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Abstract

How do intellectual property rights influence academic science? We investi-
gate the consequences of the introduction of software patents in the U.S. on the
publications of university researchers in the field of computer science. Difference-in-
difference estimations reveal that software scientists at U.S. universities produced
fewer publications (both in terms of quantity and quality) than their European
counterparts after patent rights for software inventions were introduced. We then
introduce a theoretical model that accounts for substitution and complementarity
between patenting and publishing as well as for the direction of research. In line
with the model’s prediction, further results show that the decrease in publications is
largest for scientists at the bottom of the ability distribution. Further, we evidence
a change in the direction of research following the reform towards more applied
research.
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1 Introduction

Knowledge created at universities is seen as a major source of technological opportunities

and progress (Griliches, 1979, 1992; Klevorick et al., 1995). Traditionally, university

science was characterized by an open regime that facilitates disclosure and diffusion of

inventions and discoveries (Dasgupta and David, 1994). University knowledge was non-

excludable and non-rival in use which contributed to its impact on growth in income per

capita and increasing returns to scale within an economy (Aghion and Howitt, 2005; Jones,

2005). Benefits spread to the private sector in form of accelerated corporate innovation

(Jaffe, 1989; Toole, 2012) and productivity growth (Adams, 1990).

Since the 1980s, a series of intellectual property (IP) policies that aimed at spurring

innovation and entrepreneurship based on university discoveries has shaped IP regulations

for U.S. universities (Mowery and Sampat, 2001). The most prominent change was the

U.S. Bayh-Dole Act of 1980 that strengthened universities’ institutional ownership rights

for discoveries made by federally funded scientists (Henderson, Jaffe and Trajtenberg,

1998; Mowery et al., 2001; Mowery and Ziedonis, 2002; Sampat, Mowery and Ziedonis,

2003; Mowery and Sampat, 2005).

Another drastic IP law change was the introduction of software patents in the U.S.

(Graham and Mowery, 2003; Bessen and Hunt, 2004, 2007). While not aimed at uni-

versities, this law change had strong side effects on the academic sector as we show in

this paper. The introduction of software patents was a response to the belief that the

changing nature of technology should be reflected in IP legislation which became visible in

a general trend towards stronger and wider patent protection (Merges and Nelson, 1994;

Scotchmer, 1991). The implication for the private sector was a rise in software patents

(Kortum and Lerner, 1999; Graham and Mowery, 2003) which has been attributed to

strategic considerations rather than to an increase in innovation (Bessen and Hunt, 2007;

Noel and Schankerman, 2013).1 As patents for general purpose technologies being used in

complex product industries, software patents are strongly associated with legal disputes

(Bessen and Meurer, 2005) and market entry barriers (Cockburn and MacGarvie, 2011).
1Scholars have disputed the breadth of software patent claims (Burk and Lemley, 2003; Rai, 2003)

and the allegedly poor quality of prior art documentation (Lunney Jr, 2000) questioning the validity of
software patents per se.
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While the value and implications of software patents remain disputed for the private sec-

tor (see Gallini, 2002, for a discussion of the arguments), the effect of the introduction

of IP rights for software for university research has not yet been investigated.2

In this paper, we investigate the effects of the introduction of software patent rights

on the scientific publications of U.S. university scientists. Universities present an envi-

ronment in which individual-level incentives to publish are essential. We argue that the

introduction of patent rights for software affects U.S. university researchers working on

software related issues by increasing their incentives to produce patents. Our empirical

results of a difference-in-difference analysis show that the reform toward the patentability

of software inventions led to an important decrease (both in terms of quantity and qual-

ity) in U.S. computer scientists’ production of scientific publications compared to their

European peers. We evidence a 20% reduction in U.S. publication numbers.

To investigate the mechanisms, we introduce a theoretical model of science production

which integrates substitution and complementarity between patenting and publishing, and

which also accounts for the direction of research. In light of our model, the overall negative

effect that we observe in our empirical results implies that the complementarity between

patenting and publishing does not compensate the substitution effect. The model further

predicts that the decrease in publications is dependent on scientists’ ability, the ones

facing the largest decrease being the ones with the lowest ability. The second prediction

of the theoretical model holds that the direction of research changes towards topics more

complementary to patents (i.e. more applied), and the importance of this change also

depends on scientists’ ability.

In line with the theoretical model, further results show that scientists with the ex ante

lowest number of citation-weighted publications, which is our proxy for ability, are the

ones that suffer the biggest drop in publications. They produced 31% less publications

following the introduction of patent rights for software inventions. The magnitude of the

drop in publications decreases along the productivity distribution. At the other end of
2There are a few studies that descriptively look into the topic. Graham and Mowery (2003) provide

descriptive evidence for selected universities concluding that the surge in software patents observed in
the private sector was not accompanied by an equally strong increase of university software patents. Rai
et al. (2009) suggest that universities participate in the market for software patents, potentially because
of economies of scale realized through technology transfer offices. Love (2014) contributes a survey among
university scientists about the usefulness of patents in software.

3



the scientist publication ability distribution, top U.S. academic computer scientists were

only slightly affected by the reform. Using a measure approximating the appliedness of

publications we find that: i) the direction of research changed towards more applied topics,

ii) the largest change towards more applied research topics is observed for scientists with

the lowest publication ability.

The causality of the results is supported by a comparison of the publication pattern

of software- and hardware-focused computer scientists at U.S. universities. Hardware

computer scientists, whose scientific work is patentable since Bayh-Dole, did not change

their publication output around the time of the introduction of patent rights for software

inventions. Overall, our results cannot rule out concerns about negative implications for

science of strengthened IP ownership rights for universities.

This paper is organized as follows. Section 2 details the institutional setting in the

U.S. and Europe respectively. Section 3 introduces the data and Section 4 provides some

descriptive evidence. The identification strategy and main empirical results are presented

in Section 5. Section 6 describes a theoretical model of science production from which we

derive testable implications. Section 7 presents empirical evidence for the mechanisms,

Section 8 discusses the results and Section 9 concludes the paper.

2 Background

This section provides an overview of the patentability of software in the U.S. and Europe.

For further details on the legal background we refer to Graham and Mowery (2003) for

the U.S. case, Bakels et al. (2008) for the European case and Guntersdorfer (2003) for a

comparison.

2.1 The U.S. case

In the 1970s, the predominant method to protect software in the U.S. was copyright.

Algorithms were deemed not to be patentable at the United States Patent and Trademark

Office (USPTO) which was confirmed by a number of Supreme Court decisions in the 1970s

(Graham and Mowery, 2003). The case of Gottschalk versus Benson (409 U.S. 63 [1972])

explicitly rejected software as patentable subject matter and the 1976 Copyright Act
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explicitly endorsed copyright as an appropriate protection regime for software. As noted

by Hall and MacGarvie (2010), however, patents and copyrights protect very different

aspects of software. While copyright is awarded to creators of original works and protects

a specific computer code as an “original expression”, it does not protect the functions

performed by the code. The function of a software program may be protected by a

patent.

In the 1980s, patent law started to slowly change in favor of software patents with

the ruling that software can be patented if tied to physical or mechanical processes. The

change was initiated by the Diamond versus Diehr case decision (450 U.S. 175 [1981]) in

which the Supreme Court decided on the patentability of a rubber-curing process that

used software to calculate the cure time. The physical transformation of rubber “into a

different state or thing” took the invention out of the realm of abstraction. The subject

matter was declared patentable even though the software implementation represented

the only novel feature of the invention. During the first half of the 1990s, a number

of court decisions, which are described in more detail by, e.g., Graham and Mowery

(2003) and Hall and MacGarvie (2010), spurred a discussion about the broadening of

the patentable subject matter with important implications for software. An important

step toward new legislation was taken in 1994 by the Court of Appeals of the Federal

Circuit (CAFC), which distinguished between patentable software as “rather a specific

machine to produce a useful, concrete, and tangible result” and unpatentable software

as a disembodied mathematical concept such as a law of nature, natural phenomenon,

or an abstract idea (Sterne and Bugaisky, 2004). After a series of further cases in 19943

– with the last one being that the CAFC ruled that the rejection of a software patent

application at the USPTO by IBM was erroneous in 19954 – the U.S. Commissioner of

Patents issued new patentability guidelines in 1996 which allowed inventors to patent any

software embodied in physical media (Sterne and Bugaisky, 2004).5

Although their announcement was perceived negatively by the stock market, the new
3In re Alappat (5440676), In re Warmerdam (6089742), In re Lowry, In re Trovato.
4In re Beauregard (5710578)
5The guidelines specified that a distinction should be made between (a) “a computer or a pro-

grammable apparatus controlled by software as a statutory ‘machine’”, (b) computer-readable memory
used to direct a computer such as a memory device, a compact disc or a floppy disk as a statutory ‘article of
manufacture’ and (c) a series of steps to be performed on or with the aid of a computer as a statutory’s pro-
cess” (USPTO guidelines, 1996, https://www.uspto.gov/web/offices/com/sol/og/con/files/cons093.htm).
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patentability guidelines were followed by a surge in software patenting in the private

sector during the period 1996-1999 (Hall and MacGarvie, 2010), which has been largely

attributed to strategic considerations rather than to an increase in innovation (Bessen

and Hunt, 2007; Noel and Schankerman, 2013).

With a focus on the university landscape, software was already one of the fields in

which universities had licensing agreements before the introduction of software patent

rights (Mowery et al., 2001). After 1996, the number of university-held software patents

decupled over the period 1982-2002 from 37 patents in 1982 to 396 patents in 2002, which

corresponded to a 4% increase in the share of software patents among university patents

(Rai et al., 2009). The disproportionate increase in university software patents has been

attributed to economies of scale realized through technology transfer offices (TTOs) (Rai

et al., 2009; Graham and Mowery, 2003). TTOs started to play a more active role in

the field of computer science after the introduction of patent rights (Rai et al., 2009).

TTOs took a “one size fits all” approach in the sense that the propensity to apply for

patent protection for a software invention was predominantly determined by the TTO’s

tendency to seek patent protection in other disciplines (Rai et al., 2009). This implied

that computer scientists faced closer scrutiny of their inventions by the TTO. Moreover,

patents became important for tenure, promotion and annual salary raises across the U.S.

(Love, 2014). Due to the significant changes for computer scientists with regard to the role

of the TTO, output expectations and career requirements, we refer to the introduction of

software patents as a regime shift.

After the introduction of software patents, computer scientists might face some in-

stitutional and career pressure to patent. We expect that scientists nevertheless show a

strong ambition to publish and that – if demanded to produce patentable results in addi-

tion – they reallocate their time from projects with low scientific prospects to patenting,

keeping the efforts put into projects with expected high scientific quality constant or re-

duce it least. Prior evidence mostly suggests that patenting and publication activities are

complementary at the researcher level (Stephan et al., 2007; Fabrizio and Di Minin, 2008;

Czarnitzki, Glänzel and Hussinger, 2009).6 Patents can occur as byproducts of scientific
6Note that prior evidence suggests that patenting and scientific quality of publications are negatively

correlated (Murray and Stern, 2007; Fabrizio and Di Minin, 2008; Czarnitzki, Glänzel and Hussinger,
2009).
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research projects that spawn both, patents and scientific publications. Projects conducted

by university researchers are designed to consist of modules that differ with regard to the

extent to which they are patentable or publishable in scientific journals. Some researchers

employ inter-personal economies of scope and follow a dual knowledge disclosure strategy,

setting set up their projects ex ante to address both an industry and academic audience

(Murray, 2002; Murray and Stern, 2007; Magerman, Van Looy and Debackere, 2015).

2.2 The European case

Whereas the U.S. Patent Act of 1952 laid the foundation for the expansion of the patentable

subject matter (Sterne and Bugaisky, 2004), Article 52(2) of the European Patent Con-

vention (EPC) explicitly excludes specific categories of inventions such as business meth-

ods and software. These inventions do not fulfill the technical contribution requirement.

Article 52(2) specifies that software is not patentable “as such”. Further guidelines are

provided by the case decisions of the Technical Board of Appeal of the EPO.7 According to

those, software may, for instance, be patented if tied to physical or mechanical processes.

A proposal for a Directive on the Patentability of Computer-Implemented Inventions

(knows as the CII Directive) which was intended to improve clarity on the treatment of

software inventions under European patent law was rejected in 2005 (González, 2006).

Hence, the legal situation in Europe corresponds to the legal situation in the U.S. before

the introduction of the new patent guidelines and after Diamond versus Diehr (Gunters-

dorfer, 2003).
7The “as such” clause leaves some room for interpretation. A decision of the Technical Board of

Appeal of the EPO from 1988 holds, for instance, that “even if the basic idea underlying an invention
may be considered to reside in a computer program a claim directed to its use in the solution of a technical
problem cannot be regarded as seeking protection for the program as such within the meaning of Article
52(2)(c) and (3) EPC” (T 0115/85, 1988). However, “a computer program product is not excluded from
patentability under Article 52(2) and (3) EPC if, when it is run on a computer, it produces a further
technical effect which goes beyond the “normal” physical interactions between program (software) and
computer (hardware)” (T 1173/97, 1998). In other word, if the invention covers a “trick” of how to do
something rather than a program code, it is patentable (Bakels et al., 2008).
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3 Data, variables and descriptive statistics

3.1 Data

The population of interest includes all scientists working on software-related topics at

U.S. and European universities. The study period is defined as 1989-2004 to enable

observations over a sufficient number of years before and after the policy change. We focus

on the year 1996 as the year in which our treatment starts because the new patentability

guidelines were introduced in this year accompanied by a steep increase in software patents

(Hall and MacGarvie, 2010).

Based on publication records retrieved from the Web of Science (WoS), we constructed

a panel dataset of academic scientists in the field of computer science following a mul-

tistep procedure, which is detailed in Appendix A. Since we are interested in academic

scientists, we restrict the panel to scientists who are solely affiliated to universities and dis-

card the ones affiliated to companies. Computer science is defined by the WoS subfields

Artificial Intelligence, Information Systems, Theory & Methods, Software Engineering,

Interdisciplinary Applications, and Cybernetics. Since the field of computer science is

broad, scientists working in other university departments frequently publish in this field.

Therefore, only scientists with a minimum of three computer science publications in three

different years qualified for our sample. Two of those publications must be from be-

fore 1996. Using other thresholds or no threshold at all does not alter the findings (see

Table B1 in Appendix). In Appendix B.3, we replicate the main estimations with an

alternative data set: DBLP, which is a publication data set curated for computer science

known for its good coverage of conferences. The results from all estimations that could

be replicated hold.

Scientists working on hardware-related topics have been excluded from the treatment

group,8 as well as scientists who switched affiliations between the U.S. and Europe. For

each computer scientist, our data contain the scientist’s history of publishing during 1989-

2004, supplemented by the scientist’s patent record for the same period. Computer science

publications include articles published in scientific journals and in conference proceedings.
8The results are not altered by using different definitions of software scientists, such as, for instance,

including scientists with publications on hardware-related topics in the treatment group (see Table B2 in
Appendix).
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Conference proceedings are an important outlet for computer scientists, enabling the

speedy dissemination of results (Patterson, Snyder and Ullman, 1999; Visser and Moed,

2005; Bar-Ilan, 2008). However, the most impactful research of computer scientists is

published in journals (Bar-Ilan, 2010; Franceschet, 2010). Our final sample consists of

8,133 computer scientists working on software-related topics at universities, including

4,437 based in Europe. In total, these scientists produced 86,756 unique publications.

3.2 Measuring science production

We investigate the effects of the introduction of patent rights for software inventions on

the quantity and quality of academic researchers’ scientific output.

The quantity measure depicts the number of publications produced in a given year by

a scientist. This measure includes all publications contained in the WoS data base in the

field “computer science”, including both journal articles and conference proceedings. We

excluded publications in non-peer-reviewed journals.9

We create several measures reflecting publication quality. The first measure is the

citation-weighted number of publications, measured as the sum of the citations to the

publications of a scientist in a given year. The number of citations is defined as the

number of citations received from other WoS publications published up to 2016, the year

in which we extracted the data. The fact that articles with an earlier publication date

are cited more frequently than those published recently should not bias our results as: i)

we use a control group with a similar distribution of publications over time; and ii) we

include year fixed-effects. Citation data are highly skewed, however: in our sample, the

3% most-cited publications receive 50% of all citations. This means that a few scientists

have an excessive weight on the estimates so that we complement the citation measure

with alternative quality measures.

The second quality measure is the number of top-cited publications, TOP 5%. To

construct this variable, we consider all worldwide publications in computer science in a

given year to define the publications in the 95th percentile of the citation distribution.

For each scientist, we count the number of these top 5% publications per year. Since
9The excluded journals are Datamation, Byte, Dr Dobb’s Journal, Computer Design, Sharp Technical

Journal and Hewlett-Packard Journal.
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citation patterns can be field-specific and may reflect the evolution of the field instead of

quality, in Appendix B we complement these two measures with subfield-corrected citation

measures. The results, in Appendix B4, are qualitatively similar using these alternative

measures.

The third quality measure, JIF 10%, is the number of publications in highly recognized

journals and conference proceedings, such as the ACM Computing Surveys or the IEEE

Conference on Computer Vision and Pattern Recognition. To identify top publication

outlets, we use the journal impact factors (JIF) from Scopus for the year 2015.10 In total,

13% of the publications appear to be published in a top 10% JIF outlet.

3.3 Descriptive statistics

Table 1 reports some descriptive statistics for U.S. and European academic software com-

puter scientists. Disregarding any temporal effect, these figures depict two samples that

appear to be very similar in terms of scientific output. The yearly output of the aver-

age scientist is 0.58 articles and 0.38 conference proceedings. Taking publication quality

into account, a gap between the U.S. and European scientists becomes apparent. U.S.

scientists have almost twice the number of citation-weighted publications as European

scientists, but with a higher variance as well. The pattern is similar with regard to the

two alternative quality measures, with U.S. scientists producing an average of 0.25 pub-

lications in top journals per year, as opposed to 0.16 for European academic computer

scientists. These numbers are respectively 0.11 and 0.068 for the yearly production of

top-cited publications. For both groups, patenting is a rare event, as their 90th percentile

in patents per year is 0. However, the patenting rate is almost four times higher for U.S.

academic scientists.

4 Descriptive evidence

Before describing the multivariate analysis, we provide some descriptive evidence for the

evolution of the number of publications over time for the treatment and control group.
10About 53% of WoS publications were not found in the Scopus database of JIFs. Hence, we can safely

conclude that these are not among the top 10% of JIF journals.
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Panel A in Figure 1 compares the scientific output of U.S. and European university soft-

ware scientists. Before 1996, the trends for both European and U.S. scientists appear to

be similar. After the introduction of software patents, however, the trends differ. Euro-

pean scientists experienced an upwards trend, while the U.S. scientists faced a downwards

trend. This simple graphical analysis suggests that the IP reform had a negative effect

on the publication volume of U.S. university computer scientists.

In order to ensure that the pattern illustrated in Panel A is software specific, Panel

B of Figure 1 shows the same figure for university scientists working on hardware-related

topics. Hardware scientists work in a subfield within computer science, but were not

affected by the reform, as they have been able to patent their inventions since the Bayh-

Dole Act of 1980. We identified a total of 4,158 hardware computer scientists based

on the WoS subfield “Hardware & Architecture”, 2,347 of which are affiliated with U.S.

universities and 1,811 with European universities.

Panel B shows that for hardware scientists, the publication outcome curves of U.S.

and European university scientists are roughly parallel across the entire period. This

evidence shows that the drop in publications is specific to academic software scientists,

which speaks in favor of a causal relationship between the introduction of software patent

rights and the decrease in scientific publications.

Further, Panel A may suggest that software scientists reallocate part of their time

from scientific to commercialization activities. This is in line with Figure 2, which depicts

the patent applications of U.S. university software scientists in our sample over time. The

patenting rate was around 0.02 patents per year before 1996, while it greatly increased

afterwards, hovering around 0.035.

5 Effect on scientific output: Econometric approach

and empirical results

5.1 Econometric approach and identification

Our analysis considers difference-in-difference (DiD) regressions, in which the introduction

of the new patentability guidelines granting patent rights for software inventions defines
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the pre- and post-change period. The effect of the legal change can be obtained by the

following regression:

E (yit) = exp (αi + γt + a × Treati × Postt) , (1)

where yit represents the (quality-weighted) outcome of scientist i in year t, αi are scientist

fixed-effects, γt are time fixed-effects, Treati is a dummy variable, given a value of 1 if i is

a U.S. scientist and Posti ≡ 1 {t ≥ 1996} is a dummy variable identifying the post-change

period. The coefficient of interest is a. It represents the total impact of the legal change

on scientists’ productivity over the post-change period.

Since the dependent variables are count variables, we estimate Equation (1) using

Poisson models (Santos Silva and Tenreyro, 2006). Poisson models provide consistent

estimates as long as the conditional mean is properly specified. Further, we cluster the

standard errors at the scientist level in order to avoid biases due to possible serial corre-

lation (Bertrand, Duflo and Mullainathan, 2004). Since the citation-weighted number of

publications is over-dispersed, with a standard-deviation to mean ratio of about 6 (see Ta-

ble 1), we employ Negative Binomial estimations for this variable to ensure more efficient

estimates.11

In addition, we estimate the following equation to obtain yearly treatment effects:

E (yit) = exp
αi + γt +

2004∑
t′=1989, t′ ̸=1995

at′ × Treati × 1t′=t

 . (2)

In this set-up, we estimate the effect of the treatment for each of the sample years, i.e.,

each at. We use the year before the reform, 1995, as a reference category. If the policy

implies a change in the science production of U.S. scientists, there should be a shift in the

coefficients at for the period after 1995. This model enables a clear visual representation

of the policy change over time and tests for parallel trends before the policy change.12

11The Poisson and Negative Binomial estimates are almost identical for the other dependent variables.
12Note that we do not focus on the direct involvement of scientists in patenting as has been done

in previous studies (e.g., Azoulay, Ding and Stuart, 2009; Czarnitzki, Glänzel and Hussinger, 2009).
We do so because the number of patenting software scientists is a highly selective group of scientists
while the regime change affects all scientists. Focusing only on patenting scientists would lead to a very
incomplete picture of the consequence of the change. We would miss all those scientists who invest time
in commercialization efforts, but fail to obtain a patent. See the discussion in Section 8.3.
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Table 2: Effect of the legal change on scientists’ production.

Dependent Variables: Yearly # Publications
Column: (1) (2) (3)
Variables
Constant -0.0795∗∗∗

(0.0121)
Treat 0.0780∗∗∗ 0.0747∗∗∗

(0.0186) (0.0186)
Post 0.0610∗∗∗

(0.0172)
Treat×Post -0.1655∗∗∗ -0.1621∗∗∗ -0.1645∗∗∗

(0.0262) (0.0262) (0.0272)
Fixed-Effects
Year ✓ ✓
Scientist ✓
Fit statistics
Observations 109,029 109,029 109,029
Adj-pseudo R2 0.00057 0.00356 0.21675
Log-Likelihood -163,676.3 -163,188.1 -128,272.4
Clustered (scientist) standard-errors in parentheses. Signif Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The coefficients correspond to maximum likelihood Poisson estimates. The sample consists of
active computer scientists working in software. An active computer scientist is defined by having at least
two publication before 1996 (with one before 1994), and at least one publication in the period 1997-2004.
Observations correspond to scientist × year.
Source: Authors’ own calculations based on publication data from Web of Science.

5.2 Empirical results

Table 2 reports the regression results. Column 1 displays the estimation results of Equa-

tion (1), in which the overall effect of the regime shift is estimated without time dummies

and scientist fixed-effects. We find a significant negative effect of -0.16, meaning that the

IP reform reduced the production of journal publications and publications in conference

proceedings of U.S. scientists by 15% (i.e. 100 × [1 − exp (−0.16)]), compared to Euro-

pean scientists. In column 2, we include time fixed-effects and, in column 3, scientist

fixed-effects. These inclusions do not change the magnitude of the estimate.

Turning to publication quality, Table 3 reports fixed-effects DiD estimates for the

three quality variables. The estimated coefficients for the treatment effect are equally

negative, with a higher order of magnitude. The estimated coefficients are -0.47 for the

citation-weighted number of publications, -0.26 for the number of articles in the top JIF

journals and -0.27 for the number of top-cited publications.
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Table 3: Effect of the legal change on scientists’ quality-weighted production.

Dep. Variables: Yearly # of Yearly # of Top 10% Yearly # of Top 5%
Citations-Weighted Pub. Ranked Articles (JIF) Cited Articles (Worldwide)

Neg. Bin. Poisson Poisson
Column: (1) (2) (3)
Variables
Treat×Post -0.4743∗∗∗ -0.2665∗∗∗ -0.2760∗∗∗

(0.0481) (0.0429) (0.0565)
Fixed-Effects
Year ✓ ✓ ✓
Scientist ✓ ✓ ✓
Fit statistics
Observations 106,907 71,384 46,649
# Scientist 7,959 5,255 3,406
Adj-pseudo R2 0.06218 0.18248 0.14863
Log-Likelihood -239,093.7 -43,598.3 -22,094.8
Over-dispersion 0.16391
Clustered (scientist) standard-errors in parentheses. Signif Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The coefficients correspond to maximum likelihood Negative Binomial (column 1) or Poisson
estimates (columns 2 and 3). The sample consists of active computer scientists working in software. An
active computer scientist is defined by having at least two publication before 1996 (with one before 1994),
and at least one publication in the period 1997-2004. Observations correspond to scientist × year.
Although the same sample is used across all regressions, the number of observations vary because, due
to the Negative Binomial/Poisson fixed-effects setup, all scientists whose dependent variable is equal to
0 across all periods are dropped.
Source: Authors’ own calculations based on publication data from Web of Science.
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To provide insight into the temporal dynamics, yearly treatment effects for the quan-

tity and the three quality variables are reported in Figure 3. The estimation follows

Equation (2) and includes both year and scientist fixed-effects. The upper left panel rep-

resents the number of publications for which the pattern is clearest. We observe that

before the reform, the estimates fluctuate around 0. After 1996, the coefficients become

strongly negative. As could be expected, a few years elapsed between the introduction of

software patent rights in 1996 and a sharp drop in publications. From 1999 onward, the

estimated effect fluctuates around -0.3, which hints at a long-term decrease of publications

of 25%.

Regarding the different citation-weighted publication measures, we find qualitatively

very similar results. Before the reform, the coefficients hover around 0.3 with a large

standard-error, while a few years after the reform, the estimated coefficients become

strongly negative, with a magnitude of about -0.5 (i.e. about 40% less in terms of yearly

number of citation-weighted publications). This shows a decrease of the U.S. scientists’

citation advantage due to the IP reform.13 For the number of publications in the top JIF

journals, there is no significant advantage for U.S. scientists before the IP reform, while

the treatment effect becomes significantly negative afterwards. For the number of top

cited publications, the pattern is less clear: the yearly estimates also decrease after the

reform but are not significantly different from 0 in the post-reform period. Overall, the

yearly effects clearly display a drop in publication volume and quality after the reform,

at least for three of the four dependent variables.

6 A model of science production

The decrease in publications raises many questions. First, what can explain this decrease?

Second, does scientist heterogeneity matter? Third, is there an impact on the direction of

research? To find some answers, we first introduce a model of science production whose

outcome will be interpreted in light of our previous empirical result. We then extend it
13Note that when using subfield-corrected citations, as in Figure B2 in Appendix, the pre-reform

estimates are even closer to 0, while the post reform estimates are higher in magnitude.
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to shed light on the impact on the direction of research.14

6.1 Model

Following Galasso, Mitchell and Virag (2018), we assume that scientists engage in both

science and commercialization activities which lead to publications and patents, the two

outcomes of our model.15 Further, we assume complementarity between publishing and

patenting. In line with the idea that the same knowledge can serve both the production

of publications and patents (dual knowledge à la Murray and Stern, 2007), the comple-

mentarity in our model assumes that some efforts of working on publications spills over

to the production of patents.

Let epub
it and epat

it be the respective efforts scientists exert to produce scientific work

resulting in publications (publishing), and to perform commercialization activities result-

ing in patents (patenting) in period t. Similarly, let γpub
it and γpat

it be scientist i’s ability

for publishing and patenting, respectively. We suppose that in a given period of time the

production of publications and patents follows a Poisson process which depends on a sci-

entist’s ability and the respective effort exerted in each activity. Formally, the production

of publications and patents is respectively given by the following processes:

Pubit ∼ Poisson
(
γpub

it epub
it

)
, Patit ∼ Poisson

(
γpat

it

(
epat

it + λepub
it

))
,

with Pubit (Patit) representing the number of publications (patents) produced by scientist

i in period t. We suppose that the complementarity is exogenous and captured by the

parameter λ ∈ [0, 1], with λ = 0 leading to no complementarity.

Scientist i derives utility Uit from exerting efforts epat
it and epub

it . We assume a quasi-

linear utility function in which both patents and publications confer the same utility to

the scientist, normalized to unity.16 This can be thought of as a scientist striving for

tenure or a promotion at a university that gives credit for both publications and patents.
14Note that we only consider the idea of quantity of publication but the model also applies to the idea

of quality, see Appendix C.1.
15Love (2014) shows that patents matter for the career of U.S. computer scientists. More than half of

the computer scientists who patent do so because it is formally or informally considered for their tenure
evaluation or a promotion decision.

16Note that assuming different utilities for the two activities would lead qualitatively to the same
results.
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Scientist i’s utility is given by the following relation:

Uit

(
epub

it , epat
it

)
= Pubit + Patit −

[
epub

it

]2
− epub

it × epat
it −

[
epat

it

]2
,

where the two activities are defined as substitutes due to the structure of effort costs,

following Bénabou and Tirole (2016).

Assuming that scientists are risk neutral, the problem of scientist i in period t is to

find the efforts epub∗

it and epat∗

it maximizing their expected utility:

{
epub∗

it , epat∗

it

}
= arg max

epub
it ,epat

it

E
[
Uit

(
epub

it , epat
it

)]
s.t. epub

it ≥ 0 and epub
it ≥ 0

which yields the following optimal level of efforts:

epub∗

it = 2γpub
it − (1 − 2λ) γpat

it

3 .

Henceforth we assume that 2γpub
it − (1 − 2λ) γpat

it > 0 and (2 − λ) γpat
it − γpub

it > 0, so

that the optimal efforts in both activities are positive. Outside this range, scientists

optimally allocate the totality of their time either to working on publications, or working

on commercialization.

Hence, given the optimal level of effort implemented by scientist i, the expected number

of publications at time t is given by

P̂ ubit ≡ E (Pubit)

= γpub
it epub∗

it

= γpub
it

3
(
2γpub

it − (1 − 2λ) γpat
it

)
.

Let us now consider the implications of the reform. Suppose that the introduction of

patent rights for software inventions translates into an increase in γpat of ∆, and consider

a scientist i with her counterfactual k. The counterfactual is a scientist who holds the

same characteristics of scientist i but is not affected by the reform. After some rewriting
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and a first order approximation, the log of the new production of publications of scientist

i is equal to:

log
(
P̂ ubit

)
= log

(
γpub

it

3

)
+ log

(
2γpub

it − (1 − 2λ)
(
γpat

it + ∆
))

= log
(
P̂ ubkt

)
+ log

(
1 − (1 − 2λ) ∆

2γpub
it − (1 − 2λ) γpat

it

)

≈ log
(
P̂ ubkt

)
︸ ︷︷ ︸

publication outcome

without reform

− (1 − 2λ) ∆
2γpub

it − (1 − 2λ) γpat
it︸ ︷︷ ︸

change in publication outcome

due to the reform

. (3)

We define the treatment effect, TEit, of the reform on publications as:

TEit ≡ − (1 − 2λ) ∆
2γpub

it − (1 − 2λ) γpat
it

. (4)

6.2 Insights from the model

First of all, we can see that the model maps the empirical specification exactly. The term

on the left of Equation (3) is equivalent to the fixed-effect estimate of scientists’ production

of Equation (1). This means that the average treatment effect from the empirical results

is equivalent to TE, the treatment effect in the model.

Observation 1. The effect of the reform on publications can go in two directions de-

pending on the level of complementarity. If complementarity is high enough (λ > 1/2)

stronger patent rights increase the total returns of effort spent on publications since part

of this effort can be translated into more patents. This leads to an increase in publication

efforts and in the end an increase in publications. However, if complementarity is not

as high (λ < 1/2) then the substitution effect prevails: some effort is shifted from pub-

lications to commercialization, leading to a decrease in publications. There is a tension

between complementarity and substitution whose total effect is captured by the sign and

the magnitude of TE.

The fact that our empirical estimates show a negative effect implies that TE < 0 and

hence that the level of complementarity is not high enough to compensate the substitution
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effect.17

Observation 2. The magnitude of the treatment effect TE depends negatively on the

value of γpub.

This implies that scientists with the highest publication ability should be the least

affected by the reform. In contrast, the ones with the lowest ability should be affected

the most since they have the highest incentives to shift to patenting.

6.3 Complementarity and the direction of research

So far the value of λ, the complementarity, was taken as fixed when in reality it is tied

to the topic the scientist works on. Research in a given topic may be much more difficult

to patent than research in another topic. Similarly, the facility to publish may differ

across topics. To account for these effects, we extend the previous model by including

two variables varying according to the topic. Let ri (τ) ∈ [0, 1] represent the ease to

publish in the topic τ for scientist i and λ (τ) the level of complementarity for the topic

τ . Further, we assume that the research topic can be represented by a real value ranging

from 0 to 1. The main properties of ri (τ) and λ (τ) are18

ri (0) = 1 λ (0) = 0

ri (1) = 0 λ (1) = 1

r′
i < 0 λ′ > 0

r′′
i < 0 λ′′ < 0.

17Section 8.3. discusses the implications of complementarity more broadly.
18The form of ri, the ease to publish, seems restrictive but is in fact very general. Indeed, it is specific

to each researcher and hence includes any kind of scientist-specific characteristics making some topics
more easy to publish in: one’s own taste for a given topic, skills, demand for the topic, etc. Note that we
use a general notation for the topics with τ , but best is to see it as a remapping of existing topics into
each scientist’s own ordering of topics: τ ≡ mi (τ̃) with τ̃ the topics common to all scientists and with
mi the mapping defined as making the properties of r and λ hold. This layer of complexity is not needed
for the exposition and is then omitted since the simplification can be made without loss of generality.
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In other words, there is a trade-off19 between the ease to publish and the complementar-

ity, and both functions are concave in the direction of their maximal value.20 The new

production functions are:

Pubit ∼ Poisson
(
ri (τit) γpub

it epub
it

)
, Patit ∼ Poisson

(
γpat

it

(
epat

it + λ (τit) epub
it

))
.

Proposition 1. The reform induces all scientists to switch to topics which are more

complementary to patents. The scientists with the lowest publication ability, γpub, are

the ones making the most important topic changes.

For the proof see Appendix C.2 where we establish that the topic changes by an

amount ϵ approximately equal to:

ϵ = λ′ (τ0) ∆
−r′′

i (τ0) γpub
it − λ′′ (τ0)

(
γpat

it + ∆
) ,

with τ0 the topic in which the scientist was working before the reform. Since the second

derivatives of r and λ are negative, the change is always positive. Further, as γpub or

γpat increases, ceteris paribus, the magnitude of the change decreases. This means that a)

scientist move to topics which are more difficult to publish in but are more complementary

to patents and b) scientists with the highest ability change the least.

Accounting for the change in topic, the total effect of the reform can be written as:

TEtopic
it = ϵ

r′
i (τ0)

ri (τ0)
+ 2ϵ

r′
i (τ0) γpub

it + λ′ (τ0) (γpat + ∆)
Ω − (1 − 2λ (τ0)) ∆

Ω ,

with Ω ≡ 2ri (τ0) γpub
it −(1 − 2λ (τ0)) γpat

it . There are three terms. The first is a flat decrease

in publications, since r′ (τ0) < 0, depends only on the ease to publish. The second term

depends on the curvature of the ease to publish and the complementarity functions, the

sign depending on the relative importance of the two: for instance if complementarity

increases much faster than the ease to publish decreases, then this leads to a positive
19The trade-off is needed to exclude the unrealistic possibility that there exists a topic which is at the

same time easier to publish in, and more complementary, than any other topic, so that by construction
scientists would never change from this topic.

20Let r̃i (x) ≡ ri (1 − x) be a remapping of r into an increasing funtion from the minimal to the maximal
value of r. Then r̃′ (x) = −r′

i (1 − x) > 0 and r̃′′ (x) = r′′
i (1 − x) < 0, proving that r̃ is indeed concave.
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effect. Finally, the third term is similar to the effect without topic change: the substitution

effect, mediated by complementarity. Linking these insights to our empirical results, this

means that the decrease in publications can come both from a substitution effect and a

topic-change effect. While the former effect only influences the number (and quality) of

publications, the latter effect can influence the direction of research as a whole. It is hence

interesting to investigate empirically if, in line with the model, scientists did change their

topics towards research with greater complementarity to patents, that is, more applied.

7 Mechanisms

7.1 Scientist heterogeneity

According to the model, scientists with the lowest publication ability before the IP reform

have the highest incentives to reallocate their efforts towards commercialization activi-

ties. To test this mechanism, we approximate the publication ability of the scientists by

citation-weighted publications. The citation-weighted variable speaks to the theoretical

model presented in Appendix C.1. We split the sample into five groups of scientists,

based on their positions in the ex ante distribution of the average number of citations per

publication. Reflecting the skewness of the citation distribution, the first three groups are

the first three quartiles, the fourth group comprises scientists in the [75; 90] percentile,

while the last group constitutes the most-cited scientists (]90; 100] percentile). The dis-

tribution for the U.S. and Europe is given in Table 4. It appears that, except for the

top group, there are stark differences between European and U.S. computer scientists,

the latter having almost twice the number of citations along the distribution. Hence we

categorize U.S. and European computer scientists according to the distribution of their

respective region.

We estimate DiD models with scientist and time fixed-effects for the five groups. The

results (coefficient estimates and standard errors) are given in Figure 4, in which the

dependent variable is the number of publications. In line with the model predictions, we

observe that the effect is largest for the first quartile, followed by the second quartile.

The associated coefficient estimates are -0.25 and -0.24 respectively. We note that the
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Table 4: Distribution of average citations per article before 1996, separated between
European and U.S. scientists.

Ex ante average # of citations per publication
Percentile: 0% 10% 25% 50% 75% 90% 99% 100%

Europe 0 0 1 3.6 10.8 26.4 110.8 1230.7
U.S. 0 0.25 2 7 19.9 44.3 214.9 1269.6

Source: Authors’ own calculations based on Web of Science data.

effect size of the reform decreases along the ability distribution, reaching a non-significant

coefficient estimate of -0.007 for the ex ante highly cited scientists. This pattern is cor-

roborated when using quality weighted measures: the decrease is most important for the

lowest quartiles and becomes gradually less important as we go up the quartiles.

Finally, in line with the model, Figure 5 also shows that U.S. low publication ability

scientists are the group with the highest increase in patenting rates. The average number

of patents per year of that group rises from 0.012 before 1996 to 0.029 after the change in

the law. This is the highest increase across all citation categories, both in absolute value

and relative terms (+139%).21

7.2 Do scientists change the direction of their research?

One key question of interest is whether this change in output is also linked to a change in

content. Tracking changes in content is a difficult endeavor since content is not a quan-

titative characteristic but a qualitative one. In this section, we proxy the idea of content

with an appliedness measure based on the keywords from publications and abstracts from

patents.

Our appliedness measure captures the following idea: how much do publications look

like software patents? After extracting software patents from the USPTO, we categorize

publication keywords into three categories: 1) applied (frequently appearing in patents

abstracts), 2) neutral and 3) basic (almost never appearing in patent abstracts). After

normalization, we end up with a measure ranging from -1 to 1. The value -1 represents

a publication with only basic keywords while a value of 1 represents a publication with
21The graph further illustrates a positive correlation (especially ex ante) between the scientists’ position

in the citation distribution and the number of patents produced.
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Figure 5: Evolution of patent production by U.S. university software scientists, split by
ex ante citation level.
Source: Authors’ own calculations based on Web of Science and USPTO patent data.

only applied keywords. The construction of this variable is detailed in Appendix D with

examples of its validity. The key advantage of this measure is that it is based on infor-

mation external to the publications (abstracts from software patents), so that the value

of this measure is independent of the patenting status of the scientists.

We now use this measure to track whether the scientists change the direction of their

research following the reform. The dependent variable, appliedness, is only defined when

a scientist has one or more publications with non-missing keywords. Overall, about 60%

of publications do not report a keyword, leading to a large number of missing values. This

in turn creates many holes in the panel which can introduce artifacts in the estimates. To

avoid this problem, we pool the data for each scientist into two periods: 1990-1996 and

1997-2004.22 This means that the appliedness measure is equal to the average appliedness

across all publications with non missing keywords in the period. We end up with a full

panel of two periods with no missing values.

Table 5 reports the difference-in-difference estimations for the full sample and when

the sample is split by the ex ante average number of citations. The first thing we no-
22Keywords in publications are only available from 1990 onwards in our data set.

28



tice from the means of the appliedness measure reported in the table, is that appliedness

is decreasing with the average ex ante ability of the scientists. For the first group, the

appliedness score is -0.028, and this value decreases steadily across the groups until reach-

ing -0.136 for the top 10% scientists. According to this measure, the scientists with the

highest level of citations in computer science are the ones doing the most basic research.

The estimation for the full sample finds an estimate of the average treatment effect

of 0.023, meaning that U.S. scientists tend to shift the content of their research towards

more applied work following the reform. When we break down the estimation by the ex

ante average ability, we can see that this result is mainly driven by the first group (the

scientists with the lowest number of citations) for which the estimates reach an increase

in appliedness of 0.042, an important increase given a mean of -0.028. The second group

with the highest increase represents scientists in the 75-90 percentiles of the citations

distribution, this group experiences an increase of 0.039 in appliedness, although this

number is imprecisely estimated.

Overall, we can conclude from these results that the reform increased the appliedness of

the works of U.S. computer scientists. The change was especially important for scientists

at the left of the ability distribution, in line with the predictions of the theoretical model.23

8 Discussion

8.1 Quantifying the consequences

To evaluate the counterfactual scientific output of U.S. computer scientists had patent

rights for software inventions not been introduced, we compute the total number of pub-

lications of the software scientists of our sample in the period 1997-2004, prod1997−2004
US .

The counterfactual situation can be written as prod1997−2004
US / exp (−0.20) where -0.20 is

the estimate of Table 1. We identify a total loss of 5,246 publications (95% confidence

interval: [3743; 6830]). This drop is significant: MIT, for instance, had 3,735 publications
23Note that the results of this section hold when we use an alternative measure of appliedness: con-

ference proceedings. Conference proceedings, on average, can be considered as hosting publications with
more applied content. In results displayed in Appendix D.3, we observe a decline in journal articles much
more pronounced than in conference proceedings, the decline in journal articles being highest for lower
ability scientists. This is another suggestion that scientists shift their research direction towards more
applied topics.

29



Table 5: Effect of the reform on the direction of research, estimations split by the ex ante
position in the citation distribution.

Dependent Variable: Yearly Average Appliedness Score
Ex ante position in the Full sample Q1 Q2 Q3 [75%; 90%] Top 10%

citations distribution
Model: (1) (2) (3) (4) (5) (6)
Variables
Post -0.0573∗∗∗ -0.0498∗∗∗ -0.0502∗∗∗ -0.0610∗∗∗ -0.0840∗∗∗ -0.0447∗∗

(0.0055) (0.0094) (0.0122) (0.0112) (0.0143) (0.0193)
Treat × Post 0.0229∗∗∗ 0.0424∗∗∗ 0.0183 0.0136 0.0397∗ -0.0197

(0.0081) (0.0149) (0.0171) (0.0166) (0.0212) (0.0279)
Fixed-effects
Scientist ✓ ✓ ✓ ✓ ✓ ✓

Fit statistics
Dependent variable mean -0.07261 -0.02822 -0.05457 -0.08969 -0.11097 -0.13698
Observations 16,266 4,562 3,594 4,044 2,442 1,624
R2 0.59890 0.55703 0.57598 0.59690 0.63557 0.62278
Within R2 0.01710 0.01178 0.01343 0.02155 0.03357 0.01851

Clustered (Scientist) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The coefficients correspond to OLS estimates. The sample consists of active computer scientists
working in software. An active computer scientist is defined by having at least two publication before 1996
(with one before 1994), and at least one publication in the period 1997-2004. Observations correspond
to scientist × period, with the two periods being 1990-1996 (pre) and 1997-2004 (post).
Source: Authors’ own calculations based on publication data from Web of Science and patents from the
USPTO.
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in computer science during 1997-2004. It represents about 1% of the worldwide WoS

computer science publications in that period.24 Using the same logic, we find a loss of

1,693 publications in the top 10% JIF journals, as well as a loss of 1,076 publications in

the top 5% most-cited publications worldwide.

In order to investigate whether the loss in publications is outweighed by a gain in

patents, we estimate a simple model assessing the change in patenting after the IP reform

with scientist fixed-effects and a time trend:

E (yit) = exp (αi + β × Postt + γ ln Trendt) ,

where index i represents U.S. university software scientists. In the absence of a good

counterfactual situation regarding patenting behavior, β provides an approximation of

the gain in patents due to the reform. From the estimates reported in Table B6 in

Appendix, we obtain a gain of 320 patents. By combining the two results, this leads to a

total “price” of 16 publications per patent or 3.35 top-cited publications per patent.

Lastly, we approximate the importance of published software inventions for technology

development before and after the reform, and attach a monetary value to the technology

that the software publications inspire. We therefore track the scientific publications of

our academic computer scientists in patent documents in the first five years after their

publication date25 (Ahmadpoor and Jones, 2017) and weight each matched patent by the

monetary value measure of patents provided by Kogan et al. (2017) (henceforth KPSS).26

Summing up the KPSS value for the patents inspired by each individual software publica-

tion provides a measure for the total monetary value generated by the published software

invention.27 Acknowledging the skewness of the patent value distribution, we also define

two measures as the count of the number of patents above the 50th and 90th percentile
24This is a conservative estimate, since we applied the counterfactual only to the U.S. computer sci-

entists who: i) do not work in hardware-related fields; and ii) have at least one publication before 1994.
Therefore, in computing the counterfactual, we neglected the effect of the reform on scientists entering
after 1994.

25We matched every patent from the USPTO applied in 1989-2009 to the publications of the U.S.
computer scientists of our sample using the non-patent literature contained in patents. See Appendix A.5
for details on the matching procedure.

26Kogan et al. (2017) attribute monetary value to patents of public firms based on stock price variations
around the grant announcement of patents.

27The monetary value is in 1982 constant dollars.
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in KPSS values in their yearly patent application cohort that built on their software

publication.

Table 6 presents a comparison of the pre- and post-reform citations in patents and

the KPSS value of patents. The first row presents the number of patent citations per

publication. U.S. publications have gained influence in the technology domain over time,

since the average number of associated patent citations doubled between the pre- and post-

reform period, rising from 0.16 to 0.36. Interestingly, about ten percent of the citations

come from university patents. This is an important share given that university patents

account for less than 2% of all patents at the USPTO.28 Since the share of citations from

university patents stay the same across the two periods, we can rule out that the surge

in citations stem from the new university patents. Weighting the patents by their KPSS

value leads to the opposite picture. In the pre-reform period, 1989-1996, U.S. publications

were cited by patents worth a total of $3 million. This amount dropped to $1.8 million

in the period 1997-2004.

The last two rows show the measures that weight patents by their position in the KPSS

value distribution. It appears that the number of citations from patents with values above

the median significantly increased, while the top 90% increased only marginally, indicating

that the drastic KPSS value change is not only driven by a few highly valuable patents.

8.2 Comments on the dotcom bubble

A potential concern is that the dotcom bubble and its burst in 2000 might impact our

results. The impact of the dotcom bubble on academic scientists might have been twofold.

On the one hand, the financing of university research might have been increased due to

the additional industry funding available during the dotcom period with the implication

that the nature of university research shifted from rather basic to rather applied topics.

On the other hand, university scientists might have faced increased incentives to leave the

university to start their own company during the dotcom period.

A different financing pattern of university research would only be problematic for the
28The information on the type of applicant has been obtained from the EEE-PPAT data base (Callaert

et al., 2011) which both harmonizes applicant names and categorizes applicants by type of institution
(mostly whether the patent applicant is an individual, a private company or an university).
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Table 6: Evolution of the influence of U.S. computer scientists’ publications on innovation.

Unit of Observation: Publication 1989-1996 1997-2004
mean (s.e.) mean (s.e.) Diff. t-stat

# Patent Citations 0.16 (1) 0.34 (1.8) 0.184 12.5
# Patent Citations from 0.016 (0.16) 0.034 (0.3) 0.0182 7.7

University Applicants
Million $ weighted Patent 3 (42.9) 1.8 (24.5) -1.15 -3.05

Citations (KPSS)
# Patent Citations with 0.049 (0.46) 0.081 (0.69) 0.0317 5.41

KPSS value > p50
# Patent Citations with 0.012 (0.17) 0.015 (0.19) 0.0023 1.31

KPSS value > p90
Observations 15,925 22,338

Notes: Each publication produced in year t is weighted by the number of patent citations it receives from
patents applied between t and t + 5, each patent is further weighted by their monetary value from KPSS.
KPSS refers to the patent value created in Kogan et al. (2017) who use stock variations around patent
grants to infer monetary value. The last two variables attribute a weight of 1 to patents whose KPSS
value exceeds the according percentile across the set of all patents applied in the same year.
Source: Publication data from WoS, patent data from the USPTO, applicant type from EEE-PPAT
(Callaert et al., 2011) and KPSS patent value from Kogan et al. (2017). Author’s own calculations.

analysis at hand if a different trend for the U.S. and Europe is observed. More specifically,

one might expect that the dotcom bubble had a stronger effect on U.S. universities, leading

U.S. university researchers toward engagement in more applied research projects. Figure 6

shows that this is not the case. We see that - after the business share of higher education

financing increased slightly in Europe and the U.S. - it dropped significantly in the U.S.

after the dotcom bubble period, while there it remained on a high level for Europe. We

therefore have no reason to expect that U.S. researchers would have shifted their efforts

closer to commercialization than European universities due to different financing sources

during the dotcom bubble period.

Second, thanks to the richness of financing opportunities prior to the burst of the

dotcom bubble, computer scientists may have left academia to start their own businesses.

In Table B7 in Appendix, we show the average treatment effect when only “stayers” are

considered: scientists with at least one publication in the years 2003-2004 and who are

still affiliated to an university. The coefficient estimates are similar to those of the full

sample. This suggests that the main findings of the paper are not driven by researchers

dropping out of academia to pursue commercialization activities.
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Figure 6: Evolution of the amount and type of financing of higher education R&D.
Source: OECD data.

8.3 Further discussion: Connections to the literature, general-

ization and avenues for future research

Our results clearly show that strengthening institutional IP ownership rights for univer-

sities has a negative effect on the research conducted at universities. It appears that

citation-weighted publications decline in the aftermath, especially for researchers with

low publication ability. Our results therefore speak to the literature that has long ar-

ticulated concerns that the growing involvement of scientists in the commercialization of

their research may have negative implications for the traditional research process (see,

e.g., Blumenthal et al., 1996; Campbell et al., 2002; Krimsky, 2003; Murray and Stern,

2007; Fabrizio and Di Minin, 2008; Azoulay, Ding and Stuart, 2009; Czarnitzki, Glänzel

and Hussinger, 2009; Czarnitzki, Hussinger and Schneider, 2011).

Was the introduction of software patents good or bad for universities? The answer

crucially hinges on the objectives of universities (Thursby, Jensen and Thursby, 2001;

Perkmann et al., 2013). Aside from research and teaching, one third, commonly admit-

ted, mission of universities is the diffusion of knowledge to the economy (Laredo, 2007;

Etzkowitz, 2002). By bringing scientists closer to the market, patents help fulfilling this

third mission (Eisenberg, 1996; Hall, Link and Scott, 2003). Our results highlight that

scientists do not live in isolation from the institutional setting. On the one hand, the

introduction of IP rights does increase patenting which is arguably a good thing given the

third mission. On the other hand, each extra patent produced comes at the “price” of
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multiple quality-weighted publications, negatively affecting the university’s research mis-

sion. Whether the excess patents produced is worth the publication loss is up to decision

makers.

Our results also complement evaluations of Bayh-Dole Act type policies, which focus

on the effects on the commercialization of university generated inventions (e.g., Henderson,

Jaffe and Trajtenberg, 1998; Mowery and Ziedonis, 2002; Sampat, Mowery and Ziedonis,

2003; Hvide and Jones, 2018; Czarnitzki et al., 2016; Ejermo and Toivanen, 2018). With

a focus on the U.S., these studies typically conclude a positive effect on the commercial-

ization of university generated inventions. Here, we show that there is also an associated

cost in terms of a loss of science. From a policy perspective, this negative effect should

be taken into account when assessing the overall benefit/cost of the patent legislation on

the economy (on this debate, see, for instance, Boldrin and Levine, 2013; Sampat, 2018;

Williams, 2017).

Our findings are also connected to the empirical literature on the interplay between

patenting and publishing (Henderson, Jaffe and Trajtenberg, 1998; Azoulay, Ding and

Stuart, 2009; Fabrizio and Di Minin, 2008; Czarnitzki, Glänzel and Hussinger, 2009).

Overall, this literature suggests a positive relationship, or complementarity, between pub-

lication and patent outcomes, for which the exact mechanisms vary across studies. If

there is strong complementarity, such that patents would emerge as a side product of

science production, one might expect that strengthening IP rights would result in more

publications via an increase in the total returns of scientific work. At first glance, this

seems to stand in contrast to our empirical results.

Our findings can, however, be reconciled with this literature, for two reasons. First,

our study fundamentally departs from this strand of literature, in that we examine a

regime shift changing scientists’ incentives, as opposed to these studies in which the rules

of the game remain static.29 We therefore avoid the problem of self-selection of scientists’

into patenting. That is, we do not neglect the scientists who engage in commercialization

activities that are not visible in patents following the IP reform.

Second, our results accommodate complementarity. Within the model outlined in

Section 6, the reduction of publications in the presence of complementarity is plausible:
29A notable exception can be found in the supplementary appendix of Hvide and Jones (2018).
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we empirically find that the complementarity is not strong enough to compensate for the

change in incentives implied by the introduction of software patents. Note that in line

with previous studies, we still find a strong positive empirical link between productivity

in publications and patenting, as evidenced in Figure 5.

Our study also connects to the discussion of the broadening of the patentable subject

matter where we see large differences between the U.S. and Europe. The U.S. grants,

for instance, patents rights for plants since the Plant Protection Act of 1930 (e.g. van

Overwalle, 1999; Fowler, 2000; see provisions of 35 U.S.C. 161). More recently, in June

2013, the U.S. Supreme Court took a clear stance on the patentability of genes by ruling

that human genes cannot be protected because DNA is a “product of nature” so that

nothing new is created when a gene is discovered (Association for Molecular Pathology

versus Myriad Genetics, 569 U.S. 576). With this decision, the U.S. Supreme Court in-

validated the more than 4000 gene patents that were granted until then (Ingram, 2014).

While certainly, each of the extension of patent rights towards a new topic demands dis-

tinct evaluations regarding the multiple possible implications for science and the business

sector, by investigating the implications of the broadening of the patentable subject mat-

ter towards software we contribute by delivering one piece of evidence on the potential

consequences.

Can our results be generalized? Although our empirical setting focuses on a very

specific setting, the question we have investigated is of general interest and informs about

the costs of patent rights in terms of a loss in basic science. Whether our empirical

results are generalizable to other fields depends on three mediators that are field-specific:

1) complementarity, defined as the extent to which patents are a by-product of regular

scientific research; 2) the difficulty to obtain a patent; and 3) the expected value of the

patent. The question of generalizability is further complicated by the interdependence of

these three mediators.30

First, the higher the complementarity between patents and publications, the lower

the expected negative effect of the introduction of IP rights. In fields in which patents

directly follow from major scientific discoveries, such as in biotech, we would expect a lower
30Note that these three factors are captured by the model in Section 6: 1) the complementarity corre-

sponds to λ,2) the difficulty to patent to γpat and 3) the expected patent value can be modeled with a
coefficient associated to Patit in the utility function.
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decrease in publications. Evidence from a survey of computer scientists and electrical

engineers in U.S. universities conducted by Love (2014) suggests that the complementarity

between patents and publications in the field of computer science is not high.

Second, patents for software are known to be among the easiest to obtain (see, e.g.,

Bessen and Hunt, 2004; Webbink, 2005; Bergstra and Klint, 2007).31 From our theoretical

model, it is expected that increasing the difficulty of obtaining a patent reduces the

negative effect of introducing IP rights because incentives are less affected.32 In this

regard, the effect should be stronger in our setting, as opposed to other fields in which

patents are more difficult to obtain, such as human genomics (Sampat and Williams,

2019).

Third, patents do not have the same value across fields. Whereas there is agreement in

the patent literature that patents in the fields of chemistry and pharmaceuticals have the

highest commercial value, software patents appear to be at the other end of the spectrum

(see, for instance, Williams, 2017 or Sampat, 2018 for recent reviews). Thus, patents

should more strongly distort researchers’ incentives following an IP rights introduction in

fields in which patents are associated with a high commercial value. However, patents

with the highest commercial value also tend to be most “science-based” (Ahmadpoor and

Jones, 2017) which in turn increases their complementarity with publications, possibly

offsetting the negative effect of IP rights on publications. The balance between the two

mediators and the net effect in other fields are open empirical questions.

Another important question is whether the withdrawal of patent rights would increase

the production of publications of U.S. computer scientists. Our results suggest so, but this

claim must be made with great caution, since the mechanisms involved in adding patent

rights may well differ from the mechanisms involved in removing them.33 This question

deserves attention and recent developments in the judicial debate on the patentability

of software following Alice Corp. v. CLS Bank International (573 U.S. 208 [2014]) may

allow for a future empirical assessment.
31Regarding the ease of obtaining a software patent Webbink (2005) state that “every trivial combina-

tion or extension of prior software technology is being accorded the same protection as a groundbreaking
drug” (§6).

32In the terminology of the model, increased difficulty to obtain a patent is equivalent to reducing γpat,
the ability to patent.

33Due, for instance, to the endowment effect (Kahneman, Knetsch and Thaler, 1990).
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An interesting avenue for future research would be to investigate the implications of

the introduction of software patents for the mobility of U.S. computer scientists from

academia to industry (e.g. Zucker, Darby and Torero, 2002; Crespi, Geuna and Nesta,

2007; Kaiser et al., 2018; Toole and Czarnitzki, 2010). In particular: Was there a brain

drain? Who were the scientists moving to the private sector and was the performance

of their peers impacted? Did it improve the performance of the private sector? Such

questions are out of the scope of this paper since our study focuses on the consequences

on academic scientists, leading us to restrict the analysis to scientists who stay in academia

before and after the reform. We leave these important questions for future research.

A related issue is whether the opportunities to collaborate with industry partners

pushes academic scientists to patent (Murray and Stern, 2007). Although survey evi-

dence of top U.S. computer science departments suggests that “ex ante funding from the

government for high-tech research is plentiful on university campuses” (Love, 2014, p.

319) with 83% of the respondents reporting that they had at least one patent covering

research financed by the government, this might not be the case for all U.S. universities

and computer scientists (Agrawal and Henderson, 2002; Gans and Murray, 2011). Ex-

ploring potential heterogeneity among scientists in this regard would be an interesting

avenue for future research. Another factor which might push scientists to patent can

be the desire to benefit from royalties (Lach and Schankerman, 2008). Although survey

evidence reports that most computer scientists do not even know whether their university

had a royalty sharing program and what percentage of the royalty faculty inventors are

entitled to (Love, 2014, p. 317), there might again be heterogeneity among scientists

which deserves further attention.

Finally, a recent trend possibly affecting the behavior of scientists is the surge of

contributions to open source software (OSS) whose importance grows exponentially since

the early 2000s (Deshpande and Riehle, 2008). In the private sector some evidence suggest

that OSS can be used as a signaling mechanism (Lerner and Tirole, 2002) and lead to faster

career progress for computer scientists (Riehle, 2015; Huang and Zhang, 2016). Does OSS

affect university scientists in the same way? Akin to patents, contributions to open source

software is another output from research activities. In light of the model of Section 6,
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the effect of OSS can then be decomposed into a substitution, a complementarity and

a research direction effect. The total consequences on the production of scientists and

the respective contribution of each component remains an open empirical question worth

investigating.

9 Conclusion

We investigate how the introduction of patent rights for software inventions affect the

scientific output of U.S. computer scientists. Results from difference-in-difference analysis

with European software scientists as a counterfactual for our treatment group of U.S.

software scientists show that scientists reallocate their efforts from publishing to patenting

in response to the reform. We evidence a 20% reduction in U.S. publication numbers: this

suggests publications and patents are two, at least partially, competing tasks. Computer

scientists who suffer the biggest drop in publications are those having the lowest level of

citation-weighted publications before the reform. We also show that the change had an

influence on the content produced by U.S. computer scientists, with their research output

becoming more applied following the reform.

In summary, our results cannot rule out concerns about the negative implications for

science of a regime shift toward stronger commercialization options due to strengthened

IP ownership rights for universities. Furthermore, we show that IP policies which are not

focused on universities can have important side effects for science.
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A Data Appendix

A.1 Data

Our starting point is the Web of Science (WoS) database provided by Thomson Reuters

from which we retrieve all publications in the WoS field “computer science” from 1989 to

2004. Computer science is defined by the WoS subfields Artificial Intelligence, Informa-

tion Systems, Theory & Methods, Software Engineering, Interdisciplinary Applications,

Hardware & Architecture, Cybernetics.34 The WoS database contains both publications

in scientific journals and publications in conference proceedings which are frequent in

computer science and used for a speedy dissemination of results (Patterson, Snyder and

Ullman, 1999). Proceedings form a growing share of computer scientists’ output over

time. One main feature of a conference proceeding is that its content tends to be more

applied than the content of articles in traditional scientific journals. Our initial sample

consisted of 655,441 unique publications. The WoS records contain various information

such as authors’ names and affiliations, the subfields within computer science, the number

of citations, etc.

A.2 Unique identifiers

To track scientists’ publications over time, we created unique author identifiers mapping

the publications to individual authors. We employed a novel disambiguation approach

developed by Doherr (2017).35 In a nutshell, this method uses a “Google like” search algo-

rithm for correcting spelling issues. It uses network analysis to disambiguate namesakes

where a network is created in which two articles are connected if their shared features

(such as journal name, affiliation, keywords, co-author, etc) are far enough from “chance”

in terms of relative probabilities. Network analysis tools are applied to create coherent

clusters of articles which are confidently identified as being written by the same author.

For further details we refer to Doherr (2017).
34There are seven different subfields in computer science. In the full sample of publications, the number

of publications per subfield is as follows: Artificial Intelligence: 203,467; Information Systems: 172,991;
Theory & Methods: 164,370; Software Engineering: 138,165; Interdisciplinary Applications: 137,959;
Hardware & Architecture: 97,506; Cybernetics: 33,751.

35The algorithm has been used for disambiguation for the articles Czarnitzki et al. (2015, 2016); Cappelli
et al. (2019) among others.
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In our data set which consisted of 1,889,740 author-article pairs, the algorithm iden-

tified 691,061 unique scientists. From those, we dropped all scientists that had only one

publication in computer science. Those can be PhD students that left academia or sci-

entists in related field that ended up on a scientific publication in computer science by

collaboration or coincidence. This led to a sample of 199,010 unique scientists.

In the next step, we eliminated all scientists who did not have 100% of their affilia-

tions in our sample years of software patents within the U.S. or Europe.36 Researchers

who change continent in our time window of interest are limited. A total of 5.98% of the

European scientists and 8.03% of the U.S. scientists were dropped leading to a sample

of 123,509 scientists from both regions. In the next step, we kept only scientists affili-

ated to universities across all the years, excluding scientists employed at any point by a

governmental institution or a private firm. This left us with 81,377 university computer

scientists.

A.3 Assigning affiliations

In order to select university scientists, a complex procedure to clean the affiliations was

implemented before. We retrieved from WoS the addresses of each scientist in a given

year. An address is a formatted character string, such as “Harvard Univ, Aiken Comp

Lab, Cambridge, MA 02138, USA”, from which we extract the institution name from the

first item before the first comma (here “Harvard Univ”). We define an institution as a

combination of an institution name and a country.37 WoS unfortunately does not link the

addresses/institutions to the individual scientists on the publications. Instead it provides

a list of all addresses per publication, as well as an indication of the address of the reprint

author. Moreover, 4.2% of the publications report no address and 18% do not provide

reprint author information.

In order to assign an institution to each scientist-year, we applied an algorithm con-

sisting of several steps. We started with the simplest case of scientists that have only

one publication per year which contains only one institution (which then is valid for all
36Our definition of Europe encompasses the EU 28 countries plus Norway and Switzerland.
37E.g. AT&T based in Seattle in New Jersey and AT&T based in Denver in Colorado are considered

as the same institution since both are in the USA

48



authors on the publication). In this case, the scientist can be unambiguously assigned

to that institution for that year. We moved stepwise forward to the more complex cases

involving scientists with several publications per year, each with multiple different insti-

tutions. In these cases, we infer the institution based on the previous information we

obtained and on the frequency of occurrences of the institutions per author. In the end,

we were able to assign an institution to 97% of the scientist-years.

A.3.1 Details of the algorithm

Using the reprint and regular addresses, we create an heuristic to assign each author-year

to an unique institution. These heuristics can be split in two categories: 1) unequivocal

cases, and 2) equivocal cases.

We start with unequivocal cases. We apply these three heuristics successively:

1) The reprint author information is the most reliable source of information. In a

given year if: i) an author is at least once a reprint author, ii) all her reprint institutions

are the same and iii) this institution is strictly included in the set of institutions of her

non-reprint-author articles: Then we assign the author-year to the reprint institution.

This leads to an identification of 31.9% of the sample.

With the author-years identified, we can remove them from the sample and update the

institutions for each article. This means concretely that if an article contains N authors

and K institutions, and if N −1 authors are identified and attributed to K−1 institutions,

then we “know” that the N th author is affiliated to the Kth institution. We then use this

information as follows:

2) In a given year if all of an author’s articles display only a unique institution (using

the updated article-institution information): Then we assign the author-year to that

institution. This methods identifies 76.9% of the sample.

3) In a given year if i) an institution appears in all the articles of an author and ii)

that institution appears strictly more times than the other institutions: Then we assign

the author-year to that majority institution. Now 79.9% of all author-years are identified.

An illustration of these methods are given in Table A1.

Now a scientist may change institutions in a given year, and have two articles in the
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Table A1: Example of unequivocal identification of author-year institutions.

Case 1. Assume that in 2000 Jane Doe has only two articles:
Author Article ID Institution Is reprint author

Jane Doe 1 HARVARD UNIV Yes
Jane Doe 1 UNIV ILLINOIS No
Jane Doe 2 AT&T BELL LABS No
Jane Doe 2 HARVARD UNIV No

Only looking at the addresses we cannot assign her to an institution. However, as she is
a reprint author in the first article, in which her institution is Harvard, and Harvard also
appears in her second article, then we can assign her to Harvard.
Case 2. In 2000, assume that John Smith has two articles. These articles contain
several institutions, but some institutions were identified to other author-years via the
previous method and John Smith is the last unidentified author:

Author Article ID Institution Is reprint author
John Smith 1 HARVARD UNIV No
John Smith 1 UNIV ILLINOIS No
John Smith 3 UNIV ILLINOIS No
John Smith 3 UNIV CAROLINA No

Then we assign John Smith to UNIV ILLINOIS.
Case 3. In 2000, Julien Dupond also has two articles but his co-authors were not
identified via Case 1:

Author Article ID Institution Is reprint author
Julien Dupond 4 ECOLE POLYTECH No
Julien Dupond 4 UNIV PARIS No
Julien Dupond 5 ECOLE POLYTECH No
Julien Dupond 5 UNIV POLITECN MADRID No

We assign him to ECOLE POLYTECH as it appears in all his publications and strictly
more times than the other institutions.
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same year from these two institutions: This is an equivocal case.

For many records, the simple cases described previously do not occur anymore: authors

have different institutions in a given year and we cannot directly discriminate which one is

really her affiliation – maybe simply because she is indeed affiliated to several institutions.

Thus we proceed as follows:

1) If in a given year if an author’s institution appears strictly more times than other

institutions: Then we assign the author-year to that institution. 83.5% of the author-

years becomes identified. Note that this case differs from the 3rd case of the “unequivocal

cases” because the requirement of that institution appearing in all articles of the year is

not here anymore. Thus we simply consider that if an author has more publications in

one institution, it is likely that it is the place where she was the most active.

2) In a given year if i) an author’s institution has already been identified in other years

via the previous methods and ii) that institution has been assigned to other author-years

a strict majority of times: Then we assign this author-year to this institution, leading to

a 89.6% of the sample identified.

3) In a given year if i) an author’s institution also appears in other years and ii)

that institution is the most frequent institution across all years: Then we assign the

author-year to that institution. We end with 90.8% of the sample being identified.

Finally, we apply ex post modifications: After these two classifications are done, we

correct the sequences of institutions for possible mistakes. We consider two causes of

problems:

1. Timing of publications: a scientist changes institutions, but the publications timing

is not appropriate.

2. Missing information in our raw data due to formatting issues or mere misreporting.

To cure these two problems, we apply a simple rule: when an institution is surrounded

by two identical institutions, we replace it by the surrounding institution, as illustrated

by Table A2. We apply 21,303 such modifications (in the initial full sample of 1,208,600

scientist-years, it is a 1.7% frequency).

Finally when a scientist doesn’t have a publication in a given year, we recursively assign

her to the identified institution of the previous year. If no previous year information is
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Table A2: Corrections of institutional spells.

1990 1992 1993 1994 1996 1998
Case 1 A A B A B B
Case 1 Corrected A A A B B B

Case 2 A A B A A A
Case 2 Corrected A A A A A A

Notes: A and B represent two different institutions. In case 1, it is very likely that the scientist was in
institution A in 1993 (and left to institution B during 1993) and is in institution B from 1994 on.
In case 2, it is very likely that the institution reported in 1993 is a mistake (usually it is the institution
of a coauthor). For example, in the article Simultaneous Fitting Of Several Planes To Point Sets Using
Neural Networks published in Computer Vision Graphics Image Processing in 1990, the author Behrooz
Kamgar-Parsi is affiliated to Computer Vision Laboratory, Center for Automation Research, University
of Maryland, College Park, Maryland 20742, USA. However, in our data, the only two addresses showing
up in that publication record are: “George Mason Univ, Dept Comp Sci, Fairfax, VA 22030”, and “USN,
Res Lab, Washington, DC 20375” which are the two institutions of his two co-authors.

provided, we assign them recursively to the identified institution of the next year.

A.3.2 Identification of universities

To identify which institution is a university, we apply a pattern matching on the institution

name. Thanks to manual identification, the following classification guarantees that no

institution with more than 150 publications is left unidentified.

An institution is considered as a university if:

• it contains one of the following words: caltech, coll, cuny, ecole, ens, epfl, eth, fac,

faculty, harvard, kth, mit, nyu, politecn, polytech, sch, school, scuola, stanford,

suny, supelec, tu, univ, university, upmc,

• or it contains the following patterns: inst technol, inst sci technol, virginia tech,

• or it is equal to: ensieg, enst, enst bretagne, georgia tech, iit, imag, imag lab

grenoble, inst eurecom, itesm, lirmm, rhein westfal th aachen, telecom paris, th

darmstadt, tima lab, ucl, ufrgs, ufrj, umist, unicamp, verimag.

We further exclude from this classifications some companies filling the previous criteria.38

In total, there are 67,305 different institution names. We identify 14,705 of them as
38It concerns the following: abb ens, mit gmbh, samsung adv inst technol, lg corp inst technol, samsung

adv inst sci technol and tu elect co.
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universities. Looking at the 859,862 publication-institution pairs, 74% are universities.

A.4 Patent information

Although the main focus of the paper is on scientists’ publication output, we complement

each scientist’s information with her patent records. We extract all granted patents ap-

plied for at the USPTO between 1989 to 2004 from the Patstat database. We identify

inventors using the same disambiguation algorithm as described in Section A.2. Then

we match the patent data information to the publication data using the disambiguated

inventor/scientist names as well as all other complementary information, such as the

institutions’ names contained in the patent/publication documents. We find a total of

680 university software scientists having at least one patent over the period (460 U.S.

scientists).

The application of the disambiguation algorithm provided us with three different career

realms: the U.S. inventor, the European inventor and the author publishing in the field of

computer science. The distinction between the inventor careers stems from the separation

of the patent authorities. The term career refers to a sequence of documents produced

by an individual with a high probability. A career is labeled with a name, it has an entry

and an exit point defined by the first and last published document (patent or publication)

and is associated with affiliations of applicants. Of course, there are more properties to

a career, but given out specific setup, we refrain from imposing additional restrictions to

avoid a bias towards state dependency, i.e. ignoring job changes or the diffusion of the

research field engendered by participation in larger projects.

As a first step, for the three realms, we create a table containing all name and country

code combinations encountered in the respective data. The country codes stem from

the associated affiliations or applicants. By applying the search tool “SearchEngine”39

configured for n-grams (see Doherr, 2017), we link the publication names with the two

patent name tables. Every author-name-country combination produces a list of inventor

name candidates with the same country and a high similarity to the author name. Linking

merely by the name and country seems to be a recipe for disaster given the high degree
39The tool can be downloaded at ftp://ftp.zew.de/tools/searchengine.zip.
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of homonymy in our data exacerbated by the fact, that the publication data does only

provide initials instead of proper first names, defining the lowest common denominator

for our matching effort.

Fortunately, the author names come attached with additional meta information trans-

ferred from the disambiguation routine. We can directly exploit the estimated number of

namesakes to assess the matching capabilities of a name. Further, by observing the num-

ber of careers associated with a name for the three realms, we can exclude one-to-many or

many-to-many career intersections, implicitly solving the issue of having multiple matched

inventor name variants for an author name. As long as the variants are accrued within

one inventor career, the one-to-one tenet is not violated. We can relax this tenet, by in-

cluding affiliation to applicant linkage. In a separate step, we matched the affiliations to

patent applicants using the “SearchEngine” configured for frequency-based heuristics to

filter filler words like legal forms. This linkage introduces additional criteria potentially

separating multiple career assignments into one-on-one matches. Of course, not every

one-on-one assignment represents a distinctive career switch from author to inventor or

vice-versa, but the inclusion of the estimated namesake count and the juxtaposition of the

respective career periods represented by the entry and exit points allow for fine-tuning

of recall vs. precision. A career switch of an author with a high namesake count, over-

lapping career periods or an implausible stretch of inactivity is deemed to be dropped

during an explorative phase of sample adjustments. Under the assumption of conditional

independence of names to career paths, we are confident to introduce not any bias due to

our arbitrary decisions.

A.5 Matching patents’ non-patent literature to publications

The main challenge in using references to the non-patent literature (henceforth NPL)

contained in patents is that these references’ format is highly unstructured, making them

difficult to match to publication data. For instance, here is a sample of the different

existing formats:

1. Gunji et al. Correlation between the serum level of hepatitis C virus RNA and

disease activities in acute and chronic hepatitis C. <i>Int. J. Cancer </i>52(5):726-
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730 (1992).

2. J. Bacteriol., vol. 172, No. 12, Dec. 1990; Norihiko Misawa et al.: Elucidation of

the Erwinia uredovora Caretenoid Biosynthetic Pathway by Functional Analysis of

Gene Products Expressed In Escherichia coli, pp. 6704-6712.

3. Daniell et al., Milestones in chloroplast genetic engineering: an environmentally

friendly era in biotechnology, Trends in Plant Science, 2002, 84-91, 7.

4. Doranz et al., &#x201c;A small-molecule inhibitor directed against the chemokine

receptor CXCR4 prevents its use as an HIV-1 coreceptor,&#x201d; <i>Journal of

Experimental Medicine </i>(1997a), vol. 186, pp. 1395-1400.

To perform the matching with the publications of our sample, we use two fields: the title

and the year. There is a match if the years are identical and, after some preprocess-

ing,40 if the titles are also identical. The difficulty resides in extracting the title from

the NPL records. When the record contains quotes we extract the title as the quoted

sentence.41 Otherwise, we proceed by step-by-step deleting information we know are not

related to publication titles (journal names, pages, volume, authors, etc...), then apply a

pattern-based algorithm to find the title from the leftovers. Out of 23,029,136 observations

containing a date, we were able to find a title for 18,197,624 of them (79%).42

The number of patents-publications pairs matched with the 1989-2004 worldwide WoS

computer science publications and in a 5-years window is 522,484. This number is 42,309

when considering only the U.S. software scientists of our working sample.

B Additional Estimations

B.1 Different definitions of active computer scientists

The main results of this paper are based on computer scientists active before and after

the introduction of patent rights for software inventions. We defined an active computer
40The preprocessing includes: cleaning any special character and html markup, lowering the case,

deleting all punctuation.
41This is the case in Example 4, since the special characters &#x201c; and &#x201d; represent quotes.
42In the four examples above, all titles are recovered appropriately. Further, note that NPL citations

can refer to items that are not journal/conference articles.
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scientist as a scientist with a least two publications in two different years before 1996

and at least one publication after 1996. Here, we show robustness of our results for

different definitions of active scientists. First, we consider scientists either active in two,

or more restrictively, in three different years before 1996. Second, we consider scientists:

a) without restriction, or having at least b) one, or c) two active years after 1996.

Table B1 reports the results of the 6 estimations. All coefficients are in range of

our main result in the paper (which is reported in column 2). It is worth noting that

the estimates are even larger in magnitude when we do not make restrictions for the

production after the law change.

Table B1: Main estimates for varying definitions of active scientists.

At least... 2 Active Years Before 1996 3 Active Years Before 1996
# of Active Years ≥ 0 ≥ 1 ≥ 2 ≥ 0 ≥ 1 ≥ 2

After 1996
Dep. Variable: Yearly # Publications
Model: (1) (2) (3) (4) (5) (6)
Variables
Treat×Post -0.1955∗∗∗ -0.1645∗∗∗ -0.1594∗∗∗ -0.1810∗∗∗ -0.1761∗∗∗ -0.1716∗∗∗

(0.0306) (0.0272) (0.0266) (0.0337) (0.0313) (0.0304)
Fixed-Effects
Scientist ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓
Fit statistics
Observations 196,683 109,029 79,672 90,954 66,324 53,379
# Scientist 14,986 8,133 5,894 6,537 4,744 3,804
Adj-pseudo R2 0.26415 0.21675 0.20121 0.23821 0.20952 0.19946
Log-Likelihood -175,561.0 -128,272.4 -104,801.2 -105,750.7 -88,075.2 -75,873.2
Clustered (Scientist) standard-errors in parentheses. Signif Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Fixed-effects Poisson estimations. An active year is a year with a publication.
Sources: Authors’ own calculations based on publication data from Web of Science.

B.2 Different definitions of software scientists

This section reports estimates for varying definitions of software computer scientists. To

identify software computer scientists, we relied on the information contained in the subfield

of each journal. We define a hardware publication as a publication containing the subfield

“Hardware & Architecture” and not containing the subfield “Software Engineering”. We

then defined a software scientists as someone having no hardware publication.

We now replicate the main estimation, varying the threshold to qualify as a software
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scientist. Table B2 reports the estimates for thresholds ranging from 0 hardware publi-

cation (like in the paper) to 3. The estimates for different thresholds are all in line with

the main estimates.

Table B2: Varying the threshold defining software scientists.

Total Hardware ≤ 0 ≤ 1 ≤ 2 ≤ 3
Publications (1989-2004)

Dependent Variable: Yearly # Publications
Model: (1) (2) (3) (4)
Variables
Treat×Post -0.1645∗∗∗ -0.1436∗∗∗ -0.1381∗∗∗ -0.1445∗∗∗

(0.0272) (0.0236) (0.0225) (0.0217)
Fixed-Effects
Scientist ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓
Fit statistics
Observations 109,029 129,253 139,506 146,132
# Scientist 8,133 9,636 10,399 10,888
Adj-pseudo R2 0.21675 0.22160 0.22796 0.23211
Log-Likelihood -128,272.4 -156,220.7 -171,620.6 -181,704.8
Clustered (Scientist) standard-errors in parentheses.
Signif Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Fixed-effect Poisson estimations.
Sources: Authors’ own calculations based on publication data from Web of Science.

B.3 Replication with an alternative data base: DBLP

The dblp computer science bibliography (DBLP) is a data base dedicated to collecting

all publications in the field of computer science. Contrary to our main source, Web of

Science, this one only focuses on computer science and may therefore be more accurate. In

particular, DBLP is known to record a comprehensive number of publications in conference

proceedings, as opposed to WoS. To ensure our analysis is not dependent on the source

of the data, in this section we replicate the main estimations with the DBLP data set,

when possible.

Although DBLP is curated for computer science, it suffers from a major drawback

that impedes us from using it in our main analysis: the affiliation of the authors is not

reported. Since we, however, have this information from WoS, we match the two data

sets to replicate our estimations.
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Since the matching can be performed on the author names only, we ensure that the

names are unique enough to be confidently attributed to an unique identity. We proceed

as follows:

1. Out of the 8133 scientists from our main analysis, we select the ones that have no

homonym (same first letter of the first name and same last name) in the master

data set so that a publication from that name can be confidently attributed to one

and only one person. We are left with 3804 authors without homonyms.

2. We then attach each of these 3804 authors without homonym in WoS to the DBLP

records, with the match based on the first letter of the first name and the last name.

At he end of this process, 3292 authors remain.

Once the authors are matched, the number of publication from the two sources are aggre-

gated at the scientist-year level. Specifically, we create three variables: the total number

of publications, the number of journal articles and the number of conference proceedings.

Table B3 reports the correlations and the descriptive statistics of the matched WoS-

DBLP sample. The correlation between WoS publication numbers and their DBLP coun-

terpart is high (above 59% in all three cases) although not equal to 1. The descriptive

statistics show that the main difference is driven by the number of conference proceedings

per year since WoS records about half the numbers of in DBLP (0.41 versus 0.79). The

number of journal articles is also smaller in WoS, 0.6 versus 0.72, but also the discrepancy

is smaller. As illustrated, there are differences between these two data sources, the main

question now becomes whether our results are sensitive to these differences.

Table B4 and Figure B1 replicate the paper’s estimations for this matched WoS-DBLP

sample. The magnitude of the negative effect of the reform is even higher for the DBLP

data, reaching a reduction of 18% (coefficient of -0.20) when looking at the total number

of publications. Regarding the yearly effects, the coefficient estimates from DBLP almost

map the ones from WoS.

B.4 Replication with an alternative citation measure

Citation patterns can be specific to subfields. Changes in citations could thus be the

reflection of changing dynamics in subfields of computer science instead of changes in
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Table B3: Comparison between publication data from WoS and DBLP: descriptive statis-
tics.

(a) Correlations between WoS and DBLP publication variables.

1 2 3 4 5 6

WoS
Yearly # of Publications 1 1 0.77 0.77 0.7 0.54 0.6

Yearly # of Articles 2 0.77 1 0.18 0.55 0.62 0.33
Yearly # of Proceedings 3 0.77 0.18 1 0.53 0.22 0.59

DBLP
Yearly # of Publications 4 0.7 0.55 0.53 1 0.75 0.88

Yearly # of Articles 5 0.54 0.62 0.22 0.75 1 0.34
Yearly # of Proceedings 6 0.6 0.33 0.59 0.88 0.34 1

(b) Descriptive statistics of WoS and DBLP publication data, based on a matched sample of scientists found
in the two data sets.

WoS DBLP
Min Median Q3 90% Max Mean SD Min Median Q3 90% Max Mean SD

Yearly # of Publications 0 1 1 3 42 1 1.6 0 1 2 4 65 1.5 2.7
Yearly # of Articles 0 0 1 2 18 0.6 1 0 0 1 2 26 0.72 1.4

Yearly # of Proceedings 0 0 0 1 33 0.41 1 0 0 1 2 58 0.79 1.9
# Scientist-year 44,323

# Scientists 3292

Table B4: Comparison of DiD estimates between data based on WoS or DBLP.

Dep. Variables: Yearly # of Publications Yearly # of Article Yearly # of Proceedings
Data source: WoS DBLP WoS DBLP WoS DBLP
Model: (1) (2) (3) (4) (5) (6)
Variables
Treat× Post -0.1432∗∗∗ -0.2002∗∗∗ -0.2258∗∗∗ -0.3382∗∗∗ -0.0094 -0.0449

(0.0407) (0.0423) (0.0431) (0.0425) (0.0591) (0.0595)
Fixed-effects
Scientist ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓

Fit statistics
Observations 44,323 43,701 43,026 41,349 35,220 33,127
Pseudo R2 0.22054 0.39130 0.19090 0.26180 0.25974 0.37526
Log-Likelihood -53,809.3 -60,061.1 -39,697.6 -42,326.5 -28,772.3 -37,864.3

Clustered (Scientist) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Poisson fixed-effects estimations. Matched WoS-DBLP sample. The number of observations varies
across columns dues to the removal of scientists with only 0 outcomes across the whole period linked to
the Poisson estimation.
Source: Authors’ own calculations based on publication data from Web of Science and DBLP.
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Figure B1: Yearly treatment effect for WoS versus DBLP publication data.

quality. To control for this potential problem, we recompute the citation variables by

normalizing per subfield. Ninety percent of the publications in our dataset report a

subfield, these include Artificial Intelligence, Information Systems, etc. The 26 subfields

report over 1000 publications. To substract the subfield component from the citation

measure, we apply the following correction:

citescorrected
i,f,t = citesi,f,t ×

1
nf,t

∑
i′ citesi′,f,t

1
nt

∑
f ′
∑

i′ citesi′,f ′,t
,

with citesi,f,t being the number of citations received by publication i in subfield f and

year t; nf,t the number of publications in subfield f in year t and nt the total num-

ber of publications in year t. When a publication is asscociated with several subfields,

the numerator of the previous equation is the average across subfields. Finally, for the

11% publications without subfield, we consider missingness as a specific subfield. This

modification effectlively corrects for subfield differences in means.

Table B5 replicates the main estimations for the subfield-corrected citation measures.

The results are almost identical for the citation-weighted number of publications while the

coefficient is lower in magnitude for the number of top 5% publications but still sizeably

negative and significant. Figure B2 displays the yearly treatment effects. The estimates
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are in line with the ones of the main text. Importantly, the results for the citation-

weighted number of publications are stronger: the absence of pre-trend is more salient,

and the effect after the reform has a larger magnitude.

Table B5: Replicaiton of the main estimation with subfield-corrected citation measures.

Dep. Variables: Yearly # of Yearly # of Top 5%
Citations-Weighted Pub. Cited Articles (Worldwide)

Citations corrected for subfields
Model: (1) (2)

Neg. Bin. Poisson
Variables
Treat × Post -0.4450∗∗∗ -0.1699∗∗∗

(0.0505) (0.0576)
Fixed-effects
Scientist ✓ ✓
Year (16) ✓ ✓

Fit statistics
Observations 106,907 49,172
# Scientist 7,959 3,595
Pseudo R2 0.06091 0.14879
Log-Likelihood -235,435.6 -23,587.8
Over-dispersion 0.16500

Clustered (Scientist) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Sources: Authors’ own calculations based on publication data from Web of Science.

B.5 Quantification estimates

The estimates used to quantify the gain in patents in Section 8.1 of the paper are reported

in Table B6.

B.6 Dotcom bubble: estimation with only stayers

Table B7 reports the main estimates for the sample of researchers still active in academia

in 2003-2004. This estimate is discussed in Section 8.2 of the paper.
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Figure B2: Estimation of yearly treatment effect for subfield-corrected citation measures.

Table B6: Estimation of the increase in patent production for U.S. university software
scientists.

Dependent Variable: Yearly # Patents
Variables
Post 0.2839∗∗

(0.1350)
Time Trend (log) 0.1694

(0.1239)
Fixed-Effects
Scientist ✓
Fit statistics
Observations 6,236
# Scientist 460
Adj-pseudo R2 0.21492
Log-Likelihood -3,198.3
Clustered (Scientist) standard-errors in parentheses.
Signif Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Fixed-effect Poisson estimation.
Sources: Authors’ own calculations based on patent data from the USPTO.
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C Model: Extension and proof

C.1 Including quality-weighted publication output

Consider that each scientist has the possibility to distribute her effort across two types

of publication projects: i) low risk, low quality (PubL), or ii) high risk, high quality

(PubH). To keep the exposition simple, and contrary to the main model, we assume no

complementarity (λ = 0). The production process of these two types of publication is as

follows:

PubL
it ∼ Poisson

(
γpub

it epubL

it

)
, PubH

it ∼ Poisson
(
rHγpub

it epubH

it

)
.

They both depend on the effort invested and on the publication ability of the scientist,

γpub
it . Further, the term rH < 1 reflects the fact that the production of higher quality

projects requires more efforts. Now the utility becomes:

Uit =
(
1 − uH

i

)
× PubL

it + uH
i × PubH

it + Patit

−
[
epubL

it

]2
−
[
epubH

it

]2
−
[
epat

it

]2
−epubL

it × epat
it − epubH

it × epat
it − epubL

it × epubH

it

with uH
i ∈ [0, 1] an idiosyncratic preference for more difficult but higher quality projects.43

Using the same logic as in the main model, with scientist k the counterfactual, following

the reform the change in publication volume becomes:

log
(

̂PubL
it + PubH

it

)
≈ log

(
̂PubL
kt + PubH

kt

)
− (1 + rH) ∆

[3 (1 + (1 − r2
H) uH

i ) − rH ] γpub
it − (1 + rH) γpat

it

,

while the change in high quality publications is:

log
(

P̂ ubH
it

)
≈ log

(
P̂ ubH

kt

)
− ∆

[3uH
i rH − (1 − uH

i )] γpub
it − γpat

it

.

Hence according to this model the reform would reduce the production of both publication
43Note that the term uH

i could also embody the scientists’ institution’s valuation for high quality
publications.
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volume and quality.

C.2 Proof of Proposition 1

Omitting indices for clarity, the expected utility without reform writes:

E (U) = r (τ) γpubepub + γpat
(
epat + λ (τ) epub

)
−
[
epub

]2
− epub × epat −

[
epat

]2

Assume τ0 is the optimal topic choice in the absence of reform. The first order condition

is:

r′ (τ0) γpub + λ′ (τ0) γpat = 0. (5)

As we can see the topic choice depends only on the abilities and the form of the functions

r and λ. Following the reform, the new first order condition is:

r′ (τ) γpub + λ′ (τ)
(
γpat + ∆

)
= 0 (6)

Let us find ϵ such that τ = τ0+ϵ solves the previous equation. A first order approximation

of the previous equation writes:

(r′ (τ0) + ϵr′′ (τ0)) γpub + (λ′ (τ0) + ϵλ′′ (τ0))
(
γpat + ∆

)
= 0

⇔
[
r′ (τ0) γpub + λ′ (τ0) γpat

]
+ ϵr′′ (τ0) γpub + ϵλ′′ (τ0)

(
γpat + ∆

)
= −λ′ (τ0) ∆

⇔ ϵ = λ′ (τ0) ∆
−r′′ (τ0) γpub − λ′′ (τ0) (γpat + ∆) ,

where we used the result from Equation (5) for simplification. Since the second derivatives

of r and λ are negative, we obtain that ϵ > 0. Further, we can clearly see that ∂ϵ/∂γpub

is negative. 2
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D Appliedness measure

The objective of this section is to define a measure that captures the content of the

scientists’ production. In particular, we would like to assess whether the content produced

is more or less applied following the reform.

We introduce a simple measure of appliedness, or patentability, of research. It can

loosely be defined by whether the keywords of the publications appear in the abstracts of

the software patents.

To construct this indicator, we first extract software patents (as defined à la Bessen

and Hunt, 2007) and then look at the frequency at which keywords from publications

appear in patents. The index is at the publication level for which we categorize each

keyword into one of three categories: i) applied, ii) neutral and iii) basic. The index of a

publication is then the number of applied keywords, minus the number of basic keywords,

divided by the total number of keywords. We end up with a measure in between -1 and

1.

Formally this index can be defined as:

appliedp =
∑

w∈Wp

(
1{w ∈ W applied} − 1{w ∈ W basic}

)
|Wp|

, (7)

where appliedp is the appliedness index for publication p, Wp is the set of all keywords

in publication p, and W applied and W basic are the sets of applied and basic keywords.

The key element of this index is the categorization of the keywords, which we hereby

describe.

D.1 Categorizing keywords into basic or applied

To identify whether a keyword is basic or applied, we will use a source of information

external to the publications: the patents. First we extract all patents relating to software

in the sample period (1989–2004). We use Bessen and Hunt (2007) methodology to

identify which patent is software related.44 We end up with 39,017 such patents.
44It corresponds to all USPTO patents containing "software" or "computer program" in the title and

not containing a) "chip", "bus", "circuit" or "circuitry" in the title, nor b) "antigen", "antigenic" or "chro-
matography" in the description.
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The second step is to map the keywords from the publications to the patents to identify

which keyword is more patent related. There are important challenges to this task:

1. several publication keywords can refer to the same concept but be written differently,

2. the patents do not contain keywords.

We tackle these challenges in turn.

D.1.1 Turning publication keywords into concepts

Of the 655,441 publications of our full data set extracted from WoS, less than half contain

at least one keyword (269,566 or 41%). The mode is four keywords per publications,

leading to 1,238,023 publication-keyword pairs. The first year for which publication have

keywords in our sample is 1990 (i.e. 1989 is fully missing).

The publication keywords from our data set are the ones provided by the authors

and are not formatted. Hence keywords referring to the same concept can vary substan-

tially, for example the keywords "3-D", "three dimension", "3 dimensional", etc, all refer

to the same idea but cannot be used "as such" since they would erroneously be considered

different.

Another issue relates to the scope of the keywords. Indeed, keywords can refer to very

precise ideas, or instead, general ones, the latter nesting possibly many precise ideas. For

instance, it would be wrong to consider that "relative convex hull" is completely different

from "convex hull", but we could consider that the latter nests the former.

We now describe how we perform the cleaning and grouping of keywords with the

objective to keep the most signal from them and remove as much noise as possible.

In the first step, we clean the keywords according to the following steps:

1. removing all terms in parentheses (e.g. "self-organizing map (SOM)" ⇒ "self-

organizing map")

2. cleaning all punctuation (except the point when numbers are attached, like in "IEEE

802.11") and putting everything in lowercase, and manually taking care of the "3-D"

vs "three D" case (same for "2D").
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3. we stem all words, i.e. we remove the suffixes to keep only the radical. For instance

"dimensional" becomes "dimension", "spaces" become "space", etc.

4. grouping 2-grams when appropriate. Sometimes some keywords have spaces and

others not, like in "non linear" and "nonlinear". We create the set of all 2-grams

(combination of two consecutive words) and look at whether their frequency in the

original keywords is higher when split or merged. We then split or merge the 2-

grams accordingly. For instance, "nonlinear" was more frequent than "non linear",

so we transformed any "non linear" into "nonlinear".

The second step aims to group keywords that may be too precise into more general

keywords. We define a concept as a keyword that appears in at least 20 publications,

there are 7,723 such concepts. We define a fuzzy keyword as a keyword appearing in

50 or less publications (note that a fuzzy keyword can be a concept). We then look at

whether fuzzy keywords are textually included in concepts which are more frequent. For

example we transform "discontinuous Galerkin finite element methods" into "finite element

method" since the latter is more frequent and includes the former. We transform 74,683

keywords in that way.

At the end of this process, we end up with 277,454 unique keywords, 7,707 of which

are concepts.

D.1.2 Turning patent abstracts into concepts

Now we turn to the 39,017 patents identified as dealing with software. The aim is to turn

the text of the patents into a set of keywords similar to the ones of the publications.

We first clean the patent abstracts in the same way as for the publication keywords,

the only difference being that we also delete common stop-words (e.g. "a", "is", "are",

etc45).

We then create the set of all 1-, 2-, 3- and 4-grams for each abstract. For example: "A

computer program dealing with user identification..." would become "computer program

deal user identify" after cleaning, then we would have, e.g., "computer program" and "user

identify" as 2-grams, and e.g., "computer program deal user" as 4-gram.
45The full list of stopwords used can be found here: http://snowball.tartarus.org/algorithms/english/stop.txt.
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This process leads to a large set of 1- to 4-grams for each patent which we consider as

equivalent to the publication keywords obtained in the previous section.

D.1.3 Definition of basic and applied concepts

We take a very simple approach to categorize the publication keywords. A keyword is:

• applied if it is a "concept" that appears in at least 40 patents (0.1% of the sample),

• neutral if it is a "concept" that appears in 5 to 39 patents or if it is not a "concept",

• basic if it is a "concept" that appears in less than 4 patents.

Of course the terms "applied" and "basic" are only a shorthand; the terms "software-

patent-related" and "non-software-patent-related" would have been closer to the reality

they catch but are much less convenient. We continue with this simplification.

We end up with 580 applied keywords, 6,511 basic keywords and 255,046 neutral

keywords (note that 91% of the keywords appear less than 5 times across the entire

corpus, even after cleaning, and hence don’t qualify as concepts and are thus considered

as neutral).

From these sets of keywords, we can then build the appliedness measure defined in

Equation (7) for each publication reporting at least one keyword. The applied score

ranges from -1 (basic) to 1 (applied). Across all publications of U.S. and E.U. authors,

the average of this measure is -0.0533 with a standard-deviation of 0.373.

D.2 Practical relevance, limitations and advantages

To assess whether the measure we constructed makes sense, we make a simple relevance

test: do the publications of private sector scientists score "high" in appliedness? Indeed,

we expect that, on average, scientists working in the private sector publish work that are

more applied in nature. From the full data set, based on the affiliations, we group the

scientists into either university or private sector scientists.

Figure D3 shows the evolution of the average applied score per publication from 1990

to 2004, split by sector. We can see a clear difference between publications authored

by private sector scientists and the ones authored by university scientists. In the private
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Figure D3: Evolution of the appliedness score: private sector vs university publications.

sector, the applied score is higher for any year. Its value hovers around 0 with several highs

at 0.02. On the other hand, for university scientists, the measure is slightly decreasing up

to 1995 and stays at -0.06 from that point.

This suggests that this measure is able to capture some information on the content

of the publications. Although the range of variation of the measure is not important, of

about 0.08, the difference between the sectors is clearly marked.

Limitations. This measure has many limitations that one should consider:

• about 60% of all publications do not contain any keyword.

• general concepts, like "algorithm" for instance, tend to be based on only one or two

common words. Hence they have a higher chance of appearing in a patent abstract

although possibly used as regular words and not as "concepts". Stated differently,

general concepts have higher chances to be false positives.

• many ideas contained in publication keywords may be written differently in an

abstract. Hence, many keywords may not be detected as being "applied".

The first limitation reduces the relevance of a panel data analysis with this measure as

the dependent variable. Since this measure is conditional on production, missing values
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will in effect remove scientists-years from the estimation and introduce artifacts. This is

why, instead of using scientists-years in the empirical analysis, we will use aggregate the

panel into two periods: pre and post. This ensures that the data will be complete and

greatly limits the influence of the missingness on the estimates.46

The second and third limitations are acknowledgments of the, possibly large, noise

present in the variable. This will very likely lead to a bias towards 0 if we use this

variable in our analyses. However, the specific pattern for the private sector previously

reported shows that this measure contains relevant information.

The main advantage of this measure is its reliance on data external to publications.

To identify appliedness, we look at the proximity in content to software patents. Hence,

the measure is not influenced by the identity of who patents and there is no connection

between the measure and the patenting status of the scientists. This is in contrast to other

measures which capture the proximity in content by using the publications of patenting

scientists, such as for instance in Azoulay, Ding and Stuart (2009). The main assumption

of these measures is that the scientists who patent do more applied science per se. This

is a strong assumption that we can avoid to make thanks to our measure.

D.3 Appliedness of journal articles and conference proceedings

Computer scientists publish in academic journals and in conference proceedings, the con-

tent of the latter tends to be more applied. Indeed, in the words of the Computer Research

Association: “experimental research is at variance with conventional academic publication

tradition” and “experimentalists [prefer] conference publications” (Patterson, Snyder and

Ullman, 1999, page A), suggesting that conferences tend to host more applied research

than traditional journals. We now use the appliedness measure to document whether

the proceedings are indeed more applied in nature than the articles. Figure D4 reports

the evolution of the appliedness measure for articles and proceedings. We can clearly

see a difference between the articles and the proceedings, the latter scoring consistently

higher than the former apart for the two years 1991 and 1994. From 1996 onwards, the
46The hypothesis that we make is that publications without any keyword reported in WoS (which

does not mean that the publication did not contain keywords) have an applied score similar to the other
publications without missing values for the current period (pre or post).
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Figure D4: Evolution of the applied score for articles and proceedings.

appliedness of the conference proceedings appear to be stable over time, slightly below 0.

In contrast, the appliedness of the journal articles decreases over time, reaching almost

-0.1 at the end of the period.

The gap between the two types of publications appear to be larger than the gap

between private sector and university publications, as illustrated in the previous section.

This is in line with our interpretation of the proceedings being more applied on average;

or equivalently, that computer science articles in journals are more basic on average.

We now look at the change in the production of conference proceedings and journal

articles to approximate the applied content of researcher’s publications, in complement to

the direct appliedness measure used in Section 7.2 of the main text. As in Section 7.2,

we estimate DiD models for five groups of scientists categorized by their position in the

citations distribution, using the number of journal articles and conference proceedings as

two separate dependent variables. Figure D5 reports the results for the two variables.

Across all groups, the decrease in the number of conference proceedings produced is lower

in magnitude than the one for journal articles. As expected, the largest gap between the

coefficients of conference proceedings and journal articles is for the lowest quartile of the

publication ability distribution. Scientists in this group produce 35% less journal articles

after the law change while this number is only 20% for conference proceedings. Although
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Figure D5: Average treatment effect for publications in journals and publications in con-
ference proceedings, mediated by an ex ante measure of ability.
Notes: For each of the two dependent variables, the graph reports the estimates and 95% confidence
intervals of the average treatment effect for 5 separate regressions, where the full sample is split according
to the ex ante (1989-1996) average number of citations received per publication. Each regression is a
Poisson fixed-effects estimation with scientist and year fixed-effects.
Sources: Authors’ own calculations based on Web of Science data.

an imperfect measure of appliedness, these results suggest that software scientists tend

to prioritize applied over basic research after the introduction of software patent rights,

especially scientists at the left tail of the publication ability distribution.
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