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TECHNOLOGY ADOPTION UNDER COSTLY INFORMATION PROCESSING∗

By Dominik Naeher

University of Goettingen, Germany

A new explanation for imperfect technology adoption is proposed. In the model, agents allocate scarce at-
tention rationally between actions and decide whether and how to adopt a technology. Introducing constraints
to information processing gives rise to attentional barriers to technology adoption, which affect optimal adop-
tion behavior. The model can explain why individuals (i) fail to adopt profitable technologies, (ii) fail to make
the best use of adopted technology, (iii) treat complementary technologies as substitutes, and (iv) change their
adoption decision back and forth over time. The model complements existing learning models and is consistent
with empirical evidence.

1. introduction

According to macroeconomic growth literature, much of the variation in per-capita income
levels across countries can be attributed to differences in total factor productivity (Prescott,
1998; Hall and Jones, 1999; Easterly and Levine, 2001). An important determinant of the as-
sociated productivity gaps between countries is the range of technologies used (Aghion and
Howitt, 1992; Grossman and Helpman, 1993; Keller, 2004). Adoption of technological ad-
vancements is therefore commonly seen as a driver of productivity growth and as a key path-
way for less-developed countries to catch up with richer economies (Comin and Hobijn, 2004;
Banerjee and Duflo, 2005; Hall, 2005).1 Yet, a large body of evidence shows that many innova-
tions are only very slowly adopted, and, conditional on being adopted, frequently used in sub-
optimal ways.2

This article proposes a new explanation for why this may be the case. The explanation cen-
ters around the idea that adoption decisions are affected by attentional costs associated with
adequately managing and operating technology in the presence of constraints to informa-
tion processing. There are several reasons for why these costs may be of economic relevance.

[Correction added on January 19, 2022 after first Online publication: Footnote numbers and manuscript received
and revised information updated]
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1 This view is supported by a growing body of empirical evidence showing that returns to investments into mod-
ern technology are often extremely high for households in developing countries (Miguel and Kremer, 2004; Udry and
Anagol, 2006; Duflo et al., 2008). Several authors argue that answering the question of why technological diffusion
is often so slow is crucial for understanding the broader process of economic growth and development (Rosenberg,
1972; Geroski, 2000; Atkin et al., 2017).

2 This includes innovations in farming technology (Udry and Anagol, 2006; Duflo et al., 2011), health and sanita-
tion (Dupas, 2009; Ahuja et al., 2010; Ashraf et al., 2010), and management practices (Bloom et al., 2013; Atkin et al.,
2017). Further examples can be found in the surveys by Rosenberg (1972) and Keller (2004).
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First, many modern technologies require users to make complex choices about the parame-
ters of usage, such as the type, timing, and composition of different inputs. Second, the returns
associated with different parameter choices are not necessarily fixed, but are often sensitive to
time- and location-specific conditions (specific examples are discussed below). To apply such
technologies in optimal ways, users are required to adapt their practices to the present con-
ditions anew in each period. This imposes a continuous need to be attentive to new infor-
mation, because in deciding how to manage and operate adopted technology, users can rely
only to a limited extent on knowledge obtained from past observations, for example, based
on learning about optimal input targets. As a consequence, users may be required to process
large amounts of new information in limited amounts of time to apply adopted technology op-
timally.

In standard models based on rational expectations, such an overload of information does
not affect optimal technological adoption decisions since agents are assumed to process avail-
able information instantaneously and without additional cost, that is, there are no constraints
to information processing. However, a growing body of empirical evidence shows that in
many situations, people do not (or only imperfectly) absorb readily available information and
translate it into appropriate choices.3 This indicates that humans possess only a limited capac-
ity for processing information, which may affect optimal decisions about uptake and usage of
modern technologies.

Consider, for example, the input choice problem of a textile manufacturer. To stay on the
efficient production frontier, the company’s managers will have to be attentive not only to
the operations within their own factory, but also to changes in customer preferences, the sup-
ply network, and the prevailing legal rules and regulations (among others). At least to some
extent, fluctuations in any of these domains will also affect the company’s optimal produc-
tion decisions. Similarly, a farmer who chooses whether to cultivate an improved crop variety
needs to consider factors such as present soil and weather conditions, prices of agricultural in-
puts, and demand for specific crops. In both cases, applying even relatively simple technolo-
gies in optimal ways creates a continuous need to attend to information.

The model I propose for studying technology diffusion incorporates this feature by analyz-
ing optimal adoption decisions in a choice framework with rationally inattentive agents (Sims,
2003; Matějka and McKay, 2015). In the model, returns to using a particular technology are
dependent on accompanying parameter choices. Which parameter values are optimal depends
on the fundamental state of the economy, which is not directly observed by agents. By pro-
cessing relevant information, agents can reduce uncertainty about optimal parameters and
thereby increase the expected value of adoption. As attention is a scarce resource, it has to be
allocated between the choice problem associated with technology adoption and other relevant
decisions. This allows to incorporate aspects of technology use that are typically neglected in
the existing literature on technology diffusion. The model I construct provides a structural
framework for studying the roles of information- and attention-related features of technology
in determining optimal adoption behavior, including the degree of a technology’s complex-
ity, the cost of paying attention to information about optimal usage parameters, the returns to
technology use under mistakes, and the properties of other decision problems that are com-
peting for users’ attention.

The model generates testable predictions that are helpful in understanding empirical adop-
tion decisions. Most importantly, the model gives rise to the existence of “attentional barri-
ers” to technology adoption. These barriers affect optimal adoption decisions and can cause
nonadoption of otherwise profitable and economically feasible technology to be a rational
decision. In addition, the model offers an explanation for why individuals and firms fail to

3 This includes evidence from laboratory studies (Gabaix et al., 2006; Goecke et al., 2013; Ambuehl et al., 2018),
field experiments (Hossain and Morgan, 2006; Hanna et al., 2014; Bartoš et al., 2016), and results based on observa-
tional data (Hortaçsu and Syverson, 2004; Hirshleifer et al., 2009; Handel, 2013; Bronnenberg et al., 2015; Grubb and
Osborne, 2015; Bhargava et al., 2017). Further examples can be found in the surveys by Falkinger (2008), DellaVigna
(2009), Handel and Schwartzstein (2018), and Maćkowiak et al. (2021).
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make the best use of technologies they decided to adopt, treat complementary technologies
as substitutes, and change their adoption decisions back and forth over time. I show that the
predictions of the model are consistent with empirically observed adoption behaviors, includ-
ing in contexts where existing theories are unable to (fully) account for these behaviors.

The article links to three strands of literature. First, I add to the literature on technology
diffusion. Within this literature, various channels have been proposed to account for imperfect
uptake and usage of technology. These include market imperfections such as credit rationing,
incomplete insurance, and weak property rights (Feder, 1980; Moser and Barrett, 2006; Caselli
and Coleman, 2001; Dercon and Christiaensen, 2011; Karlan et al., 2014), individual and social
learning (Parente, 1994; Foster and Rosenzweig, 1995; Jovanovic and Nyarko, 1996; Bandiera
and Rasul, 2006; Conley and Udry, 2010; Hanna et al., 2014), regulatory and organizational is-
sues (Parente and Prescott, 1994; Bloom et al., 2013; Atkin et al., 2017), and behavioral biases
(Ashraf et al., 2006; Duflo et al., 2011). All of these channels have been found to be empiri-
cally relevant in a variety of contexts. Yet, they can only account for part of the observed pat-
terns of technology diffusion, and various observations remain puzzling (see Sections 2 and 5).
I propose that costly information processing may be part of the explanation for these findings
and develop a model that complements the insights of existing theories.

Within the large body of the literature on technology diffusion, my model relates most
closely to learning (or epidemic) models, since these models also emphasize the importance
of uncertainty about optimal usage parameters in explaining imperfect adoption behavior.
In these models, learning is typically based on the discovery of new information that allows
agents to refine their knowledge and choose better practices. As pointed out by Hanna et al.
(2014), the explanation for imperfect adoption decisions that learning models generate is es-
sentially based on a lack of data. In contrast, the model I propose for studying technology
adoption focuses on situations where information that is useful for deriving optimal practices
is in principle readily available to users, but limits to data processing restrict agents in absorb-
ing and translating the information into appropriate decisions. Importantly, classical learning
models such as target input models have the feature that agents can only reduce uncertainty
about those components of optimal actions that are persistent across time. In contrast, in the
model proposed here, agents reduce uncertainty about idiosyncratic conditions that are inde-
pendent across time. This generates very different implications than those generated by learn-
ing models. As demonstrated below, the insights obtained from my model should be viewed
as complementing the insights obtained from classical learning models, as the two approaches
apply to opposite types of technologies.

Second, I add to the growing body of literature that stresses the role of attentional con-
straints for economic decision-making. This literature has considered applications across var-
ious topics, including macroeconomic contexts such as monetary transmission (Mankiw and
Reis, 2002; Maćkowiak and Wiederholt, 2009), consumption dynamics (Luo, 2008; Tutino,
2013), and business cycles (Maćkowiak and Wiederholt, 2015), as well as applications in fi-
nance (Van Nieuwerburgh and Veldkamp, 2010; Kacperczyk et al., 2016), industrial organiza-
tion (Sallee, 2014; Martin, 2017), and labor (Bartoš et al., 2016; Acharya and Wee, 2020).4 I
add to this literature by extending the analysis based on limited attention to technological dif-
fusion processes, including an application to agricultural development.

Finally, in incorporating limitations to information processing into the model, I build on
previous work in the literature on rational inattention started by Sims (2003), particularly
on the discrete choice framework under rational inattention studied by Matějka and McKay
(2015). An important feature of my model that, to the best of my knowledge, is novel to the
rational inattention literature, is that it generates a discontinuity in the amount of attention al-
located across multiple decision problems (this discontinuity arises at the threshold value of
attentional capacity that defines whether adoption or nonadoption of the technology is opti-
mal).

4 Summaries of these papers are provided in the survey papers listed in footnote 3.



702 naeher

It should be noted that most of the predictions of my model arise independently of the un-
derlying structure of information and thus could also be generated by a model with costly
information acquisition that is not based on entropy reduction. Nevertheless, using a rational
inattention approach to describe technological adoption decisions under costly information
processing offers several advantages. First, the concept of ration inattention introduced by
Sims (2003) is based on information theory, which provides a wide range of readily-available
mathematical tools that are well understood. Second, and partly due to the existence of these
tools, rational inattention models tend to allow for fairly tractable solutions. Moreover, us-
ing an entropy-based functional form for attention costs allows to endogenize not only the
amount of information to be processed (i.e., the precision of the underlying signals), but also
the structure of information (i.e., the distribution from which signals are drawn).5 It has there-
fore been argued that rational inattention can be viewed as ideal for studying information
acquisition based on endogenous considerations about the benefits of information instead of
based on exogenous assumptions about the cost of information (Kőszegi and Matějka, 2020).

On the other hand, authors have pointed out that rational inattention maintains the strong
(neoclassical) assumption that people are able to form accurate beliefs based on the infor-
mation that is worth processing (Handel and Schwartzstein, 2018; Kremer et al., 2019). The
empirical support for this assumption is mixed (see the survey by Handel and Schwartzstein,
2018), with several studies supporting the usefulness of rational inattention in explaining
the outcomes of human choice behavior across different contexts (Caplin and Dean, 2013;
Goecke et al., 2013; Bartoš et al., 2016; Ambuehl et al., 2018).6

The rest of the article is organized as follows: The next section summarizes features of mod-
ern technologies that motivate the analysis. Section 3 presents the model and derives testable
predictions. Section 4 discusses the robustness of the theoretical results to changes in the as-
sumed features of the model, and clarifies the model’s relationship to other theories of tech-
nology adoption such as learning models. Section 5 applies the model to explain empirical
adoption decisions of technologies in the context of agricultural development. Section 6 con-
cludes.

2. features of technology that motivate the analysis: the case of modern farm
inputs

The model I propose for studying technology adoption is a simple choice framework under
rational inattention. The model focuses on contexts in which adoption decisions can be char-
acterized by three stylized properties. First, applying the technology requires users to decide
on a number of parameters, for example, the types and quantities of different inputs. Second,
users face uncertainty about optimal parameter choices because the optimal values are sen-
sitive to the fundamental state of the economy which users observe only imperfectly. Third,
users have access to information that is helpful in reducing uncertainty about optimal ways of
applying the technology, but have to exert costly mental effort to process this information.

There are many types of technology that could be argued to feature these stylized prop-
erties. One important example, which the application in Section 5 focuses on, are modern

5 Earlier approaches to modeling limited attention typically either abstract completely from information process-
ing or impose an exogenous signal structure on decision makers. In contrast, the rational inattention literature uses an
entropy-based approach to model information processing that allows agents to endogenously choose the distribution
from which signals are drawn.

6 An alternative approach to model limited attention are salience-based models (e.g., Bordalo et al., 2013; Kőszegi
and Szeidl, 2013). In these models, attention allocation is determined by a stimulus-driven process instead of the true
value information carries. In explaining imperfect technology adoption, these models would thus focus on factors that
are exogenous to users instead of on users’ own optimizing behavior. For a more detailed discussion of the different
approaches to attention used in economics, including a comprehensive discussion of the assumptions underlying the
rational inattention approach, see Handel and Schwartzstein (2018).
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agricultural input technologies such as fertilizer, pesticides, and improved seed varieties.7 This
focus is well placed, as there is a large body of empirical literature concerned with explaining
adoption decisions of these technologies, especially in the development context (see the sur-
vey by Foster and Rosenzweig, 2010).8 In addition, it is often argued that these technologies
are likely to become more important over time as the world’s growing demand for food has to
be met with ever scarcer land and water resources, possibly exacerbated in coming decades by
the effects of climate change (IFAD, 2013; FAO, 2014).

In this context, the economic literature has identified four puzzling findings which I will use
in Section 5 to demonstrate the model’s ability to contribute to the understanding of empirical
adoption decisions.

• Observation 1. Farmers in developing countries spread complementary inputs across dif-
ferent agricultural plots instead of combining them on the same plots, thereby forgoing
potential gains from agronomic synergies (Sheahan and Barrett, 2017).

• Observation 2.Farmers abstain persistently from using modern farming technologies,
even in situations where these technologies are readily available, affordable, and prof-
itable (Duflo et al., 2011; Datta and Mullainathan, 2014).

• Observation 3. Farmers who have adopted modern farm inputs often use them in subop-
timal ways, for example, by not adapting their practices to idiosyncratic conditions and
shocks (Morris et al., 2007; Duflo et al., 2008; Gollin and Udry, 2019).

• Observation 4.Farmers frequently switch in and out of using previously adopted tech-
nologies, including across subsequent agricultural seasons (Dercon and Christiaensen,
2011; Duflo et al., 2011; Suri, 2011).

Observation 1 is a puzzling finding because agronomic synergies are a well-known feature of
modern farm inputs and many existing studies highlight the importance of joint adoption of
these inputs to raise agricultural productivity.9Since this observation applies to farmers who
are already using modern inputs on their farm, it is particularly useful to distinguish the model
developed below from other factors commonly studied in the literature to explain imperfect
adoption decisions (see Section 5). Therefore, I design the model to be able to capture com-
plementarity between different technologies and multiple production locations. In addition, I
show that the behavior of a rationally inattentive agent can account for imperfect uptake and
usage of profitable technology more generally, including Observations 2–4.10

To provide a bit more motivation for the assumptions underlying the model constructed be-
low, the rest of this section summarizes other relevant empirical findings. First, a large body
of evidence suggests that the returns to modern farm inputs are very sensitive to the cho-
sen cultivation practices, and that choosing profitable practices is not always an easy task for

7 Although the application discussed in this article focuses on a relatively narrow set of technologies, it should be
noted that the model is more broadly applicable and the derived insights are useful in explaining technological adop-
tion decisions beyond the specific application studied here.

8 The diffusion of modern farm inputs is commonly seen as playing an important role in the growth process of de-
veloping countries (Irz et al., 2001; Evenson and Gollin, 2003; Gollin, 2010; Christiaensen et al., 2011). This applies
especially to sub-Saharan Africa, where a large share of the labor force works in agriculture, productivity gaps tend
to be particularly large in the agricultural sector, and adoption rates of modern farming technologies are often persis-
tently low (Morris et al., 2007; World Bank, 2008; Sheahan and Barrett, 2017).

9 The literature has identified many such agronomic synergies. For example, fertilizer tends to yield higher returns
on irrigated plots as it requires a certain soil moisture to effectively enhance plant growth (Duflo and Pande, 2007;
Morris et al., 2007). Since fertilizer facilitates the growth of undesired weeds, it should optimally be combined with
herbicide (Beaman et al., 2013; Sheahan and Barrett, 2017). Integrated soil fertility management is based on syner-
gies arising from combined use of organic and mineral fertilizers (Place et al., 2003). Finally, many new seed varieties
are designed to be paired with agrochemicals and therefore feature strong complementarities with these inputs. These
synergies are only fully realized if inputs are combined in adequate ways, for example, regarding the timing and use of
specific types of inputs (Sheahan et al., 2013; Nyangena and Juma, 2014; Abay et al., 2016).

10 Although these observations can also be accounted for by other factors, I propose that costly information pro-
cessing may be part of the explanation for these observations and show that it complements the insights of existing
theories (particular those of learning models; see Subsection 4.2).
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farmers. For example, Cole and Fernando (2012) state that due to seasonal variation in the
types and resistance of pests, continued adjustments in the types and quantities of used pes-
ticides are required to achieve effective pest control. In a similar way, many authors argue
that the profitability of fertilizer use depends on tailoring the dosage, composition, and tim-
ing of application to field-specific and seasonal conditions (Marenya and Barrett, 2009; Conley
and Udry, 2010; Sheahan et al., 2013). Evidence from a randomized field experiment by Du-
flo et al. (2008) shows that farmers in Kenya face considerable uncertainty about profitable
quantities of fertilizer use, with appropriate quantities being highly profitable (raising farm-
ers’ annual net incomes by 15% on average) and suboptimal quantities being associated with
negative net returns.11 The problem of selecting optimal cultivation practices is exacerbated
by the fact that farmers tend to face distinct growing conditions on different fields, including
for fields located in the same village.12 Finally, the view that choosing optimal ways of apply-
ing agricultural inputs represents a challenging task for farmers is supported by the growing
literature on precision agriculture, which argues that even conditions at the micro level, that
is, within individual plots, can play an important role in determining optimal usage practices
(Koch et al., 2004; Lambert et al., 2006).

The model also builds on the assumption that users have access to information that is help-
ful in choosing optimal ways of using the technology, but face limited mental resources in at-
tending to this information. In the context of modern farm inputs, such information may in-
clude features of the agricultural production process itself that are relevant for choosing opti-
mal cultivation practices, for example, information about the soil conditions, growing stages of
planted crops, and early signs of pests and diseases. Typically, these data can be directly ob-
served by farmers. In addition, farmers may have access to external sources of information,
such as weather forecasts, user manuals, advice from neighboring farmers, and agricultural ex-
tension services (some of which may be associated with monetary costs). Deviating from stan-
dard models without constraints to information processing, I follow the literature on limited
attention and incorporate the idea that users of technology have to exert costly mental effort
to absorb information and incorporate it into their decision-making. Unless one is willing to
assume that farmers’ information processing differs systematically from that of other people,
the empirical support for this feature in the context of agricultural input use is essentially the
same as the evidence discussed in Section 1 (including the studies listed in footnote 3). In ad-
dition, there are several reasons to believe that constraints to information processing may be
especially severe in the context of rural development. Most importantly, farmers in poor coun-
tries tend to have very limited access to information in preprocessed form, for example, due to
the unavailability of tools such as online search engines. Moreover, poor farmers are often un-
able to benefit from distraction-saving goods and services, such as stable electricity and water
supply, which has been argued to deteriorate available mental resources (Banerjee and Mul-
lainathan, 2008). Finally, some studies suggest that cognitive functioning is adversely affected
by poverty (Mani et al., 2013; Haushofer and Fehr, 2014).

3. model

I start by illustrating the main idea of the article in a simple benchmark model of technol-
ogy choice in which the agent allocates available attentional capacity between two decisions
under uncertainty. Subsection 3.4 extends the model to incorporate interactions between dif-
ferent technologies across multiple production location.

11 Duflo et al. (2008) summarize their findings with the words, “…while fertilizer can be very profitable when used
correctly, one reason why farmers may not use fertilizer and hybrid seeds is that the official recommendations are not
adapted to many farmers in the region. This also suggests that fertilizer is not necessarily easy to use correctly, which
implies that it may not be profitable for many farmers who do not use the right quantity.”

12 Conley and Udry (2010) report that while growing conditions are typically highly correlated across adjacent
plots, they can significantly vary over a village as a whole, for example, because soil types, topographical features, and
rainfall realizations frequently differ on opposite sides of a single village.
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3.1. Basic Setup. Consider the decision problem of a single agent who faces two deci-
sions. The first decision corresponds to the adoption of a certain technology of interest and is
denoted by τ . If the technology is used, the agent has to select between two different ways of
applying it, for example, low and high quantity, or early and late timing. Let these two options
be denoted as low (l) and high (h).13 In addition, let the outside option of not using the tech-
nology be denoted as 0.

The payoff associated with each way of applying the technology depends on the state of the
world. Let vτ,i denote the payoff for using the technology under option iτ . The payoff for a
given usage practice depends on the fundamental zτ . One may think of zτ as capturing all rel-
evant conditions that determine the returns to different ways of using the technology. In the
basic setup considered here, zτ takes two possible realizations, l and h, with equal probability,
and the payoff for each way of using the technology is given by

vτ,high =
{

a, zτ = h
−b, zτ = l

and vτ,low =
{

a, zτ = l
−b, zτ = h,

(1)

where b > a > 0.14For example, if the realized state is h, using the technology with option high
yields a return equal to a, whereas using the technology with option low yields a return equal
to −b (and vice versa for zτ = l). This captures the idea that adopting the technology is prof-
itable if it is used correctly according to the realized state, but can lead to negative (net) re-
turns under inadequate usage (see, e.g., the example of modern farm inputs discussed in Sec-
tion 2).

If the agent chooses not to adopt the technology, a safe return is obtained which is normal-
ized to zero. In this case, the agent does not have to engage in a choice about how to apply
the technology. For example, this may be thought of as the possibility to apply a less complex
technology that does not require any parameter choices.15

The second decision, denoted as −τ , corresponds to another decision problem that requires
the agent’s attention. One may think of −τ as capturing distractions in the spirit of Banerjee
and Mullainathan (2008) or as the aggregate of all decisions which the agent currently faces
other than the one associated with τ . The choice problem for −τ features the same payoff
structure as the one for τ given by expression (1), except that there is no safe outside op-
tion available for −τ , that is, the agent is required to choose one of the two options i−τ ∈
{low, high}.16 Importantly, I focus on the case where the states zτ and z−τ are independent of
each other (relaxing this assumption is discussed in Subsection 4.1).

3.2. Information Processing. Although the agent is aware of the underlying payoff struc-
ture, the realized state of the economy is initially unobserved such that the agent faces un-
certainty about the payoffs associated with different actions. To reduce uncertainty, the agent
can process information.17 Let the agent’s prior belief over the realized state zk be given by
the probability mass function G(zk). Processing information about zk can be modeled as re-
ceiving a signal sk ∈ N on the realization of zk to update the belief G(zk). The agent’s actions

13 The model can be generalized to allow for more than two options without qualitatively changing the results (see
Appendix A.1.1). Throughout the article, I use the terms “option,” “usage practice,” and “way of applying the tech-
nology” interchangeably.

14 Assuming b > a is necessary to ensure that all options represent relevant alternatives for the agent. As shown in
Appendix A.1.1, this assumption can be relaxed in a more general choice framework with more than two options (see
also footnote 29).

15 The existence of a riskless outside option is a common assumption in models of technology adoption (e.g., Mun-
shi, 2004; Bandiera and Rasul, 2006; Foster and Rosenzweig, 2010).

16 Alternative payoff structures are considered in the model extensions in Subsection 3.4 and Appendix A.1.1.
17 Relevant information may come from external sources, such as other people and media, or consist of internal

data generated by the production process itself, for example, production status and condition of equipment (see Sec-
tion 2 for more examples).
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are based on the posterior belief resulting from processing information, captured by the con-
ditional probability mass function �(zk | sk). Following the literature on rational inattention
(Sims, 2003; Maćkowiak and Wiederholt, 2009; Matějka and McKay, 2015), there are no re-
strictions imposed on the structure of the signal (other than that prior and posterior beliefs
must be consistent with each other). The agent chooses sk freely by selecting �(sk, zk) ∈ �,
where � is the set of all joint probability mass functions over signals and states.18

However, in line with a growing body of evidence on the limits of human cognition (see the
references listed in footnote 3), processing information is assumed to require attentional ef-
fort, and the agent faces a limited attentional capacity. Let κk denote the amount of attention
that is allocated to processing information about zk, and let κ > 0 denote the agent’s total en-
dowed attentional capacity.19 Limited attention is modeled as a constraint on uncertainty re-
duction. As is standard in the rational inattention literature, uncertainty is quantified by en-
tropy, a measure of the unpredictability of a random variable’s realization. This is formally
captured by the constraint

H(G(zk)) − Es[H(�(zk | sk))] ≤ κk,(2)

where H(G(zk)) denotes the prior entropy associated with the choice problem for k ∈ {τ,−τ }
and Es[H(�(zk | sk))] is the expected posterior entropy after the agent has processed infor-
mation. In the case of a discrete choice problem considered here, the entropy of the prior be-
lief is defined as

H(G(zk)) = −
∑

zk

G(zk) log G(zk),(3)

and the posterior entropy given the received signal sk is given by

H(�(zk | sk)) = −
∑

zk

�(zk | sk) log �(zk | sk).(4)

Condition (2) thus states that the more attention is devoted to problem k ∈ {τ,−τ } (i.e., the
larger κk is), the larger is the expected reduction in uncertainty (measured in entropy) about
the realization of zk.

3.3. Decision Problem and Optimal Adoption Behavior. The timing of the model is as fol-
lows: First, the agent chooses the allocation of attention. This includes both the decision of
how much attention to devote to each choice problem and the structure of the signal. For ex-
ample, the agent may choose to use all attention to discriminate between the possible states
of zτ , while paying no attention to z−τ . Second, the state of nature realizes (e.g., the realized
state of zτ is l and the realized state of z−τ is h). Third, the agent receives a signal about the
state of the fundamentals (e.g., the signal might say that the state of zτ is l and the state of
z−τ is also l). Recall that the signal is more likely to be correct the more attention the agent
devotes to this decision. Fourth, the agent chooses an option for each decision based on the

18 Notice that this endogenizes the structure of information processing in the model, that is, the agent chooses not
only the number or precision of signals based on some exogenously imposed signal structure, but all aspects of the
underlying distribution from which signals are drawn.

19 In the rational inattention literature, scarce attention is modeled either as a fixed capacity of endowed attention
(as done here) or as a unit cost of attention. In the model in Subsection 3.4, working with a unit cost would lead to
separate allocation problems across different production locations, that is, the optimal amount of attention paid to
one location would be independent of the decisions for other locations. In explaining heterogeneity across locations,
such an approach would thus have to rely on different parameter values across locations. In contrast, the capacity-
based approach taken here is able to generate different optimal actions across locations even for the case where lo-
cations are ex ante identical.
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posterior beliefs (this includes the decision whether to adopt the technology or not). Fifth, the
agent receives the payoff for each decision, which is determined by the combination of state
and selected option, as described by expression (1).

Formally, the agent’s decision problem is given as follows:

max
{κk,�(sk,zk )}k∈{τ,−τ }

∑
k∈{τ,−τ }

(∑
zk

∑
sk

vk,i∗ �(sk | zk) G(zk)

)
,(5)

s.t. i∗ = arg maxi E[vk,i | sk](5.1)

H(G(zk)) − Es[H(�(zk | sk))] ≤ κk ∀k ∈ {τ,−τ },(5.2)

∑
k∈{τ,−τ }

μκk ≤ κ.(5.3)

The first condition (5.1) states that the agent chooses the option with the highest expected
payoff given posterior beliefs. This corresponds to a standard choice problem under uncer-
tainty.20The second condition (5.2) states that larger reductions in uncertainty (measured in
entropy) require more attention. The third condition (5.3) is the budget constraint for the
scarce resource attention, where the parameter μ captures how demanding it is to pay atten-
tion to a decision.21

The objective of the agent is defined by expression (5). The term in parentheses is the ex-
pected payoff obtained from decision k for the chosen signal sk and realized state zk. For each
realized state, the expected payoff equals the product of the probability of the state, G(zk),
the conditional probability of the signal given the realized state, �(sk | zk), and the expected
value of option i∗ that is chosen under the obtained signal as specified in condition (5.1). The
agent chooses how much attention κk is allocated to each decision by deciding on the struc-
ture of the signal, which is captured by the joint probabilities �(sk, zk). In doing so, the agent
seeks to achieve higher probabilities of selecting options that yield larger returns given the re-
alized state. Overall, the agent allocates the available attention κ so as to maximize the sum of
expected payoffs obtained from τ and −τ , subject to the given constraints.22

The solution to the optimization problem given by expressions (5) to (5.3) is derived in Ap-
pendix A.1.1. The solution shows that the optimal adoption behavior depends on the shadow
price of attention, denoted as λ, which corresponds to the Lagrange multiplier of the budget
constraint for attention (5.3).23 Specifically, the optimal allocation of attention is given by the

20 In related studies, this is sometimes referred to as the second-stage problem while choosing the allocation of at-
tention is called the first-stage problem.

21 The parameter μ measures how much attention is needed to achieve a given reduction in the entropy associated
with decision k (e.g., the agent may be more experienced in processing information about a certain type of decision
or have access to information in preprocessed form, corresponding to smaller values of μ). Although in the frame-
work studied here μ is a constant, it would, in principle, also be possible to let μ differ across decisions, meaning that
paying attention to one decision would be more demanding than paying attention to another decision (see also the
discussion around Corollary 1 in Subsection 3.4).

22 Notice that the optimization problem given by expressions (5)–(5.3) is equivalent to a decision problem where
the agent decides first whether to use the technology and then selects the allocation of attention and correspond-
ing actions.

23 When other parameters are fixed, the size of λ is fully determined by the available attentional capacity κ . The re-
lationship between κ and λ is inverse, such that λ can be interpreted as a measure of the scarcity of attention in the
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Note: Simulation for the case of two binary choice problems as specified in Subsection 3.1. Results are obtained by
varying κ on the interval between 0 and 2 for fixed parameter values (a, b, μ) = (1, 2, 1).

Figure 1

optimal allocation of attention and expected payoff

following three cases:24

κ∗
τ =
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)
if κ ∈ [mτ , mτ ),

0 if κ < mτ

(6)

κ∗
−τ = κ

μ
− κ∗

τ .(7)

Figure 1 provides a graphical illustration of the agent’s optimal behavior implied by the re-
sults in Equations (6) and (7). The upper graph shows the optimal allocation of attention be-
tween τ and −τ for different values of κ , keeping the other parameters fixed at (a, b, μ) =
(1, 2, 1). The lower graph shows the associated expected payoff under adoption and nonadop-
tion of the technology. If attention is abundantly available, that is, κ is sufficiently large to
yield a shadow price of attention λ equal to 0,25 then the agent adopts the technology and uses
it under optimal parameter choices. In this case (which corresponds to the first case for κ∗

τ in
Equation (6), that is, when κ ≥ mτ ), the agent selects the optimal way of using the technology

agent’s overall decision problem. Although it is possible to derive an analytical expression that implicitly pins down
λ as a function of the primitives of the model (i.e., the parameters a, b, μ, and κ), it is in general not possible to de-
rive a closed-form solution of the model. Most of the results are therefore presented as functions of λ. Appendix A.2
reports numerical results on the relationship between λ and individual parameters.

24 Appendix A.1.1 derives the solution for a slightly more general case that allows for more than two options (e.g.,
more than two ways of applying the technology). Equations (6) and (7) represent a special case of that solution and
can be obtained from the results stated in Proposition A.1 (Appendix A.1.1) by setting Nk = 2.

25 Note that the total entropy in the agent’s decision problem is finite, such that κ does not have to be infinite to
lead to λ = 0. In the special case with two binary choice problems considered here, the entropy for each choice prob-
lem equals log(2), and the amount of attention that leads to λ = 0 is given by mτ = 2μ log(2).
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Note: Simulation for the case of two binary choice problems as specified in Subsection 3.1. Results are obtained by
varying λ on the interval between 0 and 10 for fixed parameter values (a, b, μ) = (1, 2, 1).

Figure 2

probabilities of adequate and incorrect ways of technology use

with probability one, so that the (expected) payoff from τ equals a and the total payoff equals
2a (see the right-hand edge of the lower graph in Figure 1).

As attention becomes scarcer, the agent uses the technology under imperfect attention,
causing the agent to occasionally make mistakes (i.e., select incorrect parameters of usage
associated with a payoff of −b). In this case, corresponding to the second case in Equation
(6) where mτ ≤ κ < mτ , the expected payoff of using the technology is given by E[Vτ (κ∗

τ )] ∈
(0, a). The smaller κ (and thus the larger λ), the less attention is available for processing infor-
mation needed to operate the technology, and the more likely it is that mistakes occur. This
is illustrated in Figure 2, which depicts the probability that the agent selects adequate ways
(solid blue line) and incorrect ways (dashed red line) of using the technology for different val-
ues of λ. If the agent is perfectly attentive, that is, λ = 0, the probability of making a mistake
equals zero. If attention is very scarce (λ is very large), the probability of making a mistake
approaches the maximum value of one half. A larger shadow price of attention thus makes
operating the technology in profitable ways more difficult, acting as a barrier to adoption.

As shown in the lower graph of Figure 1, the expected payoff decreases with smaller values
of κ . For a certain value of κ , the optimal amount of attention allocated to each decision be-
comes too small to yield a positive expected return of using the technology. Since there is no
outside option for −τ , the optimal strategy is to switch to nonadoption of the technology. This
allows the agent to obtain the secure return of zero for τ and at the same time increase the ex-
pected payoff for −τ as attention is shifted from τ to −τ . In Figure 1, the cutoff value mτ at
which the agent switches to nonadoption corresponds to the value of κ at the intersection of
the two blue lines in the lower graph (as indicated by the vertical reference line).26

Importantly, notice that the agent’s optimal behavior features a discontinuity in attention
allocation around the cutoff mτ . Intuitively, this discontinuity exists because it is never opti-
mal to use the technology under very small amounts of attention κτ , as the agent would be too
much at risk of selecting inadequate usage practices.

26 Note that, because any attention that is not used for τ can be used to increase the expected payoff for −τ , the
switch from adoption to nonadoption occurs, in fact, before the expected return of adoption becomes negative. Also
note that for sufficiently small values of κ , even the expected total payoff under nonadoption is negative (see the left-
hand edge of the lower graph in Figure 1). In the extreme case where no attention is available, the expected total pay-
off is given by E[V−τ ] = 0.5(a − b) < 0, which equals the expected payoff in the absence of any useful information,
that is, the simple expected value (this constitutes the best possible outcome for the agent in the absence of an outside
option for −τ ).
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Table 1
return v j,i given state z j and action i

i ∈ I z j E[v j,i | κ j = 0]*

(l, l) (l, h) (h, l) (h, h)

Nonadoption (0,0) 0 0 0 0 0
Single input (Sl , 0) a a −b −b 1

2 (a − b)
(Sh, 0) −b −b a a
(0, Fl ) a −b a −b
(0, Fh) −b a −b a

Joint inputs (Sl , Fl ) 2a(1 + s) a − b a − b −2b 1
2 a(2 + s) − b

(Sl , Fh) a − b 2a(1 + s) −2b a − b
(Sh, Fl ) a − b −2b 2a(1 + s) a − b
(Sh, Fh) −2b a − b a − b 2a(1 + s)

Notes: *Expected return when no attention is devoted to the production location (i.e., simple expected value). Each
state of the fundamental z j is realized with equal probability 1/4.

Also note that, in the case of adoption, the agent allocates an equal amount of attention to
τ and to −τ . This feature stems from the assumed symmetry of payoffs for τ and −τ as well as
from the properties of the underlying information technology.27 In particular, this highlights
the model’s implicit assumption of preferences for generalized learning (as opposed to pref-
erences for specialized learning; see Van Nieuwerburgh and Veldkamp, 2010). In the context
of technology adoption, assuming preferences for generalized learning is plausible as long as
it holds that users cannot arbitrarily change the relative roles of payoffs received from the ac-
tions corresponding to τ and −τ . In practice, this will be the case if the consequences of mak-
ing suboptimal choices for the actions captured by −τ cannot simply be avoided, for example,
if −τ represents distractions in the spirit of Banerjee and Mullainathan (2008) that must be
dealt with (see Subsection 4.3 for a more detailed discussion).

3.4. Complementary Inputs and Multiple Production Locations. In the framework dis-
cussed so far, using technology is modeled as choosing a single input parameter (i.e., choos-
ing among options iτ ∈ {low, high} in the baseline model described above or among options
iτ ∈ {1, . . . , Nτ } in the generalized version in Appendix A.1.1). Although this helps to simplify
the analysis and is in line with other target input models commonly used to explain imperfect
adoption behavior (see the references in Subsection 4.2), it is important to note that such an
approach abstracts from possible dynamics between different aspects of technology use, in-
cluding the existence of complementarity between technologies. In order to be able to study
the role that these interactions play for optimal adoption decisions, I now present a special
case of the model that incorporates the existence of complementary inputs as well as multiple
production locations. As the application in Section 5 shows, the insights obtained from this ex-
tension are useful in explaining empirical patterns of technology use.

Consider the decision problem of an agent who operates identical production units in two
different locations, for example, two factories or two agricultural plots, and has access to two
complementary input technologies denoted S and F . For each location j ∈ {1, 2}, the agent
chooses among i ∈ I actions, which are listed in the first column of Table 1. In particular,
the agent can choose not to adopt any of the two input technologies, to apply a single input,
or to combine both inputs together. Whenever an input is used in a production location, it
can be applied in two different ways. Let these two options be denoted as low (l) and high
(h), respectively. In addition, let the outside option of not using a specific input be denoted
as 0. In this stylized framework, the agent thus selects among nine possible actions for each

27 The entropy-based information technology specified in Subsection 3.2 implies a convex cost function of attention
that means that the expected marginal benefit of allocating more attention to −τ decreases with higher levels of κ−τ ,
and analogously for κτ in the case of adoption (see the second graph in Figure 1 as well as the discussion in Matějka
and McKay, 2015, p. 279).
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production location: nonadoption of any of the input technologies, four possible ways of using
a single input in one unit, and four possible ways of using two complementary inputs jointly.28

The outcome of an action for production unit j depends on the state of the world at lo-
cation j. Let v j,i denote the return for action i in location j, and let �v j denote the (9 × 1)
vector containing the returns for all possible actions in location j. The return for a given ac-
tion depends on the state zj. There are four possible state realizations, which are denoted as
z j ∈ {(l, l), (l, h), (h, l), (h, h)}. The notation is such that (l, h) indicates that in this state, the
optimal way of applying the first input is low and the optimal way of applying the second in-
put is high. If the state (l, h) realizes, then the vector of returns �v j equals the corresponding
column in Table 1. Nonadoption of any modern input yields a safe return that is normalized
to zero. Adequate application of a single input yields a return equal to a. Therefore, the re-
turns of actions (Sl, 0) and (0, Fh) in the (l, h) state equal a. Inadequate application of an in-
put yields a return equal to −b. Hence, the returns of actions (Sh, 0) and (0, Fh) in the (l, l)
state equal −b. Furthermore, adequate application of both inputs jointly creates synergy ef-
fects. For this reason, the return of the action (Sl, Fh) in the (l, h) state equals 2a(1 + s) with
s > 0. If one of the two inputs is applied inadequately, the synergy is lost and the joint return
equals the sum of the individual returns.

In order to be able to capture the full spectrum of possible input choices, I focus on pa-
rameter value ranges that ensure that all actions represent relevant alternatives for the agent.
In the stylized framework considered here, this requires that 0 < a < b and s < b−a

a (see Ap-
pendix A.1.3).29 In particular, this implies that using complementary inputs without devoting
any attention to the respective production unit is dominated by the outside option (i.e., the
expected values shown in the last column of Table 1 are smaller than the secure payoff ob-
tained under nonadoption). As before, I focus on the case where each state is realized with
equal probability and states are independent across the two locations (see Subsection 4.1 for
a discussion on relaxing this assumption).

The distribution of payoffs specified in Table 1 captures two main ideas. First, the returns of
combining complementary inputs depend on how well usage practices are adjusted to prevail-
ing conditions. This introduces additional uncertainty into the agent’s decision problem be-
cause parameters of usage for both inputs have to be chosen in conformity with the realized
state to generate optimal outcomes, and optimal parameter choices may vary between differ-
ent inputs and across locations. Second, joint adoption of complementary inputs is profitable,
provided that the inputs are applied in adequate ways. At the same time, choosing subopti-
mal practices is associated with lower profitability and can, for some states of the world, lead
to smaller net returns than those under nonadoption (e.g., this may be the case if the produc-
tivity gains associated with applying two complementary inputs in inadequate ways are not
large enough to cover the costs incurred for purchasing these inputs). Importantly, it should
be noted that the distribution of payoffs does not simply assume that there are states in which
combining complementary inputs is not profitable, or less profitable than single input use.
Rather, Table 1 specifies that joint input use always offers the largest potential payoff, but the
realized payoff depends on the agent’s ability to select the correct way of applying each input.

The timing of the model is analogous to the one in Subsection 3.3. First, the agent chooses
how much attention to devote to the action in each of the two locations and sets the structure
of the signal. Second, the state of nature realizes, for example, the realized state at location
1 may be (l, l) and the realized state at location 2 may be (h, h). Third, the agent receives a

28 Notice that the two locations may be thought of as two different decision problems similar to τ and −τ in the
baseline model, where the nine actions in the first column of Table 1 correspond to the “options” in the baseline
model (i.e., the model with complementary input technologies is a special case of the framework discussed in Ap-
pendix A.1.1 with Nk = 9).

29 These parameter restrictions can be relaxed by considering more than two possible options for each input. For
example, if the agent had to choose the correct action for each input among N symmetric alternatives (as in the model
in Appendix A.1.1), the expected value of using a single input without attention would be E[v j,i] = 1

N [a − b(N − 1)],
such that the restriction a < b could be relaxed to a < (N − 1)b.
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Notes: Simulations for different input combinations across two production locations as specified in Subsection 3.4.
Results are obtained by varying κ on the interval between 0 and 4 for fixed parameter values (a, b, s, μ) =
(1, 2, 0.05, 1).

Figure 3

optimal input choices across two production locations

signal about the state of the two locations, for example, the signal might say that the state of
location 1 is (l, l) and the state of location 2 is (h, l). Fourth, the agent takes an action in each
location based on the posterior beliefs. Fifth, the agent receives the payoff for each produc-
tion unit, which is determined by the combination of state and action, as described by Table 1.

The solution to the agent’s optimization problem with complementary input technologies is
derived in Appendix A.1.3. Proposition 1 summarizes the agent’s optimal behavior:

Proposition 1. The optimal behavior of a rationally inattentive agent with access to two com-
plementary input technologies and two ex ante identical production locations is characterized
by a pair of cutoff values, m1 and m2, specifying the minimum amount of attention κ for which
using a single input (m1) or using two inputs jointly (m2) at a location is profitable in expecta-
tion for given parameter values (a, b, s, μ).

If attention is sufficiently scarce, that is, κ < m1, the agent abstains from using any input tech-
nology. As κ increases, actions corresponding to single or joint input use across the two loca-
tions become optimal, where the exact order in which these actions become optimal is sensitive
to the parameter values. If parameters are such that all actions represent relevant alternatives,
that is, 0 < a < b, s < b−a

a , and m2 > m1, then the order in which actions become optimal as κ

increases is as follows: For m1 ≤ κ < 2m1, the agent uses a single input in one location and no
input in the other location. For 2m1 ≤ κ < m1 + m2, the agent uses a single input in both loca-
tions. For m1 + m2 ≤ κ < 2m2, the agent uses two inputs jointly in one location and a single in-
put in the other location. For κ ≥ 2m2, the agent uses two inputs jointly in both locations.

Proof. See Appendix A.1.3. �

Figure 3 provides a graphical illustration of the agent’s optimal input choice behavior. It
shows the expected returns of different input combinations across two locations for different
values of κ . As indicated by the intersections of the different graphs, there is no generally
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dominant action, but the optimal behavior depends on the available attentional capacity. For
very small values of κ , that is, left of the first vertical reference line (corresponding to m1), the
agent optimally chooses not to adopt any input. If the amount of available attention is some-
what larger, input choices that offer potentially higher returns—but also require more atten-
tion to achieve these higher returns in expectation—are optimal (where the order in which
these input choices become optimal corresponds to the one described in Proposition 1).30

An important implication of the results in Proposition 1 is that choosing different combi-
nations of inputs across production units can be an optimal outcome, even if the production
units feature the same characteristics, that is, they are ex ante identical. For example, it may be
optimal for the agent to combine both inputs in location 1 but use only a single input in lo-
cation 2. This is the case, if the optimal amount of attention allocated to the two locations is
insufficient to make combining inputs in both locations profitable in expectation. In addition,
these results imply that it can be optimal for users to apply complementary inputs separately,
for example, use one input in production location 1 and another input in location 2, despite
the feature that combining both inputs at the same location offers potential synergies.

Moreover, the results give rise to the prediction that users may optimally decide to opt in
and out of applying a particular technology over time, or vary the degree to which they com-
bine complementary inputs in the same location. To see this, consider a simple dynamic ex-
tension of the model in which the choice problem of the agent in each period is given by the
static optimization problem studied here. If the state of the world is uncorrelated over time
and there is variation in λ across periods (e.g., in some periods, the agent faces more distrac-
tions or more demanding decisions than in other periods), then optimal behavior will change
over time. The agent will thus adjust input practices across periods.31 Notice that this offers a
way to explain changes in input practices even in situations where fluctuations in external fac-
tors, for example, prices and weather conditions, which affect the profitability of these inputs,
are not sufficient to (fully) account for observed changes in practices.

To complete the description of the solution of the model, I now explore how changes in
the cost of processing information, captured by the parameter μ, affect the agent’s optimal
adoption behavior. Recall that, for given attentional capacity κ , different values of μ may be
thought of as capturing variation in factors that determine how demanding it is for users to
absorb and evaluate information about the state of the world and associated optimal param-
eter choices.32 In practice, there will be at least two possible sources of such variation. First,
differences in μ may reflect heterogeneity in user-specific characteristics that determine how
costly it is for a firm or individual to process information. This may include differences in edu-
cation, experience, and aspects of the environment in which the technology is operated. In ad-
dition, different values of μ may capture the effect of external interventions that help users to
reduce uncertainty about optimal usage practices. For example, this may include the provision
of advisory services (Naeher and Schündeln, 2021), access to infrastructure, and tools such as
a hotline (Cole and Fernando, 2012) or simply a user manual, which are helpful in reducing
uncertainty about optimal usage practices. Irrespective of the underlying sources of variation
in μ, the effect on optimal input decisions in the model is summarized by the following corol-
lary:

30 Note that Figure 3 omits the possibility of combining two inputs in one location while using none of the inputs in
the other location. This possibility is discussed in Appendix A.1.3.

31 Consequently, the model also suggests that interventions aimed at promoting uptake and efficient usage of tech-
nology will have to provide continuous forms of support that are tailored to the current environment in which indi-
vidual users operate (instead of, e.g., providing one-time support based on general “best practices”).

32 Formally, μ measures how much attention is needed to achieve a given reduction in the entropy associated with
decision k. In the framework studied here, μ is assumed to be constant across decisions, and is thus simply a scale fac-
tor of κ . However, in principle it would also be possible to let μ differ across decisions, meaning that paying attention
to one decision would be more demanding than paying attention to another decision (see also footnote 21).
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Corollary 1. Users facing a lower cost μ of processing information require a lower thresh-
old in attentional capacity to adopt technology, and to combine complementary input technolo-
gies in the same production location.

Proof. See Appendix A.1.4. �

Intuitively, smaller values of μ make it less costly for the agent to reduce uncertainty about
how to optimally apply and combine complementary technologies, lowering the threshold in
attention required to make adoption profitable in expectation. Consequently, the model sug-
gests that a lower cost of processing information, stemming either from individual user char-
acteristics or from external interventions, will tend to facilitate adoption and joint use of com-
plementary input technologies.33

3.5. Summary of Predictions. Summarizing, the model gives rise to the following predic-
tions about uptake and usage of technology in situations where profitable adoption requires
users to process information.

Prediction 1. If positive input synergies require usage practices to be tailored to idiosyn-
cratic conditions, individuals with access to complementary input technologies but sufficiently
scarce attention will choose to use these inputs separately instead of combining them in the same
production location.

This prediction corresponds to the agent’s optimal behavior in the model with complemen-
tary input technologies (Subsection 3.4) when attention is sufficiently scarce, for example,
when 2m1 ≤ κ < m1 + m2 in Proposition 1 (left of the third reference line in Figure 3).

Prediction 2. Individuals who have adopted modern technology will devote a significant
amount of attention to managing and operating the technology. In doing so, users will direct
their attention to a subset of the relevant information instead of absorbing all available informa-
tion equally. In particular, users will devote more attention to technologies for which returns are
more sensitive to the chosen parameters of usage, for example, when combining complementary
inputs instead of using a single input.

The first part of Prediction 2 corresponds to the implication of the model that it is never
optimal to use the technology under very small amounts of attention, as the agent would be
too much at risk of selecting inadequate usage practices (see the discontinuity in κτ around
the cutoff mτ in Figure 1). The second part of Prediction 2 corresponds to the results stated
in Proposition 1, that is, that combining inputs in profitable ways requires more attention than
using a single input profitably (in expectation).34

Prediction 3. Individuals with sufficiently scarce attention will rationally choose not to adopt
a technology, even if the technology is readily available and generally profitable when prop-
erly applied.

Prediction 3 corresponds to the agent’s optimal behavior in the third case specified in Equa-
tion (6), that is, when κ < mτ , in the baseline model (and to the case when κ < m1 in the
model with complementary inputs; see Proposition 1).

33 In general, the role of external interventions in facilitating technology adoption will also depend on whether
users’ learning behaviors are governed by strategic substitutes or strategic complements across different users (see
the discussion in Subsection 4.4).

34 Intuitively, this implication stems from the feature that, while joint input use offers potentially larger payoffs due
to synergies, it also requires the agent to reduce uncertainty about both elements of the state (e.g., l and h for the
(l, h) state). In contrast, single input use requires attention only to one of the two elements of the state (only to the
first element if S is used and only to the second element if F is used).
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Prediction 4. Individuals with a sufficiently large (but not perfect) attentional capacity will
adopt the technology but fail to use it in optimal ways, for example, by adjusting usage param-
eters only imperfectly to idiosyncratic conditions. The probability of making these mistakes will
tend to be higher, the scarcer users’ attention is.

Prediction 4 corresponds to the solution in the second case specified in Equation (6), that is,
when mτ ≤ κ < mτ in the baseline model. Similarly, in the model with complementary inputs,
there is a strictly positive probability that the agent will fail to use a single input optimally, or
to combine two inputs in optimal ways, if inputs are adopted while the constraint on informa-
tion processing is binding. The probability of making these mistakes is higher, the larger the
scarcity of attention (i.e., the larger the shadow price λ) is in the agent’s decision problem (re-
call Figure 2).35 Importantly, even if these mistakes can sometimes cause the agent to incur
negative payoffs, adoption may still represent optimal behavior (as long as the expected re-
turn of adoption exceeds the return under nonadoption).36

4. discussion

This section discusses the roles of some of the (implicitly) assumed features of the model
and the robustness of the derived results to changes in these assumptions. I also clarify the
model’s relationship to other theories of technology adoption, such as models based on learn-
ing or risk aversion.

4.1. Independence of States across Decisions. The model presented in Subsection 3.4 as-
sumes that the realized states z j are independent across locations j ∈ {1, 2}.37 To provide some
intuition about how relaxing this assumption will affect the agent’s optimal adoption behavior,
I now consider the possibility that states are correlated across decisions.38 It should be noted
that independent states are associated with the maximum possible uncertainty in the model.
Specifically, the overall uncertainty that the agent faces about the state of the world can be
quantified by the joint entropy of the two fundamentals. If z1 and z2 are independent, then the
joint entropy is given by the sum of individual entropies, that is,

H(z1, z2) = H(z1) + H(z2).(8)

If z1 and z2 are correlated, then the joint entropy is given by

H(z1, z2) = H(z1) + H(z2 | z1),(9)

which is strictly smaller than the joint entropy of independent variables specified in Equation
(8) (see Cover and Thomas, 1991, p. 40). Intuitively, this is due to the fact that, when states are
correlated, reducing uncertainty about the realized state in one location also helps the agent
to reduce uncertainty about the realized state in the other location. In the case of full infor-
mation, that is, if κ is large enough to lead to λ = 0 for given parameter values, it obviously
does not matter whether states are correlated or not, since there is no uncertainty about the
realized states. If attention is scarce (i.e., λ > 0), then the information technology specified in

35 Formally, the probability of selecting the wrong option according to the realized state is given by the term

e
−b
λμ /(e

a
λμ + e

−b
λμ ), which depends positively on λ (see the respective expressions in Proposition A.1 in Appendix A.1.1

for the baseline model, and in Lemma A.1 in Appendix A.1.3 for the model with input complementarity).
36 This applies to the case of risk-neutral agents considered here. The role of different utility functions and risk atti-

tudes is discussed in Subsection 4.3.
37 Analogously, the model in Subsection 3.1 and Appendix A.1.1 assumes that zτ and z−τ are independent of

each other.
38 Correlation here refers to dependence in an information-theoretic sense, that is, including all forms of stochastic

dependence (not just linear dependence as captured, for example, by the Pearson correlation coefficient).
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Subsection 3.2 implies that correlated states are associated with lower information processing
costs to achieve the same reduction in uncertainty. In particular, if states are correlated, then
for given parameter values (a, b, s, μ) less attention κ will be needed to make using comple-
mentary inputs together at the same location profitable in expectation compared to the case
of independent states. Although a rigorous analysis of the model without the assumption of
independent states would go beyond the scope of this article, these considerations suggest that
the presence of correlation between different production locations will tend to facilitate adop-
tion (and joint use) of technologies.

4.2. Persistence of States and Relationship to Learning Models. A large body of literature
that seeks to explain empirical patterns of technology diffusion focuses on learning effects.39

Similar to the proposed rational inattention model of technology adoption, the explanation
for imperfect adoption behavior offered by the models developed in this literature is based on
uncertainty about optimal parameter choices. However, there are several fundamental differ-
ences between the two approaches. Most importantly, learning models rely on the existence of
persistence in optimal actions across time, since otherwise learning—in the sense captured by
these models, that is, agents updating beliefs about optimal target values—would be impossi-
ble. On the other side, the proposed rational inattention approach abstracts from persistence
in states and optimal actions, and instead focuses on the case where the agent’s choice of how
to use technology is independent across time (with identical uniform priors over states in ev-
ery period; see the discussion of a simple dynamic extension of the model in Subsection 3.4).

To illustrate the implications of this difference, consider the setup of a standard target input
model with learning, for example, as in Foster and Rosenzweig (1995). In this setup, agents
have to make a choice about how to adopt a new technology, and the associated returns are
dependent on the proximity of the chosen parameters to predefined optimal values. Focusing
on an agent with a single production unit, the optimal way of using the technology takes the
form

a∗
j,t = θ∗ + uj,t ,(10)

where θ∗ is a fixed target value (referred to as “systematic component”) and uj,t ac-
counts for time-variant, individual-specific deviations from this target (“idiosyncratic com-
ponent”).40Both components are initially unobserved, such that the agent faces uncertainty
about the optimal action a∗

j,t . Based on this setup, learning models capture the idea that agents
have to get access to more information to refine their knowledge about optimal actions. Im-
portantly, learning in these models consists exclusively of updating beliefs about the system-
atic component θ∗. Furthermore, learning in these models is only based on data that have
been generated in the past.41In contrast, the model I propose for studying technology adop-
tion formalizes the idea that users have to be attentive to “present conditions,” that is, to the
idiosyncratic component uj,t , to derive optimal parameter choices. In essence, the agents in
learning models reduce uncertainty about θ∗, whereas the agents in my model reduce uncer-
tainty about uj,t . In this particular sense, therefore, my model may be viewed as the other
extreme to classical learning models. The insights obtained from my model thus complement
the insights obtained from learning models.42In practice, most technologies will have features

39 This includes Besley and Case (1993), Parente (1994), Foster and Rosenzweig (1995), Jovanovic and Nyarko
(1996), Munshi (2004), Bandiera and Rasul (2006), Conley and Udry (2010), and Hanna et al. (2014).

40 Although the systematic component does not necessarily have to be fixed to allow for learning, it needs to fea-
ture at least some persistence over time. In contrast, the idiosyncratic component may be completely independent
across time.

41 These data may have been generated by agents’ own experimentation (“learning by doing”) or obtained through
knowledge spillovers from other users (“social learning”).

42 Recent work on dynamic rational inattention (Steiner et al., 2017; Maćkowiak et al., 2018) may be viewed as
combining these two approaches by studying uncertainty reduction for processes that involve both persistent and in-
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that correspond to both approaches, that is, using technologies optimally will typically require
users to learn about systematic components of the technology and to be attentive to idiosyn-
cratic conditions. The relative degree to which each of these components matters likely dif-
fers across different types of technologies. For example, using a car requires knowledge that
is highly persistent across time (knowing how to steer, change gears) as well as attention to
present conditions (such as traffic, weather). A person who has learned how to drive is typi-
cally able to do so in various kinds of circumstances, so for the ability to adequately use a car
the systematic component seems to play a relatively important role, that is, the magnitude of
θ∗ is relatively large compared to uj,t . In contrast, the fixed knowledge needed to use pesticide
(e.g., how to spray pesticide on a plant) is relatively simple to obtain, but to apply pesticides
adequately, including choosing the right type, quantity, and timing of treatment according to
the prevailing conditions, often represents a challenging task for farmers (see the correspond-
ing references in Section 2). Thus, for pesticides, uj,t seems to be relatively important. Based
on the discussion above, the ability of learning models to account for adoption decisions in
each of these two cases differs fundamentally from the model I present. In particular, learn-
ing models are less applicable to technologies for which optimal parameter choices are very
sensitive to idiosyncratic conditions (e.g., pesticides), because agents’ choices in these models
are exclusively based on knowledge about the systematic component. On the other hand, my
model is less applicable to technologies for which optimal parameter choices are very persis-
tent across time and states, and idiosyncratic conditions play only a minor role. This demon-
strates that the insights obtained from my model and those obtained from learning models
should be viewed as complementing each other (instead of contradicting each other), as they
apply to opposite types of technologies with respect to the persistence of optimal parameters
of usage.43

In addition, there are several other ways in which my model differs from learning models.
First, notice that in learning models, updating beliefs is solely based on information that has
been generated by previous outcomes. In contrast, the model I propose captures the idea that
users also have to be attentive to changes in existing conditions to choose optimal practices,
that is, it is not sufficient to rely on past experience.

Second, my model incorporates the idea that users are constrained in their ability to re-
duce uncertainty about optimal choices even if relevant information about θ∗ and uj,t is read-
ily available. In essence, the explanation for imperfect technology adoption provided by learn-
ing models is based on a lack of data, whereas the bottleneck in the suggested rational inatten-
tion approach consists of limits to data processing. Learning models are thus less suited to ac-
count for imperfect adoption in contexts where users face an overload of relevant information
instead of a lack of information. The rational inattention approach, on the other hand, is in
principle able to explain imperfect adoption decisions even in situations where all information
needed to derive optimal parameter choices is readily available. One implication of this differ-
ence is that learning models are in general better suited for explaining uptake of recent inno-
vations for which relatively little information is available to users. My model complements the
insights of these models by offering a possibility to account for low adoption rates and subop-
timal usage also in contexts where lack of access to information is not a binding constraint.

Third, learning models generate the prediction that usage practices tend to improve over
time.44 This stems from the feature that agents’ knowledge about optimal actions monoton-
ically increases in these models as more and more data become available (provided there is

dependent components across time. These studies show that agents with memory and limited attention will learn both
about the current optimal action and the best predictors of future optimal actions.

43 Note that this insight also applies to the basic setup discussed in Subsection 3.1, that is, the presence of comple-
mentarity between different inputs is not required to rationalize nonadoption of available and profitable technology
for which the optimal parameters of usage are sensitive to idiosyncratic conditions.

44 An exception is the model by Hanna et al. (2014) that combines learning with limited noticing. Still, their model
assumes that updating beliefs is exclusively based on observations of past outcomes, and once an input dimension has
been attended to, it is used optimally in all successive periods. Although this offers a way to explain why people may
persistently fail to make optimal decisions about some input dimensions, their model cannot account for fluctuations
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perfect recall). In contrast, the channel I propose can account for fluctuations in the quality
of usage practices, such as the occurrence of occasional mistakes that have not been made
before, since agents have to be attentive again in every new period to make optimal choices.
Importantly, this mechanism does not imply that such mistakes must necessarily decrease
over time. As long as the expected return of using the technology with imperfect attention is
greater than the return under nonadoption, agents will apply the technology even if there is a
strictly positive probability of making mistakes. This offers a possibility to account for persis-
tently suboptimal usage of adopted technology in the long run.

Finally, there exists empirical evidence that people tend to switch back and forth between
using and not using previously adopted technology, even long periods of time after the tech-
nology has been introduced (e.g., the evidence underlying Observation 4 in Section 2). Clas-
sical learning models are able to account for such switching behavior only in the short term,
that is, right after a new technology has become available and users are still experimenting to
find out whether (and how) the technology can be used in profitable ways (as in, e.g., Con-
ley and Udry, 2010). The proposed rational inattention channel offers a possible way to ra-
tionalize postadoption switching behavior also in the long run, based on the recurring need
to attend to idiosyncratic conditions (see the discussion of a simple dynamic extension of the
model in Subsection 3.4), though a more rigorous dynamic analysis in this regard is left to fu-
ture work.

4.3. Different Utility Functions and Preferences for Specialized Learning. One concern
may be the robustness of the derived model predictions with respect to the underlying utility
function. In the framework presented in Subsection 3.1 and Appendix A.1.1, the agent maxi-
mizes the sum of expected payoffs over two decision problems, with payoffs being symmetric
across options. Importantly, this means that the implications derived from the model do not
require agents to be risk averse (the same holds for the case with complementary input tech-
nologies studied in Subsection 3.4). If agents were assumed to be risk averse, for example, the
utility associated with adopting the technology would depend not only on the expected return
for τ but also (negatively) on the variance of returns, then this would tend to amplify the mod-
els’ ability to account for imperfect adoption decisions (Predictions 1 and 3) while leaving Pre-
dictions 2 and 4 qualitatively unchanged.

In addition, it should be noted that the restrictions on the parameters a, b (and s in the
model in Subsection 3.4) are made to ensure that all choices represent relevant alternatives
for the agent. Relaxing or dropping these restrictions would lead to outcomes where, for some
combinations of parameter values, the agent would either never adopt or always adopt the
technology, irrespective of the value of κ .45 However, this would leave intact the model’s gen-
eral ability to generate Predictions 1–4 for particular parameter values.

This could potentially be different if not only the values of the payoffs were allowed to dif-
fer but also the assumed structure of payoffs. In particular, the solution of the model relies
on the assumption that options are a priori homogeneous, that is, for each action, the avail-
able options seem equally attractive to the agent before processing information (generalizing
this feature would make the model intractable analytically, though it might still be analyzed
computationally). Together with the entropy-based information technology specified in Sub-
section 3.2, this feature implies preferences for generalized learning, that is, the agent tends
to spread the available attentional capacity over all actions and all options (except for ac-
tion τ if the riskless outside option is taken). If instead, the agent had preferences for special-
ized learning, as in Van Nieuwerburgh and Veldkamp (2010), then the optimal allocation of

in the quality of input choices, for example, why farmers manage to apply fertilizer at the right time and in right quan-
tities in some periods but fail to do so in other periods.

45 Analogously, if the made parameter restrictions in the model in Subsection 3.4 would be dropped, then only a
subset of the possible input combinations across two locations would be considered, for example, the agent would
never use a single input if s is sufficiently large for given values of a and b.
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attention would tend to be less diversified, possibly affecting some of the predictions of the
model (as discussed below).

Whether assuming preferences for generalized learning is plausible depends on the nature
of the technology adoption problem. For example, in the context of portfolio choice studied
by Van Nieuwerburgh and Veldkamp (2010), investors can choose to invest more strongly in
some assets and avoid the returns from other assets by abstaining to invest. This can lead to
“feedback effects” and preferences for specialized learning where investors optimally pay at-
tention only to a small subset of assets and trade heavily in these. The technology adoption
problem I consider differs in several ways from the portfolio choice problem. In particular,
financial investors can arbitrarily change the relative roles of payoffs received from different
assets by adjusting their portfolio. In contrast, the scope for scaling up (or down) the use of
technology is much more limited for most of the technologies studied in the economic litera-
ture (this is captured in the model by fixing the maximum payoff that the agent can receive
from any domain). For example, many agricultural input decisions are made only once per
growing season and the extent to which modern farm inputs can be used is constrained by the
limited availability of land, labor, and credit.46 The potential role of feedback effects leading
to specialized learning is thus more limited in the context of technology adoption than, for ex-
ample, in the portfolio choice problem. In addition, note that the choice problem with com-
plementary input technologies studied in Subsection 3.4 somewhat relaxes the assumption of
generalized learning by allowing the agent to choose between using a single input and com-
bining two inputs at the same location. As summarized in Prediction 2, the optimal behavior
in this case features a specialization in attention allocation where the agent allocates more at-
tention to locations under joint input use than to locations operated with a single input.

If the assumption of preferences for generalized learning was to be further relaxed in the
model, this would tend to cause the agent to focus the available attention more on a single
domain. In principle, this could lead to a result where the agent specializes in τ and adopts
the technology even under small amounts of attentional capacity, potentially eliminating the
non-adoption result in Prediction 3.47 However, even with preferences for specialized learn-
ing the results summarized in the other three predictions would remain qualitatively the same
under plausible conditions. Specifically, suppose that there was an outside option for −τ and
the payoffs were such that it would be optimal for the agent to allocate all available attention
to τ . As long as (i) payoffs are such that profitably combining complementary inputs requires
more attention than profitably using a single input, (ii) both single and joint input use are rel-
evant alternatives, and (iii) attention is a binding constraint, it will still hold that the agent will
rather use a single input than combining complementary inputs if κ is sufficiently small (Pre-
diction 1), devote more attention to locations under joint input use than to locations oper-
ated with a single input (Prediction 2), and occasionally use adopted technology in suboptimal
ways (Prediction 4).

Finally, it should be noted that the entropy-based information technology specified in Sub-
section 3.2 has the built-in feature that it is independent of the labeling of states, that is, it
is equally costly to distinguish nearby states and distant states (irrespective of the associated
payoffs). One might thus be concerned whether the derived predictions would also hold un-
der alternative functional forms of the cost of processing information that do not have this
feature. In the baseline model in Subsection 3.1, relaxing the assumption that all states are
equally costly to distinguish would not change the main results (i.e., those summarized in Pre-
dictions 1–4). To see this, suppose that the information technology was such that it was easier
for the agent to reduce uncertainty about zk if the states l and h are further apart (according
to some metric). Although this would affect the quantitative results of the model (e.g., the ab-
solute value of the cutoff mτ would depend on the distance between the states l and h), apart

46 This applies especially to peasant farmers (e.g., those studied in Section 5) and only to a lesser extent to commer-
cial farms (or, in a more general context, large firms, or governments) that are less capital-constrained.

47 This effect would be further exacerbated if there was persistence in states zτ over time and the agent expects to
use the technology also in future periods (I thank an anonymous referee for pointing this out to me).
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from that the solution for the agent’s optimal behavior would remain qualitatively the same.48

Similarly, in the choice problem with two complementary input technologies in Subsection 3.4,
the main results would not change qualitatively if it was relatively easier for the agent to re-
duce uncertainty about the correct option of using one input than the other. Again, the abso-
lute values of the cutoffs m1 and m2 would be sensitive to such changes (and there may be a
clear preference introduced as to which of the two inputs gets adopted first), but other than
that it would still hold that profitably using both inputs together requires more attention than
using only a single input, and thus using synergistic inputs separately can be rational (Predic-
tion 1).49

4.4. Multiple Agents and Social Learning. The model in Section 3 studies the adoption de-
cision of a single agent and abstracts from the possibility of learning spillovers and strategic
interactions between multiple agents. As discussed in Subsection 4.2, learning, in the sense of
updating beliefs about optimal target values, requires that optimal actions are correlated over
time. Similarly, learning spillovers are only possible if optimal actions are correlated across
agents. In existing learning models (e.g., those listed in footnote 39), this is typically the case
because optimal actions are partly determined by a systematic component that is persistent
(or even constant) across both time and states (recall the parameter θ∗ in Equation (10)). In
contrast, the rational inattention channel studied here focuses on the role of idiosyncratic con-
ditions and individual uncertainty reduction in determining adoption decisions.50

Once the focus on idiosyncratic conditions is relaxed, however, social learning would in
principle also be possible for the rational inattention channel. To see this, consider a simple
dynamic multiagent extension of the model, in which the choice problem of each agent in
each period is given by the static optimization problem in Subsection 3.3. If the state zτ is un-
correlated over time but correlated across agents within each period, then the uncertainty re-
duction about the realization of zτ achieved by one agent may potentially also benefit other
agents.51 Together with the existence of a mechanism through which agents can observe each
other or exchange information, such a setting would give rise to similar strategic interactions
as studied in many other contexts in the economic literature.

For example, with the presence of spillovers in uncertainty reduction, farmers may freeride
on neighboring farmers’ information, thereby facilitating widespread adoption (and joint use)
of modern technologies. Given that such spillovers make it easier for individuals to choose
profitable ways of applying technology, this will tend to weaken the model’s ability to ac-
count for imperfect adoption. However, as long as agents’ learning behaviors feature strate-
gic complements, this will mainly affect the outcomes of the model quantitatively (i.e., the de-
rived cutoff values characterizing optimal adoption behavior will change), whereas most of
the qualitative predictions of the model will remain the same. Specifically, as long as costly in-
formation processing remains a binding constraint even with such spillovers, it will still hold
that agents will prefer using a single input to combining complementary inputs if attentional
capacity is sufficiently scarce (Prediction 1), devote more attention to complex usage decisions

48 In particular, such a relaxation would lead to the same solution as multiplying the right-hand side of Equation
(5.2) with an appropriate number for given parameter values.

49 Although the feature that all states are equally costly to distinguish does not play a crucial role for the results in
the single-agent model studied here, this might be different when moving to a framework with multiple agents and
strategic interactions (see Morris and Yang, 2019, and the discussion in Subsection 4.4).

50 Empirical evidence in the literature on technology adoption suggests that the roles of individual and social learn-
ing differ across contexts and technologies. Although in some contexts, social learning seems to be an important fac-
tor in the diffusion process (e.g., Foster and Rosenzweig, 1995; Conley and Udry, 2010), other studies find that for
technologies whose performance is more sensitive to idiosyncratic conditions people tend to rely predominantly on
individual learning (Munshi, 2004; Duflo et al., 2010). For related theoretical insights, see Smith and Sørensen (2000)
and Ali (2018).

51 Note that this only applies to each period separately. The associated spillovers in uncertainty reduction thus rep-
resent a static form of social learning that is different from the dynamic concept of social learning captured in classical
learning models.



technology adoption under costly information processing 721

(Prediction 2), and occasionally use adopted technology in suboptimal ways (Prediction 4). In
this case, decentralized markets may not yield the socially optimal level of attention, thereby
providing support for additional coordination or government intervention.

If agents’ learning behaviors are instead governed by strategic substitutes, such that it is
optimal to specialize in acquiring different types of information (see Hellwig and Veldkamp,
2009; Veldkamp, 2011), then some of the model’s predictions may change also qualitatively
(e.g., the result in Prediction 2 that individuals will devote more attention to complex usage
decisions might be offset by additional effects stemming from strategic considerations in a
multiagent model). In this case, there will be less of a need for government intervention to
facilitate information exchange across agents. Future work concerned with the difference be-
tween the optimal social level of information processing and the optimal individual level of
attention might find it interesting to embed the presented single-agent model of technology
adoption into a larger social learning framework.

5. application

“The small minority of households that are using multiple modern inputs tend to spread them across
plots rather than concentrating them on single plots. This behavior has gone largely unstudied to date
and raises important questions about prospective untapped productivity gains from coordinated mod-
ern inputs use.”
Sheahan and Barrett (2017, p. 18)

As argued in Section 2, adoption decisions of modern farm inputs in developing countries
provide a suitable context for applying the model, because farmers often face considerable
uncertainty about optimal ways of applying these inputs and because constraints to informa-
tion processing are often severe in the context of rural development. In this context, Shea-
han and Barrett (2017) find that there is surprisingly low correlation between the use of com-
monly paired modern inputs at the household and plot level in nationally representative sam-
ples of farmers in sub-Saharan Africa.52 Using the same data source to quantify joint adoption
rates of specific sets of modern inputs, I find that only 18% of households use improved seeds
and inorganic fertilizer together on their farms, 10% of households apply fertilizer jointly with
other agrochemicals (herbicide or pesticide), and less than 4% of households have adopted
sets of at least three of these modern farm inputs.53

It is important to note that, in principle, the low correlation between the use of these in-
puts at the household level could be due to any of the explanations for nonadoption of (indi-
vidual) farm technologies discussed in the economic literature, such as risk aversion or lack of
awareness about the profitability of modern farm inputs. A more differentiated picture arises
when looking at adoption decisions at the plot level (farmers typically cultivate multiple plots,
with a mean of two plots in my sample). Table 2 shows joint adoption rates of modern in-
puts at the plot level when focusing exclusively on those households who are using at least
one modern input on their farm. This suggests that the included households generally have ac-
cess to modern farm inputs and are aware of their benefits. Column (1) of Table 2 shows that
households who already use modern inputs on the farm combine complementary inputs only
on 25% of their plots. At the same time, 46% of plots receive a single modern input and 29%
of plots are cultivated without any modern input. As shown in columns (2)–(5), similar results
are obtained when conditioning on household-level use of specific inputs (instead of any of

52 This is a puzzling finding since a well-known feature of these modern farm inputs is that they are most produc-
tive when applied in combination with each other (see the discussion in Section 2, including the references listed in
footnote 9).

53 Figures are based on nationally representative survey data from Malawi, Nigeria, Tanzania, and Uganda, col-
lected by the World Bank’s Living Standard Measurement Study - Integrated Surveys on Agriculture (see Ap-
pendix A.3 for more details).
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the observed modern inputs as done in column 1).54 The results in Table 2 suggest that even
among the subset of households who are generally able and willing to use modern farm inputs,
a majority of households are forgoing potential gains from agronomic synergies by failing to
combine complementary inputs on the same plots. This largely rules out explanations for low
joint usage rates that are based on factors at the household level, such as limited access, lack
of awareness, and behavioral biases. In particular, if any of these factors were a binding con-
straint for the included households, we would not observe these households use modern farm
inputs on other plots.

The model presented in Subsection 3.4 offers a possible way to rationalize these findings.
For example, the model implies that farmers may optimally decide to use only a single input
on a plot, even if complementary inputs are readily available and joint usage under adequate
practices leads to positive synergies (Prediction 1). Furthermore, the model predicts that this
behavior will be more likely for farmers who face higher attentional costs associated with re-
ducing uncertainty about optimal input practices. A direct test of this prediction would re-
quire data on farmers’ allocation of attention across different plots and the underlying atten-
tional costs. To the best of my knowledge, such data are so far not available. However, other
studies have argued that individuals’ costs of processing information can, at least to some ex-
tent, be inferred from characteristics such as age, education, and complexity of the studied
task (Greenwood and Parasuraman, 1991; Verhaeghen et al., 2003; Ambuehl et al., 2018). In
the context of smallholder farmers, it also seems plausible to assume that farmers face larger
costs of being attentive to the conditions on their plots, the more plots they cultivate, and the
further away these plots are located from their home. Based on these considerations, there
should be an empirical link between these factors and farmers’ input choices, even when hold-
ing other variables that are correlated with these factors fixed.

In addition, reducing uncertainty about optimal input choices is likely more demanding in
situations where farmers face growing conditions that differ very strongly from the conditions
encountered in previous seasons, for example, because farmers can rely less on past experi-
ence. According to Corollary 1, farmers should then be less likely to use modern farm in-
puts, and less likely to combine complementary inputs on the same plots, when facing irregu-
lar growing conditions.

To test the empirical plausibility of these predictions, I estimate a set of linear probability
models of the form

yci j = β0 + β1�Rain f allci + β2Rain f allci + β3X 1
ci j + β4X 2

ci + λc + εci j,(11)

where the dependent variable is a dummy capturing different numbers of modern farm in-
puts used on plot j of household i in country c. The explanatory variable of interest is
�Rain f allci, which is a vector of two variables measuring deviations in the amount and tim-
ing of rainfall from past average conditions for each household. The first of these two vari-
ables is constructed by calculating the absolute deviation of 12-month total rainfall for each
household from the household’s long-term average value (covering the past 10–15 years, de-
pending on data availability), expressed in units of standard deviation.55The second vari-
able is constructed in the same way based on the start of the wettest quarter (measured in
dekads), which usually corresponds to the beginning of the main growing season. These two
variables thus capture the degree by which current growing conditions that differ from the

54 For example, column (2) of Table 2 indicates that 39% of plots cultivated by farmers who have adopted inorganic
fertilizer receive combinations of at least two modern inputs, whereas 61% of plots receive either no modern input
or only a single input. When I restrict the analysis to plots cultivated by households who use at least two modern in-
puts on the farm, still more than half of the plots (54%) receive less than two inputs, and only 7 % of plots receive
sets of three inputs. Similar results are also obtained when I focus on plots planted with maize, which is known to fea-
ture relatively large input complementarities, particularly for combinations of improved seeds, fertilizer, and pesticide
(Sheahan et al., 2013; MacRobert et al., 2014; Nyangena and Juma, 2014).

55 If rainfall is serially uncorrelated within small areas across years, that is, local rainfall follows a white-noise pro-
cess, then the average will also correspond to the expected value (see Paxson, 1992).
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conditions farmers are used to based on previous rainfall patterns. According to the consid-
erations above, these two variables should be negatively associated with modern input use.
To control for the effects of rainfall on input choices through other channels than increased
uncertainty about optimal usage practices, the actual realizations of the quantity and timing
of rainfall, denoted by the vector Rain f allci, are themselves also included. X 1

ci j and X 2
ci are

vectors of plot and household-level variables, λc denotes country fixed effects, and β0 is a
constant. The error term εci j is permitted to be heteroskedastic and spatially correlated as a
function of physical distance (see Conley, 1999; Conley and Udry, 2010).56A more detailed
description of the construction of variables and underlying data sources is provided in Ap-
pendix A.3, along with basic summary statistics.

Table 3 reports estimates of the regression model specified in Equation (11) for different
numbers of farm inputs as dependent variable (the included inputs are improved seed vari-
eties, organic and inorganic fertilizer, agrochemicals, and irrigation). In the first three columns,
the dependent variable is a dummy that equals 1 if the plot was cultivated using at least one
of these inputs. The dependent variable in columns (4)–(6) equals 1 if the plot received at
least two inputs, and the dependent variable in columns (7)–(9) equals 1 if the plot received at
least three inputs. The results in Table 3 show that, irrespective of whether additional plot and
household controls are included or not, deviations in the timing and amount of rainfall from
past realizations are negatively correlated with modern input use. Importantly, this holds de-
spite the fact that the actual rainfall shocks, that is, the realizations of the quantity and tim-
ing of rainfall, are also included (see columns (3), (6), and (9)). For deviation in the timing
of rainfall, the estimated coefficients are highly statistically significant in all specifications. For
deviation in the amount of rainfall, the estimated coefficients are significant at the 10-% sig-
nificance level when the dependent variable is an indicator for joint use of at least two inputs
or of at least three inputs and controls are included (columns (6) and (9)). When the depen-
dent variable captures use of at least one modern input (column (3)), the point estimate for
deviation in the amount of rainfall is negative, as anticipated, but cannot be statistically distin-
guished from zero at conventional levels of significance. As discussed in Appendix A.3.2, most
of these results are robust to different ways of clustering standard errors and to alternative
definitions of the considered rainfall variables. I thus interpret the existence and direction of
the correlations in Table 3 as being in line with the predictions of the model, but I also stress
that the observational nature of the data limits my ability to make causal claims. The results
suggest that the magnitude of the association between rainfall irregularities and farmers’ in-
put choices is of moderate economic relevance. For example, the estimated coefficient of de-
viation in rainfall timing in column (3) of Table 3 indicates that a one-standard-deviation in-
crease in the irregularity of rainfall timing (corresponding to a shift in the start of the wettest
quarter of about 30 days) is associated with a decrease in the probability of modern input use
of 2.2 percentage points.

Furthermore, the results in columns (3), (6), and (9) of Table 3 show that use of modern
farm inputs is negatively correlated with the distance of the plot to the farm house, number
of plots cultivated by the household, and age of the households head. The dummy indicating
whether any household member has attained secondary education (or more) is positively cor-
related with the dependent variable in columns (3) and (6). Of course, these findings cannot
be interpreted as causal, but the directions of these correlations seem to be consistent with the
model. From the perspective of the model, these findings could be attributed to the idea that
it is more demanding for farmers to be attentive to the conditions on their plots, the more dif-
ferent plots they cultivate, and the further away these plots are located from their home. Also,
according to the studies cited above, limited attention may be more likely to represent a bind-
ing constraint for farmers who are older and less educated.

56 The use of spatial standard errors is motivated by the fact that shocks to growing conditions are likely correlated
across space instead of based on political boundaries such as districts. All regressions use a conical (Bartlett) spatial
weighting kernel that decays linearly with distance. The regressions in Table 3 are based on a cutoff distance of 50 km.
Robustness checks are conducted with a cutoff of 100 km and for clustered standard errors at the district level (see
Appendix A.3.2).
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The model is also able to account for other features of empirical adoption decisions of mod-
ern farm inputs. Summarizing the existing evidence on low uptake of fertilizer in developing
countries, Datta and Mullainathan (2014, p. 13) state that, “fertilizer is available, affordable,
effective, and appreciated. But it is still not used by farmers.”57Importantly, theories based
on limited access to fertilizer or low returns are unable to account for the low adoption rate
of fertilizer in this context. In addition, Duflo et al. (2011) argue that neither learning mod-
els nor theories based on credit constraints and risk aversion can account for the observed
behavior.58Instead, these authors propose a behavioral explanation centered around the idea
that farmers are stochastically present biased and not fully sophisticated about this bias. The
rational inattention model I propose for studying technology adoption provides an alterna-
tive channel to explain the observed behavior. In particular, Prediction 3 of my model implies
that farmers may optimally decide to abstain from using fertilizer even if it is readily available
and generally profitable when properly applied, because choosing profitable ways of applying
fertilizer requires costly attention. This suggests that low uptake of fertilizer, including in the
context studied by Duflo et al. (2011), may also be the result of fully rational behavior in the
presence of constraints to information processing.

Another stylized observation is suboptimal technology usage given adoption. This includes
farmers not adapting their practices perfectly to idiosyncratic conditions and shocks (Morris
et al., 2007; Duflo et al., 2008), and failing to allocate available resources efficiently (Gollin
and Udry, 2019). These findings are difficult to explain based on standard models in which
farmers are perceived as rational profit maximizers with full information (e.g., Schultz, 1964;
Bardhan and Udry, 1999). Moreover, classical learning models are in general only able to ac-
count for such imperfect usage in the short run, that is, for newly available technologies (recall
the discussion in Subsection 4.2). Green Revolution technologies such as inorganic fertilizer,
pesticides, and improved seeds, however, have been available in Africa already for several
decades. Indeed, many authors argue that learning effects are therefore unlikely to be an im-
portant factor behind imperfect usage of these technologies observed in Africa today (Duflo
et al., 2010; Foster and Rosenzweig, 2010; Suri, 2011).59 The channel I propose for explaining
imperfect technology adoption offers a possible way to rationalize suboptimal usage of mod-
ern farm inputs based on scarce attention and a (recurring) need to attend to idiosyncratic
conditions that determine optimal usage (Prediction 4). Importantly, my model does not im-
ply that suboptimal usage practices will necessarily improve over time (see the respective dis-
cussion in Subsection 4.2). Unlike classical learning models, therefore, the channel I study of-
fers a possibility to account for suboptimal usage of modern farm inputs also in the long run.

Finally, another observation is that farmers frequently switch back and forth between using
and not using adopted technologies (Dercon and Christiaensen, 2011; Duflo et al., 2011; Suri,
2011).60Suri (2011) argues that this switching behavior may be driven by changes in external
factors (such as prices and availability) affecting the profitability of modern farm inputs. My
model complements this view by showing that such switching behavior may also be the result

57 This conclusion is mainly based on a series of field experiments conducted by Duflo et al. (2008, 2011), who show
that fertilizer use is generally very profitable in the studied area, and that farmers are very aware of the benefits of
using fertilizer. Specifically, Duflo et al. (2011) report that when farmers are asked directly, less than 2% of them re-
spond that they believe fertilizer to be unprofitable. Nevertheless, many farmers do not use fertilizer, including when
it is readily available for purchase.

58 In particular, these authors stress that fertilizer has been available in the studied area for many decades, is a
highly divisible technology, and features large returns at small levels of investment. According to additional results
presented in Duflo et al. (2008), risk aversion may be able to explain underutilization of fertilizer, but it cannot ac-
count for nonadoption.

59 Duflo et al. (2010) also point out the long history of large-scale extension work in Africa aimed at teaching farm-
ers how to use modern farm inputs. When estimating learning effects in fertilizer use directly, these authors find that
individual learning is very small and there is no evidence of diffusion to friends and neighbors. Conley and Udry
(2010) find significant learning effects for a newly introduced technology in Ghana.

60 Duflo et al. (2011) report that the R2 of a regression of fertilizer use on use during the previous year as well as a
full vector of controls is only 0.25. Suri (2011) documents significant switching behavior in a nationally representative
sample of maize farmers in Kenya.
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of fluctuations in household-internal factors that affect farmers’ shadow price of attention (see
the discussion of a simple dynamic extension of the model in Subsection 3.4). This gives rise to
the possibility to rationalize switching behavior also in situations where fluctuations in exter-
nal factors on their own are not sufficient to explain observed changes in input practices.

Overall, the predictions of the model appear to be consistent with empirical adoption deci-
sions of agricultural technologies in the development context, and the assumptions underlying
the construction of the model are supported by empirical features of these technologies (see
Section 2). However, I stress that many of the considered observations may also be related to
other channels that affect farmers’ input choices, and the direct evidence on the empirical role
of limited attention in determining agricultural input choices is very limited.61 I thus clearly do
not wish to argue that the channel proposed in this article constitutes the primary force be-
hind farmers’ input choices. Rather, I suggest that costly information processing may be one
of several pieces of the puzzle to explain imperfect technology adoption, which can comple-
ment the insights of existing theories in this context.

6. conclusion

Understanding differences in technology adoption is key to understanding differences in
living standards (Parente and Prescott, 1994; Keller, 2004). This article proposes a new expla-
nation for low adoption rates and suboptimal usage of profitable technologies. The explana-
tion centers around the idea that adoption decisions are affected by the anticipated (opportu-
nity) cost users face when processing information required to choose adequate parameters of
usage. I show that these “attentional barriers” to technology adoption constitute a new chan-
nel to account for empirical patterns in technology diffusion, complementing the insights of
existing theories. The proposed explanation has three features: (i) the returns to new tech-
nology depend on accompanying parameter choices users are required to make; (ii) applying
adopted technology in profitable ways requires users to be repeatedly attentive to idiosyn-
cratic conditions that determine optimal parameter choices; (iii) due to limited information
processing capacity, users are unable to attend to all relevant conditions and are therefore at
risk of selecting suboptimal practices. The article identifies circumstances under which indi-
viduals or firms will optimally choose to abstain from using profitable and economically fea-
sible technologies.

I study a rational inattention model in which agents decide how to allocate their scarce
mental resources between different actions and whether they should adopt a particular tech-
nology. I find that nonadoption of the technology can be an optimal outcome if agents’ op-
portunity cost of attention is too large to make using the technology profitable in expectation.
In addition, the model can explain why users apply complementary technologies separately
across different production locations, and occasionally use adopted technology in suboptimal
ways. The model also generates a discontinuity in the amount of attention allocated among
multiple decision problems, which, to the best of my knowledge, is a novel feature in the lit-
erature on rational inattention.

The model applies primarily to technologies for which optimal usage practices are largely
determined by idiosyncratic conditions (instead of fixed target values). The model therefore
complements existing learning models commonly used to explain imperfect technology diffu-
sion, because these models focus on knowledge about fixed target values and abstract from
the possibility of adjusting usage practices to conditions that are uncorrelated over time. In

61 In particular, I am unable to assess the empirical plausibility of Prediction 2 as this would require data on farm-
ers’ allocation of attention across different plots that are, as far as I am aware, not available. At most, one might ar-
gue that the rational inattention channel is indirectly supported by field experiments that show that providing farm-
ers with relevant information in preprocessed form (e.g., based on personalized summary statistics and reminders)
improves input practices significantly more than only providing mere access to the same information (Cole and Fer-
nando, 2012; Casaburi et al., 2014; Hanna et al., 2014). In particular, such interventions should only have an impact
on input choices if farmers are indeed devoting attention to such information and are reactive to changes in the atten-
tional cost associated with processing information.
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some contexts, authors have recently argued that explaining imperfect adoption decisions
requires the presence of behavioral biases, such as procrastination and limited self-control
(DellaVigna, 2009; Duflo et al., 2011; Bernheim et al., 2015). The implications of my model
suggest that some of the observations discussed in these studies may also be the result of fully
rational behavior in the presence of constraints to information processing.

The model gives rise to several implications. Overall, the model suggests a more nuanced
approach to policies aimed at promoting uptake and efficient use of modern technology. For
example, in the context of modern farming technology, many governments focus on price sub-
sidies to increase the adoption of fertilizer and pesticide (see Duflo et al., 2011). Such pro-
grams are often seen as increasing the risk of overuse of inputs, which can lead to negative
environmental consequences such as soil degradation (FAO, 2019). In contrast, programs that
can help farmers achieve higher profits by reducing uncertainty about optimal ways of using
these inputs may be able to increase adoption rates without increasing the risk of overuse.
Different from existing theories in this context, for example, those based on classical learning
models, the limited attention channel implies that it may not be sufficient to teach people once
how to optimally operate a new technology. Rather, a continuous form of support that helps
users to adjust their practices to changes in the idiosyncratic conditions in which they operate
may be needed to facilitate diffusion and efficient use of technology.

This article focuses on a stylized decision problem of a single agent with symmetric actions
and independent states. Future work concerned with developing a more general theory of
technology adoption under costly information processing might consider embedding some of
the presented ideas into a dynamic rational inattention framework, and allowing for interac-
tions of multiple agents (including the possibility of social learning). Although I do not un-
dertake a structural test of the model, many of the model’s implications are consistent with a
broad set of empirical evidence, particularly on the diffusion of modern agricultural technol-
ogy in developing economies. However, as the empirical evidence on attention constraints to
technology diffusion is weak, any statement about the quantitative role of attentional barriers
in determining imperfect adoption behavior would be speculative. I thus do not wish to argue
that the mechanism proposed in this article constitutes the primary force behind (imperfect)
empirical adoption decisions. Rather, I suggest that it can complement the insights of exist-
ing theories and should be considered as an additional channel to contribute to explanations
of observed patterns in technology diffusion.
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appendix

A.1 Solving the Model. This appendix is organized as follows: Subsection A.1.1 derives
the solution to the baseline model presented in Subsections 3.1–3.3. Subsection A.1.2 presents
additional derivations for the basic setup. Subsection A.1.3 derives the solution to the decision
problem with complementary input technologies presented in Subsection 3.4. Appendix A.1.4
presents the proof of Corollary 1.

A.1.1 Solution to the baseline model. This section derives the solution for a slightly more
general case than the basic setup presented in Subsection 3.1, where each of the two choice
problems k ∈ {τ,−τ } is allowed to feature i ∈ {1, . . . , Nk} options (instead of just two options).
The solution to the basic setup with i ∈ {low, high} is included as a special case with Nk = 2.

With i ∈ {1, . . . , Nk} options, let vk,i denote the payoff associated with option i for problem
k ∈ {τ,−τ }. Furthermore, let vk = (vk,1, . . . , vk,Nk ) denote the (1 × Nk) vector of possible pay-
offs for k. For each k, vk depends on the realization of the state zk, which is initially unob-
served by the agent. I focus on the case where each state is realized with equal probability
and states are independent of each other. To ensure that both adoption and non-adoption are
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relevant alternatives for the agent, the payoff structure is such that (i) vτ contains at least one
element that is larger than the safe return of the outside option (which is normalized to zero),
and (ii) randomly choosing one of the Nτ options is associated with an expected payoff be-
low the return of the outside option. For k = −τ , options take different values with positive
probability as otherwise the behavior of the agent for these decisions would be irrelevant, and
there is no outside option available for −τ . A simple payoff structure that features these prop-
erties is given by the following specification:

vk,i =
{

ak, zk = i
−bk, zk ∈ {1, . . . , Nk} \ {i},(A.1)

where each state zk ∈ {1, . . . , Nk} is realized with equal probability. In this symmetric case, the
expected payoff of randomly selecting an option for decision k is given by E[vk,i] = 1

Nk
[ak −

bk(Nk − 1)], such that conditions (i) and (ii) are fulfilled as long as

−b−τ < a−τ(A.2)

and

−bτ < 0 < aτ < (Nτ − 1)bτ .(A.3)

This specification offers a simple interpretation. In each possible state, there exists exactly one
adequate way of using the technology. Choosing the correct option leads to a payoff of aτ that
is larger than the secure payoff under nonadoption. Choosing a suboptimal option yields a
payoff of −bτ < 0. This corresponds to the idea that using a more complex technology (cap-
tured by a higher number Nτ of different parameter choices) can be profitable, but at the
same time requires more precise choices about the parameters of usage to lead to the de-
sired outcome.

Reformulated problem. The agent’s optimization problem with i ∈ {1, . . . , Nk} options is
given analogously to expressions (5)–(5.3) in Subsection 3.3, with the payoff structure spec-
ified by expressions (A.1)–(A.3). Given that the agent can choose among all possible joint
distributions �(sk, zk) of signals and states, deriving the optimal signal structure is in general
very difficult. In solving the model, I therefore follow the approach taken by Matějka and
McKay (2015) and calculate the agent’s optimal allocation of attention as the solution to a re-
formulated problem that is based on state-contingent choice probabilities instead of signals.62

Specifically, these authors show that in the case of a rationally inattentive decision maker fac-
ing a discrete choice problem, every signal structure along with a prior belief induces a joint
distribution between states and chosen options. Let

Pk,i(v) = Pr(i | �vk)(A.4)

denote the induced probability of selecting option i in decision problem k conditional on real-
ized values �vk, that is, after receiving the signal. Furthermore, let

P0
k,i =

∫
V
Pk,i(v)G(dV )(A.5)

62 Matějka and McKay (2015) show that the reformulated decision problem leads to the same optimal allocation of
attention and taken actions as the original problem. This applies both to models where the cost of processing informa-
tion is proportional to Shannon’s mutual information between the signal and the state (as in the model of Matějka
and McKay, 2015) and to models where the agent is constrained to using signals whose mutual information is be-
low some fixed capacity, as in Sims (2003) and in the model studied here (the capacity-based approach represents the
dual problem of the cost-based version when adjusted by an appropriate number multiplying mutual information; see
Matějka and McKay, 2015, p. 282).
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denote the ex ante probability of selecting option i in decision problem k (before any informa-
tion is processed). Using this approach, the agent’s optimization problem can be reformulated
as:

max
{Pk,i(v)}Nk

i=1

∑
k∈{τ,−τ }

(
Nk∑
i=1

∫
V

vk,iPk,i(v)G(dV )

)
,(A.6)

s.t. H(G(vk)) − E[H(�(vk))] ≤ κk ∀k ∈ {τ,−τ },(A.7)

∑
k∈{τ,−τ }

μκk ≤ κ,(A.8)

Nk∑
i=1

Pk,i(v) = 1 ∀k ∈ {τ,−τ }.(A.9)

In the transformed problem, the agent directly sets the choice probabilities Pk,i(v) for each
decision k ∈ {τ,−τ } so that it is not necessary anymore to explicitly model signals. Conditions
(A.7) and (A.8) are equivalent to conditions (5.2) and (5.3) in the original problem. In addi-
tion, condition (A.9) states that the conditional probabilities of all options must sum up to one
for each choice problem. The solution to the transformed problem is the information strategy,
that is, the set of probabilities {Pk,i(v)}Nk

i=1 with P0
k,i = ∫

V Pk,i(v)G(dV ) for each k ∈ {τ,−τ },
which maximizes the sum of expected payoffs subject to the given constraints.

Note that, as long as attention is scarce, that is, condition (A.8) is binding, the restrictions
(A.7) and (A.8) must hold with equality, since otherwise attention would be wasted. In this
case, using the mathematical definition of entropy in condition (A.7), the amount of attention
allocated to the choice problem k ∈ {τ,−τ } can be written as

κk = −
Nk∑
i=1

P0
k,i logP0

k,i +
∫

V

Nk∑
i=1

Pk,i(v) logPk,i(v)G(dV ).(A.10)

Plugging this expression into condition (A.8) yields

κ = −
∑

k∈{τ,−τ }
μ

(
Nk∑
i=1

P0
k,i logP0

k,i −
∫

V

Nk∑
i=1

Pk,i(v) logPk,i(v)G(dV )

)
.(A.11)

Equation (A.11) can be used to replace conditions (A.7) and (A.8) in the reformulated deci-
sion problem. The Lagrangian of the resulting optimization problem is then given by

max
{Pk,i(v)}Nk

i=1

L =
∑

k∈{τ,−τ }

Nk∑
i=1

∫
V

vk,iPk,i(v)G(dV )

+λ

⎡
⎣κ +

∑
k∈{τ,−τ }

μ

(
Nk∑
i=1

P0
k,i logP0

k,i −
∫

V

Nk∑
i=1

Pk,i(v) logPk,i(v)G(dV )

)⎤
⎦
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−
∑

k∈{τ,−τ }

∫
V

φk(v)

(
Nk∑
i=1

Pk,i(v) − 1

)
G(dV ),(A.12)

where λ and φk(v) denote Lagrange multipliers.
Optimal choice probabilities. Taking the derivative of the Lagrangian (A.12) with respect to

Pk,i(v) gives a first-order condition that can be further transformed along the same steps as
shown in Matějka and McKay (2015).63 This leads to the optimality condition for the condi-
tional choice probabilities

Pk,i(v) = P0
k,ie

vk,i/λμ∑Nk
j=1 P0

k, je
vk, j/λμ

.(A.13)

Equation (A.13) implies that for each k ∈ {τ,−τ }, the optimal probability of selecting option i
conditional on realized values vk depends positively on the prior belief about option i’s payoff
relative to the payoff of other options. As the cost of processing information increases, less at-
tention is allocated to the choice problem and the weight of the prior rises. This is the case if μ

is larger, that is, it is more demanding to process information, or if λ increases due to a smaller
attentional capacity κ (holding other parameters fixed).

Note that the optimality condition (A.13) applies both under adoption and under nonadop-
tion of the technology. If nonadoption is chosen, the agent obtains a secure payoff of zero for
k = τ and uses all attentional capacity for −τ . The optimization problem in this case takes the
same form as the Lagrangian (A.12), except that the terms associated with k = τ do not ap-
pear.

Equation (A.13) still depends on the unconditional probabilities P0
k,i. Before showing how

the optimal values for these probabilities can be derived, note that if attention is not scarce,
that is, constraint (A.8) is not binding, then the shadow price of attention captured by the
multiplier λ in the Lagrangian (A.12) equals 0 and the term stemming from Equation (A.11)
does not appear in the optimization problem. In this special case (which corresponds to the
standard case of full information), the agent is perfectly attentive to all available information
and able to reduce uncertainty about the optimal option for each decision to 0. The agent is
thus able to select the optimal option with probability 1 for each decision. Given the payoff
structure specified by expressions (A.1)–(A.3), it follows that the agent will adopt the technol-
ogy and use it under optimal parameter choices.

If attention is scarce, that is, constraint (A.8) is binding, then the agent decides how to allo-
cate the available capacity κ between the different decisions. In this case, the agent’s optimal
behavior features the unconditional probabilities

(
P0,∗

τ,0 ,P0,∗
τ,1 , . . . ,P0,∗

τ,Nτ

)
∈

{(
0,

1
Nτ

, . . . ,
1

Nτ

)
, (1, 0, . . . , 0)

}
(A.14)

P0,∗
−τ,i = 1

N−τ

∀i ∈ {1, . . . , N−τ },(A.15)

where P0,∗
τ,0 denotes the probability of choosing the outside option of non-adoption of the

technology. The results in Equations (A.14) and (A.15) follow directly from the results de-
rived in Matějka and McKay (2015, Appendix B). To see this, first, notice that the assumed
payoff structure specified in Equation (A.1) implies a priori homogeneous options, because

63 Notice that in Matějka and McKay (2015), the parameter λ denotes a fixed unit cost of attention, whereas in the
capacity-based approach taken, here λ is a Lagrange parameter that depends on the values of the other parameters of
the model.
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all options seem initially identical to the agent before processing any information (i.e., G(vk)
is invariant to permutations of the entries of vk). As shown by Matějka and McKay (2015),
this implies that the optimal unconditional probabilities are uniform. It thus follows that P0,∗

k,i

must be equal to 1
Nk

for each relevant option. For the choice problem associated with tech-
nology use, this result applies if the agent decides to adopt the technology. In case of non-
adoption, the agent selects the outside option directly by setting P0,∗

k,0 equal to 1, and thus, all
other unconditional probabilities equal to 0. Appendix A.1.2 shows how the results in Equa-
tions (A.14) and (A.15) can be explicitly derived for the case with two binary choice problems
(Nk = 2) considered in the basic setup in Subsection 3.1.

Equations (A.14) and (A.15) imply that there is a simple solution for the agent’s optimal
behavior, characterized by two possible cases. The first set of probabilities specified in expres-
sion (A.14) corresponds to the case where the agent chooses to adopt the technology. In this
case, each possible way of using the technology features the same ex ante probability of being
selected. This result is intuitive, as each option is initially equally likely to lead to the desired
maximum payoff. In the second case, the agent chooses nonadoption and assigns all probabil-
ity to the outside option.

Several important implications follow from these results. First, the agent will never adopt
the technology and use it only under a subset of the possible options. Instead, if the agent de-
cides to use the technology, then all options that might potentially be adequate feature a posi-
tive ex ante probability of being selected.

Second, it is never optimal for the agent to pay attention to the technology but then decide
not to adopt it. This follows from the fact that there is no case in expression (A.14) in which
the agent assigns positive probabilities to both the outside option and any of the other Nτ op-
tions. The intuition behind this result is that using the technology in adequate ways does al-
ways offer larger returns than the outside option, and the agent knows in advance how much
attention is needed to reduce uncertainty about optimal usage practices by enough to make
adoption profitable in expectation.64

Optimal allocation of attention and expected payoff. Based on the optimal probabilities
specified in Equations (A.14) and (A.15), analytical expressions for the agent’s optimal allo-
cation of attention and the associated expected payoff of each choice problem can be derived.
The results are summarized in the following proposition:

Proposition A.1. If the agent uses the technology, the optimal amount of attention allocated
to each choice problem k ∈ {τ,−τ } is given by

κ∗
k (λ) = log(Nk) + e

a
λμ

�
log

(
e

a
λμ

�

)
+ (Nk − 1)

e
−b
λμ

�
log

(
e

−b
λμ

�

)
,(A.16)

where � = e
a

λμ + (Nk − 1) e
−b
λμ and λ > 0 is the agent’s shadow price of attention. The expected

payoff for each choice problem is given by

E[Vk(κ∗
k )] = a e

a
λμ − (Nk − 1) b e

−b
λμ

e
a

λμ + (Nk − 1) e
−b
λμ

∀k ∈ {τ,−τ }.(A.17)

If the technology is not adopted, the agent sets κ∗
τ equal to 0 and allocates all available attention

to −τ . In this case, the expected payoff from −τ features the same functional form as in Equa-
tion (A.17) but with a different value of λ.

64 This result differs from the solution to the problem with asymmetric prior considered by Matějka and McKay
(2015), where for most safe returns of the outside option, the agent processes information and ex ante mixes between
the uncertain option and the outside option.
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Proof. Starting with Equation (A.10), that is,

κk = −
Nk∑
i=1

P0
k,i logP0

k,i +
∫

V

Nk∑
i=1

Pk,i(v) logPk,i(v)G(dV ),(A.18)

plugging in the optimal values of P0,∗
k,i from Equations (A.14) and (A.15) in the case of adop-

tion shows that the first summand in Equation (A.18) can be reduced to

−
Nk∑
i=1

1
Nk

log
(

1
Nk

)
= log(Nk).(A.19)

The second summand in Equation (A.18) can be simplified as follows: First, plugging the val-
ues of P0,∗

k,i from Equations (A.14) and (A.15) into the optimality condition (A.13) shows that
the optimal conditional probabilities can be written as

P∗
k,i(v) = evk,i/λμ∑Nk

j=1 evk, j/λμ
.(A.20)

Since each state is associated with exactly one option for each decision that yields the maxi-
mum return, the sum in the denominator leads to the same expression for every realization of
the fundamental. Therefore, using the distribution of payoffs specified in Equation (A.1), the
optimal conditional probabilities are given by

P∗
k,i(v) =

⎧⎪⎨
⎪⎩

e
a

λμ

e
a

λμ +(Nk−1) e
−b
λμ

if zk = i

e
−b
λμ

e
a

λμ +(Nk−1) e
−b
λμ

if zk ∈ {1, . . . , Nk} \ {i}.
(A.21)

To lighten notation, let � = e
a

λμ + (Nk − 1) e
−b
λμ . Since options are symmetric, it holds that for

each possible realization of vk, the second sum in Equation (A.18) amounts to

Nk∑
i=1

Pk,i(v) logPk,i(v) = e
a

λμ

�
log

(
e

a
λμ

�

)
+ (Nk − 1)

e
−b
λμ

�
log

(
e

−b
λμ

�

)
.(A.22)

Together, using Equations (A.19) and (A.22) to simplify Equation (A.18) shows that κ∗
k is

given by the expression stated in Proposition A.1.
The associated expected payoff can be derived as follows: Plugging the optimal conditional

probabilities from Equation (A.20) into the corresponding part of the agent’s objective func-
tion (A.6) leads to

E[Vk(κ∗
k )] =

Nk∑
i=1

∫
V

vk,i
e

vk,i
λμ

e
a

λμ + (Nk − 1) e
−b
λμ

G(dV ).(A.23)

Since each option yields the desired payoff a for exactly one realization of the fundamental
state and otherwise yields the payoff −b, integrating over all states leads to the same expres-
sion for every option, such that

E[Vk(κ∗
k )] =

Nk∑
i=1

1
Nk

a e
a

λμ

e
a

λμ + (Nk − 1) e
−b
λμ

+ Nk − 1
Nk

−b e
−b
λμ

e
a

λμ + (Nk − 1) e
−b
λμ

.(A.24)



734 naeher

Using again the symmetry of options, it follows that the expected payoff of each decision un-
der optimal allocation of attention is given by the expression stated in Proposition A.1, that is,

E[Vk(κ∗
k )] = a e

a
λμ − (Nk − 1) b e

−b
λμ

e
a

λμ + (Nk − 1) e
−b
λμ

.(A.25)

In the case of nonadoption, the agent sets κ∗
τ = 0 and allocates all available attention to −τ .

In this case, E[V−τ (κ∗
−τ )] can be obtained analogously to the case of adoption, resulting in an

expression of the same functional form as in Equation (A.25) but with a different value of λ.
This completes the proof of Proposition A.1. �

Cutoff value for adoption (mτ ). Equation (A.25) can be used to show that the agent’s opti-
mal behavior is characterized by a cutoff value specifying the minimum amount of endowed
attention κ for which adopting the technology is optimal (corresponding to mτ in Equation
(6)). Notice that the optimal allocation of attention and associated expected payoffs speci-
fied in Proposition A.1 depend on the opportunity cost of attention, captured by the Lagrange
multiplier λ. When other parameters are fixed, λ is fully determined by the value of κ . To see
this, one can insert the expression for κ∗

k (λ) from Equation (A.16) into the budget constraint
of attention (A.8), which yields an equation that contains only λ, κ , and the other primitives
of the model (i.e., a, b, μ, Nk). The existence of a unique threshold in attentional capacity that
determines whether adoption or nonadoption is optimal follows from three properties. First,
as shown below, the expected payoff of using the technology is monotonically increasing in κ

(decreasing in λ). Second, if κ = 0, the expected payoff of using the technology is smaller than
the secure payoff of nonadoption. This follows directly from the payoffs specified in Equation
(A.1) under the made parameter restrictions (A.3). Third, for sufficiently large values of κ , the
expected payoff under adoption is larger than the expected payoff of nonadoption. In particu-
lar, under perfect attention (i.e., when κ is large enough to lead to λ = 0), the agent can select
the optimal option with certainty, such that the realized payoff under adoption equals a > 0
(in the basic setup with two options, this corresponds to the first case in Equation (6), that is,
when κ ≥ mτ ). Together, these three properties imply that, for given parameter values (a, b,
μ, Nk), there is exactly one value for κ at which the expected payoffs under adoption and un-
der nonadoption cross. This is the cutoff value denoted by mτ in Equation (6) (the other cut-
off in Equation (6), mτ , is defined in footnote 25).

The monotonicity of expected payoffs with respect to scarcity of attention can be derived
as follows: Starting with Equation (A.25), dividing both numerator and denominator by e

a
λμ

leads to

E[Vk(κ∗
k )] = a − (Nk − 1)b e

−(a+b)
λμ

1 + (Nk − 1)e
−(a+b)

λμ

.(A.26)

Taking the first derivative with respect to λ and simplifying the resulting expression yields

∂E[Vk(κ∗
k )]

∂λ
= − (Nk − 1)(a + b)2 log(2)

λ2μ
e

−(a+b)
λμ

(
1 + e

−(a+b)
λμ

)−2
.(A.27)

As the derivative is negative (recall that Nk ≥ 2 and a, b, μ > 0), the expected payoff of using
the technology is monotonically decreasing in λ.

A.1.2 Additional derivations for the basic setup. This appendix shows how the optimal
unconditional probabilities P0

k,i stated in Equations (A.14) and (A.15) in Appendix A.1.1 can
be explicitly derived for the case with two binary choice problems (Nk = 2) considered in the
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basic setup in Subsection 3.1. Some of the results derived here will also be used in the solution
to the model with complementary input technologies discussed in Appendix A.1.3.

As stated in Appendix A.1.1, the unconditional probabilities P0
k,i must be internally con-

sistent in that they fulfill P0
k,i = ∫

V Pk,i(v)G(dV ). Substituting the choice probabilities Pk,i(v)
with the optimal expression from Equation (A.13) and dividing both sides by P0

k,i leads to

1 =
∫

V

evk,i/λμ∑2
j=1 P0

k, je
vk, j/λμ

G(dV ) if P0
k,i > 0.(A.28)

For k = −τ , plugging the values of v−τ,i specified in expression (1) into Equation (A.28) leads
to the following two conditions:

1 = 0.5
e

a
λμ

P0
−τ,le

a
λμ + P0

−τ,he
−b
λμ

+ 0.5
e

−b
λμ

P0
−τ,le

−b
λμ + P0

−τ,he
a

λμ

if P0
−τ,l > 0,(A.29)

1 = 0.5
e

−b
λμ

P0
−τ,le

a
λμ + P0

−τ,he
−b
λμ

+ 0.5
e

a
λμ

P0
−τ,le

−b
λμ + P0

−τ,he
a

λμ

if P0
−τ,h > 0.(A.30)

Since P0
−τ,l and P0

−τ,h must sum up to 1, there are three possible solutions to this pair of equa-
tions. One where both unconditional probabilities are greater than 0, and the two cases where
either P0

−τ,l or P0
−τ,h is equal to 0. In the first case, combining Equations (A.29) and (A.30)

leads to

0 = e
a

λμ − e
−b
λμ

P0
−τ,le

a
λμ + P0

−τ,he
−b
λμ

+ e
−b
λμ − e

a
λμ

P0
−τ,le

−b
λμ + P0

−τ,he
a

λμ

.(A.31)

Expanding both fractions to the common denominator and simplifying the resulting expres-
sion yields

0 =
(

e
a

λμ − e
−b
λμ

)2(P0
−τ,h − P0

−τ,l

)
.(A.32)

Since b > a, the equation only holds for P0
−τ,l = P0

−τ,h. This result is intuitive, as the two op-
tions are symmetric. As the sum of both unconditional probabilities must be equal to 1, it fol-
lows that (P0,∗

−τ,l,P0,∗
−τ,h) = ( 1

2 , 1
2 ) whenever P0

−τ,l,P0
−τ,h > 0.

The two remaining cases, where either P0
−τ,l or P0

−τ,h equals 0, would correspond to situa-
tions in which the agent chooses one of the two options directly, that is, without processing
any information for −τ . For the setup in Subsection 3.1, this is never an optimal strategy. To
see this, recall that the two choice problems τ and −τ feature symmetric payoff structures, ex-
cept that for τ there is a safe outside option available. Therefore, whenever the agent chooses
to allocate attention only to one of the two problems, then this will be −τ as there is no out-
side option for this problem. This means that, as long as κ > 0 (and no attention is wasted),
the agent will allocate a positive amount of attention to −τ by setting P0

−τ,l,P0
−τ,h > 0. Thus,

(P0,∗
−τ,l,P0,∗

−τ,h) = ( 1
2 , 1

2 ) is the unique solution for k = −τ .
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For k = τ , plugging the corresponding values of vτ,i into Equation (A.28) leads to the fol-
lowing three conditions:

1 = 0.5
e

a
λμ

P0
τ,le

a
λμ + P0

τ,he
−b
λμ + P0

τ,0

+ 0.5
e

−b
λμ

P0
τ,le

−b
λμ + P0

τ,he
a

λμ + P0
τ,0

if Pτ,l0>0,(A.33)

1 = 0.5
e

−b
λμ

P0
τ,le

a
λμ + P0

τ,he
−b
λμ + P0

τ,0

+ 0.5
e

a
λμ

P0
τ,le

−b
λμ + P0

τ,he
a

λμ + P0
τ,0

if P0
τ,h > 0,(A.34)

1 = 0.5
1

P0
τ,le

a
λμ + P0

τ,he
−b
λμ + P0

τ,0

+ 0.5
1

P0
τ,le

−b
λμ + P0

τ,he
a

λμ + P0
τ,0

if P0
τ,0 > 0.(A.35)

There are two solutions to this system of equations. To see this, first note that a solution will
feature either P0

τ,0 = 0, P0
τ,0 = 1 or P0

τ,0 ∈ (0, 1). If P0
τ,0 = 0, that is, the outside option is never

chosen, then the problem reduces to a problem that is equivalent to the one for k = −τ , and
thus, the solution is given by (P0,∗

τ,0 ,P0,∗
τ,l ,P0,∗

τ,h ) = (0, 1
2 , 1

2 ). In this case, the agent adopts the
technology and devotes a positive amount of attention to τ to distinguish between low and
high as the adequate way of using the technology. If P0

τ,0 = 1, then the solution is given by
(P0,∗

τ,0 ,P0,∗
τ,l ,P0,∗

τ,h ) = (1, 0, 0) as the sum of the three probabilities must be equal to 1. In this
case, the agent chooses not to use the technology, and therefore, no attention is devoted to τ .

Finally, suppose that there was a solution that featured P0
τ,0 ∈ (0, 1). Since the sum of all

three probabilities must be equal to 1, at least one of the other two probabilities, P0
τ,l and P0

τ,h,
must be strictly larger than 0. In addition, the symmetry of payoffs for τ implies that if the
agent believes that option low is inadequate given the realized state, then automatically high
is believed to be optimal (and vice versa). This is due to the fact that, in each possible state,
either option low or option high leads to a payoff which is larger than the safe return under
nonadoption, that is, there is no state in which the technology cannot be profitably used. To-
gether, these features imply that it is never optimal to adopt the technology and restrict us-
age only to a single option. Consequently, if the technology is used, then both ways of doing
so will have a positive a priori probability of being selected, such that P0

τ,l,P0
τ,h > 0. If P0

τ,0 ∈
(0, 1), then a solution would thus have to fulfill all three Equations (A.33)–(A.35). Combining
Equations (A.33) and (A.34) leads to an equation that shows that P0

τ,l and P0
τ,h must be equal.

Using this result to replace P0
τ,l in Equation (A.35) leads to

P0
τ,0 = 1 − P0

τ,h

(
e

a
λμ − e

−b
λμ

)
.(A.36)

In addition, probabilities must sum up to 1 such that 2P0
τ,h + P0

τ,0 = 1. Using this to replace
P0

τ,h in Equation (A.36) gives

P0
τ,0 = 1 − 1 − P0

τ,0

2

(
e

a
λμ − e

−b
λμ

)
.(A.37)

Solving Equation (A.37) gives P0
τ,0 = 1, which is contradictory to the original presumption

that P0
τ,0 ∈ (0, 1). Thus, there is no solution with P0

τ,0 ∈ (0, 1).
Summarizing, the optimal behavior for k = τ is characterized by two possible sets of uncon-

ditional probabilities, namely, (P0,∗
τ,0 ,P0,∗

τ,l ,P0,∗
τ,h ) = (0, 1

2 , 1
2 ) if the agent adopts the technology

and (P0,∗
τ,0 ,P0,∗

τ,l ,P0,∗
τ,h ) = (1, 0, 0) in the case of nonadoption. The solution for k = −τ always
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features (P0,∗
−τ,l,P0,∗

−τ,h) = ( 1
2 , 1

2 ). Note that these results coincide with the results for the more
general case with i ∈ {1, . . . , Nk} options, as stated in Equations (A.14) and (A.15).

A.1.3 Solution with Complementary Input Technologies. This section derives the agent’s
optimal behavior for the model with complementary input technologies presented in Subsec-
tion 3.4 (including the proof of Proposition 1). Notice first that the agent’s problem in Subsec-
tion 3.4 represents a special case of the problem solved in Appendix A.1.1 where each of the
two choice problems (actions) features Nk = 9 possible options, and the payoffs are specified
in Table 1. The Langrangian of the reformulated decision problem with complementary inputs
thus features the same functional form as the one in Appendix A.1.1 (albeit with a different
payoff structure). In particular, it holds that the amount of attention allocated to location j is
analogous to the expression stated in Equation (A.10) and can be written as

κ j = −
∑
i∈I

P0
j,i logP0

j,i +
∫

V

∑
i∈I

P j,i(v) logP j,i(v)G(dV ).(A.38)

Furthermore, Equation (A.13) implies that the optimal choice probabilities are given by

P∗
j,i(v) =

P0
j,i ev j,i/λμ∑

l∈K P0
j,le

v j,l/λμ
,(A.39)

where λ denotes the Lagrange multiplier of the budget constraint for the scarce resource at-
tention. As above, using the fact that the unconditional probabilities P0

k,i must be internally
consistent, it follows that the agent’s optimal behavior must fulfill the condition

1 =
∫

V

ev j,i/λμ∑
l∈K P0

j,le
v j,l/λμ

G(dV ) if P0
j,i > 0.(A.40)

In the following, I first use the payoffs specified in Table 1 to derive the agent’s optimal be-
havior separately for each of the three types of actions (i.e., nonadoption, single input use, and
joint input use) for a single production location. In a second step, these results are then aggre-
gated to obtain the agent’s optimal behavior across two locations.

Case 1: Nonadoption. If the agent chooses not to adopt any complementary input in loca-
tion j, the outside option i = (0, 0) is selected by setting P j,(0,0)(v) equal to 1 for all states and
the probabilities of all other actions equal to 0. In this case, the conditional and unconditional
probabilities are identical, and the secure return of 0 is realized with certainty. Plugging these
probabilities into Equation (A.38) shows that the amount of attention allocated to the plot
equals 0.

Case 2: Single input use. If a single input is used in a location, there are two possible ways
of applying the input, given by i ∈ {(Sl, 0), (Sh, 0)} or i ∈ {(0, Fl ), (0, Fh)}, depending on which
input is chosen (recall that inputs are assumed to be homogeneous). After processing infor-
mation, the agent seeks to select the option that best conforms to the realized state of the
location. The optimal behavior at a given location under single input use is summarized by
Lemma A.1.
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Lemma A.1. The optimal behavior of a rationally inattentive agent who adopts a single input
technology (S) in location j is characterized by the choice probabilities

(
P∗

j,(Sl ,0)(v),P∗
j,(Sh,0)(v)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
e

a
λμ

e
a

λμ +e
−b
λμ

, e
−b
λμ

e
a

λμ +e
−b
λμ

)
if z j ∈ {(l, l), (l, h)}(

e
−b
λμ

e
−b
λμ +e

a
λμ

, e
a

λμ

e
−b
λμ +e

a
λμ

)
if z j ∈ {(h, l), (h, h)},

(
P0,∗

j,(Sl ,0),P0,∗
j,(Sh,0)

)
=

(
1
2
,

1
2

)
,

where λ denotes the agent’s opportunity cost of attention (if the agent uses F as a single input,
the corresponding probabilities follow analogously). The optimal amount of attention allocated
to a location with single input use and the associated expected return are

κ∗
j (λ) = log(2) + e

a
λμ

e
a

λμ + e
−b
λμ

log

(
e

a
λμ

e
a

λμ + e
−b
λμ

)
+ e

−b
λμ

e
−b
λμ + e

a
λμ

log

(
e

−b
λμ

e
−b
λμ + e

a
λμ

)
,

E[Vj(κ∗
j )] = a e

a
λμ − b e

−b
λμ

e
a

λμ + e
−b
λμ

.

Proof. Given that the two inputs are homogeneous, it is sufficient to derive the optimal
probabilities for one of the two inputs. Without loss of generality, let S be the applied input
whenever the agent uses a single input in production location j. Plugging the associated pay-
offs from Table 1 into Equation (A.40) yields the following two conditions:

1 = 0.5
e

a
λμ

P0
j,(Sl ,0)e

a
λμ + P0

j,(Sh,0)e
−b
λμ

+ 0.5
e

−b
λμ

P0
j,(Sl ,0)e

−b
λμ + P0

j,(Sh,0)e
a

λμ

if P0
j,(Sl ,0) > 0,

1 = 0.5
e

−b
λμ

P0
j,(Sl ,0)e

a
λμ + P0

p,(Sh,0)e
−b
λμ

+ 0.5
e

a
λμ

P0
j,(Sl ,0)e

−b
λμ + P0

j,(Sh,0)e
a

λμ

if P0
j,(Sh,0) > 0.

Notice that these two conditions are equivalent to Equations (A.29) and (A.30) obtained for
the baseline model. The reason for this is that the choice problem associated with using a sin-
gle input in one production location is equivalent to the choice problem for k = −τ in the
baseline model, that is, the agent essentially faces a binary choice between low and high. Fol-
lowing the same steps as in Appendix A.1.2 shows that the optimal unconditional probabili-
ties in the case of single input use are given by (P0,∗

j,(Sl ,0),P0,∗
j,(Sh,0)) = ( 1

2 , 1
2 ). Using this result,

the optimal choice probabilities P∗
j,i(v) can be obtained by plugging the respective values of

P0,∗
j,i into Equation (A.39). This directly yields the expression stated in Lemma A.1.

The solution for κ∗
j can be found by plugging the optimal probabilities P∗

j,i(v) and P0,∗
j,i into

Equation (A.38). This leads to

κ∗
j = −0.5 log(0.5) − 0.5 log(0.5)

+0.5

[
e

a
λμ

e
a

λμ + e
−b
λμ

log

(
e

a
λμ

e
a

λμ + e
−b
λμ

)
+ e

−b
λμ

e
a

λμ + e
−b
λμ

log

(
e

−b
λμ

e
a

λμ + e
−b
λμ

)]

+0.5

[
e

−b
λμ

e
−b
λμ + e

a
λμ

log

(
e

−b
λμ

e
−b
λμ + e

a
λμ

)
+ e

a
λμ

e
−b
λμ + e

a
λμ

log

(
e

a
λμ

e
−b
λμ + e

a
λμ

)]
,
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which can be simplified to the expression stated in Lemma A.1.
In a similar way, the optimal probabilities can be used to derive an expression for the ex-

pected payoff at a location with single input use, corresponding to the part of the agent’s ob-
jective given by

E[Vj(κ j )] =
∑
i∈I

∫
V

v j,iP j,i(v)G(dV ).(A.41)

Plugging P∗
j,i(v) and P0,∗

j,i into Equation (A.41) leads to

E[Vj(κ∗
j )] = 0.5 a

e
a

λμ

e
a

λμ + e
−b
λμ

− 0.5 b
e

−b
λμ

e
−b
λμ + e

a
λμ

− 0.5 b
e

−b
λμ

e
a

λμ + e
−b
λμ

+ 0.5 a
e

a
λμ

e
−b
λμ + e

a
λμ

,

which can be further simplified to the expression stated in Lemma A.1. This concludes the
proof of Lemma A.1. �

Case 3: Joint input use. In case, the agent uses both inputs together in a location, the four
possible ways of combining inputs with each other are given by i ∈ {(Sl, Fl ), (Sl, Fh), (Sh, Fl ),
(Sh, Fh)}. The agent seeks to select the combination that conforms best to the realized state
and permits the agent to take advantage of the complementarity between the two inputs. The
optimal behavior at a given location under joint input use is summarized by Lemma A.2.

Lemma A.2. The optimal behavior of a rationally inattentive agent using both complemen-
tary inputs together in location j is characterized by the set of choice probabilities

(
P∗

j,(Sl ,Fl )(v),P∗
j,(Sl ,Fh )(v),P∗

j,(Sh,Fl )(v),P∗
j,(Sh,Fh )(v)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

+
�

, 

�

, 

�

, 
−
�

)
if z j = (l, l)(



�

, 
+
�

, 
−
�

, 

�

)
if z j = (l, h)(



�

, 
−
�

, 
+
�

, 

�

)
if z j = (h, l)(


−
�

, 

�

, 

�

, 
+
�

)
if z j = (h, h)

(
P0,∗

j,(Sl ,Fl )
,P0,∗

j,(Sl ,Fh ),P0,∗
j,(Sh,Fl )

,P0,∗
j,(Sh,Fh )

)
=

(
1
4
,

1
4
,

1
4
,

1
4

)
,

where 
+ = e
2a(1+s)

λμ , 
 = e
a−b
λμ , 
− = e

−2b
λμ , and � = 
+ + 2
 + 
−. The optimal amount of at-

tention devoted to a production location with joint input use and the associated expected return
are given as

κ∗
j (λ) = log(4) + 
+

�
log

(

+

�

)
+ 2




�
log

(



�

)
+ 
−

�
log

(

−

�

)

E[Vj(κ∗
j )] = �−1

[
2a(1 + s) e

2a(1+s)
λμ + 2(a − b)e

a−b
λμ − 2b e

−2b
λμ

]
.

Proof. The optimal probabilities for joint input use in a single production unit can be de-
rived along the same lines as in the case of single input use. Plugging the corresponding pay-
offs from Table 1 into the optimality condition (A.40) yields four conditions, one for each of
the four possible ways of applying both inputs together. For the first action, i = (Sl, Fl ), the
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condition reads

1 = 0.25

+

P0
j,(Sl ,Fl )


+ + P0
j,(Sl ,Fh )
 + P0

j,(Sh,Fl )

 + P0

j,(Sh,Fh )

−(A.42)

+0.25



P0
j,(Sl ,Fl )


 + P0
j,(Sl ,Fh )


+ + P0
j,(Sh,Fl )


− + P0
j,(Sh,Fh )


+0.25



P0
j,(Sl ,Fl )


 + P0
j,(Sl ,Fh )


− + P0
j,(Sh,Fl )


+ + P0
j,(Sh,Fh )


+0.25

−

P0
j,(Sl ,Fl )


− + P0
j,(Sl ,Fh )
 + P0

j,(Sh,Fl )

 + P0

j,(Sh,Fh )

+ if P0

j,(Sl ,Fl )
> 0,

where 
+ = e
2a(1+s)

λμ , 
 = e
a−b
λμ , and 
− = e

−2b
λμ . The conditions for the other three possible ac-

tions are given by analogous terms. The solution to the system of equations given by these
four conditions is obtained by assigning equal probabilities P0

j,i to each of the four actions.
This can be shown by verifying the guess

(
P0,∗

j,(Sl ,Fl )
,P0,∗

j,(Sl ,Fh ),P0,∗
j,(Sh,Fl )

,P0,∗
j,(Sh,Fh )

)
=

(
1
4
,

1
4
,

1
4
,

1
4

)
,(A.43)

as outlined in the following. Plugging the presumed values into Equation (A.42) and simplify-
ing the obtained expression leads to

1 = 0.25

+

1
4
+ + 1

4
 + 1
4
 + 1

4
− + 0.25



1
4
 + 1

4
+ + 1
4
− + 1

4


+0.25



1
4
 + 1

4
− + 1
4
+ + 1

4

+ 0.25


−
1
4
− + 1

4
 + 1
4
 + 1

4
+ .

Further simplifying the equation shows that this is equivalent to

1 = 
+ + 2
 + 
−


+ + 2
 + 
− .(A.44)

In the same way, the guess can be verified for the other three conditions. Therefore, if the
agent decides to use both inputs together in the same production unit, each possible way of
combining the two inputs features the same ex ante probability of being selected. Based on
this result, P∗

j,i(v) can be obtained by plugging the solution for P0,∗
j,i into Equation (A.39). This

directly gives the expression stated in Lemma A.2.
The solution for κ∗

j in case of joint input use can be obtained by plugging the respective op-

timal probabilities P∗
j,i(v) and P0,∗

j,i into Equation (A.38). This leads to

κ∗
j = −4

[
1
4

log
(

1
4

)]
+ 
+


+ + 2
 + 
− log
(


+


+ + 2
 + 
−

)

+2




+ + 2
 + 
− log
(





+ + 2
 + 
−

)
+ 
−


+ + 2
 + 
− log
(


−


+ + 2
 + 
−

)
,

which can be simplified to the expression stated in Lemma A.2.
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Furthermore, using the optimal probabilities P∗
j,i(v) and P0,∗

j,i in the corresponding part of
the agent’s objective function directly shows that the expected payoff for joint input use is
given by the expression in Lemma A.2. This concludes the proof of Lemma A.2. �

Proof of Proposition 1. The results in Lemmas A.1 and A.2 can be used to show that the
agent’s optimal behavior is characterized by a pair of cutoff values in attentional capacity κ

that determine whether nonadoption, adoption of a single input, or joint adoption of both in-
puts is optimal for given parameter values. I first derive these cutoff values for a single pro-
duction location. Given that the two locations are ex ante identical, these results can then be
aggregated to obtain the corresponding cutoff values for two production location as stated in
Proposition 1.

Step 1: Single production location. Consider first the choice between nonadoption and sin-
gle input use at one location. Given the payoffs specified in Table 1 (including the param-
eter restriction 0 < a < b), this is equivalent to the choice of adopting the technology τ in
the baseline model in Subsection 3.1. The existence of a unique cutoff value that determines
whether single input use is preferable to nonadoption thus follows analogously to the proof of
Proposition A.1 in Appendix A.1.1 (note that the expected payoff for single input use speci-
fied in Lemma A.1 is equivalent to the expected payoff of adopting τ if one sets Nk = 2 and
k = j in Equation (A.25)). Let this threshold be denoted as m1 here. If κ is smaller than m1,
no input is used in this production location. If κ is larger than m1, the agent uses (at least) a
single input.

Next, consider the choice between single and joint input use. The existence of a cutoff value
for κ that determines which of the two actions is optimal again follows from three properties.
First, given the made parameter restriction s < b−a

a , the expected return of combining inputs
without paying any attention to the production location is smaller than the expected return of
using a single input (see the last column in Table 1). Second, for sufficiently large values of κ ,
the expected payoff for joint input use is higher than for single input use. This follows under
perfect attention, where the realized payoff under joint input use equals 2a(1 + s) > a. Third,
it can be shown that the expected payoff of joint input use is monotonically increasing in κ

(see below). Together, these three properties imply that there is a unique value for κ at which
the expected payoff of joint input use and single input use cross. Let this threshold be denoted
as m2. It captures the minimum amount of endowed attention for which combining two inputs
in a location yields a larger expected payoff than single input use.

It should be noted that, in principle, it is possible that the second cutoff lies below the first
one, so that the agent will switch from nonadoption directly to joint input use as κ increases
(and never use only a single input). This case may arise if joint input use is relatively attractive
compared to single input use, because the synergy s is very large. In order to be able to cap-
ture the full spectrum of possible outcomes, I focus on the case where parameter values are
such that m2 > m1.65

Before deriving the optimal behavior across two production locations, the monotonicity of
expected payoffs with respect to scarcity of attention can be derived as follows: The expected
payoff of joint input use is given in Lemma A.2 as

E[Vj(κ∗
j )] = 2a(1 + s)

�
e

2a(1+s)
λμ︸ ︷︷ ︸

(A)

+2
(a − b)

�
e

a−b
λμ︸ ︷︷ ︸

(B)

−2b
�

e
−2b
λμ︸ ︷︷ ︸

(C)

,(A.45)

65 A sufficient condition for m2 > m1 to hold is that s > 0 is infinitely small. Deriving a necessary condition for s
seems only possible numerically (for given values of a and b).
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where � = e
2a(1+s)

λμ + 2 · e
a−b
λμ + e

−2b
λμ . The derivative with respect to λ can be computed as the

sum of derivatives of the three summands. These are given by

∂(A)
∂λ

=
[
−4a2(1 + s)2 log(2)

λ2μ
e

2a(1+s)
λμ � − 2a(1 + s) e

2a(1+s)
λμ �′

]
�−2,(A.46)

∂(B)
∂λ

=
[
−2(a − b)2 log(2)

λ2μ
e

a−b
λμ � − 2(a − b) e

a−b
λμ �′

]
�−2,(A.47)

∂(C)
∂λ

=
[
−4b2 log(2)

λ2μ
e

−2b
λμ � + 2b e

−2b
λμ �′

]
�−2,(A.48)

where �′ denotes the derivative of � with respect to λ, that is,

∂�

∂λ
= −2a(1 + s) log(2)

λ2μ
e

2a(1+s)
λμ − 2(a − b) log(2)

λ2μ
e

a−b
λμ + 2b log(2)

λ2μ
e

−2b
λμ .(A.49)

For the derivative of the first term (A), it can easily be verified that the term in squared brack-
ets is negative (simplifying leads to a sum in which each term is negative). Since the remaining
factor �−2 is positive, it follows that ∂(A)

∂λ
< 0.

For the derivative of the second term (B), inserting � and �′ in the term in squared brack-
ets, and simplifying the resulting expression leads to

∂(B)
∂λ

=
[

2(a − b)(b + a + 2as) log(2)
λ2μ

e
(a−b)+2a(1+s)

λμ + 2(b2 − a2) log(2)
λ2μ

e
a−3b
λμ

]
�−2.(A.50)

In a similar way, the derivative of the third term (C) can be written as

∂(C)
∂λ

=
[
−2b[2b + 2a(1 + s)] log(2)

λ2μ
e

−2b+2a(1+s)
λμ − 4b(a + b) log(2)

λ2μ
e

a−3b
λμ

]
�−2.(A.51)

Since b > a, the first fraction in Equation (A.50) is negative, whereas the second fraction is
positive. In Equation (A.51), both fractions are negative such that ∂(C)

∂λ
< 0. To show that the

overall derivative of Equation (A.45) is negative, one can take the sum of the second (only
positive) summand in Equation (A.50) and the second summand in Equation (A.51). As both
are multiplied with the term e

a−3b
λμ , the resulting sum is

[
2(b2 − a2) log(2)

λ2μ
− 4b(a + b) log(2)

λ2μ

]
e

a−3b
λμ .(A.52)

Simplifying leads to a negative expression

−2(a + b)2 log(2)
λ2μ

e
a−3b
λμ < 0.(A.53)

Therefore, the derivative of Equation (A.45) with respect to λ is negative. It thus holds that
the expected payoff of joint input use is monotonically decreasing in λ (and increasing in κ).
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Step 2: Two production locations. For ex ante identical production units, the same amount
of attention is needed in each location to make single input use more attractive than nonadop-
tion, and joint input use more attractive than single input use, respectively. Hence, κ has to
equal at least 2m1 to make using a single input in both locations desirable. For values smaller
than 2m1, the agent either adopts the input only in one location or uses no modern input at
all. In the same way, κ has to equal at least 2m2 to make joint input use desirable in both loca-
tions.

Therefore, as long as all actions represent relevant alternatives (i.e., m2 > m1), this implies
the following order of optimal actions. For κ = 0, the agent adopts no modern input. As κ

increases, it first becomes optimal to use a single input in one location (i.e., when κ = m1),
and then in both locations (κ = 2m1). For larger values of κ , it eventually becomes optimal
to apply two inputs jointly in one location and use a single input in the other location (κ =
m2 + m1), and finally to combine inputs in both locations (κ = 2m2). Whether it first becomes
optimal to apply a single input in both locations or combine inputs in one location while using
no input in the other location depends on the relation of the two cutoff values, which is deter-
mined by the deep parameters of the model. If the parameter values are such that 2m1 < m2,
then the agent first uses a single input in both locations. If 2m1 > m2, then the agent first com-
bines inputs in one location while using no input in the other location. This concludes the
proof of Proposition 1. �

A.1.4 Proof of Corollary 1. The budget constraint for attention is given by

μ(κ1 + κ2) ≤ κ.(A.54)

For a fixed capacity of attention κ , a reduction in μ thus increases the amount of attention
(κ1 + κ2) that is available to reduce uncertainty about the state of nature according to condi-
tion (A.38). Analogous to an increase in κ itself, this makes attention in the agent’s decision
problem less scarce and thus lowers the associated shadow price λ. Using the results derived
in Appendix A.1.3, it follows that the expected payoffs for single and joint input use are in-
creasing with smaller values of μ. Holding the payoff under nonadoption fixed, this implies
that the threshold m1 of attentional capacity that is needed to make using a modern input
profitable in expectation is lowered when μ decreases. In the same way, sufficiently large re-
ductions in μ also lead to a lower cutoff m2 at which combining inputs becomes more attrac-
tive than using a single input. This follows from the two features that (i) for κ fixed, values
of μ sufficiently close to zero allow for arbitrarily large reductions in uncertainty, as the sum
of κ1 and κ2 in condition (A.54) increases, and (ii) under perfect attention combining comple-
mentary inputs is more profitable than using a single input. Given that production units are
homogeneous, these results carry over to the case of two locations by following the same pro-
cedure as described in Appendix A.1.3.

A.2 Simulations. Deriving analytical comparative statics for the model would be very
cumbersome, if at all possible. Instead, this appendix provides some insights on the roles of
individual parameters using numerical simulations. Recall that the optimal behavior of the
agent in the baseline model is characterized by the existence of a cutoff value, mτ , which cap-
tures the minimum amount of endowed attention for which adopting the technology is prof-
itable in expectation. In studying the roles of individual parameters in determining optimal
adoption behavior, I use the analytical expressions from Equation (6) and Proposition A.1 to
simulate the cutoff associated with different parameter value combinations. A lower value of
mτ indicates that less attention is required to make using the technology profitable in expecta-
tion, thus facilitating adoption.

A.2.1 Simulations for (a, b). Table A.1 shows the cutoffs mτ associated with different
combinations of return parameters, holding other parameters fixed. In Panel A, the returns
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Table A.1
simulations for (a, b)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: (a−τ , b−τ ) = (1, 2)
aτ 1.0 1.2 1.4 0.8 0.6 1.0 1.0 1.0 1.0
−bτ −2.0 −2.0 −2.0 −2.0 −2.0 −1.8 −1.6 −2.2 −2.4
mτ 0.43 0.23 0.11 0.71 1.01 0.35 0.26 0.50 0.56
Panel B: (aτ , bτ ) = (1, 2)
a−τ 1.0 1.2 1.4 0.8 0.6 1.0 1.0 1.0 1.0
−b−τ −2.0 −2.0 −2.0 −2.0 −2.0 −1.8 −1.6 −2.2 −2.4
mτ 0.43 0.46 0.49 0.40 0.37 0.40 0.37 0.46 0.49

Notes: Values are based on simulations for the case of two binary choice problems specified in Section 3.1 and μ = 1.
The cutoff value mτ corresponds to the minimum amount of endowed attention κ for which adopting the technology
is profitable in expectation.

of technology use, aτ and bτ , are varied, whereas the returns of the other decision problem,
a−τ and b−τ , are kept constant. Based on the numbers in the first five columns in Panel A,
the minimum attentional capacity that makes adoption desirable decreases with larger returns
to optimal usage (columns (2) and (3)), and increases when aτ becomes smaller (columns (4)
and (5)). Similarly, the last four columns in Panel A show that mτ increases with larger possi-
ble losses for inadequate usage (columns (8) and (9)), and decreases when bτ becomes smaller
(columns (6) and (7)). These results are intuitive as they imply that making the technology
more attractive (either by rising the potential payoff aτ or by reducing possible losses bτ ) fa-
cilitates adoption.

Panel B in Table A.1 shows the resulting values of mτ when the returns of technology use
remain fixed and, instead, a−τ and b−τ are varied. According to the first five columns, the at-
tentional threshold for adoption increases when the maximum payoff obtained from compet-
ing decision problems becomes larger (columns (2) and (3)), and decreases when a−τ becomes
smaller (columns (4) and (5)). This is intuitive, as it means that, everything else being equal,
uptake of a new technology is more likely in situations where it is less attractive for users to
devote attention to other decisions.

With respect to potential losses for other decision, Panel B in Table A.1 indicates that the
attentional threshold for adoption decreases with smaller absolute values of b−τ (columns (6)
and (7)), and increases when the absolute value of b−τ becomes larger (columns (8) and (9)).
The intuition for these results stems from the fact that there is no outside option available for
−τ . Thus, the more costly mistakes are for −τ , the higher are the incentives for the agent to
devote attention to avoiding these mistakes.

A.2.2 Simulations for Nτ and κ . Figure A.1 shows the expected payoffs associated with
different values of Nτ when the agent faces two decision problems, that is, τ and −τ (recall
that Nτ captures the number of different parameter combinations from which users have to
choose when applying the technology). Three sets of simulations are depicted in Figure A.1,
namely, for κ equal to 1, 1.5, and 2. Note that in the case of nonadoption, the value of Nτ plays
no role and any value κ ≥ 1 allows the agent to reduce the uncertainty associated with −τ

to 0. Therefore, the payoff of nonadoption equals a for all three depicted sets of simulations
(shown by the red circle markers). In the case of adoption, Figure A.1 shows that, for each de-
picted value of κ , the expected payoff decreases with larger values of Nτ . This is intuitive, as
applying the technology in profitable ways is more difficult if the parameters of usage have to
be selected from a wider range of possible options. The results in Figure A.1 thus imply that
if individuals face a choice between different technologies, everything else being equal, then
naturally, the technology associated with the least complex decision about optimal usage will
be preferred.
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Figure A.1

simulations for Nτ and κ

notes: simulations are based on K = 2 choice problems with N−τ = 2 and fixed parameter values
(a, b, μ) = (1, 2, 1).

In addition, Figure A.1 shows that, consistent with the analytical results in Equation (6),
adoption of profitable but attentionally demanding technology is facilitated by larger atten-
tional capacity κ . In particular, for each value of Nτ in Figure A.1, the expected payoff of
adoption is higher for larger values of κ .

A.3 Application to Modern Farming Technology.

A.3.1 Data and variables. The empirical results presented in Section 5 are based on data
from nationally representative household surveys in Malawi, Nigeria, Tanzania, and Uganda.
These were collected between 2011 and 2016 as part of the World Bank’s Living Standard
Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). For the analysis, I pool
the information from four survey rounds (Malawi 2013, Nigeria 2015/16, Tanzania 2012/13,
Uganda 2011/12), so that my sample includes 11,057 observations at the household (farm)
level and 22,160 observations at the plot level. This includes all households in the original
LSMS-ISA data sets that cultivated at least one agricultural plot during the main growing sea-
son (plots that are rented out or left fallow are excluded). Although the LSMS-ISA project
seeks to collect data in a comparable way across countries, some differences in survey designs
remain. As far as possible, I restrict my analysis to variables for which the available informa-
tion is comparable across countries. A list of the included variables, together with basic sum-
mary statistics, is provided in Table A.2. The following provides additional information on the
construction of variables and handling of the unique survey design in each country. For more
details on the data collection process and utilized survey tools, I refer to the resources avail-
able at World Bank (2018).

Modern input use. Observed inputs include improved seeds, inorganic fertilizer, other agro-
chemicals (pesticides and herbicides), organic fertilizer, and irrigation systems. All of these
variables are based on information about binary input use decisions at the plot level, that is,
whether farmers used the respective input (in any quantity) on individual plots or parcels.
Based on this plot-level information, the corresponding household-level indicators are set
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Table A.2
list of variables

Variable Full Malawi Nigeria Tanzania Uganda Descriptionb

Samplea 2013 2015–16 2012–13 2011–12

Household level:
Farm size 1.61 0.79 1.88 2.19 1.59 Cultivated area, farmer-assessed (ha)
Number of plots 2.00 2.05 2.00 2.03 1.91 Number of cultivated plots
Household size 5.78 5.28 6.26 5.67 6.00 Number of HH members
Distance to road 11.8 9.1 7.1 21.7 8.1 Distance to road (km)
Distance to market 53.7 23.5 71.2 82.3 32.7 Distance to market (km)
Rural 0.87 0.87 0.89 0.84 0.88 D: HH lives in rural area
Food expenditure 16.5 26.1 16.0 13.0 8.6 Food expenditure, last 7 days (USD)
Non-food expenditure 23.0 33.6 16.5 25.4 13.4 Non-food exp., last 1 month (USD)
Secondary education 0.43 0.40 0.61 0.32 0.41 D: Secondary education or more in HH
Age head 48.5 43.9 53.2 48.9 48.1 Age of HH head (years)
Male head 0.77 0.76 0.84 0.77 0.69 D: HH head is male
Input use
Improved seeds 0.31 0.57 0.17 0.24 0.21 D: HH uses improved seeds
Inorganic fertilizer 0.38 0.79 0.45 0.15 0.04 D: HH uses inorganic fertilizer
Agrochemicals 0.20 0.06 0.46 0.15 0.11 D: HH uses agrochemicals
Organic fertilizer 0.21 0.21 0.28 0.19 0.13 D: HH uses organic fertilizer
Irrigation 0.02 0.01 0.02 0.03 0.01 D: HH uses irrigation systems
Rainfall
Amount 10.25 8.31 11.88 8.82 12.89 12-month total rainfall (dm)
Amount (average) 9.99 8.45 12.56 8.23 11.24 Average 12-month rainfall (dm)
Amount (abs. dev.) 1.10 0.67 1.00 1.22 1.65 Distance to avg. 12-month rainfall (dm)
Timing 16.13 16.39 17.56 17.36 12.11 Start of wettest quarter (dekads)
Timing (average) 15.95 16.58 17.78 18.77 8.60 Avg. start of wettest quarter (dekads)
Timing (abs. dev.) 2.53 0.39 3.00 3.50 3.59 Distance to average start of wettest

quarter (dekads)
Observations (max) 11057 3038 2834 3023 2162
Plot level:
Plot size 0.80 0.39 0.94 1.08 0.83 Size of plot, farmer-assessed (ha)
Distance > 1 km 0.39 0.32 0.33 0.50 0.44 D: Distance to farm house > 1 km
Good soil quality 0.58 0.47 0.81 0.45 0.64 D: Good soil quality, farmer-assessed
Sloped 0.35 0.41 0.25 0.30 0.47 D: Plot is sloped
Erosion 0.18 0.36 0.06 0.10 0.19 D: Plot has problems with erosion
Rented 0.19 0.22 0.16 0.17 0.22 D: Plot is rented in
Land title 0.09 0.03 0.06 0.13 0.14 D: Household has land title for plot
Maize 0.38 0.66 0.16 0.41 0.20 D: Main crop on plot is maize
Improved seeds 0.23 0.42 0.14 0.19 0.14 D: Improved seeds used on plot
Inorganic fertilizer 0.30 0.57 0.39 0.11 0.03 D: Inorganic fertilizer used on plot
Agrochemicals 0.16 0.04 0.42 0.10 0.07 D: Agrochemicals used on plot
Organic fertilizer 0.14 0.13 0.23 0.12 0.08 D: Organic fertilizer used on plot
Irrigation 0.01 0.01 0.01 0.02 0.01 D: Plot is irrigated
Observations (max) 22160 6229 5672 6124 4136

Notes: Numbers are mean values. Only agricultural plots which are cultivated (i.e., not rented out or left fallow)
are included. aThe full sample is obtained by pooling data across countries. b“D” indicates dummy variables. Source:
Author’s computation based on survey data from the Living Standards Measurement Study - Integrated Surveys on
Agriculture (World Bank, 2018). Rainfall estimates come from the National Oceanic and Atmospheric Administra-
tion (NOAA) Climate Prediction Center.

equal to 1 if farmers report having used the respective input on at least one plot during a
given season. Information about seed types is as follows: For Uganda, the indicator for im-
proved seeds is based on a distinction between improved and traditional seed varieties. For
Nigeria, the indicator lumps together “improved” and “hybrid” seeds. In Tanzania, the ques-
tionnaire contains a third category for “improved recycled” seeds, which I do not include in
the indicator for improved seeds. In Malawi, the distinction between improved and traditional
seeds is only possible for maize, tobacco, groundnuts, and rice, which comprise about 80%
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of plots (the corresponding adoption rate for Malawi should therefore be seen as a lower
bound). The indicator for inorganic fertilizer is based on a binary response whether any in-
organic or chemical fertilizer was used on a plot or parcel. The indicator for agrochemicals is
based on a binary response about the use of pesticides or herbicides (in Nigeria, the indica-
tor is based on two separate questions for pesticides and herbicides). The indicator for organic
fertilizer is based on a binary response about organic fertilizer use (including manure). The in-
dicator for irrigation is based on a binary response whether a plot or parcel was irrigated.

Rainfall irregularities. Households in the LSMS-ISA data sets are georeferenced, so that
their locations can be linked to satellite data on climate and weather conditions. The rainfall
variables used in the analysis are based on rainfall estimates from the National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction Center, which combine rain gauge
data and multiple types of satellite data (with a final resolution of 0.1 decimal degrees). I use
two variables provided by NOAA: 12-month total rainfall, measured in decimeters (dm), and
start of the wettest quarter, expressed in dekads (each month is divided into three dekads,
so that a dekad corresponds to a period of 8–11 days). To test the implications of the model,
I construct two measures of irregularities in growing conditions, corresponding to deviations
in the amount and timing of rainfall from previous conditions for each household. The first
of these variables is calculated as the absolute deviation of 12-month total rainfall from the
household’s long-term average value of 12-month total rainfall estimates. Depending on data
availability, the average value covers the past 10–15 years. The second variable is constructed
in the same way using start of the wettest quarter (which typically corresponds to the begin-
ning of the main growing season). Figure A.2 shows the resulting distributions of irregularities
in the amount and timing of rainfall. For the regression analysis, both variables are rescaled so
that values are expressed in units of standard deviation.

Plot characteristics. Observed plot characteristics include size, distance to farm house, own-
ership status, and a number of properties such as soil quality, slope, and erosion (a full list of
the included plot-level variables is provided in Table A.2). All of these variables are based on
farmer-reported values (for plot areas, GPS estimates by enumerators are frequently missing
in the data sets, for example, due to flooding, security concerns, or because plots are located
too far away from the household). In Malawi, Nigeria, and Tanzania, the data are collected at
the plot level. In Uganda, the corresponding unit of observation is called parcel. I follow the
approach of other authors and aggregate information across plots belonging to the same par-
cel (see Sheahan and Barrett, 2017). The indicator for the distance of plots to the farm house
is based on the following information. In Malawi, Nigeria, and Tanzania, farmers are asked to
state the distance (in km) from each plot to the farm house. In Uganda, the corresponding
question refers to the time it takes to walk to the plot. To transform this into a comparable
measure, I assume an average walking speed of 4 km/h. For the other included plot-level in-
dicators, the underlying information is largely comparable across countries.

Household characteristics. Observed household characteristics include farm and household
size, number of cultivated plots, distance to the nearest road and market, educational back-
ground, food and nonfood expenditures, and age and gender of the household head (see also
Table A.2). Farm size includes only plots and parcels that are cultivated by the household in
a given season (i.e., excluding fallow, pasture, and forest land, as well as plots that are given
or rented out by the household). Information on household expenditures is based on a list of
specific food and nonfood consumption items, which differ across countries. The two expen-
diture variables included in the analysis are constructed as the total value of all mentioned
purchases of food and nonfood items, respectively, in each country. Local currencies are trans-
formed into U.S. dollars using yearly average exchange rates from the World Development In-
dicator database. Information on quantities and area that was collected based on local units of
measurement is transformed into standard units by using (as far as available) the conversion
factors provided in the LSMS-ISA database.
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Notes: Irregularities in the amount of rainfall are calculated for each household as the (absolute) deviation of 12-
months total rainfall (measured in decimeter) from the household’s long-term average value. Irregularities in the tim-
ing of rainfall are calculated as the (absolute) deviation of the start of the wettest quarter (expressed in dekads) from
the household’s long-term average value. See Appendix A.3.1 for more details.

Figure A.2

distribution of household-level rainfall irregularities

A.3.2 Robustness. To test the robustness of the link between irregular growing condi-
tions and modern input use (as discussed in Section 5) with respect to clustering of standard
errors, I repeat the regressions in Table 3 using spatially correlated standard errors with a
bandwidth of 100 km (instead of 50 km), and for standard errors clustered at the district level
(in Nigeria, the corresponding administrative unit is a state). In both cases, the estimated co-
efficients for deviations in the timing of rainfall remain significantly different from 0 at signif-
icance levels of at least 10% across all nine specifications (i.e., the nine columns in Table 3).
For deviations in the amount of rainfall, all specifications that were significant in Table 3 re-
main significant at the 10% level when standard errors are clustered at the district level. When
spatial standard errors with a bandwidth of 100 kilometers are used, the coefficient for devia-
tions in the amount of rainfall remains significant at the 10% level in the specification in col-
umn (9), but ceases to be significantly different from 0 in the specification in column (6).

The results for the selected plot and household characteristics reported in Table 3 appear
all to be very robust to alternative clustering of standard errors. Except for the coefficient of
secondary education in the specification in column (6), which was insignificant already in the
baseline, all estimates remain significantly different from 0 at the 10% level for both alterna-
tive ways of clustering standard errors.

It should be noted that using absolute deviations in rainfall patterns in the regression model
specified in Equation (11) assumes that the relationship is symmetric in the direction of de-
viation (e.g., both early and late timing of rainfall makes it more difficult for farmers to se-
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lect optimal cultivation practices). To assess the plausibility of this assumption, Table A.3 pro-
vides additional evidence on the shape of the link between rainfall irregularities and farmers’
input choices, focusing on the timing of rainfall. In particular, the estimations in Table A.3
include five different indicators, allowing deviations with different directions (i.e., early and
late) and magnitudes (below or above the median deviation of 2 dekads) to have differen-
tial effects. According to the results, both early and late timing of rainfall tends to be nega-
tively related to modern input use (the omitted category comprises observations for which the
wettest quarter started within the same dekad as the long-term average value). For deviations
above the respective median of 2 dekads (around 20 days), the coefficients for negative and
positive deviations are very similar in size across the main specifications (columns (3), (6), and
(9)), which supports the use of absolute deviations in the regression model in Equation (11).
For smaller deviations (1–2 dekads), the coefficients for early timing are always significantly
negative, whereas the coefficients of late timing are not statistically different from 0 when con-
trolling for household and plot characteristics (columns (3), (6), and (9)).
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