of a normalized
time series, that is, logs of values from the (0, 1) interval.
All estimated VAR models satisfy the stability condition.
Additionally, the lag order of the respective VARX model
that minimizes for both considered yt series the AIC and
final prediction error (FPE) information criterion is p¼ 3.
A standard F-test finds the linear trend as exogenous var-
iable in the VARX(3) to be significantly different from
zero with a p value of 0.04 for BSI queries and a p value
of 0.05 for the B-G-C composite series, respectively. The
outcome of BCG-causality tests, reported and visualized
in Figures 4 and 5 as well as corresponding phase delay
measures shown in Figures 6 and 7, rely on estimates of
corresponding bivariate VARX(3) models.

To correctly interpret the diagrams in the four figures,
it is important to note that frequency depicted on the
respective abscissa in the respective four schedules refers

FIGURE 4 Spectral Granger-causality tests using BSI queries as hype measure. Note: First row of diagrams: standard BCG tests; second

row: Toda–Yamamoto modified BCG tests; left column of diagrams: price-to-hype (BTC ! BSI), right column: hype-to-price (BSI ! BTC).

BSI, Baidu Search Index; BTC, Bitcoin

444 SÜSSMUTH



to angular frequency. Therefore, the highest measurable
frequency is ωmax ¼ π¼ 3:1415 …corresponding to an
ordinary frequency of fmax ¼ ωmax

2π ¼ π
2π¼ 0:5. It is referred

to as Nyquist frequency and represents the lowest dis-
cernible periodicity of a contained cyclic mode
Pmin ¼ fmaxð Þ�1 ¼ 2, that is, a two-period (2months)
cyclicality. Additionally, note that the dashed confidence
bands displayed in Figures 6 and 7 are computed for a 5%
level of significance.

For standard BCG testing, the BTC price is found to
be helpful in predicting BSI queries across all frequencies
(upper left diagram in Figure 4). Relying on the lag-
augmented (Toda–Yamamoto modified) BCG test, shown
in the lower left diagram of Figure 4, this is also the case
apart from the (0.51, 1.38) frequency band corresponding
to periodicities of 4.6 to 12.3 months for the 5% level of
significance and from the (0.63, 1.21) frequency band
corresponding to periodicities of 5.2 to 10 months for the
10% level of significance. See the four thresholds given by
dashed vertical lines in the lower left diagram identifying
the respective bands in Figure 4.

Combining this insight with results on spectral delay
reported in the first column of Figure 6 reveals that the
corresponding delay between cause (BTC price) and
effect (BSI queries) is significantly different from zero for
periodicities lower than 6 and 4 months (corresponding
to abscissa values of about 1 and 1.5, respectively). It is of
relatively low magnitude, that is, it amounts to just about
1 month.

Regarding the second column of diagrams in Figures 4
and 6, it can be noted that the hype measure BSI queries
is Granger-causal for the BTC price series only for
frequencies (periodicities) in excess of 1.15 (below
5.5 months) for the 10% level of significance9 and stan-
dard BCG testing with a delay of about 3 to 4 months.

For the modified BCG test result, there is no Granger-
causality found between BSI queries and BTC price that
is significant at the 5% level of significance (lower right
schedule in Figure 4). For the 10% level, the threshold

9At the 5% level of significance, the frequency (periodicity) threshold is
1.36 (3.5 months).

FIGURE 5 Spectral Granger-causality tests using B-G-C queries as hype measure. Note: First row of diagrams: standard BCG tests;

second row: Toda–Yamamoto modified BCG tests; left column of diagrams: price-to-hype (BTC ! B-G-C), right column: hype-to-price

(B-G-C ! BTC). B-G-C, Baidu–Google composite; BTC, Bitcoin
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resembles the one of the one found by means of standard
BCG testing: 1.22 (5.2 months). The same holds for the
corresponding phase delay; see the lower right schedule
in Figure 6.

For the composite B-G-C series as hype measure,
results are visualized in Figures 5 and 7. Focusing on the
respective first column of diagrams at first, it can be
stated that the BTC price granger-causes the B-G-C hype
measure for all frequencies/periodicities, even at a con-
servative 5% level of significance with a delay of
≤1 month. The delay is significantly different from 0 at a
5% level for cyclic components with period lengths imply-
ing a peak-to-peak distance that is not exceeding half a
year or, at least, is lower than 6 months.

Turning to the respective second column of diagrams
in Figures 5 and 7, the results for the BSI attention
measure are generally also confirmed for the B-G-C
queries inasmuch as the hype is causing the price
significantly only at high frequencies corresponding to
fluctuations with periodicities lower than 4 to 5 months.
Also in accordance with preceding test results, the phase
delay at relevant frequencies amounts to about 2 to
4 months.

To sum up, although the price in general is helpful in
predicting (“driving”) the hype more or less immediately,

that is, delayed at maximum by about 1 month, the hype
drives the price only for relatively high-frequency dynam-
ics and with a two- to four-times higher delay.

5 | OUT-OF-SAMPLE ANALYSIS

For our out-of-sample predictive power assessment, we
will focus—as is common practice—on rather high-
frequency (one-period/month ahead) forecasts, where
according to our in-sample analysis mutual predictability
of price and hype measure series should be given. In
order to assess the one-period ahead forecast properties,
the period starting May 2011 (2011m5) to July 2015
(2015m7) is treated as given and a recursive window is
successively extended by an additional monthly observa-
tion to make 1-month ahead projections for each succes-
sive step of prolonging the in-sample-window with a
length of 50 months up to the penultimate month of the
sample. Hence, our first projection uses Equation (1), or
analogously the corresponding version of Equation (7), to
make a respective forecast for h¼ 1,…,29 following
months until January 2018 (2018m1). This procedure is
repeated for T2 (2015m8) to T30 (2018m1) in order to
obtain a series of one-step ahead forecasts xFT1þ1,…,xFT29þ1

FIGURE 6 Spectral delay estimates using BSI queries as hype measure. Note: First row of diagrams: based on standard bivariate VAR;

second row: lag-augmented VAR based; left column of diagrams: price-to-hype (BTC ! BSI), right column: hype-to-price (BSI ! BTC). BSI,

Baidu Search Index; BTC, Bitcoin
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or likewise yFT1þ1,…,yFT29þ1. Ultimately, we obtain a series
of one-step ahead forecasts for T2 (2015m8) to T30

(2018m1). Thus, each one-period ahead forecast series
spans 29months, that is, the 5months from August 2015
to December 2015 plus the 24months from January 2016
to January 2018. As a benchmark predictor serves an
AR(2) with deterministic trend component.

From xFT1þ1,…,xFT29þ1 and yFT1þ1,…,yFT29þ1 for yt and xt
respectively acting as Granger-causal predictor
(or second variable) in the corresponding bivariate VAR
(see Section 4), a set of forecast errors (FE) can be com-
puted. The latter includes squared forecast errors (SFE)
that put a stronger weight on larger deviations of fore-
casts from actual values. Additionally, relative FE relate
the FE of the respective bivariate forecasting model to
the corresponding ones of the AR(2) predictor. A mean
relative FE <1 implies, on average, the outperformance
of the benchmark model. Mean FE across the VAR
models, as described and analyzed in-sample in
Section 4, are summarized for the sketched out-of-sample
assessment in Table 2. The first two subsets of
performance measures, (A1) and (A2), refer to models for
which the BSI has been used as hype measure series.
For the (B1) and (B2) subsets, the B-G-C series,
merging the Google and Baidu engine information, has
been used.

At first, we can note that all VAR models outperform
the AR(2) benchmark projections as indicated by mean
relative FE <1 throughout. In line with the in-sample
analysis, both the hype measure and the price series
generally also show a mutual predictive power in the
one-period ahead out-of-sample forecasting exercise. On
average, the popularity measures even show a better
mean performance in this high-frequency forecasting
range than do the log BTC price series as expressed by
mean forecasting errors (FE and SFE) being raised by
roughly a factor of 10 comparing the (A1) and (B1) with
the corresponding (A2) and (B2) row entries of Table 2,
respectively. The difference between the two popularity
measures, BSI and B-G-C, is quite slim. It indicates that
the predictive power contained in the BSI is, in line with
our prior of the substantial role of Chinese BTC investors
in the period of analysis, dominating. The mean relative
FE are throughout smaller in the case of the BSI series
acting as the hype measure. The lowest relative FE mean
of 0.594 is found for the log BSI search series
forecasted in a bivariate Toda–Yamamoto modified VAR
specification with log BTC prices as second variable
(as outlined in Section 4); see the (A2) subset of column
2 in Table 2.

As documented, for instance, by the US Library of
Congress (LoC), especially since September 2017 (https://

FIGURE 7 Spectral delay estimates using B-G-C queries as hype measure. Note: First row of diagrams: based on standard bivariate

VAR; second row: lag-augmented VAR based; left column of diagrams: price-to-hype (BTC ! B-G-C), right column: hype-to-price (B-G-C !
BTC). B-G-C, Baidu–Google composite; BTC, Bitcoin
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www.loc.gov/law/help/cryptocurrency/china.php), gov-
ernmental institutions in China have announced and pre-
pared to take a series of regulatory measures to crack
down on activities related to cryptocurrencies; see also
Section 3 above. According to the LoC, this was mainly

due to the concern over financial risks associated with
cryptocurrencies, including the BTC.

To take this circumstance into account, the out-of
sample assessment documented in Table 2 is redone
including in all VAR model specifications a dummy that

TABLE 3 Mean forecast errors

across models with post-2017m9 control
Standard VAR Toda–Yamamoto VAR AR(2)

(C1) BSI ! BTC

FE �0.00440 �0.00150 �0.00465

SFE 0.02087 0.02125 0.03374

Relative FE 0.58430 0.86115 —

(C2) BTC ! BSI

FE 0.02711 0.02312 0.06069

SFE 0.23206 0.22559 0.32159

Relative FE 0.75543 0.72175 —

(D1) B-G-C ! BTC

FE �0.00395 �0.00156 �0.00465

SFE 0.02122 0.02104 0.03374

Relative SFE 0.61444 0.92541 —

(D2) BTC ! B-G-C

FE 0.01754 0.00810 0.04585

SFE 0.17715 0.17129 0.22796

Relative FE 0.82698 0.78610 —

Note: VAR models and AR(2) specified in log levels with determinsitic linear trend component; y ! x

denotes y acting as second predicting variable in VAR model specifications for variable x; all VAR models
include a dummy-identifier for the period starting September 2017.

TABLE 2 Mean forecast errors

across models (unconditional)
Standard VAR Toda–Yamamoto VAR AR(2)

(A1) BSI ! BTC

FE 0.00049 0.00141 �0.00465

SFE 0.02504 0.02490 0.03374

Relative FE 0.64680 0.91456 —

(A2) BTC ! BSI

FE 0.08419 0.08011 0.06069

SFE 0.29094 0.27686 0.32159

Relative FE 0.63794 0.59401 —

(B1) B-G-C ! BTC

FE �0.00064 �0.00150 �0.00465

SFE 0.02570 0.02502 0.03374

Relative FE 0.67611 0.97655 —

(B2) BTC ! B-G-C

FE 0.05732 0.05290 0.04585

SFE 0.19975 0.19243 0.22796

Relative FE 0.81961 0.76277 —

Note: VAR models and AR(2) specified in log levels with determinsitic linear trend component; y ! x

denotes y acting as second predicting variable in VAR model specifications for variable x.
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identifies the period starting with September 2017 to the
end of the forecasting horizon, that is, to January 2018.
With everything else equal to the previous one-period
ahead forecasting exercise, the figures shown in Table 3
result. Although covering only a putatively short period
of the forecasting horizon, this consideration, on average,
improves the overall out-of-sample forecasting potential.
In particular, two models stand out. First, the VAR speci-
fications in subset (C1) of Table 3, using the BSI as hype
measure, show comparatively strong mean performance
statistics across all considered scenarios, where the price
dynamics is predicted by means of popularity measures.
Second, with an average FE of 0.008 and a corresponding
avaerage SFE of 0.171 given in column 2 of the
(D2) subset of Table 3, the Toda–Yamamoto modified
VAR seems to be first best among the considered models,
where log BTC prices help in predicting hype measure
dynamics. Although, in relative FE terms, the Toda–
Yamamoto modified VAR with log BTC prices as second
variable and log levels of BSI searches as first more
pronouncedly outperforms the AR(2). Corresponding
performance statistics are given in the (A2) subset of
column 2 in Table 2. Out-of-sample forecasts based on
lag-augmented (Toda–Yamamoto) VAR models for
(C1) and for (A2) together with (D2) are illustrated in
Figures 8 and 9, respectively.

In Table 4, the first (2 � 2)-block with numerical
column-entries shows the test statistics of the pairwise
test proposed by Diebold and Mariano (1995) to analyze
whether empirical loss differences between competing
models are statistically significant. It is generally seen to
be the most influential and most widely used test in the

context of macroeconomic forecasting (see Carstensen
et al., 2011., p. 87). The second (2 � 2)-block of numerical
column-entries refers to the test statistics of the modified
Diebold–Mariano (MDM) test suggested by Harvey
et al. (1997) that corrects for small sample bias. It evalu-
ates whether the average loss difference between a pair of
models is significantly different from zero. Under the
null, the forecast accuracy of two models is identical; see,
for example, Carstensen et al. (2011, p. 87) for detail.
Note, each entry of Table 4 displays the respective test
statistics for the forecasting performance of each model10

listed in the respective row vis-à-vis its respective bench-
mark model in the header to each column. For instance,
in the upper left corner of Table 4, the combination of
row “Standard VAR” and column “AR(2)” amounting to
2.623 (2.580) for the (modified) DM test corresponds to
the respective test statistics of a test of whether the mean
difference of MSE of model “AR(2)“ with MSE of model
“Standard VAR” is zero. A positive value implies that the
model behind the subtractive part (here “Standard VAR”)
performs better in terms of forecasting accuracy, that is,
under the null of the two-sided test is equal accuracy.
Corresponding p values are given in parantheses.

As expected given our in-sample assessment—
suggesting, in particular, the hype measures to show pre-
dictive power at high frequencies for the BTC price
dynamics—both tests ascribe a significantly higher

FIGURE 8 One-step ahead

forecasts with recursive window: hype-

to-price (BSI ! BTC). Note: First panel:

based on bivariate lag-augmented

(Toda–Yamamoto) VAR with linear

trend component (Section 4); for mean

forecasting statistics, see (C1), Table 4;

legend: blue line – original series,

dashed red line – AR(2), solid red line –
VAR; second panel: forecast horizon

performance (with trend removed). B-

G-C, Baidu–Google composite; BSI,

Baidu Search Index

10Note, all bivariate VAR models underlying the DM and MDM tests
reported in Table 4 are unconditional, that is, not including a post-
2017m9 control. Including the latter generates very similar outcomes.
They are available on request from the author.
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forecast accuracy to the VAR models in contrast to the
competitor AR(2) irrespective of the hype measure used
to predict the price series. See the (A1) and (B1) parts of
Table 4.

The other way around, that is, when the BTC price
series is used to predict the web search dynamics, only in
the lag augmented (Toda–Yamamoto) VAR case with BSI
as to-be-forecasted hype measure, the two-variable model

is significantly better in forecast accuracy than the
AR(2) at a 10% level. This holds, however, only for
the standard DM test. See the second row entries of the
(A2) part in Table 4. In most of the cases, there is no
statistcally significant difference between the forecast
accuracy of the standard and the lag augmented
(Toda–Yamamoto) VAR. The only exception is the
(B2) case, where the predictive accuracy of the BTC price

FIGURE 9 Recursive window forecasts: price-to-hype (BTC ! BSI and BTC ! B-G-C). Note: All shown forecasts are based on one-step

ahead recursive window extensions; all VAR models specified as bivariate lag-augmented (Toda-Yamamoto) with linear trend (Section 4);

upper two panels: hype measure is BSI, VAR excluding post-2017m9 control; lower two panels: hype measure is B-G-C, VAR including post-

2017m9 control; for mean forecasting statistics see (A2) in Table 3 for the upper two panels and (D2) in Table 4 for the lower two panels;

legend: blue line – original series, dashed red line – AR(2), solid red line – VAR; for every second panel: forecast horizon performance

(with trend removed). B-G-C, Baidu–Google composite; BSI, Baidu Search Index; BTC, Bitcoin
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for the Baidu–Google composite series is assessed. In this
case, the lag augmented model is significantly more accu-
rate in its predictions. This holds for both the DM and
MDM test.

6 | CONCLUSION

This study is the first to overcome a substantial deficiency
of the previous literature on BTC price dynamics and
web search statistics, which by now has more or less
completely ignored the regional origin and distribution of
BTC-related activity. Since mid-2011, about half of BTC
trades and investments on average emanate from China,
motivating the use of Chinese Baidu web searches for
“ ” (i.e., “Bitcoin”) and an unweighted Baidu–Google
queries composite series as a measure of attention or,
colloquially, the hype. Economic theory (e.g., Manuelli &
Peck, 1990) predicts that the price dynamics of an
unbacked asset is inherently unforecastable. The present
study does not confirm this view. Chinese Baidu web
searches and compounded Baidu–Google queries predict
BTC price dynamics at relatively high frequencies
corresponding to fluctuations with periodicities lower
than 4 to 5 months. The reaction time at relevant fre-
quencies amounts to about 2 to 4 months. A rationaliza-
tion of this relationship can be seen in momentum
strategies (Jegadeesh & Titman, 2001) or endogenously
timed herding (Süssmuth, 2002) rooted in short-term
motives rather than fundamentals. It gives room for pur-
suing anticyclical investment strategies, for example,

based on BTC (USD) monthly future contracts through
the BakktTM trading platform recently launched and
backed by NYSE parent Intercontinental Exchange
(https://www.bakkt.com/index). The reaction time of
about one quarter might be interpreted as the time
needed for web searches to influence online and offline
news, which, in turn, can drive BTC price dynamics.
Irrespective of this result, the cryptocurrency price is
found predictive for queries statistics across nearly all
frequencies with a delay of just about 1month. The out-
of-sample analysis of this paper generally confirms this
mutual predictability feature as for either direction, high-
frequency out-of-sample forecasts are more accurate than
corresponding ones of a benchmark AR(2). Bivariate
models including the BSI slightly outperform competing
models that include a Baidu–Google composite index
stressing the role of Chinese investors and the
corresponding attention measure in the period from
mid-2011 to early 2018. Pointing in the same direction,
predictive power is slightly enhanced if the September
2017 trade regulations by the Chinese government are
controlled for. It remains for future work and longer time
series to show that all in-sample findings can be
reconciled also with medium term multi-period ahead
out-of-sample foreasting exercises.

Getting back to the overarching question of the eco-
nomic forecasting potential and relevance of internet
data raised in Section 1, one may summarize the central
insights as follows. Internet data from secondary sources
can act quite well in the short term as predictors for BTC
price dynamics. This feature suggests to consider the

TABLE 4 Forecast accuracy tests between models

Diebold–Mariano (DM) Test Modified DM Test

(A1) AR(2) Standard VAR AR(2) Standard VAR

Standard VAR 2.623*** (0.008) 2.580** (0.015)

Toda–Yamamoto VAR 1.951* (0.051) 0.119 (0.905) 1.919* (0.065) 0.117 (0.907)

(A2) AR(2) Standard VAR AR(2) Standard VAR

Standard VAR 1.354 (0.175) 1.332 (0.193)

Toda–Yamamoto VAR 1.662* (0.096) 1.265 (0.206) 1.634 (0.113) 1.244 (0.223)

(B1) AR(2) Standard VAR AR(2) Standard VAR

Standard VAR 2.580*** (0.009) 2.538** (0.016)

Toda–Yamamoto VAR 1.895* (0.058) 0.478 (0.632) 1.864* (0.072) 0.470 (0.641)

(B2) AR(2) Standard VAR† AR(2) Standard VAR†

Standard VAR 1.333 (0.182) 1.311 (0.200)

Toda–Yamamoto VAR† 1.414 (0.157) 1.962** (0.049) 1.391 (0.858) 1.929* (0.063)

Note: (A1) refers to BSI ! BTC, (A2) to BTC ! BSI, (B1) to B-G-C ! BTC, and (B2) to BTC ! B-G-C, respectively; for each test, MSE is used as loss criterion;
a uniform kernel is employed in the calculation of the long-run variance with the exception of the two † indexed cases, where a Bartlett kernel is chosen to
guarantee estimates to be positive definite; the maximum lag order in the long-run variance calculation is determined by the Schwert criterion

pmax ¼ 12 � ðT=100Þ14
h i

, where T is sample size and rectangular brackets give the nearest integer part of the argument.
*p < 0.10. **p < 0.05 ***p < 0.01

SÜSSMUTH 451

https://www.bakkt.com/index


BTC, for example, as a hedge candidate in periods of up
to a maximum of half-year intervals. At the same time,
attention measures need to be carefully chosen so that
the regional origin and distribution of BTC-related
activity is taken care of.
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APPENDIX

A.1 | Code
To carry out tests and estimations, I partly relied on code
and software written by Hüseyin Tastan, Sven
Schreiber, and Chrisopher F. Baum. Command suites
bcgcausality and dmariano for Stata and function
package delayspectral.gfn for open-source econo-
metrics program Gretl have been used.

A.2 | Data retrieval
Chinese BSI data were retrieved on February 19, 2018
and made available to me in monthly frequency. BSI data
are directly accessible only by corporate users in China
or “practitioners” with “private access”; see Shen
et al. (2017, p. 7). The usual disclaimer applies.
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