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Abstract: There has been much discussion on climate change and its adverse effects on agriculture, 
including excessive loss of food production. In regions such as sub-Saharan Africa, where 
agriculture is the major source of household livelihoods, shocks in weather patterns affect farmers’ 
expectations of farm yield and hence the decision to adopt farm inputs such as fertilizers and 
pesticides and the extent of their utilization, particularly given the relatively high cost of these 
inputs. In this study, I explore the relationship between weather shocks and the intensity of inputs 
use at the plot level using large-scale national panel data from three African countries: Niger, 
Nigeria, and Tanzania. By combining monthly drought index data with a rich Living Standards 
Measurement Study-Integrated Surveys on Agriculture dataset, I find that the intensity of chemical 
fertilizer use reduces much more in drought-prone areas than in less drought-prone areas during 
growing seasons. I also find that drought during lean seasons is associated with higher pesticide 
uptake. The evidence suggests that drought induces farmers to purposively reduce farm 
investments, including yield-enhancing technology such as chemical fertilizer, hence worsening 
adverse farm yield effects. 
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1 Introduction 

Raising agricultural productivity by increasing technology adoption (mainly hybrid seeds, chemical 
fertilizers, and pesticides) is the best pathway to promote inclusive economies, ensure food 
security, and combat poverty in sub-Saharan Africa (Bold et al. 2017; Koussoubé and Nauges 2017; 
Sheahan and Barrett 2014). African farmers, however, have been slow to adopt modern agriculture 
technology and a number of reasons for this have been put forward. These include: lack of market 
information, constrained market access, risk attitudes, missing markets, and farm credits (Karlan 
et al. 2014; Kebede et al. 1990), limited knowledge and inability to save (Duflo et al. 2006), and 
poor infrastructure and weak institutions (Aker 2011). Furthermore, most of the agricultural 
systems in sub-Saharan Africa (SSA) are heavily reliant on rainfall, thus exposing livelihoods to 
weather shocks. If there are unexpected weather shocks (droughts, flooding), these will not only 
have a substantial effect on farm productivity (Dell et al. 2014) but also influence farmers’ decision 
to adopt farm technology (Jagnani et al. 2018).  

The main objective of this study is to provide evidence of the impact of weather shocks on the 
adoption and intensity of farm input uptakes by smallholder farmers in SSA. Specifically, this paper 
addresses the question: how do weather shocks affect the probability of adoption and intensity of 
farm input use in SSA? Using highly geo-coded data on drought index matched with plot-level 
(unbalanced) panel data from Living Standards Measurement Study-Integrated Surveys (LSMS-
ISA) in three African countries (Niger, Nigeria, and Tanzania), I estimate the causal effect of 
weather shocks on farmers’ adoption decision and intensity of fertilizer use on plots. I define 
adoption decision of farm technology using two indicators. The first indicator relates to pesticide 
use and equals 1 if the farmer uses any pesticide on a particular plot and 0 otherwise. The second 
indicator relates to the use of chemical fertilizer (e.g. NPK, UREA, DAP) and equals 1 if the farmer 
uses chemical fertilizer on a plot at a given time during the agricultural growth cycle and 0 
otherwise. I also construct a continuous outcome variable, measuring the intensity (kg/plot) of 
chemical fertilizer use on a plot. To allow for the possible correlation of residuals, robust 
heteroscedastic standard errors are clustered at the enumeration area level, which is the primary 
sampling unit (PSU) for the household survey. To derive the relationship between drought 
incidence and farm inputs use, I exploit exogenous variations in the localized weather shocks 
during each phase of the agricultural growth cycle.  

This paper differs from earlier studies of weather shocks in the following ways. First, while the 
existing literature essentially captures local environmental shocks using either log of rainfall shocks 
(Levine and Yang 2006) or variations in temperature (Garg et al. 2020), in the current study I 
investigate the effects of weather shocks on farm input adoption decision by considering 
simultaneously the effects of variations in both rainfall and temperature. Hence, based on the 
Standardized Precipitation-Evapotranspiration Index (SPEI), the study considers all aspects of 
temperature, rainfall, and evapotranspiration of the plants in a particular area at a given time. Using 
the SPEI also allows me to effectively measure drought severity, including its intensity and duration 
and, hence, to identify the onset and end of drought episodes. Second, I derive the estimated 
impacts on intensity of modern farm input (MFI) use from agricultural panel data on three SSA 
countries: Niger, Nigeria, and Tanzania. Considering different agriculture practice from these three 
countries (two from West and one from East Africa) allows me to control for the topographic and 
weather differences between and within countries.   

The main results of the study indicate a significant negative effect of drought shocks on chemical 
fertilizer uptake, especially during the pre-planting stage of the agricultural growth cycle. 
Specifically, I find that one additional month of drought during the initial crop growth period (pre-
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planting) is associated with a statistically significant decrease in chemical fertilizer use on a given 
plot.1 Specifically, in Niger, Nigeria, and Tanzania, an extra month of drought during the pre-
planting period will reduce the probability of using chemical fertilizer by 7, 2, and 42 percentage 
points, respectively. Further, since farmers normally use pesticides just after pests are detected on 
the crops, the effects should be greater in the planting, main growth, and lean seasons (growing 
period) than the pre-planting or harvesting periods. The results show that one extra month of 
drought during the growing period will increase the probability of using pesticide by 4, 2, and 5 
percentage points in Niger, Nigeria, and Tanzania, respectively. 

The results further indicate that during the pre-planting period, an additional one month of 
drought will reduce the intensity of fertilizer use (kg/plot) by 36 per cent in Nigeria, 82 per cent 
in Niger, and 199 per cent in Tanzania. This reaffirms the possible strong reverse associations 
between weather shocks and farmers’ decision to use farm inputs. The higher effect on the 
intensity of fertilizer uptake in Tanzania can be explained by the fact that the majority of farmers 
in Tanzania still rely on traditional farming methods due to landscape2 and favourable climatic 
conditions compared with the two other countries (Niger and Nigeria). The results remain 
unchanged even when the robust heteroscedastic standard errors are clustered at district and 
district-by-year-of-survey levels to allow the correlation of residuals within district and district-by-
year-of-survey respectively.  

The remainder of the paper is organized as follows. Section 2 describes the empirical framework 
and identification strategy. The weather and farm household data sources are given in Section 3. 
The main findings and discussions are presented in Section 4, and the conclusion and policy 
relevance are reported in Section 5.  

2 Empirical strategy 

To achieve the main objective of this study- examining the causal effect of weather shocks on 
farmers’ decision to adopt or not and the intensity of farm input use- I set the following expression: 

hjvt hj hjvt jvt hjvty X Dα λ γ ε= + + +  (1) 

Where hjvty  represents the use of chemical fertilizer/pesticide on plot j by household h, in 
enumeration area or village v,3 at time t. The study uses three outcome variables: first, the rate of 
fertilizer use, which takes the value 1 if the farmer applied chemical fertilizer on the plot over the 
course of the farming season, and 0 if otherwise; second, pesticide use, which is a dummy, taking 
the value 1 if the farmer used any pesticide (such as insecticides, fungicides, and herbicides) on the 
plot, and 0 if otherwise; and finally the intensity of chemical fertilizer use, i.e. the total weight in 
kilograms of chemical fertilizer per plot (kg/plot) that farmers apply during the farming season. 
The expression hjvtX stands for the farm households/plots and village characteristics, while hjα  is 
a household (village) fixed effect. Our variable of interest is jvtD , a proxy for weather shocks 

 

1 In the sampled countries, the most used chemical fertilizers are NPK and UREA. Others, such as DAP, are rarely 
used. I therefore combine all other chemical fertilizers into one variable, ‘Others’. 
2 By 2008, in Tanzania, only around 33 percent of arable land is cultivated. This implies that the country still have 
large reserves of arable lands that can be used in farm expansion (World Bank, 2013). for Malawi and Rwanda  
3 The term village is used interchangeably with enumeration area (EA) in this paper. 

https://blogs.worldbank.org/africacan/land-of-opportunity-should-tanzania-encourage-more-large-scale-farming
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(capturing the number of months over which the village experienced a drought during a given year 
or agricultural growth cycle, and it is considered as a month of drought if SPEI<-1) on a given 
plot j, in village v, at time t ; and finally hjvtε stands for the idiosyncratic error term with mean zero.  

To identify the effect of weather shocks (proxied by drought index) on the adoption and intensity 
of farm inputs use, I exploit a quasi-random variation in drought incidence over time within a 
given village. I compare the level of technology adoption and intensity of chemical fertilizer 
adoption (kg/ha) across drought and non-drought areas, while controlling for the average 
differences in farm plots and households across villages in a given district.  

However, estimating equation (1) without accounting for unobserved heterogeneity between farm 
households may lead to biased estimates. In fact, many of the farm and demographic characteristics 
are unobserved, which implies that those characteristics are captured in the error term, hjdrtε . To 
derive an effective result for the effects of weather shock on the outcome indicators, I hence 
augment equation (1) by a set of fixed effects, including household, village, district, and time fixed 
effects. Then, in deriving the causal effect of drought on the adoption and intensity of farm input 
use, I estimate the model that captures household, farm, and time fixed effects, specified as: 

hjvt hj hjvt jvt dt t hjvty X Dα λ γ ϕ ψ ε= + + + + +  (2) 

where I use district-by-survey-year fixed effects, dtϕ , to account for unobservable time-variant 
differences across the districts. The tψ  stands for survey year fixed effects. In the estimation, I 
cluster robust standard errors at enumeration area (EA) to account for potential differences across 
villages. The use of farm inputs (such as chemical fertilizer and pesticides) on the plots by farmers 
would ideally enable them to produce optimally. In the event of weather shocks, however, farmers 
may decide against using such improved inputs to avoid greater anticipated losses, causing an 
adverse effect on farm yields.  

Estimating equation (2), I derive the marginal effects (γ ) of the changes in SPEI during the pre-
planting and growing phases of farming systems. Therefore, a negative estimate of gamma (γ ) 
would suggest that an increase in the number of months of drought is associated with a decline in 
intensity of farm input use, which would be consistent with the existing literature on climate and 
farm productivity (Akpalu et al. 2009; Barrios et al. 2010; Garg et al. 2020). I assume that the 
variations in the level of SPEI faced at a given village during each phase of farming is exogenous 
to household and farm unobserved characteristics that may vary over time. This assumption is 
reasonable, given the randomness of weather variations (drought incidence) and the inability of 
farmers to predict such variations beside common spatial and climate forecasts, which I account 
for in the village ( vtϕ ) and month-by-year ( tψ ) fixed effects. 

3 Description of data sources 

This paper draws mainly on a rich farm household panel dataset, the Living Standards 
Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA), in three sub-Saharan African 
countries: Niger, Nigeria, and Tanzania.4 To capture weather shocks, I augment these with the 

 

4 The LSMS-ISA project collaborates with the World Bank and the national statistical offices of its eight partner 
countries in SSA (Burkina Faso, Ethiopia, Malawi, Mali, Niger, Nigeria, Tanzania, and Uganda) to design and 
implement systems of multi-topic, nationally representative panel household surveys with a strong focus on 
agriculture. 



 

4 

Standardized Precipitation-Evapotranspiration Index (SPEI), which reflects a village’s climatic 
water balance at different time scales. 

3.1  Plot and household 

The data used to construct the dependent variable (intensity of fertilizer use) are drawn from the 
LSMS-ISA dataset. Figure 1 maps the three countries the study focuses on, namely Niger, Nigeria, 
and Tanzania. The study uses two waves of the National Household Living Conditions and 
Agriculture Survey in Niger (2011 and 2014), three waves of the Nigerian General Household 
Survey (2010/11, 2012/13, and 2015/16), and four waves of the Tanzania National Panel Survey 
(2008/09, 2010/11, 2012/13, and 2014/15), as indicated in Table 1.  

Figure 1: Locations of sampled countries 

 
Source: author’s construction using ArcGIS programme with Geo-spatial dataset. 

Table 1: The distribution of plot sample sizes and their weights in the data 

Country Year of survey No. of households 
in each wave 

No. of plots in 
each wave 

Niger 2011 (W1) 2,252 6,011 
 2014 (W2) 1,770 4,257 
Nigeria 2010/11 (W1) 2,790 5,104 

 2012/13 (W2) 2,944 5,911 

 2015/16 (W3) 2,653 4,956 

Tanzania 2008/09 (W1) 2,283 7,660 
 2010/11 (W2) 2,594 8,093 

 2012/13 (W3) 3,300 10,203 

 2014/15 (W4) 2,090 7,051 

Source: author’s computation, based on LSMS-ISA dataset. 
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The ability to follow the same farm households over time makes the LSMS-ISA dataset a powerful 
tool for studying and understanding the role of agriculture in household welfare over time. The 
surveys provide detailed plot-level data on farm and soil characteristics, including farm inputs, 
farm yield, soil types and slopes, and land size. In addition, the dataset is geo-coded at the EA 
level, making it possible to combine it with other datasets. The study uses 200 EAs in Niger, 410 
EAs in Nigeria, and 385 EAs in Tanzania that were randomly selected across the countries in all 
waves. In this study, I use geo-coordinates to merge the SPEI data with LSMS-ISA survey data 
based on 36 departments in Niger, 774 Nigerian Local Government Areas (LGAs), and 169 
districts in Tanzania. Figures 2, 3, and 4 indicate the distribution of the sampled EAs in the three 
countries. 
Figure 2: EAs of waves 2011 and 2014 in Niger 

 
Source: author’s construction using ArcGIS programme with Geo-spatial Niger LSMS-ISA dataset. 

Figure 3: EAs of waves 2010/11, 2012/13, and 2015/16 in Nigeria 

 

Source: author’s construction using ArcGIS programme with Geo-spatial Nigeria LSMS-ISA dataset. 
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Figure 4: EAs of waves 2008/09, 2010/11, 2012/13, and 2014/15 in Tanzania 

 

Source: author’s construction using ArcGIS programme with Geo-spatial Tanzanian LSMS-ISA dataset. 

The construction of the panel and the sampling techniques for each country can be found on 
LSLM-ISA.5 The study uses an unbalanced panel, as some farm households move into and out of 
farming, and sell or buy new plots. Table 1 shows the total number of plots per wave in each 
country.6 For instance, the total number of plots in the first waves for Niger, Nigeria, and Tanzania 
are 6,011, 5,104, and 7,660, respectively. In each wave, we observe the intensity of fertilizer and 
pesticide use at plot level. Table 2 shows the distribution of fertilizer and pesticide use per plot. 

The second row of Table 2 indicates that the application of chemical fertilizer ranges between 12 
and 20 per cent of the total plots in Niger, between 34 and 37 per cent in Nigeria, and around 11 
per cent in Tanzania. The table also shows that the rates of pesticide use and adoption are still low. 
For instance, in Nigeria, the rate of pesticide use ranges between 14 and 18 per cent of the total 
plots, while in Niger and Tanzania, its use varies between 6 and 10 per cent. 

The dataset also reports farm inputs use, from which we can compute the intensity of chemical 
fertilizer use (kg/ha), and farm yields at plot level, from which we can compute land productivity 
across drought and non-drought farm areas. The middle part of Table 2 shows the intensity of 
chemical fertilizer use during long agricultural rainy seasons. The table indicates that, on average, 
the intensity of NPK and UREA adoption in Nigeria is higher than their use in Tanzania and 
Niger. Specifically, the table shows that the intensity of chemical fertilizer use in Nigeria ranges 
between 80 and 110 kg/plot compared with 38–68 kg/plot and 60–150 kg/plot in Niger and 
Tanzania, respectively.  

 

 

5 The full details can be checked at: http://surveys.worldbank.org/lsms/programs/integrated-surveys-agriculture-
ISA. 
6 Although the terms field and parcel are used in the Niger waves, I use the term plot in this paper. 

http://surveys.worldbank.org/lsms/programs/integrated-surveys-agriculture-ISA
http://surveys.worldbank.org/lsms/programs/integrated-surveys-agriculture-ISA
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Table 2: Descriptive statistics of plot and farming characteristics in the sampled countries 

 Niger Nigeria Tanzania 
 W1 W2 W1 W2 W3 W1 W2 W3 W4 

Any fertilizer (binary) 0.35 (0.47) 0.60 (0.48) 0.38 (0.48) 0.37 (0.50) 0.47 (0.49) 0.15 (0.36) 0.16 (0.37) 0.14 (0.34) 0.15 (0.36) 
Any inorganic use (binary) 0.12 (0.33) 0.20 (0.40) 0.34 (0.47) 0.34 (0.47) 0.37 (0.48) 0.10 (0.30) 0.12 (0.33) 0.11 (0.31) 0.11 (0.32) 
Any organic fertilizer use 
(binary) 

0.31 (0.46) 0.36 (0.48) - - 0.46 (0.49) 0.10 (0.31) 0.10 (0.30) 0.11 (0.32) 0.12 (0.32) 

Pesticide use (binary) 0.06 (0.23) 0.07 (0.24) 0.14 (0.34) 0.14 (0.35) 0.18 (0.39) 0.10 (0.30) 0.09 ( (0.28) 0.09 (0.30) 0.10 (0.30) 
Intensity of NPK (kg/plot) 68.9 (191) 38.5 (75.8) 91.1 (86.3) 108 (105.6) 81.1 (79.7) 87.8 (148) 95.2 (135) 73.0 (100) 153 (197) 
Intensity of UREA (kg/plot) 66.3 (168) 56.5 (91.7) 93.8 (79.4) 105 (87.67) 78.1 (80.5) 59.1 (92.1) 69.6 (74.0) 72.3 (103) 74.7 (99.6) 
Intensity of other chem. 
(kg/plot) 

- 188 ( (226) 68.1 (72.2) 99.2 (85.63) 91.6 (71.3) 68.4 (68.3) 72.2 (74.2) 88.0 (109) 88.5 (116) 

Maize yield (kg/plot) - - 347 (252.4) 323 (269.8) 309 (260.3) 262 (227) 264 (227) 255 (228) 290 (250) 
Beans yield (kg/plot) 54 (83.7) 95 (118) 230 (192.5) 240 (200.3) 213 (219.3) 92 (132) 98 (125) 101 (127) 134 (320) 
Millet yield (kg/plot) 280 (224) 283 (225) - - - - - - - 
Average distance to the 
plot (km) 

2.1 (5.27) 2.4 (2.46) 1.6 (3.28) 1.3 (2.80) 1.2 (2.40) 2.3 (2.8) 2.6 (3.17) 2.3 (2.93) 2.1 (2.9) 

Number of plots per 
household 

4.1 (3.10) 4.3 (3.20) 4.5 (3.08) 2.5 (1.28) 4.8 (2.98) 2.9 (1.5) 3.0 (1.6) 2.4 (1.9) 2.1 (1.7) 

Average land hh size (ha) 0.7 (0.51) 0.7 (0.45) 0.5 (0.69) 0.4 (0.59) 0.4 (0.57) 0.6  (0.58) 0.7 (0.60) 0.6 (0.61) 0.6 (0.61) 

Source: author’s computation based on LSMS-ISA dataset. 
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3.2  Weather data: SPEI 

To capture the effects of weather shocks on farm inputs use, I also use the Standardized 
Precipitation-Evapotranspiration Index (SPEI), developed by Vicente-Serrano et al. (2010). The 
SPEI dataset is based on monthly precipitation and potential evapotranspiration from the Climatic 
Research Unit of the University of East Anglia.7 The Global SPEI database, SPEIbase, offers 
drought conditions at the global scale, with a 0.5 x 0.5 degree spatial resolution. It has a multi-scale 
character, providing SPEI time scales of between 1 and 48 months. The SPEI is a standardized 
variable with mean zero and a variance of one that expresses the water balance in units of standard 
deviations from the long-run average. The index is computed from the current climatic balance on 
weather, climate, and time-invariant factors (such as latitude) with respect to the long-term balance. 
A value of zero means that the water balance is exactly at its long-run average, a value of minus 
one (plus one) means that the water balance is one standard deviation below (above) the long-run 
average, etc.  

In using SPEI to capture positive and negative weather shocks, we follow the recent contributions 
to the literature on the nexus of climate changes and agriculture development (Burke and Emerick 
2016; Dinkelman 2017; Jagnani et al. 2017; Kurukulasuriya et al. 2011; Mendelsohn 2008). The 
advantage of using SPEI as a drought index is that not only is it based on precipitation but it also 
considers the potential evapotranspiration (i.e. evaporation plus plant transpiration), a variable that 
has a significant impact on local drought conditions. There are other weather shock indices. For 
instance, Jagnani et al. (2018) use the Global Land Data Assimilation System (GLDAS) in their 
study on the effects of heat on farming. In the present study, I opt for SPEI due to its high spatial 
resolution. In an empirical strategy looking at the intensity of farm input use and land productivity 
in various areas of SSA, the use of highly disaggregated data is a very useful element. Using monthly 
SPEI data, coupled with agricultural season calendars (Figure 5) and the month for interviews with 
farmers under LSMS-ISA, I generate the aggregate weather indicators for each stage of the crop 
growth cycle in each wave, across the sampled countries.8 From this, I construct three variables of 
interest: pre-planting (or land preparation), growing (including planting, basal fertilizer application, 
and lean season), and harvesting (taking crops from the fields). Each of these three variables 
constitutes the approximate number of months of each crop growing cycle (where it starts and 
when it ends).  

The use of the SPEI also allows us to observe each drought event in relation to the distribution of 
weather conditions for a given time scale and place. The spatial weather distribution is very useful 
in farming systems, as the same quantitative rainfall deficit may explain insufficient precipitation 
in historically wetter villages but not in historically drier villages (Dinkelman 2016), which can be 
critical for farmers, especially the rain-fed agriculture in SSA. Following the climatology literature 
(McKee et al. 1993; Vicente-Serrano et al. 2010), I assign Droughtit in each village i and month t a 
value of 1 for all values of the SPEI below -1 and 0 otherwise. 

  

 

7 Available at: http://spei.csic.es/database.html 
8 I also consulted other agricultural season calendars, such as the famine early warning systems network for Niger 
(https://fews.net/west-africa/niger/seasonal-calendar/december-2013) and Nigeria (https://fews.net/west-africa/ 
nigeria/food-security-outlook/october-2018), to obtain weather indicators for each stage of crop growth cycle.  

http://spei.csic.es/database.html
https://fews.net/west-africa/niger/seasonal-calendar/december-2013
https://fews.net/west-africa/nigeria/food-security-outlook/october-2018
https://fews.net/west-africa/nigeria/food-security-outlook/october-2018
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Figure 5: Agricultural season calendar for major food crops in Tanzania 

 
Source: reproduced from FAO (2021), with permission 

Using the dummy variables which define the number of months each village might have suffered 
drought, I then sum the monthly exposures for each of the three phases of the calendar. Figures 
6–8 show the distributions of the different districts within which there are villages that have faced 
drought in each period of the crop cycle for all the EAs considered in LSMS-ISA data.9 

  

 

9 The LSMS_ISA data in Niger do not represent villages in the North-East region, as this is a desert and not fit for 
habitation. 
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Figure 6: Fraction of Niger districts (departments) experiencing drought (2011 or 2014) 

 
Source: author’s construction based on SPEI dataset, using ArcGIS programme. 
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Figure 7: Fraction of Nigerian districts (LGA) experiencing drought (2010/11, 2012/13, or 2015/16) 

 
Source: author’s construction based on SPEI dataset, using ArcGIS programme. 

Figure 8: Fraction of Tanzanian districts experiencing drought (2008/9, 2010/11, 2012/13, or 2014/15) 

 
Source: author’s construction based on SPEI dataset, using ArcGIS programme. 
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4 Results and discussion 

The main results of the study are shown in Tables 3–5. In addition, the results of some robustness 
checks are provided. The first columns in Tables 3–5 indicate the associated effects of drought 
incidence on chemical fertilizer use, while the second columns provide the effects of drought 
incidence on pesticides use. The third columns indicate the effects of drought incidence on the 
intensity of fertilizer application on plots. 

Table 3: Weather shocks and intensity of chemical fertilizer and pesticide use in Niger 

Variables Fertilizer use Pesticide use Fertilizer intensity (kg/ha) 
Pre-planting -0.023 (0.032) 0.002 (0.011) -0.828*** (0.171) 
Growing 0.068** (0.030) 0.026** (0.012) -0.031 (0.294) 
Harvesting -0.008 (0.019) -0.010 (0.008) -0.610*** (0.174) 
Parcel controls Yes Yes Yes 
Household FE Yes Yes Yes 
Year FE Yes Yes Yes 
Observations 5,186 9,363 2,090 
R-squared 0.618 0.510 0.696 

Note: sample includes farm households in unbalanced panel from two survey waves (2011 and 2014) in Niger. 
The table presents the effects of weather shocks (captured via number of drought months during agricultural 
growth cycle) on agricultural input use. Robust standard errors are in parentheses, clustered by enumeration 
area. * Significant at 10%. **Significant at 5%. *** Significant at 1%. 

Table 4: Weather shocks and intensity of chemical fertilizer and pesticide use in Nigeria 

Variables Fertilizer use Pesticide use Fertilizer intensity (kg/ha) 
Pre-planting -0.072** (0.036) 0.052* (0.030) -0.366* (0.193) 
Growing 0.056 (0.043) 0.043 (0.037) 0.491*** (0.177) 
Harvesting -0.005 (0.030) 0.043 (0.028) -0.108 (0.159) 
Parcel controls Yes Yes Yes 
Household FE Yes Yes Yes 
Year FE Yes Yes Yes 
Observations 12,473 12,523 11,245 
R-squared 0.718 0.610 0.659 

Note: sample includes households in unbalanced panel from three survey waves (2010/11, 2012/13, and 
2015/16) in Nigeria. Other notes as Table 3. 

Table 5: Weather shocks and intensity of chemical fertilizer and pesticide use in Tanzania 

Variables Fertilizer use Pesticide use Fertilizer intensity (kg/ha) 
Pre-planting -0.420*** (0.107) 0.985*** (0.206) -1.998*** (0.626) 
Growing -0.163** (0.065) 0.057** (0.024) -0.751** (0.330) 
Harvesting 0.309*** (0.081) 0.005 (0.532) 1.453*** (0.457) 
Parcel controls Yes Yes Yes 
Household FE Yes Yes Yes 
Year FE Yes Yes Yes 
Observations 26,185 26,794 27,266 
R-squared 0.769 0.731 0.767 

Note: sample includes farm households unbalanced panel from four survey waves (2008/09, 2010/11, 2012/13, 
2014/15) from Tanzania. Other notes as Table 3. 

Source (Tables 3–5): author’s construction. 
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4.1  Effects of weather shocks on chemical fertilizer and pesticide use 

The estimates of the responses of fertilizer use to weather shocks estimated by equation (2) are 
reported in the first column of Tables 3–5. In all three countries, I find that an additional month 
of drought during the pre-planting period is associated with a statistically significant decrease in 
chemical fertilizer use on a given plot. Specifically, in Niger, an extra one month of drought during 
the pre-planting period leads to a reduction of 0.02 percentage point in chemical fertilizer use. In 
Nigeria and Tanzania, an additional one month of drought during the pre-planting period induces 
a decrease of chemical fertilizer use by 0.07 and 0.42 percentage points, respectively. Moreover, 
noting that the rate of adopting chemical fertilizers approaches 35 per cent in Nigeria, 15 per cent 
in Niger, and 11 per cent in Tanzania, those point estimates indicate that an additional one month 
of drought in the pre-planting period result in a probability of a 2 per cent decrease in chemical 
fertilizer use in Niger, 7 per cent in Nigeria, and 42 per cent in Tanzania.  

In the second column of Tables 3–5, I explore the results from equation (2) showing the causal 
effects of drought on pesticide use on a given plot. In all three countries, the signs of the parameter 
estimates on drought indices are positive throughout, as expected. It is important to note that 
farmers generally use pesticides immediately after pests are detected on the crops; hence the effects 
should be more clearly observed in the growing period than the pre-planting or harvesting periods. 
Indeed, the results show that, in Niger, one extra month of drought during the growing season is 
associated with an increase of 0.02 percentage point in pesticide use; and in Nigeria and Tanzania, 
an additional one month drought incidence leads to approximately 0.04 and 0.05 percentage point 
increases in pesticide use during the growing season, respectively. These results reaffirm the 
findings of the study by Jagnani et al. (2018), which showed that when the farmers face drought 
soon after planting, especially in tropical areas where the incidence of pests is high, they will 
increase investment in loss-reducing inputs (including pesticides) and thus reduce yield-enhancing 
investment (including chemical fertilizer). 

The estimates from the effects of weather shocks on the intensity of chemical fertilizer use are 
reported in the last column of Tables 3–5. The results show that during the pre-planting period, 
an additional one month of drought will reduce the intensity of fertilizer use (kg/plot) by 82 per 
cent in Niger, 36 per cent in Nigeria, and 199 per cent in Tanzania. This reaffirms the strong 
reverse associations between weather shocks and farmers’ decision on the use of farm inputs. The 
results are robust even when the heteroscedastic standard errors are clustered at district and 
district-by-year-of-survey levels to allow the correlation of residuals with district and district-by-
year-of-survey, respectively. 

4.2  Robustness checks 

In estimating equation (2) so far, I have clustered the residuals by village to allow plausible 
correlations of residuals within the villages. To achieve this, I exploit a random exogenous variation 
in weather shocks at the village level beyond time-invariant plot and household characteristics and 
time-invariant administrative and spatial attributes, to derive a causal effect of weather shocks on 
farmers’ decision to use inputs.  

To test whether the farm input use residuals remain unchanged with an alternative specification, I 
clustered the robust residuals at district level, which allows me to control for potential differences 
across districts. I also cluster the residuals at the district-by-year-of-survey level to allow the 
correlation of residuals within districts over each year of the household survey. Tables A1–A3 in 
the Appendix provide the results of these robustness checks, where the derived estimates are 
clustered at district and district-by-year-of-survey level. Comparing the above results with those 
reported in Tables 3–5, it is clear that the reported estimates of the effects of weather shocks on 
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farmers’ decision to use inputs are still the same despite some indistinguishable differences in the 
standard errors. This confirms the earlier claim that weather shock plays a significant role in 
affecting farmers’ decision to use or not use farm inputs during the agricultural growth cycle. 

5 Conclusion 

The low rates of agricultural technology adoption in SSA may be caused by many interlinked 
factors, including poverty, market imperfection, asymmetric information, and credit constraints. 
In addition, farming systems in SSA are heavily reliant on rainfall, so that farmers’ livelihoods are 
endangered in the event of weather shocks. This study extends the economic literature on the 
effects of farm input use decisions in SSA by analysing the effects of local drought shocks on 
farmers’ farm inputs uptake (including chemical fertilizer and pesticides). The study focuses on a 
unique context of SSA where limited access to coping mechanisms and rates of modern farm 
inputs use make it difficult for farmers to cope with and avoid threats from weather shocks. 
Specifically, this study examines the effects of droughts on the intensity of farm inputs use 
(chemical fertilizer and pesticides) on a given plot. Behavioural economic theory suggests that 
unexpected droughts may induce farmers to take abrupt decisions regarding farm input use during 
different stages of the agricultural cycle.  

My identification strategy exploits exogenous variations in drought events across different villages 
over time and controls for farm household and plot characteristics. To capture the effects of 
droughts on farmers’ decisions to use modern agricultural inputs, I use a highly disaggregated 
monthly drought index (SPEI with 0.25 degree spatial resolution level). This index provides a level 
of variation of a periodic state of drought in a given village and time from the situation that 
normally prevails in this village. Coupled with this, I use a set of fixed effects, an approach that 
makes it reasonable that any effect of drought on the intensity of farm input use I estimate is 
indeed causal. Using rich panel survey data (LSMS-ISA) from three SSA countries—Niger, 
Nigeria, and Tanzania—the study explores the relationship between drought incidence and 
intensity of farm input use by smallholder farmers. I find consistent evidence that drought 
incidence is strongly correlated with reduced use of chemical fertilizer and positive use of pesticides 
during different stages of the agricultural cycle. Specifically, the study shows that an additional one 
month of drought in the pre-planting period results in a 2 per cent decrease in chemical fertilizer 
use in Niger, a 7 per cent decrease in Nigeria, and a 42 per cent reduction in Tanzania, respectively. 
On the other hand, the results show that, in Niger, one extra month of drought during the growing 
period will increase the probability of using pesticides by 2 percentage points, while in Nigeria and 
Tanzania, an additional month of drought incidence increases the probability of pesticide use 
during the growing season by roughly 4 and 5 percentage points, respectively.  

Given a sufficient sample size in each wave and national-level data representativeness, inclusive of 
farm household- and plot-level characteristics, the findings of this study seem conclusive. 
Considering the whole range of responses of farm input use, including chemical fertilizer and 
pesticides, the paper offers unique insight into how farmers in SSA take their farming decisions 
sequentially when exposed to drought conditions. These effects show that there is a need to 
provide effective climate change risk-coping strategies for farmers. The introduction of improved 
crop disease and drought resistance technologies could allow farmers to maintain their livelihoods 
regardless of extreme climate events. In addition, it can be argued that quick, accurate, and 
consistent provision of weather forecasts via mobile phones messages, radio, or television during 
the agricultural growth cycle, especially in drought-prone areas, would improve farmers’ awareness 
of impending weather conditions and their ability to adjust their farming methods accordingly. 
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Appendix: Robustness checks 

Table A1: Weather shocks and intensity of fertilizer and pesticide use in Niger 

Variables Clustered at district level Clustered at district by surveyed year 
 Fertilizer use Pesticide use Intensity (kg/plot) Fertilizer use Pesticide use Intensity (kg/plot) 

Pre-planting -0.023 0.002 -0.828*** -0.023 0.002 -0.828*** 
 (0.027) (0.012) (0.171) (0.025) (0.010) (0.149) 
Growing 0.068 0.026 -0.031 0.068 0.026* -0.031 
 (0.049) (0.018) (0.324) (0.042) (0.015) (0.285) 
Harvesting -0.008 -0.010 -0.610*** -0.008 -0.010 -0.610*** 
 (0.028) (0.010) (0.133) (0.025) (0.008) (0.123) 
Parcel controls Yes Yes Yes Yes Yes Yes 
Household FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Observations 5,186 9,363 2,090 5,186 9,363 2,090 
R-squared 0.618 0.510 0.696 0.618 0.510 0.696 

Note: sample includes farm households in unbalanced panel from two survey waves (2011 and 2014) in Niger. 
The  table presents the effects of weather shocks (captured via number of drought months during the agricultural 
growth cycle) on agricultural input use. I define the three main stages of the agricultural growth cycle as: pre-
planting (or land preparation); growing (including planting, basal fertilizer application, and lean season); and 
harvesting. Robust standard errors are in parentheses, clustered by district and district-by-year of survey 
respectively. * Significant at 10%. ** Significant at 5%. *** Significant at 1%. 

Source: author’s construction. 

Table A2: Weather shocks and intensity of fertilizer and pesticide use in Nigeria 

Variables Clustered at district level Clustered at district by surveyed year 
 Fertilizer use Pesticide use Intensity (kg/plot) Fertilizer use Pesticide use Intensity (kg/plot) 
Pre-planting -0.013*** 0.009*** -0.032 -0.013*** 0.009*** -0.032 
 (0.005) (0.003) (0.030) (0.004) (0.003) (0.026) 
Growing 0.015* 0.013* -0.046 0.015** 0.013** -0.046 
 (0.008) (0.007) (0.047) (0.007) (0.006) (0.042) 
Harvesting 0.006 0.009** -0.045 0.006 0.009** -0.045 
 (0.006) (0.005) (0.038) (0.006) (0.004) (0.033) 
Parcel controls Yes Yes Yes Yes Yes Yes 
Household FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Observations 12,509 12,558 11,290 12,509 12,558 11,290 
R-squared 0.623 0.521 0.577 0.623 0.521 0.577 

Note: ample includes households in unbalanced panel from three survey waves (2010/11, 2012/13, and 2015/16) 
in Nigeria. The table presents the effects of weather shocks (captured via number of drought months during the 
agricultural growth cycle) on agricultural input use. I define the three main stages of the agricultural growth cycle 
as: pre-planting (or land preparation); growing (including planting, basal fertilizer application, and lean season); 
and harvesting. Robust standard errors are in parentheses, clustered by district and district-by-year of survey 
respectively. * Significant at 10%. ** Significant at 5%. *** Significant at 1%. 

Source: author’s construction. 
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Table A3: Weather shocks and intensity of fertilizer and pesticide use in Tanzania 

Variables Clustered at district level Clustered at district by surveyed year 
 Fertilizer use Pesticide use Intensity (kg/plot) Fertilizer use Pesticide use Intensity (kg/plot) 
Pre-planting -0.420*** 0.012 -1.998*** -0.420*** 0.012* -1.998*** 
 (0.097) (0.008) (0.598) (0.100) (0.006) (0.610) 
Growing -0.163** 0.017** -0.751* -0.163** 0.017*** -0.751** 
 (0.081) (0.007) (0.423) (0.076) (0.005) (0.379) 
Harvesting 0.309*** 0.001 1.453*** 0.309*** 0.001 1.453*** 
 (0.086) (0.003) (0.485) (0.084) (0.002) (0.476) 
Parcel controls Yes Yes Yes Yes Yes Yes 
Household FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Observations 26,141 28,255 27,218 26,185 28,255 27,266 
R-squared 0.769 0.256 0.767 0.769 0.256 0.767 

Note: sample includes farm households in unbalanced panel from four survey waves (2008/09, 2010/11, 
2012/13, and 2014/15) from Tanzania. The table presents the effects of weather shocks (captured via number of 
drought months during the agricultural growth cycle) on agricultural input use.I define the three main stages of the 
agricultural growth cycle as: pre-planting (or land preparation); growing (including planting, basal fertilizer 
application, and lean season); and harvesting. Robust standard errors are in parentheses, clustered by district 
and district-by-year of survey respectively. * Significant at 10%. ** Significant at 5%. *** Significant at 1%. 

Source: author’s construction. 
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