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Abstract

We examine how the adverse impacts of weather shocks are distributed through the trade

network. Exploiting a rich, theoretically derived, fixed effects structure, we find signifi-

cant negative short-run effects of high temperature on exports. A month with an average

temperature above 30 °C implies export losses of around three percent. These effects are

increasing in the labour-intensity of exports. Using our structural Gravity model, we assess

the general equilibrium incidence of these temperature shocks. We find that equilibrium

adjustments reduce the economic costs by around 20 percent, but significant costs arise

also for countries not directly exposed to high temperatures.
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1 Introduction

Climate change is a global problem. The emission of greenhouse gases impacts ecosystems and

economies around the globe, independently of the location of the emitter. In order to infer the

sensitivity of economic activities to climate change a growing literature studies how weather in

general, and temperature in particular, affects aggregate economic outcomes.

Most studies in this field analyse local outcomes of local weather variation (Dell et al., 2012;

Burke et al., 2015). But economies are not isolated from each other. As international trade

links the fortune of economies, the economic impacts of local weather events may spillover and

disseminate through the global trade network, creating a spatial disentangling of the occurrence

of weather events and their full economic consequences. In order to comprehensively assess

the economic costs of weather events, we need to understand the propagation of the costs of

these events across borders.

International trade is an important source of welfare for both exporting and importing coun-

tries. However, if extreme weather events disrupt the production of goods and subsequently ex-

ports and if international trade creates economic gains for both trading parties — as, at least in

the aggregate, standard economic theory suggests — then these weather events may have eco-

nomic consequences for the importing country, potentially far away from the actual geographic

location of the event. But standard economic theory also suggests that, in order to minimize

economic costs of the shock, consumers are able to adjust and substitute, at least partially, to-

wards suppliers not directly exposed to the extreme event. An analysis of the transmission of

these costs needs to take into account substitution options, the subsequent price changes and

new market equilibria. Our study is — at least to our knowledge — the first that provides robust

ex-post empirical evidence of the international transmission of the costs of extreme weather

events. Based on a refined structural Gravity model we show that high temperature events in

one country cause economically and statistically significant costs also in countries not directly

exposed to the event.

Understanding the spatial spillovers of local weather events has important consequences

for cost-assessments of climate change and thus the decision-making of policy makers. As

the frequency and severity of extreme weather events is likely increasing with further global
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warming — a relatively undisputed argument in particular regarding heat waves (IPCC, 2021)

— the propagation of the costs of extreme weather events through the global trade network is

relevant for a comprehensive account of the social cost of carbon (SCC), a key figure used in

cost-benefit analysis that puts a monetary value on the impacts of climate change caused by one

ton of carbon (Wagner et al., 2021). In the U.S., the former Trump administration revised the

official, formerly global, SCC figures, considering only climate impacts that occurred domesti-

cally in continental United States. This has been reversed by the Biden administration, mainly

based on ethical and fairness arguments. But if costs of climate change are propagated through

international trade and hence also borne by countries not directly affected, this provides an ar-

gument to take into account global climate impacts for the SCC calculation even from a pure

selfish perspective.1 It is therefore important to measure the extent of climate impacts on trade

flows and their propagation through the global trade system.

Many individual weather shocks are probably transient and are potentially difficult to iden-

tify in annual data. Typically, GDP data is available on a quarterly-level at best. In addition,

output and GDP data are often imprecise and suffer from substantial measurement error in

many countries (Jerven, 2013), some of which might be highly exposed to climate and weather

impacts. International trade data is known to be more accurate as the value of trade is often

recorded by both, the exporting and importing country. As bilateral trade data is increasingly

available with higher temporal frequency, looking at international trade provides a promising

avenue to gauge the impact of weather shocks on aggregate economic outcomes.

This paper therefore aims at answering three research questions: (i) Do extreme weather

events affect exports? (ii) If so, through which channels do these events affect bilateral trade

and which characteristics govern the effects? (iii) And, finally, what is the spatial incidence of

the costs of these events and how much of these costs arise in not directly exposed countries?

In order to identify both partial and general equilibrium effects of weather events on inter-

national trade, we build a structural Gravity model, where weather events affect monthly output

and, consequently, importers face supply losses from affected exporters. The model explicitly

describes demand and price shifts, as importers respond with substitution from other sources.

1See Kotchen (2018) for a theoretical analysis of this argument.
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This model is then estimated using five decades of monthly observations of bilateral trade

and weather data, including more than 20,000 country pairs and about 4.5 million observations.

Estimating a structural Gravity model provides a well-suited framework to identify the impact

of weather on aggregate economic outcomes as the identification builds on established trade

theory and a robust empirical relationship. While we perform the empirical analyses for various

types of extreme weather events, we focus on episodes of high ambient temperature in the main

part of the analysis. Theoretically consistent with our derived general equilibrium model, we

are able to exploit a rich and theory-derived fixed effects structure that allows to tightly estimate

the temperature impacts on monthly bilateral exports.

We find highly significant negative non-linear effects of high absolute temperature and ex-

treme temperature deviations in the exporting country on the value of contemporaneous gross

exports. In a month when the average temperature is at least 30 °C, exports decrease by 3.4

percent relative to a month with an average temperature below this threshold. Using an alter-

native specification of extreme deviations from country-specific mean temperatures, we find

that a top-percentile temperature shock in the export country reduces the export value by 2.1

percent.

We then examine if specific exporter characteristics govern the effect size and find that the

impact rises with the labour-intensity of the exports. This is consistent with the notion that

short-run temperature impacts on exports might be governed by labour productivity or labour

supply effects in the exporting country due to of physiological heat stress, as suggested by

substantial micro-empirical evidence.

Equipped with these estimates, which inform our structural Gravity model, we compute the

counterfactual global trade equilibria in absence of a high temperature event. This allows us to

calculate the cost-incidence of such an event for the country directly exposed to the tempera-

ture shock as well for countries only indirectly exposed through trade links with the affected

location. Measuring costs as losses in trade relative to the counterfactual scenario without tem-

perature shock, we find that the mean high temperature shock has statistically significant global

costs of 360 million USD. About two-thirds of these costs appear in countries not directly ex-

posed to the temperature event, suggesting that substantial parts of the costs of these shocks are

3



transmitted and propagated through the trade network.

In a final step, we analyse the magnitude of these spillovers under climate change projec-

tions based on twenty-year monthly temperature averages from global climate models. We

find that under a middle-of-the-road climate projection of the period 2020-2039, annual global

trade is reduced by about 735 million USD due to additional high temperature events relative

to 2015.

Literature review. Growing micro- and plant-level evidence suggests that high ambient tem-

perature has detrimental impacts on labour productivity and supply. Using survey data on time

allocation of individuals, Zivin and Neidell (2014) find evidence for a substantial reduction

of labour supply in climate-exposed industries such as agriculture, construction and manufac-

turing in non-climate-controlled facilities on days with maximum temperature above 85 °F

(29.4 °C). However, over time, humans seem to be able to adapt physiologically to higher

temperatures, mitigating performance losses, at least in certain environments. Analysing the

performance of track and field athletes, Sexton et al. (2022) find that acclimatization can reduce

temperature-induced performance losses by at least 50 percent.

Given the evidence on the temperature-productivity relationship of individuals, one might

suggest that such temperature effects prevail also on plant-level. Looking at the near-universe

of Chinese manufacturing plants from 1998 to 2007, Zhang et al. (2018) find an inverted U-

shape relationship between temperature and total factor productivity (TFP). Their estimates

show that for the average plant on a day with maximum temperature above 90 °F (32.24 °C),

TFP decreases by 0.56 percent relative to a day with 50-60 °F (10-15 °C), translating into an

estimated output loss of 0.45 percent for the average plant. Similar findings are documented

using firm-level data from India. Somanathan et al. (2021) provide evidence that annual plant

output falls by about 2 percent if every day would warm by 1 °C. This loss appears to be driven

by a reduction in the output elasticity of labour due to an increasing rate of absenteeism and a

decrease in labour productivity.

This research provides the micro-economic foundation of the macro-level impact of high

ambient temperatures on economies. Measuring aggregate impacts of temperature changes

on economic growth rates has been the aim of a number of influential studies such as Dell
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et al. (2012) and Burke et al. (2015). Assuming a log-linear relationship of temperature and

economic activities, Dell et al. (2012) find a substantial negative effect of temperature changes

on GDP growth, but only in poor countries: a 1 °C rise in annual average temperature reduces

economic growth by about 1.3 percentage points. Burke et al. (2015) argue that the aggregate

impact of temperature on economic outcomes is non-linear, suggesting a concave function

with economic productivity peaking at 13 °C. Based on sub-national data, Kalkuhl and Wenz

(2020) support the evidence that temperature variation affects aggregate outcomes in a non-

linear fashion.

However, this literature focuses on local effects of local events. Given the economic rele-

vance of international trade, focusing on local temperature might provide an incomplete picture

of the impacts of weather events on the economy. As Jones and Olken (2010) say: ”interna-

tional trade links the fortunes of countries providing important conduits for geographically lim-

ited climatic impacts to have global economic effects.” Using reduced-form regressions with

product-level export panel data they find that export growth is reduced by 2.0-5.7 percentage

points in poor countries if annual temperature increases by 1 °C. Product-level analyses show

that this is driven in particular by adverse effects on agriculture and light manufacturing. This

finding has been confirmed by Dallmann (2019), who additionally controls for temperature (and

precipitation) impacts at the importer location. Also using a linear temperature specification in

an annual time-scale, she finds that each 1 °C warming in the exporter country reduces bilateral

exports by 3.1 percent, but does not find significant effects of the importer’s temperature.

Our paper differs in five important aspects from these previous studies. First, our estima-

tion is derived from a theoretically consistent general equilibrium trade model. The derived

estimated Gravity equation has been proved to be empirically robust in many applications in

international economics. Jointly with our tight, theoretically derived, high-dimensional fixed

effects structure, this should minimize omitted variable bias, improve identification and gener-

ate robust estimates of the weather variation effects on an aggregate economic outcome such as

exports.

Second, we use data with a monthly temporal resolution while most of the previous macro-

level studies rely on annual data. Heat waves typically last only for a few weeks. But as
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aggregate statistics such as GDP are only available on a quarterly or even annual basis, it may

be challenging to identify the effects of those events in aggregate data. The few existing studies

using monthly trade data do either not analyze global data (such as Karlsson (2021), focusing

on U.S. exports), or do not study temperature effects (Tembata and Takeuchi, 2019; Felbermayr

et al., 2020).

Third, previous studies show that the functional relationship between aggregate economic

outcomes and temperature remains heavily debated. Newell et al. (2021) test several hundred

functional forms and find that non-linear temperature specifications dominate the model set in

terms of predictive ability. Based on our large data set, we estimate the effects of single °C

bins, thereby allowing for a high degree of flexibility in the functional form.

Fourth, while we, similar to Jones and Olken (2010), find evidence for larger effects of

high temperature events on exports of manufactured goods, we use a more direct approach

to identify labour-productivity effects as a key channel. Using input-output data we find that

high labour-intensity of exports correlates with a stronger negative impact of high temperature

events on exports.

Fifth, and of particular relevance, by exploiting our estimated structural model, we simulate

the equilibrium adjustments caused by a high temperature episode. This enables us to estimate

the cost-incidence of such events also for countries only indirectly affected, taking into account

their opportunities to adjust imports in response to a shock abroad.

Besides contributing to literature on weather effects on international trade, our paper adds

to a growing literature that studies the spatial transmission of natural shocks such as disasters

or weather extremes more explicitly. This is particularly relevant as impacts of climate change

are and will be unevenly spread across countries and, as Costinot et al. (2016) point out: ”[i]n

a globalized world, the impact of micro-level shocks depends not only on their average but

also on their dispersion over space.” Using a spatially highly-resolved crop field model, they

study general equilibrium adjustments of crop productivity shocks from climate change. They

show that adjusting planted crop types in response to changes in comparative advantage is an

important force to reduce costs of climate change in agriculture. Relative to this, international

trade plays only a minor role in alleviating the consequences of climate change. However,
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we do not address this margin explicitly as in our model each country produces a specific,

non-homogeneous good. Thereby, we implicitly abstract from adjustments in the domestic

production processes.

At the firm level, Barrot and Sauvagnat (2016) find that when one of their suppliers is

hit by a large natural disaster, firms experience an average drop of 2-3 percentage points in

sales growth. This is supported by findings of Pankratz and Schiller (2019) who show that

firm-performance is negatively affected if large suppliers of these firms have been exposed to

extreme weather events but also that the downstream firms respond and adjust their supply

chains to less exposed suppliers. While these papers study firm-level responses to exogenous

shocks, we focus on aggregate impacts on the macro-level.

Also using a computable general equilibrium (CGE) model informed by climate impact

projections, Schenker (2013) points out that international trade may redistribute parts of the

climate impact costs such that for some regions these imported impacts can be responsible for

one-sixth of the total cost of climate change. This is in line with Knittel et al. (2020) who apply

a CGE model in order to study how German trade would be affected by future climate-change-

induced labour productivity losses. They find that although Germany is relatively less affected

by these impacts and thus gains relative comparative advantages in labour-intense manufactur-

ing, the total absolute impact on welfare is negative due to absolute import losses. Different to

these studies, which rely on carefully calibrated models of future climate conditions, we exploit

past weather and trade data to estimate the dispersion of these effects across space.

The remainder of the paper develops in section 2 the analytical general equilibrium Grav-

ity model from which we derive our estimation equation. Section 3 discusses the empirical

approach and introduces the estimation framework. Section 4 presents the data and the con-

struction of the variables. Section 5 shows the estimated temperature effects on bilateral trade.

These estimates lay the groundwork for the counterfactual simulations, presented in Section 6,

including ex-ante simulations based on future climate projections. Finally, section 7 concludes

the analysis.
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2 Model

We build on a simple general equilibrium trade model where each country produces a specific

variety which is traded with the rest of the world — i.e. goods are differentiated by origin as

in Armington (1969). Consumers have constant elasticity of substitution (CES) preferences for

these country-specific goods. The CES-Armington general equilibrium model, whose theoret-

ical underpinning goes back to Anderson (1979), is the workhorse model in structural Gravity

research (Head and Mayer, 2014). We extend this model in two important dimensions: First, we

model how weather shocks can affect the production of output. Second, we take into account

intra-annual variation in production and consumption.

Consumption. Each point in time can be characterized by the set union of year index t ∈

{1,T} and calendar month m ∈ {1,12}. Each country j ∈ {1,N} is populated by a represen-

tative agent with CES utility. As we explain below, the model controls for important known

determinants of weather shocks such as the geography and intra-annual climate variation. Thus,

the realisation of a weather shock is ex-ante unknown and economic agents are myopic with

respect to the occurrence of these idiosyncratic weather shocks. Hence, we assume that the

representative agent maximizes her utility at each point in time independently of past or future

expectations or decisions.

Thus, utility of the representative agent in country j in year t and month m is described by

U jtm =

(
N

∑
i=1

λ
1−σ

σ

i C
σ−1

σ

i jtm

) σ

σ−1

, (1)

where Ci jtm denotes country j’s consumption of the specific variety imported from country

i at point in time {t,m}. This consumption expression can be decomposed in two components:

First, there is aggregate annual consumption of good i in j in year t, Ci jt . Second, holiday

seasons, accounting or exogenous inventory management motivations, as well as other factors

shape the intra-annual demand variation, captured by the exogenous consumption shifter φ jm,

which is normalized such that ∑
12
m=1 φ jm = 1. Hence, Ci jtm = Ci jt φ jm. λi > 0 describes an

exogenous preference parameter for goods from country i and σ > 1 is the elasticity of substi-
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tution among varieties of different origins.

While trade balances are exogenously fixed across years, we assume that intra-annually

countries can run trade balance surpluses or deficits. Thus, consumers in j maximize equation

(1) subject to the annual budget constraint ∑i τi jt pit Ci jt = E jt , where E jt is total annual expen-

diture for consumption, pit denotes factory-gate prices of good i and τi jt are iceberg trade costs.

Important determinants of these trade costs are time-invariant characteristics such as the geo-

graphical distance between exporter and importer and common cultural attributes. In addition,

trade costs may also have a time-varying component as new trade agreements come into force

or improvements in infrastructure reduce transport costs. Note that we assume that bilateral

trade costs change only annually rather than monthly. While in reality, trade agreements or

infrastructure improvements come into force in a particular month, this assumption simplifies

our identification strategy.2 We also assume that factory-gate prices pit are sticky and change

only annually as menu costs impede price adjustments and contractual agreements fix prices

for certain periods.3

Solving the representative agents optimization problem yields annual demand

Ci jt =

(
λi τi jt pit

Pjt

)1−σ

E jt , (2)

where the associated consumer price index in country j is given by

Pjt =

(
N

∑
i=1

(λi τi jt pit)
1−σ

) 1
1−σ

. (3)

For given prices, we can thus define the propensity of country j to spend on imports of good i

at date {t,m} with θi jtm = pit τi jt Ci jt φ jm.

Output and weather shocks. But j’s import spending propensity for good i cannot be sat-

isfied in any case. First, also the production in i is exposed to exogenous, intra-annual shifts

2Most trade costs changes are long-term and their temporal implementation probably uncorrelated to monthly
weather variations. This assumption should therefore not lead to biased estimates of weather impacts.

3As seen below, presumably temperature-induced labour-productivity effects in the manufacturing sector are
a key determinant of the measured aggregate impact on trade. These goods are often relatively specific and are not
traded on global spot markets but have rather sticky prices. For instance, Apel et al. (2005) find that the median
Swedish firm in their sample adjusts prices just once a year.
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and subject to seasonal variation. This is most obvious in the case of agricultural production

which depends on harvesting cycles. Other drivers of these country-specific intra-annual cy-

cles are holiday seasons or annual cyclical weather impacts which also affect production and

transport infrastructure such as tropical cyclones. This is captured by the weight parameter ϕim,

which describes the exogenous monthly country-specific variation of output, normalized such

that ∑
12
m=1 ϕim = 1.

Second, there are potential weather shocks affecting output beyond these cyclical patterns.

Let us assume that Witm = exp(ρ 1itm(Ditm)) describes the potential weather shock affecting

output in country i in year t and calendar month m. If the indicator 1itm(Ditm) is equal to

one a weather shock materialises and production of good i is exposed to the extreme weather

event Ditm. In general, this could be a month of extreme high or low temperature, heavy or

poor rainfall, or high wind speed. Otherwise, 1itm(Ditm) = 0. The parameter ρ measures then

the weather shock’s impact on output. Identifying ρ is one of the key aims of our empirical

exercise.

Let us denote Xitm as the total free on board (f.o.b) value of exports of i. Then, Xitm =

∑ j Xi jtm, where Xi jtm is the value of actual bilateral exports net of intra-annual supply shifts and

weather shocks from country i to j.

International trade. Hence, for given prices, actual exports of country i to j at time {t,m}

can be expressed as Xi jtm = θ jitm ϕim Witm. Solving for θ jitm and plugging this into the demand

equation (2) leads to

Xi jtm =

(
λi τi jt pit

Pjt

)1−σ

E jt φ jm ϕim Witm. (4)

Annual total exports of country i in year t are thus

Xit =
N

∑
j=1

12

∑
m=1

ϕim Witm

(
λi τi jt pit

Pjt

)1−σ

E jt φ jm.
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After rearranging this expression and dividing by (λi pit)
1−σ , following Anderson and Van Win-

coop (2003), we define the term on the right hand side as

Π
1−σ

it =
N

∑
j=1

12

∑
m=1

(
τi jt

Pjt

)1−σ

E jt φ jmϕim Witm, (5)

the so-called outward multilateral resistance term. Since (λi pit)
1−σ = Xit/Π

1−σ

it , we plug this

into equation (4) and get the Gravity equation that describes the monthly exports of country i

to j:

Xi jtm = Xit ϕim Witm E jt φ jm

(
τi jt

ΠitPjt

)1−σ

. (6)

Equation (6) is the equation we are going to estimate.It is this equation that transmits the

weather shock from the exporters location to the importer, affecting the availability of goods

from i. Assuming that ρ < 1, the occurrence of a weather shock in i reduces bilateral import

of j by exp(ρ) at that particular point in time. Ceteris paribus, households in j face a potential

import loss. But ignoring the general equilibrium response from substitution and price adjust-

ments may be misleading. With a positive σ , consumers in j are able to substitute goods of

different origin, so a weather-caused shortage of supply from one country can, at least partially,

be compensated by imports from other locations.

Similarly, we can derive the inward multilateral resistance term P1−σ

jt by plugging in (λi pit)
1−σ =

Xit/Π
1−σ

it into equation (3).

P1−σ

jt =
N

∑
i=1

12

∑
m

(
τi jt

Πit

)1−σ

Xit ϕim Witm φ jm. (7)

As shown by Fally (2015) and others, accurate estimates of equation (6) allow to consistently

reveal a comprehensive specification of the model described by the equations (5)–(7). This

system of equations captures the effect of weather shocks on exports via two channels. First,

as a first-order effect weather shocks affect bilateral trade since the shock affects output and

thus directly exports of country i to j as can be seen in (6). Second, important components

of (6) are the multilateral resistance terms (5) and (7). An adverse weather shock in country

i lowers outward multilateral resistance, thereby having a diminishing effect on exports to all
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other trading partners of i, and, holding everything else constant, raising bilateral trade between

i and j.

Model closing. Equations (5)–(7) already take into account that a weather shock in a third

country affects bilateral trade of not directly exposed countries via the multilateral resistance

terms, taking prices and income as given. But as the weather shock reduces supply and shifts

demand, the prices of country-specific varieties pit need to adjust in a new equilibrium. As

annual trade balances must hold, aggregate expenditure needs to adjust, leading to a ripple

effect of the weather shock through the trade network.

Market clearing demands that good prices pit are equal to

pit =

(
Xit

Xt

) 1
1−σ 1

λiΠit
. (8)

Note that prices depend on aggregate exports Xit and the power-transformed outward mul-

tilateral resistance term Πit , two terms which are both affected by weather shocks in country

i. On the one hand, a weather shock-induced reduction in relative exports of country i pushes

up the price of the country-specific variety. On the other hand, it raises the power-transformed

outward multilateral resistance term in the denominator, pushing prices downwards.

The price adjustment then also affects aggregate expenditure expressed in terms of nomi-

nal income. Similar to Dekle et al. (2008), annual trade deficits and surpluses are treated as

exogenous.

Xit = ηitEit , (9)

where ηit captures the trade balance position. If exports Xit changes due to a weather shock,

aggregate expenditure must adjust as well. Hence, (5) – (9) define the system of equation that

characterize the general equilibrium system.

3 Estimation

Silva and Tenreyro (2006) propose the Poisson pseudo-maximum-likelihood (PPML) estimator

for Gravity equations such as (6) due to its robustness to heteroscedasticity and consistency in
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case of zero bilateral trade flows. Building on the properties of the PPML estimator, Fally

(2015) shows that using importer×year, exporter×year, and country pair fixed effects allow

for an unbiased identification of the structural Gravity model and its equilibrium constraints.

Based on these considerations, we extend this framework to our model.

Let us define the following expressions for the exporter×year and importer×year fixed

effects, respectively:4 exp(πit) ≡
(

Yit
Π

1−σ

it

)
×ERt and exp(ξ jt) ≡

(
E jt

P1−σ

jt

)
× 1

ERt
. As noted by

Anderson and Yotov (2010), the solution to the structural model is determined up to a scalar.

We thus impose PRt = 1 for an arbitrary benchmark importer R. The benchmark importer has

expenditure ERt in year t.

Hypothetically, most weather shocks have only a short-term impact on trade which might be

difficult to detect in annual data. Thus, our identification relies strongly on the exploitation of

monthly variation in bilateral trade. As we rely on monthly weather and trade data, this enables

us to employ a country-pair×year-fixed effects term.We define the country-pair×year-fixed

effects as exp(µi jt) ≡ τ
1−σ

i jt . Note that we can summarise exp(ζi jt) = exp(µi jt +πit + ξ jt) for

the Gravity estimations in cases we are not interested in the consistent estimates of the specific

fixed effects but aim to benefit from computational efficiency. However, in order to specify

the general equilibrium model for the counterfactual simulations later in the paper, individual

estimates of µi jt ,πit and ξ jt are needed.

In contrast to most other Gravity models that aim at explaining annual variation in bilateral

trade, we extend this framework by employing exporter×calendar month and importer×calendar

month fixed effects, respectively, in order to account for specific seasonal supply and de-

mand effects: exp(δim) ≡ ϕim and exp(ψ jm) ≡ φ jm, hence, ϕim and φ jm describe exporter-

and importer-specific calendar month fixed effects.

We are in particular interested in the transmission of weather shocks from the exporting

to the importing country. But as the volume of bilateral trade is negatively correlated with

distance of the two countries, a substantial amount of trade occurs over short distances such

as between neighboring countries. Since the correlation of the weather in two countries is also

decreasing with increasing distance, it might be useful to control for the state of the weather at

4In Appendix A.1, we show how these fixed effect definitions can be consistently derived from equation (6)
such that it reflects the information captured in the system of equations (5) – (7).
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the importing country, exp(ρ 1 jtm(D jtm)), the only control variable in our main specification.5

Armed with these expressions, we are able to define

Xi jtm = exp
(
ζi jt +δim +ψ jm +ρ 1itm(Ditm)+ρ 1 jtm(D jtm)

)
× εi jtm, (10)

where εi jtm is an error term. Note that this is a simple log-transformation and stochastic rep-

resentation of the previously derived Gravity equation (6). In order to identify the full general

equilibrium Gravity model we also estimate

Xi jtm = exp
(
µi jt +πit +ξ jt +δim +ψ jm +ρ 1itm(Ditm)+ρ 1 jtm(D jtm)

)
× εi jtm, (11)

which provides fixed-effects estimates that are used for a consistent identification of the gen-

eral equilibrium model. However, these differences have no impact on the estimation of ρ .

The country-pair×year and the calendar month×exporter and -importer fixed effects absorb

potential impacts of long-run climate trends, as well as the long-run adaptation to these trends.

Hence, the estimated effects need to be interpreted as almost immediate, short-run effects of

temperature on contemporaneous exports.

But it is possible that the weather shocks become effective only with a time lag, as the

shipment of the exposed goods needs time or storage and inventory delay the materialisation of

the effect. Possibly, the slump in bilateral trade due to a weather shock can also be compensated

over time. We therefore estimate also a lagged model up to L months after the event.

Xi jtm = exp[
L

∑
l=0

(ρl 1itm−l(Ditm−l)+ρl 1 jtm−l(D jtm−l))+ζi jt +δim +ψ jm]× εi jtm. (12)

The multiple high-dimensional fixed effect structure of the model aggravates the estimation

using standard Poisson regression estimation packages. Thus, we use the ppmlhdfe-package

(Correia et al., 2020) that allows for a fast estimation of PPML models in the presence of high-

dimensional fixed effects.Standard errors are three-way clustered (at the levels of importer,

5Thereby, we account for potential demand effects of weather. In presence of demand effects and positive
correlations of weather in the two trade partners, the estimation of supply-side effects on exports would be biased
upwards.
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exporter, and time step {t,m}), as proposed by Egger and Tarlea (2015).

4 Data

We measure international trade as the value of bilateral exports in current USD, excluding

freight and insurance (f.o.b.). We use publicly available data from the IMF’s Direction of

Trade Statistics (DOTS) (International Monetary Fund, 2022). The data set contains bilateral

export values of more than 20,000 country pairs from January 1960 to December 2016. We use

only monthly reported observations by the exporting country, i.e. we exclude estimated values

deducted from quarterly or annual data and entries which are reported only by the importing

country.6

Given the prior empirical literature on weather impacts on economic outcomes, we focus

our analysis on high temperature. Our main source of historical temperature data is the World

Bank’s Climate Change Knowledge Portal (CCKP) (World Bank, 2022a). The CCKP data is

based on the latest version of the global observational data sets from the Climate Research Unit

of the University of East Anglia (Harris et al., 2014) where the gridded data of monthly mean

temperatures are aggregated at country level.

The functional form describing how temperature realisations affect economic outcome is

still heavily disputed. Most of the previous literature that focused on aggregated outcomes

such as GDP has been assuming quadratic or other polynomial functions. However, this rela-

tionship does not seem to be very robust, as Newell et al. (2021) note. In contrast, most of the

modern plant and micro level studies use temperature bins of usually 5 °C width. Our large

data set allows for even more flexibility. In our initial model specification, we estimate the tem-

perature elasticity of exports (and imports, added as a control) using 1 °C bins of monthly mean

temperature, starting from -15 °C and below to +35 °C and more. Informed by the estimation

results of this very flexible model specification, we conclude that we are able to capture great

parts of the estimated effect by defining a simple threshold of 30 °C for identifying adverse tem-
6Based on personal communication with the IMF staff, we differentiate carefully between missing observa-

tions and zero exports. For the period after 1999, missing values can be interpreted as non-existent trade except
for country pairs without positive trade over the entire sample period. Hence, we can safely identify zero trade
flows after 1999, but have to drop non-positive observations in the period until 1999. Figure A.1 in the Appendix
shows the value of exports and number of exporting countries over time in the data set.
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perature events. Therefore, in the subsequent estimations, we use a single binary variable to

identify these episodes of high absolute temperature. That definition of hot months in absolute

terms applies to ca. 1.5 percent of the estimation sample.

However, countries might be able to adapt to hot ambient temperatures — e.g. by adjust-

ing the sectoral composition of the economy or by adjusting production processes such as an

increased use of air conditioning. In effect, countries which are frequently exposed to high tem-

peratures may be more able to cope with these shocks. Moreover, only a subset of countries

(those in warm world regions) may actually experience such high average temperature levels.

In a complementary specification, we therefore identify for each country those months which

belong to the top-percentile of the country-specific temperature distribution. This temperature

variable is evenly distributed on world regions by construction.7 These events are interpreted

as abnormally hot months, given the country-specific temperature distributions. Consequently,

we estimate the impacts of months with abnormally hot temperatures, using months in the 1st

to the 99th percentiles as baseline category.

Figure 1 depicts the frequency of both types of temperature events over time for a balanced

sub-sample of our data set. Due to global warming, the probability that a given month is defined

as a high temperature event is increasing in the last decades. In the Appendix, we also depict

the distribution of both temperature events over calendar months (Figure A.2).

As our empirical strategy relies heavily on fixed effects, the two data sets on trade (IMF

DOTS) and temperature (CCKP) are generally sufficient for estimating the overall effects of

temperature on bilateral exports. However, we are also interested in identifying potential mech-

anisms that affect the magnitude of the temperature shock on exports. For this, we add various

additional data. First, as weather is particularly important in the production of primary goods,

we include the value added of agriculture, forestry, hunting and fishing as percentage of GDP,

provided on an annual basis by the World Development Indicators (World Bank, 2022b). Sec-

ond, we add data on the product composition of annual exports in the four preceding years

to approximate the relative importance of economic sectors for exports (UN Comtrade, 2022).

Third, we match our data with the annual ND-GAIN index which summarizes a country’s

7Given the structure of the data set, there are mostly seven such temperature events per country.
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Figure 1: Temperature events 1981-2016

Number of months with mean temperature of at least 30 °C and top-percentile temperatures. The graph is restricted
to a balanced sample of 155 countries with non-missing temperature data in 1981-2016.

vulnerability to climate change (Notre Dame Global Adaptation Initiative, 2022). Finally, we

approximate the labour intensity of annual exports using input-output data from GTAP (Aguiar

et al., 2019). In more detail, we combine the exporter- and sector-specific labour intensities

(measured as shares of labour input to total inputs) and the importer-specific sector shares of

total exports for each country-pair-year combination.8

Table A.1 in the Appendix provides an overview on the descriptive statistics of key variables

used in the empirical analysis.

5 Estimation Results

The results section is structured as follows. First, we estimate the contemporaneous effects

of temperature on exports, using various specifications of the temperature impact. Second,

going beyond short-term impacts, we estimate finite distributed lag models. Subsequently, we

employ interaction models in order to study potential heterogeneous effects of high temperature

to better understand the underlying impact channels. Finally, we briefly present results on the

effects of other weather phenomenons, such as extreme precipitation and wind speed.

8GTAP data is only available for the years 2004, 2007, 2011, and 2014. Therefore, the number of observations
is considerably smaller when labour-intensity is included in the estimation.
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5.1 Contemporaneous temperature effects

Figure 2: Contemporaneous effects of temperature on exports per 1 °C.

Estimated coefficients for each individual °C realisation in the exporting country with its 95 percent confidence
interval, using 20 °C as baseline (N=3,821,155). For reasons of clarity, the plot is restricted on shown range of
effect sizes; the unrestricted plot (also showing estimated temperature effects at the importer location) is depicted
in Figure A.3 in the Appendix.

Figure 2 shows the non-linear impact of country-wide average monthly temperature on

exports, accounting for each possible temperature realisation from -15 °C and colder to +35

°C and warmer. We use 20 °C as baseline category as at this temperature no substantial ef-

fects (e.g., on labour productivity) are expected based on prior literature, and there is a sizable

number of observations in this category. In an alternative specification, we aggregate the tem-

perature data into ten bins each spanning 5 °C, using 15-20 °C as the baseline category (see

Figure A.4).

Inspired by these results, we conclude that absolute temperature effects on exports may

predominantly occur during months which are characterised by average temperature at 30 °C

and higher. Therefore, we estimate a more parsimonious specification where a single binary

variable indicates whether such an event occurred (Dt30
itm) that we define as a temperature shock

subsequently. Based on this model, hot months with average temperature equal or above 30 °C

face a reduction in exports by 3.4 percent (p = 0.001), compared to mean temperature below

30 °C (see column (1) in Table 1). There are also statistically significant effects of weather

at the importer location, which corroborates our strategy to control for the importer’s weather.
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Table 1: Contemporaneous temperature effects on exports

(1) (2) (3) (4)
Abs. Temp. Abn. Temp. Both Interaction

Dt30
itm -0.0336 -0.0253 -0.0166

(0.0100) (0.0124) (0.0140)
Dt30

jtm -0.0124 -0.0092 -0.0095
(0.0056) (0.0058) (0.0059)

Dp99
itm -0.0210 -0.0206 -0.0203

(0.0076) (0.0076) (0.0077)
Dp99

jtm -0.0149 -0.0148 -0.0149
(0.0064) (0.0064) (0.0063)

Dt30
itm×Dp99

itm -0.0236
(0.0190)

Dt30
jtm×Dp99

jtm 0.0019
(0.0089)

Observations 3821155 3821155 3821155 3821155

The dependent variable is bilateral exports in current USD. Index i ( j)
indicates the exporting (importing) country. Standard errors in paren-
theses.

Nevertheless, temperatures at the exporter location exhibit larger and — regarding different

model specifications — more robust effects on trade.

The effect on exports is about an order of magnitude greater than the plant-level effect

estimated by Zhang et al. (2018) from a day hotter than 32 °C. Reasons for this difference

could be either an increasing impact of longer episodes of hot temperature as we only take into

account entire months with high temperatures, or it could be that ripple effects through supply

chains amplify the impact. However, the results are broadly in range with Jones and Olken

(2010), estimating a decline of exports of 2 to 5.7 percent per 1 °C increase, as well as with

Burke et al. (2015) who discuss significant negative effects of temperatures above 30 °C on

GDP growth, labour supply and labour productivity.

As discussed in section 4, episodes with a monthly and country-wide mean temperature

of at least 30 °C may occur only in specific regions. Therefore, we assess the effects of ab-

normally high temperature shocks, identified by observations in the highest percentile of the

country-specific temperature distributions. This specification, presented in column (2) in Table

1, confirms a contemporaneous short-run non-linear temperature effect on exports.

Comparing columns (1) and (2) in Table 1, the question arises whether the two specifi-
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cations describe the same economic processes, or whether the effects of absolutely and ab-

normally high temperatures are independent impacts. In the latter case, the underlying im-

pact channels may differ, indicated by significant marginal effects in an estimation including

both temperature specifications. Therefore, in column (3), we include both absolutely and ab-

normally high temperature, and in column (4) we additionally study the interaction between

them. For exporters, both temperature variables (Dt30
itm and Dp99

itm ) remain individually signifi-

cant. Moreover, the effects are independent from each other as there is no statistically signif-

icant interaction effect. Hence, both effects can be observed in the short term: a substantial

effect on exports from episodes of absolute hot temperature, and a somewhat smaller effect of

months of abnormally high temperatures, given the country-specific temperature distribution.

In the Appendix, we also test a temperature impact model with a linear, as well as a

quadratic specification, as often assumed in the literature — see, for example, Missirian and

Schlenker (2017) or Burke et al. (2015). The results, presented in columns (1) and (2) in Ta-

ble A.2 in the Appendix, confirm a non-linear effect of temperature on exports. Moreover,

we assess the question whether the effects of absolute and abnormally hot months affect the

extensive or intensive margin or both.Therefore, we estimate linear probability models of the

binary variable whether there is trade between countries (columns 3 and 4), and restrict the

sample to positive export flows (columns 5 and 6). The results (see Table A.2 in the Appendix)

suggest that the effects stem from changes at the intensive margin: Temperature events have no

significant impact on the decision whether exports occur or not, but reduce the value of exports

in the subsample of positive export flows.

Equipped with this series of estimation results for contemporaneous effects of temperature,

we obtain one robust finding: Months with high temperatures, either measured in absolute or

relative terms, lead to a statistically and economically significant reduction of exports relative

to months facing lower (or less extreme) temperature levels. This effect is well captured by the

parsimonious models focusing on Dt30
itm or Dp99

itm (columns (1) and (2) in Table 1). Reviewing

the prior literature on temperature effects on macro-economic outcomes (see literature review

in section 1), reveals a clear focus on absolute temperature specifications, as there is a sound

and robust micro-economic and physiological empirical foundation of these effects, while there
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is less theoretical and micro-econometric support for economic impacts from abnormally high

temperatures. Therefore, in the remainder of the analysis, we are going to focus on impacts of

high absolute temperature (Dt30
itm). However, we replicate all analyses with specifications based

on abnormally high temperatures, report the results in the Appendix, and highlight potential

qualitative differences.

5.2 Lagged temperature effects

We have shown that months of high temperatures have a detrimental effect on exports in the

month of their occurrence. However, it is important to understand the duration of these impacts.

Are they only short-lived or do they have longer term consequences? For assessing this ques-

tion, we estimate a finite distributed lags model with four months before and twelve after the

temperature event. To reduce computational complexities, we rely on the parsimonious model

with a dummy for months with average temperature greater or equal 30 °C. Figure 3 depicts

the estimated coefficients, relative to a month where temperature has been below 30 °C.

Figure 3: Lagged impact on exports of an average monthly temperature of at least 30 °C

Estimated effects of a hot month on exports, including 95-percent confidence intervals. The effects are relative to
a month with a temperature below 30 °C. Lagged impacts of hot months at the importer location are depicted in
Figure A.5.

The estimation confirms the contemporaneous effect of a temperature shock on exports in

the month of the event (-6.7 percent, p = 0.031). We also find a lagged negative effect three

months after the event (-5.5 percent, p < 0.001) and a positive effect after seven months (+4.2
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percent, p = 0.009). The estimated effects prior to the temperature event, serving as placebos,

are statistically non-significant. The cumulative effect over the period of one year after the

event remains negative, albeit at non-significant levels (see Figure A.6 in the Appendix). We

conclude that temperature shocks on exports manifest mainly in the short term during and

directly after the event. The effect is neither substantially aggravating over time nor is there

any evidence of a substantial catching up or compensation for lost exports in post-event months,

such that the cumulative effect after one year is in the same order of magnitude as after a few

months. For abnormally high temperatures, the analysis of lagged effects yields similar results:

The effect proofs to be short-lived and only existent for exporters (see Figures A.7 and A.8 in

the Appendix). However, the initially negative effect of abnormally hot months is followed by

some (statistically non-significant) positive lagged effects, such that the cumulative effect after

one year of the event is not statistically different from zero.

In summary, it can be stated that across all model specifications the temperature shock in

the exporting country is more relevant than in the importing country, supporting similar find-

ings based on reduced-form, parsimonious estimates with annual trade data (Dallmann, 2019).

These identified temperature impacts are relatively short-lived. Consequentially, we focus in

the remainder of the analysis on the contemporaneous temperature effects in the exporting

country. However, we keep the temperature in the importing country as a covariate in all esti-

mations.

5.3 Heterogeneous effects of temperature

So far, we estimated average effects of high temperature events on exports across the full sam-

ple. But the effect magnitude might be conditional on country or trade flow characteristics.

Understanding these differences allows us to infer more precisely about impact channels and

economic mechanisms translating the temperature shock in economic outcomes.

One important impact channel identified by prior micro- and plant-level evidence suggests

that high absolute ambient temperature reduces productivity and supply of labour (Somanathan

et al., 2021; Zhang et al., 2018; Zivin and Neidell, 2014). Hence, we incorporate the labour

intensity of year- and importer-specific exports (labourinti jt). If labour productivity (or sup-
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Figure 4: Estimated effect of an average monthly temperature of at least 30 °C on exports for
different levels of labour intensity

.

Estimated contemporaneous effects of Dt30
itm on exports for given levels of labour intensity, including 95-percent

confidence intervals. The effects are relative to a month with temperature below 30 °C. Labelled values at the
x-axis are the 5th, 50th, and 95th percentile of labourinti jt

ply) is a major determinant for the magnitude of the adverse temperature effect on exports as

suggested, the estimated effect should vary with the labour intensity of bilateral exports.9

We augment the basic estimation equation (10) with interaction terms of the heterogeneity

variable with Dt30
itm. Direct effects of labour intensity and other heterogeneity variables are not

estimated as they are perfectly collinear with fixed effects at country pair-year level.

We estimate marginal effects of Dt30
itm on exports over different levels of the heterogeneity

variable. Figure 4 depicts the results for labour intensity, and Figure A.10 in the Appendix

summarizes similar plots for the other potential heterogeneity variables.

The results suggest that the contemporaneous effects of absolutely hot months is indeed

governed by the labour intensity of exports. The interaction effect shown in Figure 4 is highly

significant (p = 0.003). A 10 percentage points increase in labour intensity of exports is as-

sociated with an increase of the adverse impact by approximately 5 percentage points. On the

9While we focus here on labour intensity given the micro-economic evidence, we similarly test for other po-
tential sources of effect heterogeneity in the Appendix. Inspired by Dell et al. (2012), we interact the temperature
effect with the annual income in the exporting country (gd pit ) and the annual share of agricultural production in
the exporter’s GDP (including forestry, fisheries and hunting, agriit ). We further hypothesize that the exporter’s
resilience towards climate change (measured by the annual ND-GAIN index, ndgainit ) may govern the response
to a temperature shock. Finally, effects may vary with the product composition of total exports (Jones and Olken,
2010). Therefore, we interact the temperature shock with product-specific shares of total exports in the preceding
four years (e.g., prFoodi jt for food and live animal products).
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contrary, there is no significant interaction effect with relative temperature extremes (Dp99
itm , see

Figure A.9 in the Appendix). This is broadly in line with prior micro-economic and physiolog-

ical literature (see e.g., Dunne et al. (2013)), which postulates that absolute temperature levels

are crucial for potential declines of work capacity.10 Hence, an unusually warm summer in a

cold environment would be treated as an extreme temperature event in Dp99
itm , but has no ex-

pected adverse impact on labour productivity. In a similar vein, Jones and Olken (2010) detect

a negative effect of high temperatures on exports of light manufacturing goods and speculate

that productivity effects of workers might be responsible. Our results provide further evidence

that labour productivity or supply is key for understanding the mechanism behind the identified

effects of temperature shocks on aggregated exports.

Most of the other analyzed variables show no significant interaction with the temperature

effect (Figure A.10 in the Appendix). In our structural Gravity model, the temperature effects

on exports do not significantly vary with economic development, the share of agricultural goods

in the exporting country’s production, or the exporter’s assessed resilience to climate change.

Similarly, most of the product category shares do not interact with temperature impacts — with

the exceptions of exports characterized by high shares of Crude Materials (more adversely

affected) and Mineral Fuels (less affected). These results, however, are compatible with the

interpretation that labour productivity is the underlying channel of temperature effects — as

labour intensity is relatively high for the former and low for the latter.

5.4 Extensions: Impacts of precipitation and storms

While we focus on the effects of high temperature, the data and the employed empirical method-

ology generally allow for an equivalent analysis of the impacts of other weather phenomena.

We are particularly interested in weather events that may be affected by climate change, and

therefore additionally assess impacts of extreme precipitation and storms. The employed data

and obtained results are summarized in Appendix A.4.

Regarding precipitation, we do not find any contemporaneous effects on exports or imports.

Considering the potential impact channels of hydrological events on production processes, this
10While other factors such as wind speed and humidity are important, substantial losses of work capacity are

generally only observed at absolute temperature levels of higher than 25 °C.
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non-effect may be plausible: precipitation is most relevant for the production of primary goods.

But these goods have certain growing periods, and their processing also needs time, such that

a contemporaneous effect of a lack of precipitation on the production and hence on exports is

unlikely. Extreme high precipitation, in contrast, may have adverse effects on trade, e.g. by

flooded transport infrastructure or production facilities. The fact that we do not find such an

effect may be due to an inaccurate measure of flood intensity. As a monthly mean value, our

precipitation measure may not properly indicate short-term extreme events which last only for

one or two days. Furthermore, for being harmful to the economy, the occurrence of intense

precipitation events must coincide with the location of vulnerable assets or infrastructure —

issues that are not sufficiently detectable by country-month averages.

Similarly, we find only limited evidence for the existence of storm impacts on exports.

Linear and quadratic specifications of monthly maximum wind speed values yield insignificant

effects. Extreme wind speed events, defined as being in the country-specific top percentile of

wind speeds, are without effect as well. However, we find non-linear effects of very intense

storms in absolute terms (of 140 knots maximum wind speed and higher) when analyzing a

flexible model using wind speed bins. In these months, exports decrease substantially (up to 7

percent), which may hint to impaired transport infrastructure or production facilities.

6 Counterfactual Simulations

Our previous analysis revealed that exports are negatively affected by extreme temperature

events. A high temperature episode in the exporting country reduces trade in the month of the

event. But the global costs of such an event remain unclear since importers are able to either

source goods from somewhere else or compensate for lost imports by purchasing more in later

periods from the same source. We studied possible compensation across time using distributed

lag models but did not find robust evidence for this (see section 5.2).

But importers could also seek for compensation across space. Although in our model im-

ports of different origin are imperfect substitutes only, buyers can adjust the source of their

imports and, at least partially, recoup losses on one trade link by additional imports from other
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sources. This demand adjustment has, of course, repercussions on relative prices and available

income, changing the world trade equilibrium.

Therefore, we compute the new global trade equilibrium resulting from a temperature

shock, the global costs, and their distribution on directly and indirectly affected countries. Fi-

nally, we approach the question how these global costs will evolve under climate change.

6.1 Methodology

As discussed above, and as shown by Fally (2015), we are able to retrieve from our PPML fixed

effects estimation of (10) the underlying structural Gravity model, described in equations (5) –

(9). See Appendix A.1 for the derivation of the model from the fixed effect estimation.

However, there are two parameters which we do not observe. One is the preference pa-

rameter λi, which informs the pricing equation (8). But we can rewrite equation (8) such that

it provides the price change relatively to the estimated baseline which is independent of this

structural parameter.

∆pit =

(
Xit X̂t

X̂itXt

) 1
1−σ Π̂it

Πit
,

where the hat ˆdenotes estimated parameters, i.e. the predicted exports and the estimated out-

ward multilateral resistance terms.

The second not retrievable key parameter is the elasticity of substitution between varieties

of different origin, σ . We take this from the literature and inform our model by the elastic-

ity estimate of Simonovska and Waugh (2014), who estimate it using disaggregate price and

trade-flow data. Their estimate yields an elasticity of roughly four. However, we are going to

conduct extensive sensitivity analyses and test the robustness of our findings with respect to

σ . Obviously, the ease of substitution from one good to another substantially influences the

magnitude of the effects.

Equipped with our estimated model and the additional parameter, we run counterfactual

simulations, computing the hypothetical trade equilibrium in absence of a high absolute tem-

perature event. This allows to assess the full international trade costs of a temperature shock,

accounting for equilibrium adjustments in the trade network. However, as we only observe
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international trade flows without the full local economic impact in the affected country, we

are not able to derive comprehensive welfare consequences of temperature shocks from our

simulations. Rather, our calculations provide the costs of temperature shocks in terms of lost

trade.11

To administer the counterfactual simulations and compute the new equilibria we need to

reduce the model dimensionality in terms of spatial and temporal coverage. First, we reduce

the number of countries incorporated in the analysis. This more parsimonious model covers

the bilateral monthly trade of 43 countries (listed in Table A.6 in the Appendix). The trade

within this sub-sample makes up roughly 90 percent of the global trade volume. With this

reduced data set we bootstrap 100 times the estimation of the structural Gravity equation (11)

with specific exporter×year, importer×year, and country-pair×year fixed effects. The mean

coefficient of the weather shock Dt30
itm on exports estimated with this smaller data set spanning

43 countries only is almost identical to the point estimator based on the full data set in our

preferred specification reported in column (1) of Table 1. In the next step, we select the year

2015 — the year where we have the best data coverage of monthly bilateral trade — for our

assessment.12

The bootstrapped fixed effects for 2015 plus the estimated temperature shock coefficient

calibrate our CES-Armington monthly-trade model described in section 2. As these estimated

coefficients, jointly with our assumed trade elasticity, fully and consistently specify our trade

model, we are ready to conduct counterfactual analyses. For each set of bootstrapped estimates,

we randomly draw an observed high temperature event in 2015, and compute the counterfactual

global trade equilibrium assuming this event would not have happened. We report the mean

loss of imports as well as the 95 percent-confidence interval for the country experiencing the

temperature shock (directly affected) and all other countries (indirectly affected).

11Note that in welfare terms — ignoring any frictions and rigidities — the maximum costs at stake for the
importing country are the total welfare gains from trade with the exporting country exposed to the weather event.

12The global climate in 2015 has been characterized by an El Niño situation — a phase of the El Niño–Southern
Oscillation (ENSO) climate phenomena that influences sea temperatures and weather in large parts of the globe
(Blunden and Arndt, 2016). As a consequence, 2015 saw heatwaves in France, high temperatures and drought in
South America, in particular in Argentina, Brazil, and Colombia, as well as severe drought in South Africa.
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Figure 5: General equilibrium trade losses of average high temperature event
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The left panel shows the aggregated global trade loss (summing up directly and indirectly affected countries) of
the average high temperature event (monthly mean temperature at least 30 °C). The left bar depicts the mean
estimate of lost imports before equilibrium adjustments (naı̈ve). The right bar shows estimated lost imports after
the equilibrium-adjustment (equil.). The right panel splits the aggregated losses into average losses for the directly
affected country and average aggregated losses for the indirectly affected countries. Bootstrapped 95 percent
confidence interval.

6.2 Global trade-loss incidence of local temperature shocks

Equipped with our estimated structural Gravity model, we aim at answering how a single high

temperature event changes the world trade equilibrium and impacts directly and indirectly af-

fected countries. As a first approximation for computing the global international trade losses of

the average temperature shock, an analyst could just sum up the reduction of imports from the

directly affected exporter across all importers, ignoring substitution and income effects. This

is shown in the left bar in the left panel of Figure 5. This ”naı̈ve” approach leads to aggregated

international trade losses of 2015-USD 454 million for the average high temperature event.

However, as the right bar in the same panel of Figure 5 shows, when equilibrium adjustments

are taken into account, importers are able to partially substitute their purchases from the di-

rectly exposed country to other sources, and global trade losses decrease to 360 million USD,

a reduction of about 20 percent relative to an assessment that ignores equilibrium effects.

This total amount of import losses appears in directly and indirectly affected countries.

Indirectly affected importers can only partially substitute their import losses via alternative

sources. In this sense, international trade transmits a share of the costs of the temperature

event. A cost assessment of these events not including these cross-border effects is therefore

incomprehensive. The right panel of Figure 5 shows this. Of the 360 million USD total inter-

national trade losses appear 136 million USD in the directly affected exporting country due to
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Figure 6: Distribution of indirect costs
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Distribution of average costs of the top-15 indirectly affected countries in decreasing order. Bootstrapped 95
percent confidence interval

losses in purchasing power caused by the temperature-induced export reduction. This means

that the group of countries that have not been directly experienced the temperature event bear

import losses of 224 million USD from the average single temperature shock. This are aver-

age costs of about 5.3 million USD per temperature shock for an indirectly affected country

via these trade spillovers. While this effect is not huge, our bootstrapped confidence interval

suggests that these costs are statistically significant different from zero given a five percent

significance level.

But these indirect costs are distributed unevenly across countries. As Gravity theory tells

us, absolute indirect costs of temperature shocks are governed by the total value of imports and

therefore depend on the size of the importing country, as well as the trade costs of shipping a

good to the importing country. Thus, larger importing countries and countries with lower costs

of trade with the directly affected country have to burden larger absolute costs. Figure 6 ranks

the average indirect costs in a decreasing order. While the country at the 25th percentile faces

costs of about 8.6 million USD, the country at the 75th percentile faces costs of 2.3 million

USD.

6.3 Sensitivity analysis

The magnitude of the general equilibrium effects is fully specified by the estimates of the

underlying Gravity model with one degree of freedom: The estimation of the Gravity system

does not identify the elasticity of substitution σ which governs the ease to adjust demand and
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source goods from somewhere else. As discussed above, in our central estimates we set σ = 4,

following Simonovska and Waugh (2014). However, it is key to understand how sensitive our

results are depending on the choice of σ .

Figure 7: Sensitivity analysis – elasticity of substitution σ
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Sensitivity analysis of general equilibrium effects conditional on elasticity of substitution σ ranging from 2.5 to
5.5. The left panel shows the trade losses of the mean > 30 °C event on directly affected countries. The right
panel shows the losses on indirectly affected countries. Confidence intervals are bootstrapped.

Figure 7 plots the effect of the mean high temperature event for values of σ ranging from 2.5

to 5.5. The right panel shows the aggregate import losses for only indirectly affected countries.

Assuming an elasticity of substitution of 2.5 leads on average to an import loss of about 520

million USD. These losses decrease with a substitution elasticity of 5.5 to about 124 million

USD for all importing countries. It is also important to note that the point estimator of the mean

temperature event on the average indirectly affected country, although being small (2.9 million

USD at σ = 5.5), is statistically different from zero with 95 percent confidence over the whole

range of the tested elasticities. As theory suggests, the costs are lower for higher elasticities as

costs can be more easily mitigated by adjusting the sourcing of goods.

The left panel of Figure 7 shows the effects for directly affected countries. If cost-sharing

is limited under a low elasticity of substitution of 2.5, the average directly affected country

faces mean losses 220 million USD. Assuming an elasticity of substitution of 5.5, these losses

decrease to about 100 million USD.
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6.4 Costs under future climate projections

So far, our estimated structural Gravity model has been applied to compute ex-post general

equilibrium effects of high temperature events. However, the model allows also to compute the

impacts on international trade — of both, directly and indirectly affected countries — under

future climate projections. We thus compute the counterfactual impact a projection of the future

climate would have on our estimated world economy of 2015 and compare it with the historic

climate means. There is therefore an important caveat: Our simulations assume that the future

climate happens in the world economy of 2015, ignoring any socio-economic adjustments and

changes that will happen. But trade costs, total expenditures but also the vulnerability to high

temperature might change substantially in future. We therefore believe that this is a sensible

approach, and are fully aware of its limits.

We use data provided by World Meteorological Organization in the KNMI Climate Change

Atlas. This database provides modelled mean temperatures at the country-month level, both

for the past and for projections up to the year 2100. We rely on the median output of the multi-

model ensemble CMIP5 (Coupled Model Inter-comparison Project Phase 5 used in the 5th

IPCC Assessment Report), and focus on projections based on the Representative Concentration

Pathway (RCP) 4.5. RCP4.5 is a rather ”optimistic” emission scenario which assumes that

global emissions peek before 2050, and radiative forcing stabilizes by 2080-2100. However,

due to the inertia of the climate system, projections for the near future do not vary substantially

across RCPs.

In our analysis, we examine the consequences of the average climate of 2020-2039 due to

the reasons discussed above. We compare this period to the latest available historic 20-year

period in the data, which is 1980-1999. Thus, the differences to the historic climate are not

substantial. For both 20-year periods, we compute for each country and calendar-month the

probability that the monthly mean temperature exceeds 30°C.

We then compute the difference in annual import expenditures, comparing a scenario with

the historical distribution of high temperature events to a scenario with the expected distribution

of heat events given the climate projection for 2020-2039. We express these changes in percent

of the historical baseline.
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Figure 8: Import expenditure losses in percent, historic climate versus climate projection mean
RCP4.5 2020-2039

Change of annual import expenditures of countries covering 90 percent of world trade assuming a distribution
of hot months as projected under a climate change scenario for 2020-2039, compared to a scenario with the
historic (1980-1999) distribution of hot months. Changes between the two scenarios expressed in percent of
annual import expenditures. Table A.7 in the Appendix shows individual country-level means and 95 percent-
confidence intervals from the bootstrapped estimations and simulations.

While the differences depicted in Figure 8 are small, we observe additional trade losses

in all countries that are part of the simulated world trade equilibrium. While these additional

losses are small in Europe, they become substantially higher in Asia (in particular India) and

Oceania, as well as in South Africa.

If we sum this up across countries, we find that annual global trade is reduced by 735

million USD due to additional months with high temperatures in a projection of the average

climate 2020-2039 relative to today’s climate. This figure gives only limited insights about the

welfare consequences, which cannot be properly calculated due to the lack of data on domestic

monthly output.

Of course, this is by no means a complete assessment of the economic costs of climate

change as it only covers trade losses from very hot months, thereby ignoring moderate and

long-term temperature changes, temperature effects on the domestic production and human

health, and all impacts from other hazards, ranging from losses due to more frequent and more

severe flooding, tropical cyclone activities, agricultural productivity or biodiversity losses.
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7 Conclusion

This paper aims at empirically identifying the short-run impact of temperature shocks on ex-

ports and estimating its equilibrium costs, using a structural Gravity framework with high tem-

poral resolution. Our large data set enables a high-dimensional fixed effects structure which

controls for unobserved variation at different levels, e.g. the establishment of new transport

routes, or the enforcement of trade agreements. Subsequently, we use the regression results

to estimate the size and spatial distribution of global equilibrium costs of extreme temperature

events, and project these costs under a climate change scenario for the period 2020-2039.

We find significant negative contemporaneous effects of high absolute temperatures and

extreme temperature deviations in the exporting country on exports. Importantly, our data

set contains an aggregate measure of all traded goods from all economic sectors. One may

expect stronger effects for some traded goods than for others. Still, we find an average trade

decline of 3.4 percent in months of absolutely high temperature (monthly average temperature

at least 30 °C), compared to a month with a temperature below this threshold. We then examine

if specific characteristics of the exporting country govern the effect size and find that export

flows which are characterized by high labour intensity in their underlying production processes

suffer most from high temperatures. In contrast, agricultural production shares, sector shares

of export flows (without considering labour intensities), the overall economic development in

terms of GDP, and climate change vulnerability are not statistically relevant for shaping the

contemporaneous temperature effects on exports.

Equipped with the estimates from the partial-equilibrium Gravity equation that — up to one

free parameter — fully specify our general equilibrium model, we then compute the equilibrium

adjustments caused by these temperature shocks and simulate counterfactuals assuming that a

specific weather event did not occur. This equilibrium adjustment reduces the costs of a heat

event by about 20 percent relative to a situation without substitution and the respective price

adjustments. This indicates that general equilibrium adjustments on global markets are an

important lever to reduce aggregate costs of temperature shocks. Using bootstrapped estimates

from a large number of simulations, we find that the mean temperature shock from the set

of events where the monthly average temperature was above 30 °C has average costs of 360
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million USD in terms of reduced global imports. Almost two thirds of this price tag appear in

countries that have not been directly exposed to the high temperature event but rather face losses

from less available imports. We compute these costs over a wide trade elasticity parameter

range and find that they remain statistically different from zero across the whole range.

We finally use our model to examine the consequences of climate projections for the coming

twenty years and find increasing costs from high temperature events, in particular in India and

South East Asian countries. In total, the expected additional temperature shocks lead to a

reduction of annual global trade by 735 million USD between 2020 and 2039 relative to today.

These findings show that for a comprehensive cost assessment of temperature shocks, but

also for impacts from other hazards and climate impacts in general, the international and spatial

spillover dimension must be included. However, by the same token, it should also be made

clear that a protectionism-oriented trade policy is the wrong response to this challenge. As our

analysis shows, it is actually the trade system with its substitution opportunities that reduces

global trade costs of these events.

This study highlights the link between the economic costs of weather shocks and interna-

tional trade. However, several open questions remain, which deserve to be examined in greater

detail in future research. In particular, a clearer understanding of the exact mechanisms how

weather shocks affect international trade and subsequently welfare would be important to de-

sign adequate policy responses.
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A Appendix - For Online Publication

A.1 Derive Gravity System of Equation

Fally (2015) showed that a complete system of equations that composes our Gravity model

developed in section 2 can be consistently retrieved from the Gravity equation (10) if estimated

with fixed effects and Poisson pseudo maximum likelihood (PPML). In the following we derive

this system of equation.

Total exports of i in year t are Xit = ∑ j ∑m Xi jtm. Total expenditures of j in t are E j,t =

∑i ∑m Xi jtm. Fally (2015) demonstrated that there exists a unique pair of variables Pjt and Πit

with PRt = 1 such that the predicted trade X̂i jtm is consistent with our structural Gravity model.

Starting from our equation (10):

X̂i jtm = exp[πit +δim +ξ jt +ψ jm +µi jt +ρ 1itm(Ditm)]. (A.1)

Thus,

∑
j
∑
m

exp[πit +δim +ξ jt +ψ jm +µi jt +ρ 1itm(Ditm)] = X̂it , (A.2a)

∑
i

∑
m

exp[πit +δim +ξ jt +ψ jm +µi jt +ρ 1itm(Ditm)] = Ê jt , (A.2b)

or equivalently,

∑
j
∑
m

exp[ξ jt +ψ jm +µi jt ]ERt = ∑
m

exp[−πit−δim−ρ 1itm(Ditm)]ERt X̂it (A.3a)

∑
m

∑
i

exp[πit +δim +ρ 1itm(Ditm)+µi jt ]E−1
Rt = ∑

m
exp[−ξ jt−ψ jm]E−1

Rt Ê jt . (A.3b)

Note that by normalization ∑m exp[ψ j,m] = ∑m exp[δi,m] = 0.. We therefore can define

P1−σ

jt ≡
E jt

ERt
exp[−χ jt ] (A.4a)

Π
1−σ

it ≡ ERtXitexp[−πit ]. (A.4b)
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In addition, we know that exp[µi jt ] = τ
1−σ

i jt . Finally,

∑
j

(
τi jt

Pjt

)1−σ

E jt = Π
1−σ

it ∑
m

exp[ρ 1itm(Ditm] (A.5a)

∑
i

(
τi jt

Πit

)1−σ

Xit ∑
m

exp[ρ 1itm(Ditm] = P1−σ

jt (A.5b)

A.2 Descriptive statistics

In Table A.1, we present the descriptive statistics of key variables at the country-pair-month-

level (exports Xi jtm), at the country-pair-year-level (labour intensities of exports labourinti jt)

at the country-month-level (temperature variables), and at the country-year-level (agriit , sector

shares of exports, ndgainit and gd pit). In the estimation routine observations which are either

singletons or separated by a fixed effect are automatically dropped, which reduces the estima-

tion samples by approximately 15 percent. The descriptive statistics presented in Table A.1

however, are based on all observations with non-missing data for the relevant variables.

In Figure A.1, we present the overall value of exports (in current USD, hence not adjusted

for inflation) and the number of exporting countries in the data set over time. Comparing the

two sub-graphs, one can detect two spikes in the number of exporters which do not translate in

increases of export values (in 1981 and 2000). The first spike is because the raw data started to

report explicitly on zero exports in 1981. From 2000 onward, additional country pair-months

could safely coded as zero exports, as mentioned above. Both inclusions result in higher num-

ber of countries in the data set, but no increases in the trade value.

Figure A.2 plots the distribution of temperature events over calendar months, separated

for Dt30
itm and Dp99

itm , based on all available observations of the temperature data set. Both events

concentrate in the summer months of the Northern hemisphere, while there are also abnormally

hot months (Dp99
itm events) in summer months of the Southern hemisphere (these events occurred

e.g. in Australia, Argentina, and island states in the Pacific).
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Table A.1: Descriptive statistics of key variables

Variable Description Mean Std. dev. Min. Max. Obs.

Xi jtm

Export value from exporter i to
importer j, FOB, in million
current USD

48.3 444.3 0.0 39,200.6 4,475,726

tempitm
Mean temperature in °C ,
average of country area

16.5 10.5 -32.0 37.5 49,597

Dt30
itm Mean temperature at least 30°C 0.015 0.121 0.0 1.0 49,597

Dp99
itm

Mean temperature in country-specific
top percentile

0.013 0.111 0.0 1.0 49,597

labourinti jt
Labour intensity of Xi jt as share of
labour input of total inputs

0.15 0.08 0.00 0.93 52,571

gd pit GDP per capita in current USD 9,834 15,283 49 119,225 4,046

ndgainit
ND-GAIN index of climate
vulnerability and readiness

52.8 11.3 29.4 76.1 2,057

agriit
Percentage of agriculture, forestry,
hunting, and fishing in GDP

13.0 12.4 0.0 79.0 3,306

prFoodi jt
Percentage of food and live animals in
total trade flows

17.8 24.5 0.0 100.0 230,006

prBevTobi jt
Percentage of beverages and tobacco in
total trade flows

2.5 8.5 0.0 100.0 230,006

prCrudei jt
Percentage of crude materials, inedible,
except fuels in total trade flows

8.5 17.4 0.0 100.0 230,006

prFuelsi jt
Percentage of mineral fuels, lubricants
and related materials in total trade flows

3.9 12.4 0.0 100.0 230,006

prOilsi jt
Percentage of animal and vegetable
oils and fats in total trade flows

1.3 6.2 0.0 100.0 230,006

prChemici jt
Percentage of chemicals in total trade
flows

11.9 15.6 0.0 100.0 230,006

prManu fi jt

Percentage of manufactured goods
classified chiefly by material in total
trade flows

17.8 18.3 0.0 100.0 230,006

prMachini jt
Percentage of machinery and transport
equipment in total trade flows

24.2 22.6 0.0 100.0 230,006

prMiscMani jt
Percentage of miscellaneous
manufactured articles in total trade flows

10.7 14.7 0.0 100.0 230,006

Based on data of 155 countries, 20,209 country pairs, and 684 months. Descriptive statistics are calculated at the
country-pair-month-level (trade volume X), at the country-pair-year-level (labourint and trade product shares pr),
at the country-month-level (temp), and at the country-year-level (agri, ndgain and gd p). The trade sector shares
are running means of the preceding four years. Subscripts refer to exporter (i), importer ( j), year (t), and calendar
month (m). For reasons of brevity, country-specific statistics are only reported for exporters.
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Figure A.1: Value of exports and number of exporting countries over time

Based on all available data on exports (unbalanced panel of 215 countries, 1960-2016).

Figure A.2: Frequency of temperature events over calendar months

Based on all available data on temperature (unbalanced panel of 197 countries, 1960-2016).

A.3 Further temperature specifications and analyses

In this section, we present alternative and complementary estimations of the temperature effects

on exports. First, in Figure A.3 we replicate the results illustrated in Figure 2, but present also
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large negative effects, which were omitted in the main text for reasons of clarity. Figure A.4

aggregates the single °C bins to 5 °C bins. Both graphs confirm the substantial drop of exports

in months with very warm average temperature levels.

Figure A.3: Contemporaneous effects of temperature on exports in 1°C steps, unrestricted plot

Estimated coefficients for each °C in the exporting country (left panel) and the importing country (right panel)
and their 95 percent confidence intervals, using 20 °C as the baseline category. Based on a PPML regression
with fixed effects at the country-pair-year-level, exporter-calendar month-level, and importer-calendar month-level
(N=3,821,155).

We test for a linear and a quadratic effect of temperature in Table A.2. Model 1 includes

absolute monthly average temperatures in the exporting country (tempitm) and in the importing

country (temp jtm). Using our high dimensional fixed effects structure with country-pair-year,

importer- and exporter-calendar month- effects we do not find a significant linear effect of the

absolute average monthly temperature on trade. In contrast, the quadratic specification yields

significant coefficients for exporters, confirming our previous finding of non-linear effects of

high temperature on exports.

Moreover, in Models 3 to 6 in Table A.2 we assess whether the estimated effects are ob-

served due to effects on the extensive or the intensive margin of bilateral trade. For Model 3 and

4, we construct a binary variable tradeext which takes the value of one if the country-pair has a

positive trade value and zero if the trade value equals zero. Due to missing observations about

zero trade flows before 2000, tradeext is only observable for the years from 2000 to 2016. In

this time span, about 79.4 percent of the observations had a positive trade flow. Instead of using
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Figure A.4: Contemporaneous effects of temperature on exports in 5 °C bins

Estimated coefficients for temperature bins in the exporting country (left panel) and the importing country (right
panel) and their 95 percent confidence intervals, using 15-20 °C as the baseline category. Based on a PPML
regression with fixed effects at the country-pair-year-level, exporter-calendar month-level, and importer-calendar
month-level (N=3,821,155).

the PPML estimator, we rely on the linear high dimensional fixed effects estimator reghdfe

to estimate a simple linear probability model. Model 5 and 6, in contrast, depict the results

of estimations covering only positive exports. The results broadly suggest that the effect is on

the intensive margin, as there is no significant effect on the binary variable indicating positive

trade (Models 3 and 4), but a substantial effect on the trade value in the sub-sample of positive

exports (Models 5 and 6). Note that the number of observations in the Models 3 to 6 is lower

than in the Models 1 and 2, since we can only safely identify zero trade flows since the year

2000.

Figure A.5 illustrates the lagged impacts of a temperature shock at the importer’s location,

estimated as covariates in the context of assessing lagged impacts on exports (presented in

Figure 3). The estimated coefficients are not statistically different from zero throughout the

first year after the temperature shock.

In Figure A.6, we depict the cumulative effects of Dt30
itm during twelve months after the

temperature shock. The estimation confirms the negative effect on exports in the first months

after the temperature shock, and shows that these export values are not recovered in subsequent

periods. There is no significant impact on imports.
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Table A.2: Linear and quadratic temperature effects on exports, estimates of the extensive and
intensive margin

(1) (2) (3) (4) (5) (6)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

tempitm 0.0013 0.0022∗

(0.0010) (0.0011)
temp2

itm -0.0001∗∗

(0.0000)
Dt30

itm 0.0017 -0.0398∗∗∗

(0.0035) (0.0125)
Dp99

itm 0.0009 -0.0235∗∗∗

(0.0013) (0.0090)
temp jtm -0.0005 -0.0002

(0.0008) (0.0009)
temp2

jtm -0.0000
(0.0000)

Dt30
jtm 0.0024 -0.0239∗∗∗

(0.0016) (0.0073)
Dp99

jtm -0.0020∗∗ -0.0194∗∗

(0.0009) (0.0086)
Observations 3821155 3821155 2698697 2698697 1725813 1725813

Model 1 and 2: PPML estimations of bilateral exports in current USD, including zero exports.
Model 3 and 4: Linear probability estimations of a binary variable indicating the existence of
positive exports (extensive margin). Model 5 and 6: PPML estimations of bilateral exports
in current USD, excluding zero exports (intensive margin). All regressions are with fixed
effects at the country-pair-year-level, exporter-calendar month-level, and importer-calendar
month-level. * p < .1 ** p < .05 *** p < .01.

Regarding relatively warm temperature events (Dp99
itm ), we depict the lagged and cumula-

tive effects on exports in Figures A.7 and A.8, respectively. As for the case of absolute hot

temperatures, the effect is concentrated on exporters, and short-lived. However, in contrast to

the Dt30
itm-specification, the effect is not aggravating in the first few months but there is a slight

tendency towards catching-up, such that the cumulative effect within one year after the event is

statistically equal to zero.

In Figure A.9, we replicate the interaction analysis for the potential labour intensity chan-

nel for temperature events in the top percentile (Dp99
itm ). In this specification, the effect is not

significant which may be rationalized by the insights of prior studies that absolute temperature

levels are more important for effects on labour capacity.

Figures A.10 and A.11 summarize the estimates of various interaction effects. Most of the

45



Figure A.5: Lagged impact on imports of an average monthly temperature of at least 30 °C

Estimated effects on imports of a hot month on exports, including 95-percent confidence intervals. The effects are
relative to a month with a temperature below 30 °C. The model is estimated with PPML and include temperature
at the exporter location, country-pair-year, exporter-calendar month, and importer-calendar month fixed effects.
Standard errors are multi-way-clustered at exporter, importer and time step-level.

Figure A.6: Cumulative effects of an average monthly temperature of at least 30 °C

Estimated cumulative effects of a hot month on exports (left panel) and imports (right panel), including 95-percent
confidence intervals. The effects are relative to a month with a temperature below 30 °C. The model is estimated
with PPML and include country-pair-year, exporter-calendar month, and importer-calendar month fixed effects.

analyzed potential heterogeneity variables show no significant impact on the estimated effects

of Dt30
itm or Dp99

itm .
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Figure A.7: Lagged effects of an average monthly temperature in the top percentile

Estimated effects of a hot month on exports (left panel) and imports (right panel), including 95-percent confidence
intervals. The effects are relative to a month with non-extreme temperature. The model is estimated using PPML
and include country-pair-year, exporter-calendar month, and importer-calendar month fixed effects. Standard
errors are multi-way-clustered at exporter, importer and time step-level.

Figure A.8: Cumulative effects of an average monthly temperature in the top percentile

Estimated cumulative effects of a hot month on exports (left panel) and imports (right panel), including 95-percent
confidence intervals. The effects are relative to a month with non-extreme temperature. The model is estimated
with PPML and include country-pair-year, exporter-calendar month, and importer-calendar month fixed effects.
Standard errors are multi-way-clustered at exporter, importer and time step-level.
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Figure A.9: Estimated effect of an average monthly temperature in the top percentile on exports
for different levels of labour intensity

Estimated contemporaneous effects of Dp99
itm on exports for given levels of labour intensity, including 95-percent

confidence intervals. The effects are relative to a month with non-extreme temperature. The model is estimated
with PPML and includes country-pair-year, exporter- and importer-calendar month fixed effects. Labelled values
at the x-axis are the 5th, 50th, and 95th percentile of labourinti jt .

A.4 Effects of precipitation and storms

As for the case of temperature, our main source of historical precipitation data is CCKP (World

Bank, 2022a). As for the case of temperature, the values are monthly means aggregated at

the country level. In Table A.3, we present the descriptive statistics of the additional weather

variables used in this and the subsequent section.

For effects of storms, we use data on the maximum wind speed at the country-month level

from the ifo GAME data set (Felbermayr and Gröschl, 2014), which is based on two primary

data sources: First, it uses the International Best Track Archive for Climate Stewardship (IB-

TrACS) which is provided by the National Climatic Data Center of the National Oceanic and

Atmospheric Administration (NOAA) and contains data of individual hurricane events. Sec-

ond, in order to capture tornadoes, summer and winter storms not included in IBTrACS, the

hurricane data is matched to daily data of the Global Surface Summary of Day (GSOD) data

(version 7) on maximum wind speed and wind gust from over 9,000 weather stations world-

wide. Wind data from ifo GAME is available at the country-month level for the period 1979-

2010.

In Table A.4 we study the effect of different models estimating the precipitation impacts on
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Figure A.10: Estimated effects of an average monthly temperature of at least 30 °C for various
heterogeneity variables

Estimated contemporaneous effects of Dt30
itm on exports for given levels of various heterogeneity variables, includ-

ing 95-percent confidence intervals. The effects are relative to a month with a temperature below 30 °C. The
model is estimated with PPML and includes country-pair-year, exporter- and importer-calendar month fixed ef-
fects. Standard errors are multi-way-clustered at exporter, importer and time step-level. Labelled values at the
x-axes are the 5th, 50th, and 95th percentiles of the heterogeneity variables. The reported p-values refer to the
significance of the interaction term (n.s.: p ≥ 0.1).

exports. In more detail, we examine the linear and quadratic effects of absolute precipitation,

and effects of extremely dry (precP1) and wet months (precP99). We do not find significant

effects of precipitation in any of the specifications.

Table A.5 shows the results of similar estimations of wind speed impacts on exports. There

are neither effects in the linear and quadratic specifications, nor do months with country-

specific high wind speeds show an effect on exports.

However, using country-specific distributions may not be the appropriate strategy for iden-

tifying non-linear effects of storms, since the occurrence of harmful wind speeds is not equally

distributed on countries (as the variable combiP99), but is mainly an issue in tropical cyclone-
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Figure A.11: Estimated effects of an average monthly temperature in the top percentile for
various heterogeneity variables

Estimated contemporaneous effects of Dp99
itm on exports for given levels of various heterogeneity variables, in-

cluding 95-percent confidence intervals. The effects are relative to a month with non-extreme temperature. The
model is estimated with PPML and includes country-pair-year, exporter- and importer-calendar month fixed ef-
fects. Standard errors are multi-way-clustered at exporter, importer and time step-level. Labelled values at the
x-axes are the 5th, 50th, and 95th percentiles of the heterogeneity variables. The reported p-values refer to the
significance of the interaction term (n.s.: p≥0.1).

exposed locations. Therefore, we use a similar strategy as for temperature bins (Figure A.4),

and estimate effects of absolute wind speed bins in Figure A.12, using the bin with the largest

number of observations (40-45 knots) as the baseline category. The results suggest that for

wind speeds above 140 knots, exports decrease substantially in the month of the weather event,

while imports remain largely unaffected. These potential short-term and non-linear effects of

intense storms on exports are beyond the scope of this analysis, and may be a promising avenue

for further research.
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Table A.3: Descriptive statistics of additional weather variables

Variable Description Mean Std. dev. Minimum Maximum Obs.

precitm
Mean precipitation in mm,
average of country area

94.67 93.57 0.00 1,063.69 49,597

precP1itm
Mean precipitation in lowest
country-specific percentile

0.015 0.121 0.00 1.00 49,597

precP99itm
Mean precipitation in
country-specific top percentile

0.010 0.099 0.00 1.00 49,597

winditm Maximum wind speed in knots 48.58 19.12 0.00 165.00 26,559

windP99itm
Maximum wind speed in
country-specific top percentile

0.007 0.082 0.00 1.00 26,559

Descriptive statistics are calculated at the country-month-level. For reasons of brevity, country-specific
statistics are only reported for exporters.

Table A.4: Contemporaneous precipitation effects on exports

(1) (2) (3) (4)
Model 1 Model 2 Model 3 Model 4

preci -0.0000 -0.0000
(0.0000) (0.0001)

prec2
i -0.0000

(0.0000)
precP1i 0.0026

(0.0190)
precP99i 0.0019

(0.0080)
Observations 3821155 3821155 3821155 3821155

All models are estimated using PPML and include country-
pair-year, exporter-calendar month, and importer-calendar
month fixed effects. In all estimates we control for weather
effects in the importing country.

A.5 Additional information on counterfactual simulations

Table A.6 presents the list of countries included in the simulation analysis.
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Table A.5: Contemporaneous wind speed effects on exports

(1) (2) (3)
Model 1 Model 2 Model 3

windi -0.0001 0.0003
(0.0001) (0.0005)

wind2
i -0.0000

(0.0000)
windP99i 0.0003

(0.0085)
Observations 2155697 2155697 2155697

All models are estimated using PPML and include
country-pair-year, exporter-calendar month, and
importer-calendar month fixed effects. In all es-
timates we control for weather effects in the im-
porting country.

Figure A.12: Contemporaneous effects of maximum wind speed on exports in 5 knots bins

Estimated coefficients for wind speed bins in the exporting country (left panel) and the importing country (right
panel) and their 95 percent confidence intervals, using 40-45 knots as the baseline category. Based on a PPML
regression with fixed effects at the country-pair-year-level, exporter-calendar month-level, and importer-calendar
month-level (N=2,153,305). Standard errors are clustered at exporter, importer and time step-level.
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Table A.6: List of countries in used in simulations

Argentina Australia Austria Belgium Bangladesh Brazil
Canada Switzerland China Colombia Czechia Germany
Denmark Algeria Spain France Great Britain Hungary
Indonesia India Ireland Iraq Italy Japan
South Korea Mexico Malaysia Netherlands Norway New Zealand
Oman Philippines Poland Russia Saudi Arabia Singapore
Sweden Thailand Turkey United States Venezuela Viet Nam
South Africa

List of countries used in counterfactual simulations. Trade between these countries covers 90
percent of the trade volume over the sample period.

Table A.7: Change in annual import expenditure under climate projection CIMP5 RCP 4.5 for
mean 2020-2039

Country Mean 95% Conf. Interval Country Mean 95% Conf. Interval
AUS 0.0092 0.0063 0.0121 AUT 0.0067 0.0040 0.0094
BEL 0.0075 0.0047 0.0103 BGD 0.0076 0.0047 0.0104
BRA 0.0076 0.0048 0.0104 CAN 0.0073 0.0044 0.0102
CHE 0.0102 0.0071 0.0132 CHN 0.0081 0.0052 0.0111
COL 0.0076 0.0048 0.0105 CZE 0.0067 0.0039 0.0094
DEU 0.0068 0.0041 0.0096 DNK 0.0067 0.0039 0.0095
ESP 0.0066 0.0039 0.0094 FRA 0.0068 0.0041 0.0096
GBR 0.0070 0.0042 0.0097 HUN 0.0067 0.0039 0.0094
IDN 0.0107 0.0075 0.0138 IND 0.1879 0.1756 0.2001
IRL 0.0067 0.0039 0.0094 ITA 0.0065 0.0038 0.0092
JPN 0.0071 0.0044 0.0099 KOR 0.0079 0.0051 0.0107
MEX 0.0068 0.0039 0.0097 MYS 0.0088 0.0059 0.0118
NLD 0.0067 0.0039 0.0094 NOR 0.0066 0.0038 0.0094
NZL 0.0072 0.0044 0.0100 PHL 0.0073 0.0045 0.0101
POL 0.0066 0.0038 0.0094 RUS 0.0077 0.0049 0.0105
SGP 0.0086 0.0057 0.0115 SWE 0.0070 0.0042 0.0098
THA 0.0081 0.0054 0.0109 TUR 0.0058 0.0032 0.0085
USA 0.0075 0.0047 0.0104 ZAF 0.0102 0.0072 0.0133

Relative to historic mean of 1980-1999 for estimated world economy in 2015. Mean and
95%-confidence intervals are bootstrapped.
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