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Supplementary Material 19 

S1: Landsat data and pre-processing 20 

We used all available Landsat TM, ETM+, and OLI Collection 1 L1TP surface reflectance images 21 

from the period 1987 to 2019, except images that failed to meet the highest quality standards (as 22 

indicated by image quality flags) and those that had more than 70% cloud cover. All images were 23 

cloud masked using pixel-wise quality flags to indicate the presence of clouds, cloud shadows, 24 

snow and ice, and cirrus clouds in the case of Landsat OLI (Zhu et al 2015). We further removed 25 

clouds detected with medium confidence to maintain an aggressive cloud removal. For all 26 

remaining images, we calculated the enhanced vegetation index (EVI). All image classification 27 

and pre-processing steps were performed in Google Earth Engine (Gorelick et al 2017). 28 

 29 

For each year, we generated spectral temporal metrics (STM) that represent descriptive statistics 30 

of the reflectance signal in predefined seasonal time windows and have been widely used in the 31 

context of land-cover and agriculture mapping (Waldner et al 2015, Phalke and Özdoğan 2018, 32 

Rufin et al 2021a). We defined three seasonal windows: April through July (“wet season”), August 33 

through October (“dry season”), and April through October (“growing season”), following the 34 

literature on satellite-based crop phenology in the study region (Conrad et al 2011, Conrad et al 35 

2014). For each season, we generated median, 25th, and 75th percentiles, interquartile ranges, and 36 

standard deviations for all six Landsat spectral bands plus EVI. Interquartile range and standard 37 

deviation in the wet season were sensitive to several years’ data scarcity and thus removed from 38 

further analysis. 39 

 40 
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We derived additional features that represent the texture and local contrast within selected STM. 41 

Concerning texture, we selected 25th and 75th percentile EVI bands for the dry season and the 42 

growing season window and calculated median values in a circular radius of 150, 300, and 900 43 

meters for each pixel. Local contrasts were included by creating a normalized difference between 44 

the STM and the texture metrics. These features normalize each pixel value with their 45 

surrounding areas and emphasize contrasting spectral-temporal behavior on the land surface, 46 

e.g., field boundaries, roads, or patches of woody vegetation. 47 

 48 

We included additional layers representing elevation, slope, latitude, and longitude, which are 49 

useful in large area mapping studies (Pflugmacher et al 2019, Rufin et al 2019). Combining the 50 

STM, texture, and contrast metrics with these additional layers yielded 119 input features for each 51 

year. We further calculated the annual availability of clear-sky observation for the entire season, 52 

April through October, which we used in the post-processing of the image time series (Figure S 53 

1).  54 
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 55 

Figure S 1: Pixel-wise sum of clear sky observations for April through October in each year in the study period. 56 
Individual years used for training the classification model highlighted in blue, the years excluded from the analyses 57 
due to insufficient data availability highlighted in red. Color gradient shows pixels with less than 6 observations 58 
in red. 59 

S2: Training data 60 

We defined the target class catalog to capture the most prominent cropping practices (Table 1 in 61 

the main text). We collected training data for 1987, 1996, 2008, and 2018. These years covered 62 
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different Landsat sensor constellations and acquisition plans. A team of eight trained and 63 

experienced interpreters collected training polygons based on intra-annual time series graphs of 64 

various spectral indices (soil-adjusted vegetation index [SAVI], EVI, tasseled cap components 65 

[TC], and normalized difference vegetation index [NDVI]), custom visualizations of multiple 66 

seasonal STMs, and Google Earth VHR images, where available. As such, the data used to label 67 

the training dataset were different from the features used for classification (described above). 68 

 69 

In addition, we included field data for the years 2008 and 2018 on crop types from previous field 70 

campaigns (Remelgado et al 2020). Training areas were digitized as polygons, from which we 71 

sampled proportionally to the polygon area, with a maximum of five points per polygon for the 72 

final training dataset. The non-cropland class was trained and predicted in the subclasses of bare 73 

land, urban environment, vegetated land (including woody vegetation and unmanaged 74 

herbaceous vegetation), and water, which were aggregated after prediction. Similarly, the model 75 

was trained to separate fodder crops and double cropping, which were merged into a single class 76 

for further processing. Combined, all training data yielded a training database with 31,718 points.  77 

 78 

S3: Accuracy assessment and area estimation 79 

We assessed map accuracy based on current state-of-the-art principles. We created a stratified 80 

random sample based on the classification maps and ancillary datasets. In our analyses, we 81 

considered only areas below an elevation of 2,000 meters. We created province-level substrata for 82 

all 14 provinces within the study area and calculated class occurrence frequency across time to 1) 83 

mask areas classified as bare or urban in all years and 2) produce substrata of areas dominantly 84 

classified as wet season crop, dry season crop, other vegetation, unvegetated land, or water in 85 

most years. Due to the rarity of double cropping and fodder crops, we created sampling strata 86 
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for these rare classes with an occurrence above three years. The procedure resulted in 98 strata 87 

(14 provinces and 7 classes), two of which could not be identified because the combination of 88 

province and dominant class did not occur (wet season crops in Tadzhikistan Territories, and dry 89 

season crops in Khorezm, Uzbekistan). Consequently, we created 96 strata and sampled up to 40 90 

points (some strata were small and the number of sample points thus lower) per stratum. Note 91 

that despite the lack of the respective stratum, we identified 35 samples corresponding to wet 92 

season cropping in Tadzhikistan Territories, and 153 samples corresponding to dry season 93 

cropping in Khorezm. 94 

 95 

Overall, our sample contained 2,784 points, for which the interpreter team assessed class labels 96 

across all 33 years using the GEE Timeseries Explorer plugin in QGIS (Rufin et al 2021b). Overall, 97 

11.9% (n = 10,968) of all labels (n = 91,872) could not be determined, mostly due to data scarcity 98 

in parts of the study region in the years 1987 (31.3%) and 2003 (27.2%). We used the remaining 99 

reference samples (n = 80,904) to calculate area-adjusted overall and class-wise user´s and 100 

producer´s accuracies and derived class-wise and province-level area estimates with confidence 101 

intervals for every year.  102 

 103 

S4: Classification and post-processing  104 

We trained a global random forest (RF) classification model (Breiman 2001) with the training data 105 

and the respective input features (seasonal STM, texture, contrast, latitude, longitude, elevation, 106 

and slope, as described in section S1). We used 250 trees and considered the square root of the 107 

number of features (n = 11) at each split. The RF model was used to predict land cover and 108 

cropping practices across the study region and for each year, yielding a set of 33 annual maps.  109 

 110 
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We masked all pixels with fewer than six clear-sky observations between April and October in 111 

each year to exclude misclassifications due to limited data availability. To maintain a focus on the 112 

croplands in irrigated lowlands, we restricted our analyses to regions that were classified, for at 113 

least 5% of the years with sufficient clear-sky observations, as dry season cropping, double 114 

cropping, or fodder crops. We thereby excluded highly variable rain-fed agriculture, mostly 115 

present in the hillslopes of the southeastern parts of the Amu Darya basin. For the remaining 116 

pixels, we generated layers representing the percentage of a pixel being labeled as 1) cropland, 2) 117 

dry season cropping, and 3) double cropping, by normalizing the occurrence of each class at the 118 

pixel level in relation to the number of years with a valid classification i.e., excluding years with 119 

low data availability. The resulting data revealed spatial patterns of land use history at the 30-120 

meter level provided by Landsat. For comparing differences over time, we created these layers 121 

for the periods 1987 to 2000 and 2001 to 2019, respectively. 122 

 123 

S5: Land use change trajectories and processes 124 

We derived trends in three land use indicators for grid cells of 3 km by 3 km. For each grid cell 125 

and year, we calculated 1) cropland extent as the share of cropland per grid cell, 2) dry season 126 

cropping fraction as the share of dry season crops, double cropping, and fodder crops within all 127 

cropland, and 3) cropping frequency as the average number of harvests per year, where double 128 

cropping and fodder crops were counted as two harvests per year. We manually removed 129 

misclassifications of wetlands, lakes, and reservoir shores. We also removed grid cells with less 130 

than 5% cropland from the analysis.  131 

 132 

Due to the aggressive masking of regions with low data availability, the time series of our annual 133 

land use indicators at the 3x3km level had gaps. We filled the gaps by linear interpolation with a 134 
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maximum gap size of five years, using the imputeTS (Moritz and Bartz-Beielstein 2017) package 135 

in R. Based on the aggregated metrics, we inspected pixel-level time series and assessed the 136 

distribution of the metrics across the study region and per country for every year to observe 137 

changes over time. We then used autoregressive (AR) models to estimate linear time trends in the 138 

gap-filled time series using the AR function implemented in the remotePARTS package for R 139 

(Ives et al 2021). While the resulting trend estimates indicate the spatial patterns of overall change 140 

directions, we want to highlight that the trend estimates should be interpreted with caution, 141 

because of the nonlinearities and multiple change processes inherent to the data at hand.  142 

 143 

We combined expert knowledge with the time series and trend estimates to investigate 144 

characteristic trajectories of change in the study region. We did this by visually inspecting the 145 

time series of land use metrics and the trend estimates. We then examined the observed changes 146 

in detail and provided a qualitative explanation of the underlying causes from the available 147 

literature and expert knowledge. 148 

 149 

S6: Validation, accuracy assessment, and robustness checks 150 

The maps including the classes of wet season crop, dry season crop, double and fodder crop, and 151 

non-cropland had acceptable error rates, with a median overall accuracy of 91.4% across all years 152 

(Figure S 2). In our case, the area-adjusted overall accuracy is strongly influenced by the non-153 

cropland class which has high accuracies and covers a large extent of the study region. Class-154 

specific accuracies should be considered instead. The separation between cropland and non-155 

cropland classes was accurate with a median F1 score of 96.3% for the non-cropland class. In line 156 

with previous studies, the detailed discrimination of cropping practices suffered higher error 157 

rates, with median F1 scores of 70.2%, 73.8%, and 32.3% for wet season cropping, dry season 158 
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cropping, and double cropping, respectively (Figure S 3). Classification results for 2003 and 2013 159 

were less reliable, due to the highly constrained availability of data, and were subsequently 160 

removed from the analyses. 161 

 162 

Figure S 2: Area-adjusted overall accuracy with 95% confidence interval. The years 2003 and 2013 were 163 
removed from the analyses due to data gaps. 164 
 165 

 166 

Figure S 3: Area-adjusted user (black) and producer (gray) accuracy with 95% confidence interval. The 167 
years 2003 and 2013 were removed from the analyses due to data gaps. 168 
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 169 

We created a temporally averaged confusion matrix populated with class probabilities (Table S 170 

1), with columns representing the reference labels and rows representing the map labels. The 171 

dominant error types in our maps were the omission of dry season cropping (mapped as non-172 

cropland or double cropping), and the omission of double cropping (mapped as non-cropland).  173 
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Table S 1: Confusion matrix populated with probabilities averaged across the study period. Values in 174 
brackets represent standard deviations. 175 
  Reference 

  Wet Season Cr. Dry Season Cr. Double Cr. Non-Cr. 

M
ap

 

Wet Season Cr. 0.024 (0.011) 0.003 (0.001) 0.003 (0.001) 0.004 (0.002) 

Dry Season Cr. 0.002 (0.001) 0.070 (0.015) 0.004 (0.002) 0.006 (0.004) 

Double Cr. 0.001 (0.001) 0.011 (0.006) 0.010 (0.004) 0.004 (0.003) 

Non-Cr. 0.006 (0.003) 0.025 (0.006) 0.016 (0.005) 0.807 (0.016) 

 176 

Using the validation sample, we compared the spectral-temporal signatures of the mapped 177 

classes (Figure S 4), to assess the consistency of the class behaviour between training years and 178 

the remaining years, and in relation to the seasonal windows chosen for the calculation of STMs.  179 
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 180 

 181 

Figure S 4: Spectral-temporal signatures of the seven classes considered in the initial classification. Smoothed 182 
curves represent data obtained for years included in training (black) and those outside of the training years (red 183 
dashed). Data density represents the number of clear sky observations per hexagon.  184 
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S7: Cropland and harvested area estimates 185 

We used the class-wise area estimates to calculate the overall cropland extent and harvested area 186 

(Figure S 5, Figure S 6). Cropland extent was calculated as the sum of the area under wet season 187 

cropping, dry season cropping, and double cropping. The harvested area included wet season 188 

cropping, dry season cropping, and two times the area of double cropping, assuming two 189 

harvests per year.  190 

 191 

Figure S 5: Area estimates of cropland extent and harvested area per year.  192 

 193 
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 194 

Figure S 6: Difference between cropland and harvested area, derived from area estimates.  195 
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