ECOMNZTOR

Make Your Publications Visible.

Baumann, Matthias et al.

Article — Published Version

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Frontier metrics for a process-based understanding

of deforestation dynamics

Environmental Research Letters

Provided in Cooperation with:

Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale)

Suggested Citation: Baumann, Matthias et al. (2022) : Frontier metrics for a process-based
understanding of deforestation dynamics, Environmental Research Letters, ISSN 1748-9326,

IOP Publishing, Bristol, Vol. 17, Iss. 9,
https://doi.org/10.1088/1748-9326/ac8b9a ,

https://iopscience.iop.org/article/10.1088/1748-9326/ac8b9a

This Version is available at:
https://hdl.handle.net/10419/264381

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,

gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

http://creativecommons.org/licenses/by/4.0
WWW.ECOMSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1088/1748-9326/ac8b9a%0A
https://iopscience.iop.org/article/10.1088/1748-9326/ac8b9a%0A
https://hdl.handle.net/10419/264381
http://creativecommons.org/licenses/by/4.0
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

IOP Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
21 January 2022

REVISED
17 August 2022

ACCEPTED FOR PUBLICATION
22 August 2022

PUBLISHED
7 September 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Environ. Res. Lett. 17 (2022) 095010 https://doi.org/10.1088/1748-9326/ac8b9%a

ENVIRONMENTAL RESEARCH
LETTERS

LETTER

Frontier metrics for a process-based understanding
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Abstract

Agricultural expansion into tropical and subtropical forests often leads to major social-ecological
trade-offs. Yet, despite ever-more detailed information on where deforestation occurs, how
agriculture expands into forests remains unclear, which is hampered by a lack of spatially and
temporally detailed reconstruction of agricultural expansion. Here, we developed and mapped a
novel set of metrics that quantify agricultural frontier processes at unprecedented spatial and
temporal detail. Specifically, we first derived consistent annual time series of land-use/cover to,
second, describe archetypical patterns of frontier expansion, pertaining to the speed, the diffusion
and activity of deforestation, as well as post-deforestation land use. We exemplify this approach for
understanding agricultural frontier expansion across the entire South American Chaco

(1.1 million km?), a global deforestation hotspot. Our study provides three major insights. First,
agricultural expansion has been rampant in the Chaco, with more than 19.3 million ha of
woodlands converted between 1985 and 2020, including a surge in deforestation after 2019. Second,
land-use trajectories connected to frontier processes have changed in major ways over the 35 year
study period we studied, including substantial regional variations. For instance, while ranching
expansion drove most of the deforestation in the 1980s and 1990s, cropland expansion dominated
during the mid-2000s in Argentina, but not in Paraguay. Similarly, 40% of all areas deforested were
initially used for ranching, but later on converted to cropping. Accounting for post-deforestation
land-use change is thus needed to properly attribute deforestation and associated environmental
impacts, such as carbon emissions or biodiversity loss, to commodities. Finally, we identified
major, recurrent frontier types that may be a useful spatial template for land governance to match
policies to specific frontier situations. Collectively, our study reveals the diversity of frontier
processes and how frontier metrics can capture and structure this diversity to uncover major
patterns of human—nature interactions, which can be used to guide spatially-targeted policies.

© 2022 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Agricultural expansion into natural areas has helped
to meet the growing global demand for food, feed,
and fiber (Godfray et al 2010), but has also pro-
duced unsustainable land-use outcomes. Agricultural
expansion causes widespread deforestation in tropical
and subtropical forests, triggering globally-relevant
greenhouse gas emissions (Carlson et al 2017), biod-
iversity losses (Chaplin-Kramer et al 2015), and
major livelihood impacts on forest-dependent people
(Andersson and Agrawal 2011, Oldekop et al 2020).
Much of the agricultural expansion during the past
decades has taken place in the tropics (Gibbs et al
2010), where most of the last uncultivated, productive
lands are found (Ramankutty et al 2002, Lambin et al
2013). Sustainability planning to prevent or minim-
ize undesirable social-ecological outcomes in regions
where agriculture expands is thus needed.

This, first and foremost, requires a robust under-
standing of where and how frontiers expand. Con-
siderable progress has been made on the prior, that
is mapping where deforestation takes place (Hansen
et al 2013, Turubanova et al 2018, Vancutsem et al
2021, Zalles et al 2021). Yet, mapping how agri-
cultural frontiers progress is more complex, and
requires a thorough understanding of the under-
lying processes inherent in frontier dynamics. For
example, some frontiers advance slowly while oth-
ers erupt rapidly (Kroger and Nygren 2020), some
frontiers grow outward while others leap-frog to
remote places (Bowman et al 2012), and some fron-
tiers accelerate while others consolidate and slow
down (Bonilla-Moheno and Aide 2020). Likewise, a
wide range of land-use-actors drive frontier expan-
sion, such as swidden cultivators (Vieilledent et al
2018), forest smallholders (Tyukavina et al 2018, Phiri
et al 2019), or agribusinesses (Klink and Machado
2005). Further, in some regions, frontiers may be con-
sidered old or suspended, whereas in other regions
new frontiers emerge. Lastly, land-use trajectories
after initial deforestation are diverse (Hosonuma et al
2012, De Sy et al 2019, Souza et al 2020, Song et al
2021). Although methods to quantitatively character-
ize such complexity across large agricultural fronti-
ers are still underdeveloped, there is a need to capture
and describe complex frontier dynamics to support
context-specific land governance and address sus-
tainability challenges in frontier regions (Pacheco
et al 2021). Archetype analyses aimed at identify-
ing major patterns of human—environment interac-
tions (Lambin et al 2003, Geist and Lambin 2004,
Eisenack et al 2006, 2019, Oberlack et al 2019, Sietz
et al 2019, Rocha et al 2020), such as typical land sys-
tems (Vaclavik et al 2013, Levers et al 2018), land-
use change trajectories (Levers et al 2018, Meyfroidt
et al 2018), or land-use outcomes (Cumming et al
2014, Pacheco-Romero et al 2021), are a potentially
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powerful way to structure diversity and complexity of
land-use dynamics for that purpose.

Mapping archetypical patterns of frontier pro-
cesses and better identifying what drives them
could enable more nuanced land governance. For
example, identifying emerging frontiers would allow
for proactive land-use and conservation planning
(e.g. zoning), whereas reactive interventions (e.g.
forest protection) would be needed where fronti-
ers are particularly active (Hansen et al 2020). Like-
wise, where frontiers consolidate, restoration oppor-
tunities might unfold, as land-use actors are more
interested in long-term sustainability (Latawiec et al
2015, Lerner et al 2015, Strassburg et al 2017). Dis-
entangling frontier dynamics can furthermore help
to identify actor-specific governance interventions.
For example, historically, frontiers have mainly been
driven by smallholders (Barbier 2012, Pacheco 2012,
Godar et al 2014), but since the late 1990s, capital-
intensive, influential actors have been driving fronti-
ers to produce commodities for global markets (Rudel
2007, Kroger and Nygren 2020). Such commodity
frontiers are typically characterized by agglomera-
tion effects (Garrett et al 2013, Austin et al 2017,
Richards 2018) and are sensitive to macroeconomic
and trade signals, which can produce abrupt accelera-
tions of frontier dynamics. In addition, land-use act-
ors in commodity frontiers are potentially responsive
to market-based interventions (Zu Ermgassen et al
2020), for example through supply-chain governance
interventions or certification systems (Baynes et al
2015). Finally, identifying recurring patterns of fron-
tier will allow for assessments of what explains these
key dynamics, which directly contributes to building
theories in land system science (Meyfroidt et al 2018,
Turner et al 2020). Yet, we lack a robust understand-
ing and a set of quantitative indicators that capture
how frontiers unfold.

Increasing access to satellite images along with
new processing capabilities offer new opportunities
for understanding frontier dynamics at unpreceden-
ted temporal and spatial resolution (Gorelick et al
2017, Wulder et al 2019, Woodcock et al 2020), yet
these opportunities have so far not been explored.
Prior work on assessing frontiers has mostly focused
on mapping deforestation (Hansen ef al 2013, Miiller
et al 2016, Griffiths et al 2018, Vancutsem et al 2021),
what follows deforestation (Zalles et al 2019, 2021,
Souza et al 2020, Song et al 2021) or, most recently,
who drives deforestation frontiers (Curtis et al 2018,
Pacheco et al 2021). The question of how fron-
tier dynamics unfold, beyond identifying hotspots of
deforestation (Harris et al 2017, Tyukavina et al 2018,
Potapov et al 2019), remains largely unexplored. Spe-
cifically, remote-sensing time series should allow to
describe speed at which frontiers expand (e.g. slow vs.
fast progressing), frontier stage (e.g. emerging, act-
ive, consolidated) or the frontier diffusion process
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(e.g. gradually progressing vs. leap-frogging fron-
tiers). Translating land-cover time series into such
process-based system metrics requires overcoming
two key challenges. First, it requires deriving consist-
ent time series that do not solely represent collections
of individual maps, as error propagation makes ana-
lyzing changes between these maps and the derivation
of process-based metrics difficult to interpret (Friedl
et al 2010, Sulla-Menashe et al 2019, Liu et al 2020).
Second, it requires separating human land-use change
or management changes (e.g. fallow periods, logging)
from other land-cover change such as natural disturb-
ances (e.g. fire) (Gémez et al 2016). Overcoming these
challenges and establishing consistent time series that
represent land-use change would mean a step-change
towards translating process-based metrics for better
understanding deforestation frontier dynamics.

A better understanding of frontier dynamics is
particularly urgent for the world’s subtropical trop-
ical dry forests and savannas (hereafter: dry forests).
Frontiers have expanded particularly rapidly in these
forests over the last decades, but dry forests have
received much less attention than rainforests (Miles
et al 2006, Pennington et al 2018). This is surpris-
ing, given that dry forests account for nearly 40%
of all tropical forests (Murphy and Lugo 1986), har-
bor high biodiversity (Mayle et al 2007), and account
for about 30% of the terrestrial primary productivity
(Grace et al 2006). Dry forest loss has been particu-
larly widespread in South America where agricultural
expansion since the early 2000s has turned sev-
eral dry forest regions into a global deforestation
hotspots (Hansen et al 2013, Pacheco et al 2021,
Buchadas et al 2022). One of these hotspots is the
Gran Chaco in South America shared by Argentina,
Bolivia, and Paraguay, where agricultural expansion
has been rampant (Hansen et al 2013) mostly for
beef and cash crop production (Gasparri and Baldi
2013, Fehlenberg et al 2017). Where deforestation has
occurred in the Chaco is relatively well-understood
(Killeen et al 2007, Gasparri and Grau 2009, Vallejos
et al 2015), including post-deforestation land-uses
(Boletta et al 2006, Campos-Krauer and Wisely
2011, Volante et al 2012, Caldas et al 2015, Bau-
mann et al 2017), and the importance of actors in
shaping these pattern (le Polain de Waroux et al
2018, Levers et al 2021). Yet, how the diversity
of actors and social-ecological conditions has pro-
duced different types of frontier patterns remains
unclear.

Our overarching goal was to develop and test
a novel set of frontier metrics that quantitatively
describe frontier processes across space and over
time. We demonstrate the value of these metrics by
deriving archetypical pattern of frontier dynamics
driven by agricultural expansion for the Chaco, across
the entire history of modern agricultural expansion
(1985-2020). Doing so required us to develop the
first consistent, spatio-temporally detailed land-cover

3

M Baumann et al

reconstruction for this global deforestation hotspot.
Specifically, we asked the following questions:

(a) How can frontier processes and dynamics be
described using satellite-based time-series of
land cover?

(b) Where and how have agricultural frontiers
expanded into the Chaco’s forests since 19852

(c) Whatare archetypical frontier dynamics, includ-
ing post-deforestation land use change?

2. Methods

2.1. Study area

The Chaco is a 1.1 million km? ecoregion in South
America, extending into Argentina, Bolivia, and
Paraguay. Mean annual temperature in the Chaco
is 22 °C, and annual precipitation shows a pro-
nounced east-west-gradient from 1200 mm in the
humid Chaco to 400 mm in the driest regions in the
southwest (Bucher 1982). The Chaco is subdivided
into the dry Chaco in the west, where xerophyl-
lous forests are dominant and cropping and intens-
ive ranching are dominant, and the wet Chaco in
the east where widespread wetlands together with
palm savannas and intermixed grasslands for a diverse
mosaic of vegetation (Bucher 1982). Historically, land
use in the Chaco was dominated by small-scale pro-
ducers, such as the Eastern European colonies in the
Chaco province, or forest smallholders who used a
few hectares of land for subsistence cropping to sell
on local markets, and the surrounding woodlands to
gather firewood and material for rural construction,
as well as forest grazing of roaming livestock (Fatecha
1989, Bucher and Huszar 1999). While smallhold-
ers continue to be important in parts of the Chaco
(Levers et al 2021), the emergence and rapid expan-
sion of large-scale agribusinesses has happened over
wide areas since the 1990s. These actors have sub-
stantial capital and knowledge on the existence and
the amount of expected land rent, allowing them
to quickly and efficiently capitalize on opportunities
that frontier situations entail (le Polain de Waroux
2019). Together with the liberalization of genetic-
ally modified soybean variants in the Chaco during
the 1990s (Reenberg and Fenger 2011), the introduc-
tion of highly productive pasture grasses (e.g. Gatton
panic (Panicum maximum)) (Vazquez 2013), and the
changing export policies of Argentina in reaction to
the peso devaluation in 2001 (Leguizamon 2014), this
has converted the Chaco into a global deforestation
hotspot in the 2000s and 2010s (Hansen et al 2013,
Baumann et al 2017).

2.2. Overview of methodology
Our analytical framework contains three main
steps (figure 1). We provide a summary of our
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methodology here, and a detailed, step-by-step
description in the supporting information (text S1-
S3). In step 1, we re-constructed land cover across
the entire Chaco, annually and consistently for the
period 1985-2020. To do so, we made full use of
the Landsat satellite archive (>80000 images) and
derived an annual time series of spectral-temporal

metrics (STM) (Oeser et al 2020), which we com-
bined with a comprehensive set of training data in a
random forest regression framework to derive annual
classification probabilities for the classes: (a) wood-
lands, (b) other vegetation (i.e. natural grasslands,
palm savannas), (c) croplands, (d) pastures, and
(e) other land covers (i.e. water, bare land, urban
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areas). Using these probabilities, we then mapped
six land-cover transitions (table S1). We validated
each individual map (i.e. 1985-2020) using an inde-
pendent set of random points, which we evaluated
through on-screen interpretation of spectral profiles
(e.g. pastures exhibit a different phenological profile
throughout the year compared to croplands), mean
STM composites of the dry and wet season, and,
where available, high-resolution imagery in Google
Earth and Bing maps as well as Planet Labs. Based
on these points we generated error matrices, calcu-
lated overall accuracies as well as class-wise user’s and
producer’s accuracies, and calculated area estimates
including confidence intervals of each land-cover
class (Olofsson et al 2014). Lastly, we aggregated
the 30 x 30 m? land-cover maps into two datasets
at 1.5 x 1.5 km? resolution: a time series of frac-
tional woodland cover 1985-2020, and a time series
of dominant agricultural land cover (i.e. pasture or
cropland).

In step 2, we identified frontier areas (i.e. areas
with at least 0.5% woodland loss (Rodrigues et al
2009, Buchadas et al 2022) during three consecut-
ive years and where the final land cover was either
cropland or pasture; more information in text S1)
and derived six frontier metrics for these areas, which
reflect key aspects of frontier processes (table 1):
(a) we defined frontier timing, describing woodland
change 2016-2020 (i.e. the last five years of the time
series) relative to 1985-2015. The rationale for this
metric was that the temporal course of the fron-
tier determines the type of intervention. (b) We
assessed frontier speed, representing the strongest
annual woodland loss, which determines the focus
of regional or national policies aiming at conserving
remaining woodlands. (c) Frontier naturalness refers
to woodlands left relative to the baseline wood-
lands, which influences the balances of priorities
between conservation and restoration. (d) Frontier
diffusion distinguished between gradual and leap-
frogging frontiers, serving as an indicator for the type
of actor being dominant in these areas. (e) Frontier
onset, described the starting year of frontier devel-
opment and allows for a temporal evaluation of the
emergence of different frontier types during our study
period. (f) Frontier land use, describing land use after
woodland loss.

In step 3, we reconstructed how frontiers have
unfolded across the region by characterizing the
spatio-temporal pattern of our frontier metrics for
the time period 1985-2020. First, we assessed fron-
tier dynamics by relating our metric frontier onset
(i.e. the year of emergence of a frontier pixel) to the
other five frontier metrics in order to find temporal
patterns of frontier emergence, and summarized each
frontier type for each year of our analysis 1985-2020.
We did this for the whole Chaco, the Chaco sections
in the three countries, as well as the dry and wet
Chaco separately. Second, we identified archetypical
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frontier dynamics, by (a) identifying typical combin-
ations of frontier metrics across the entire Chaco, and
(b) by quantitatively evaluating our metrics in fron-
tier regions identified in previous research (le Polain
de Waroux et al 2018). To do so, we used the three
most common metric combinations per region and
assigned the majority of a category.

3. Results

Forest loss has been rampant in the Chaco with
a total of 193321 km? (28%) of woodlands lost
since 1985. Woodland loss increased steadily until
2009/10, when we found highest annual loss rates
(1.7%, equaling 10167 km? in 2009 and 9507 km?
in 2010), with loss rates declining thereafter (1.1%
on average 2011-2019). Most of the woodland loss in
19852020 occurred in Argentina (103 480 km?; aver-
age annual loss rate of 0.9%), followed by Paraguay
(77 850 km?, 1.3%), and Bolivia (11 989 km?, 0.35%).
Alarmingly, our analyses revealed a recent surge in
woodland loss, in 2019/20, with the highest wood-
land loss rate registered since the previous high in
2009/2010 (1.7%). The highest rates of woodland loss
occurred in the wet Chaco (3.3%, figures 2 and 3).

Our dlassifications had high overall accuracies,
on average 86.1% (max: 93.9%, min: 77.1%). Aver-
age user’s and producer’s accuracy of the wood-
land class were also high and ranged between 90.6%
and 96.9%, whereas accuracy for the cropland class
(73.6%—61.5%) and pasture class (74.1%-81.5%)
where somewhat lower (see supplementary mater-
ial for more detailed information on class-wise
accuracies).

Of the total woodlands loss we identified, the
dominant initial proximate cause was pasture expan-
sion (47%) followed by cropland expansion (2.5%),
while 50.5% were disturbed but did convert to
cropland or pasture right after woodland loss had
occurred. These patterns varied slightly across coun-
tries, as well as for the dry and wet Chaco. In Argen-
tina, pasture expansion was the dominant proxim-
ate cause of deforestation (34.4%), whereas only
3.6% were deforested for being immediately used as
cropland. An additional 64000 km? of woodlands
were disturbed (62%). In Bolivia and Paraguay, pas-
ture expansion was the dominant proximate cause
of deforestation (57.1% and 61.4% of all woodland
loss, respectively), whereas cropland expansion (2.0%
and 0.7%, respectively) only had a minor import-
ance as a proximate cause. An additional 4908 km?
(40.9%) and 29 570 km? (37.9%) of woodlands were
disturbed in Bolivia and Paraguay, respectively. In
the dry Chaco, pasture expansion was the most dom-
inant proximate cause of deforestation (51.8%), fol-
lowed by cropland expansion (2.9%). Contrary, only
28.0% and 0.4% of woodland loss in the wet Chaco
was due to pasture or cropland expansion, respect-
ively (figure 3(B)).
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Figure 2. Agricultural expansion into Chaco woodlands. The map shows the extent of natural vegetation and agriculture in 2020;
the two times series (Landsat images and classification) show frontier evolution in the Argentinean Chaco (pink marker, left) and
the Paraguayan Chaco (blue marker, right). The white line marks the border between the dry (west) and wet (east) Chaco.

[ country border

Land cover in 2020 often differed compared to
the initial post-deforestation land cover. Across the
Chaco, nearly 37% of all woodlands that were not
converted into agriculture immediately, (i.e. were
classified as disturbed forest) were later converted
to pastures (29635 km?) or cropland (6707 km?),
and 17% of all areas initially converted into pas-
tures became cropland later on (15279 km?). This
trend was strongest in Paraguay, where 43.2% of all
deforested areas became agriculture by 2020, from
which 98.2% became pasture (42.5%), and 1.8% cro-
pland, followed by Bolivia (35.35% of all deforesta-
tion, 94.8% of these became pasture and 5.2% cro-
pland) and Argentina (34.1% of all deforestation,
of which 70.1% for pasture and 29.9% for crop-
land). In Argentina, 40.1% of all areas where post-
deforestation land use was pastures later became cro-
pland (14 244 km?), whereas in Paraguay (1.3%) and
Bolivia (6.0%) this trend was weaker (figure 3).

Our six frontier metrics provided further insight
into the dynamics of agricultural expansion in the
Chaco, revealing typical frontiers patterns (figures 4
and 5). Most frontier areas were identified as old fron-
tiers, classified as either suspended (48.0%) or act-
ive (51.2%), whereas we classified only a minor pro-
portion of the Chaco as emerging frontiers (0.7%,
primarily in Paraguay). As highlighted above, only
a minor proportion of the frontier areas were clas-
sified as cropland frontiers (2.2%, direct conversion

from woodlands to croplands), whereas most fron-
tiers were due to pasture expansion, either directly
(80.3%) or with a time lag (e.g. 17.5%, with a time
lag of >3 years; figure 4). Most frontiers in the Chaco
were characterized as slow (63.2%), with fast (28.2%)
and medium frontiers (8.6%) less common. As can
be expected, progressing frontiers formed the over-
whelming type of frontier expansion (98.8%) com-
pared to leapfrogging frontiers (1.2%; primarily in
Argentina and Paraguay). Lastly, remaining wood-
lands in frontiers were either low (45.6%) or medium
(32.8%), whereas in only 21.6% woodlands were
high.

The temporal evolution of our frontier metrics
varied substantially between the three countries. For
example, while Argentina experienced its peak of new
frontier areas in 2002, in Paraguay this peak occurred
much later (2008) and earlier in Bolivia (1995). In
all three countries the peak of new frontier areas was
also associated with the largest amount of fast pro-
gressing frontiers. Interestingly, with regards to fron-
tier land use Argentina features distinct periods of
frontier emergence that is not visible in Bolivia or
Paraguay: while pasture was the dominant frontier
land use around 2002 (i.e. during the peak of new
frontier emergence), we found that transition fron-
tiers occurred earlier (i.e. ~1995-1998) whereas cro-
pland frontiers emerged only during a short period of
time (~2005-2007, figure 4).
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Figure 3. Woodland loss in the Chaco 1985-2020. (A) Annual areas and rates of woodland loss for the entire Chaco, the dry and
wet Chaco, and the three Chaco countries. (B) Initial land cover after deforestation and land cover in 2020, the last year we
analyzed. Note that the change from ‘other vegetation’ to ‘cropland’ could be a single transition or a series of two transitions (i.e.
from ‘other vegetation’ to ‘pasture’ and then to ‘cropland’), but this is separated in this graph.

Integrating our frontier metrics across the Chaco
showed that the Chaco is dominated by a set of
archetypical frontier types. Out of 162 possible com-
binations of metric levels, 59.8% all frontier areas
fell into ten distinct combinations (hereafter: fron-
tier types, figure 5). Across the entire Chaco, these
ten most prevalent frontier types were all charac-
terized as progressing frontiers, though with differ-
ences regarding frontier timing (39.8% are active vs.
19.9% suspended) and frontier naturalness (13.5%
high, 17.8% medium, 27.9% low). The most com-
mon frontier type comprised 17.8% of the study area
and was an active pasture frontier that is slowly pro-
gressing with medium naturalness. At the country-
level we also found distinct differences. For example,
while in Bolivia and Paraguay the ten most com-
mon frontier types were all pasture frontiers, this was

not the case in Argentina, where four out of the ten
most common frontier types were transition fronti-
ers. Likewise, naturalness in Argentina was generally
medium, whereas it was generally high and low in
Bolivia and Paraguay, respectively. Contrary, all three
countries had a large proportion of active frontiers
(Argentina: 55.6% of the total area, Bolivia: 71.8%,
Paraguay: 48.9%) that were generally progressing
slowly (Argentina 76.3%, Bolivia 82.4%, Paraguay
60.4%; figure 6). With regards to the dry and wet
Chaco, we found that while the wet Chaco exclus-
ively was dominated by active pasture frontiers, we
found in the dry Chaco a mix of pasture and trans-
ition frontiers.

Associating our metrics with qualitatively out-
lined frontier regions (le Polain de Waroux et al 2018)
suggested four clear groups of frontier types. Group
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Figure 4. Frontier dynamics in the Chaco according to our six frontier metrics (table 1). We note that the x-axis for ‘frontier
timing’ represents the metric category in 2020, at the end of our time series (i.e. suspended, active, emerging) in 2020.

I (blue color, figure 6) was characterized as suspen-
ded frontiers, with low naturalness and where frontier
land use was either transition or cropland (i.e. Anta I,
Cérdoba, San Luis, Bandera, and Chaco-Santiago I).
Group II (yellow) was similar to group I, except that
the frontier land use was pasture (i.e. Tartagal, Chaco-
Pantanal, and Central Chaco). Group III (green) were
active frontiers with either high or medium frontier
naturalness (i.e. Andean Foothills, Anta II, Chaco-
Santiago I, Corrientes, Formosa). Lastly, group IV
(red) encompassed all frontier regions, where nat-
uralness was already low, but which were identified
as active, independently from the frontier land use
(i.e. Santa Cruz, Tucumdn, Semiarid Chaco, figure 6).

4. Discussion

Better understanding how agriculture expands into
tropical and subtropical forests is important for
addressing the major sustainability challenges asso-
ciated with frontier expansion. This is particularly
urgent for the world’s tropical dry forests, many of
which are hotspots of deforestation, carbon emis-
sions, and biodiversity loss. Here, we developed
a novel set of frontier metrics, and demonstrated
how these can be used to identify typical frontier
dynamics. We demonstrate this approach for the
entire South American Chaco, highlighting three key
insights. First, reconstructing frontier dynamics since
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1985 revealed rampant agricultural expansion, with
193321 km? of Chaco woodlands being converted.
Importantly, for the first time we document a recent
surge in woodland loss (after 2019). Second, translat-
ing our land-cover time series into frontier metrics
uncovered distinct frontier processes. For example,
whereas ranching expansion drove woodland loss in
Paraguay and Bolivia, cropland expansion remained
the primary driver of woodland loss since the mid-
2000s in Argentina. Similarly, we uncover typical
land-cover trajectories following woodland loss, such
as initial conversion for pasture and a later shift to
cropping, or a considerable fallow period before agri-
culture is established. Fourth, the multidimension-
ality of our metrics allowed us to identify groups
of frontiers with similar characteristics and develop-
ment stages that are likely characterized by similar
underlying processes and sustainability outcomes.
Our metrics hence provide a deeper understanding
of frontier processes while allowing to better target
land governance policies to sustainable manage fron-
tier regions.

Land-cover change in the Chaco had previously
been mapped (Hansen et al 2013, Vallejos et al 2015,
Guyra 2018, Song et al 2021, Zalles et al 2021),
but never with the spatial, temporal and thematic
detail that we provide here. Specifically, our mapping
goes beyond prior efforts in at least four ways. First,
our analysis reconstructs land-cover change back to
1985 at annual resolution, covering the entire history
of modern agricultural expansion in this deforesta-
tion hotspot. Importantly, we developed an approach
that ensures consistent, logical trajectories, avoiding
pseudo-change. Second, our analysis, for the first
time, separates agricultural expansion from forest dis-
turbances, which constituted a substantial share of
the woodland loss in the Chaco (34%, figure 3).
Third, because our assessment was validated, we were
able to derive the first robust area estimates of fron-
tier dynamics in the Chaco. Fourth, our approach
is novel in disentangling post-deforestation land-use
changes, including multiple, subsequent land-cover
transitions. This revealed, for example, that defor-
ested areas in Argentina are often eventually used
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for cropping, although initial deforestation occurs
for ranching. It is important to highlight that our
land-cover reconstruction is solely based on satellite
imagery, allowing for subsequent analyses (e.g. stat-
istical analyzing of drivers of change). Likewise, our
approach is easily transferable, can be scaled up to
even larger regions, and can be updated as satellite
image archives grow. This, we humbly suggest, con-
stitutes a step-change in our ability to monitor land-
cover change and forms the basis for a deeper process-
understanding of frontiers.

The patterns and trends of agricultural expansion
we derived here are highly plausible. For example,
our results suggest that frontiers expanded particu-
larly rapidly in the 2000s in Argentina but slowed
down after 2010. The agricultural expansion boom
in the 2000s was the result of several factors, most
importantly the currency devaluation in 2001, which
strongly increased profits from soy exports (Gasparri

and Baldi 2013) and the introduction of genetic-
ally modified soybean in the Chaco (Reenberg and
Fenger 2011, le Polain de Waroux 2019). Indeed,
most of the cropland frontiers emerged during that
time (figure 4). Later, increasing taxation, economic
instability, an outflow of capital (le Polain de Waroux
et al 2019), increasing land-use restrictions through
Argentina’s zoning law (Marinaro et al 2020), and the
increasingly more marginal conditions for sites on
which remaining forests are found (Houspanossian
et al 2016) lowered cropland expansion rates after
2010. In contrast, capital that accumulated in the
soybean boom (in the Chaco or elsewhere, such
as Brazil), combined with evolving know-how and
infrastructure to optimize cattle ranching in the
Chaco (le Polain de Waroux 2019) explains surging
woodland conversion we found in the Paraguayan
Chaco after 2010. As a final example, the recent,
more than two-fold surge in deforestation after 2019

11
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(figure 3(A)) that we here document for the first
time converges well with reports of increasing forest
conversion, during the lockdown situation—in the
Chaco and other deforestation frontiers globally (Fair
2020, Price 2020).

A major surprise in our findings was that most
converted woodlands did not transition to agricul-
ture right away, and many never. Four complement-
ary explanations for this finding are plausible. First,
natural disturbances, such as from fires or river-bed
migrations are common in the Chaco (Adamoli et al
1990, Bravo et al 2001, de Marzo et al 2021). How-
ever, disturbance attribution is not always straight-
forward. For example, fires occur naturally, are used
as a management tool to control woody encroach-
ment, or are associated with the deforestation pro-
cess (Boletta et al 2006). Second, woodland conver-
sion may not be driven by the goal to immediately
produce agricultural commodities, but might happen
to secure land, to prepare land for resale, or simply in
fear of tightening regulations (Seghezzo et al 2011).
Third, given that removing woodland and preparing
land for agriculture requires capital (e.g. sowing with
productive pasture grasses), there may be a time lag
between deforestation and agricultural use, which we
found for 34% of all woodlands converted to agri-
culture (figure 3(B)). Finally, silvopastoral systems,
where parts of the tree canopy remain, are becom-
ing more common in Argentina (Baldassini et al 2018,
Fernadndez et al 2020), and these areas would fall out-
side of our pasture class. All of these factors point
towards the importance of adopting approaches that
deliver information at high spatial, temporal, and,
importantly, thematic resolutions to quantify agri-
cultural expansion in the tropics and to understand
the causes and mechanisms of deforestation. This,
in turn, is critical for properly attributing environ-
mental trade-offs properly to commodities, which is
a key research frontier for achieving supply chain sus-
tainability (Gardner et al 2019, Pendrill et al 2019,
Zu Ermgassen et al 2020).

Translating our land-cover time series into a
consistent set of frontier metrics, allowed us to move
beyond land cover to characterizing land-use change
processes. In our case, this enabled us to identify dis-
tinct frontier types, characterized by similar land-use
and woodland loss dynamics in space and time. Such
archetypical, high-level patterns and outcomes of
human-environment interactions can help to struc-
ture complexity in land-use change (Vaclavik et al
2013, Levers et al 2018, Pacheco-Romero et al 2021),
foster a more mechanistic understanding of land-
use change (Magliocca et al 2018), and contribute to
developing theories of the middle range (Meyfroidt
et al 2018). Importantly though, identifying arche-
types, such as recurring frontier types, allows for the
more context-specific, regionally-targeted land gov-
ernance increasingly asked for (Kuemmerle et al 2016,
Thomson et al 2019, Christie et al 2020, Pacheco
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et al 2021). For example, cropland or transition fron-
tiers with low remaining naturalness (i.e. group I
(blue), figure 7) are regions where restoration efforts
in degraded lands are most suitable. Likewise, pasture
frontiers that are suspended (i.e. group II (yellow))
may increasingly experience pasture to cropland con-
versions in the future, and hence actor-focused inter-
ventions, such as building incentives towards more
sustainable production systems (e.g. silvopastures),
may be most effective. Contrary, active and fast fron-
tiers with high or medium naturalness (e.g. group
III (green)) should become hotspots of policies with
the goal to avoid tipping points in woody cover, for
example through the identification of biodiversity-
rich areas and their subsequent protection through
new protected areas or zonation (e.g. Ley de Protec-
cion Ambiental de Bosques 2007) to restrict further
agricultural expansion.

Our analyses provide the most detailed recon-
struction of woodland and agricultural dynamics
for the Chaco, including novel insights into how
agricultural frontiers have expanded. A few limit-
ations still need to be mentioned. First, we only
mapped agricultural expansion and intensification,
but not agricultural abandonment. Abandonment is
not (yet) a widespread process in the Chaco and
vegetation recovery on abandoned fields takes time
(Basualdo et al 2019). Still, adding de-intensification
and abandonment processes would be a useful expan-
sion of our approach in future work. Second, we
describe frontier expansion related to intensified,
large-scale agriculture but did not explicitly address
forest smallholders practicing subsistence agriculture
inside forests. While these actors are important in the
Chaco, dynamics in forest smallholders mainly are
due to agribusiness expansion (Levers et al 2021), and
so are indirectly captured here. Third, our classific-
ation contains remaining uncertainty. For example,
some class confusions occur between natural vegeta-
tion after woodland loss and pastures, which might
represent silvopastures. Likewise, some accuracies for
the cropland and pasture classes were relatively low
(~70%, figure SI-3) for some years, likely due to miss-
ing observations. Yet, changes not captured in that
year (e.g. cropland expansion) were likely captured
in subsequent years, so that the overall trajectory of
land-cover changes should remain unaffected.

Agricultural expansion into tropical and subtrop-
ical forests contributes heavily to many global sus-
tainability challenges. Steering these frontiers towards
more sustainable outcomes requires a better under-
standing of the dynamics of frontier processes. Here,
we developed and demonstrated a novel approach to
generate such understanding on the basis of frontier
metrics derived from freely available, high-resolution
satellite imagery. For the Chaco, our frontier met-
rics characterize and structure the complexity of
frontier dynamics, for example revealing slow vs.
rampant frontiers, where frontiers are emerging, or
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when frontiers were particularly active. This allows
for exploring the underlying drivers of these frontier
processes, including testing hypotheses about causal
mechanisms. For example, the emergence of cropland
frontiers could be associated with the introduction of
genetically modified soybeans, and through our met-
rics one could explore the causal links between the
two. Further, our study revealed that about 34% of the
deforestation in the Chaco that might be wrongfully
attributed to commodity agriculture, and another
17% that might be attributed to the wrong commod-
ity depending on which baseline is chosen, provid-
ing important insights for attributing environmental
trade-offs properly to commodities. Our transferable,
repeatable, scalable, and extendable approach allows
for comparative research across regions to find rules

governing frontiers in many situations, as well as
to identify generalizable patterns and processes that
shape frontiers in different regions. In the Chaco and
elsewhere this can enable cross-regional learning and
the more regionally targeted, context-specific policy-
interventions that are often asked for. More broadly,
our study highlights the opportunities of the big data
era of remote sensing for creating a step change in our
understanding of land-use change and for uncovering
patterns of human—environment interactions at the
ecoregional and national scale.
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