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Abstract

Adverse selection in procurement arises when low-cost bidders are also low-

quality suppliers. We propose a mechanism called LoLA which, under some condi-

tions, is the best incentive-compatible mechanism for maximizing either the seller’s

or the social surplus in the presence of adverse selection. The LoLA features a floor

(or minimum) price, and a reserve (or maximum) price. Conveniently, the LoLA has

a dominant strategy equilibrium that, under mild regularity conditions, is unique.

We perform a counterfactual experiment on Italian government procurement auc-

tions: we compute the gain that the government could have made, had it used the

optimal mechanism (which happens to be a LoLA), relative to a first-price auction,

which is the format the government actually used. Finally, we provide software

applications for computing the optimal procurement mechanism.
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1 Introduction

When the quality of a good or service is non-contractible, a buyer holding a standard pro-

curement auction faces an adverse selection (or “lemons”) problem: the sellers who bid

aggressively may be the low-quality ones. This problem is pervasive in procurement set-

tings: cheap suppliers may provide low quality (maybe because they use shoddy materials

and less-qualified labor), whereas high-quality contractors may have high costs and thus

be unwilling to bid aggressively. In this case, we say that the buyer has quality concerns.

To deal with the adverse selection problem, many procurement agencies use versions

of the “average bid auction” (ABA). The ABA format disqualifies “extreme” bids, i.e.,

bids that fall in extremely high or low quantiles of the bid distribution. The rationale

for disqualifying low bids is to weed out low-quality bidders.1 However, the ABA format

has severe limitations. Theoretically, the ABA is unsatisfactory because it gives rise to

multiple coordination equilibria where all the bidders coordinate on the same bid (any

deviations being disqualified as “extreme”), which is bad for the buyer if the bid is high.

Practically, the ABA has been shown to foster collusion. Both concerns were documented

by Albano et al. (2016), Decarolis (2014, 2018), and Conley and Decarolis (2016).

This paper derives the optimal mechanism for buying a good or service when there is

an adverse selection problem. We call it a “lowball lottery auction” (LoLA). A LoLA is a

sealed-bid auction that features a “floor price” pL, such that:

1. If at most one bidder bids below the “floor price” pL, the lowest bidder supplies the

good and is paid the second-lowest bid.

2. If two or more bidders bid below pL, one of these bidders is randomly selected to

supply the good and is paid pL.

In a LoLA, the buyer commits to pay no less than the floor price pL. From a bidder’s

perspective, price competition is less intense if the floor price is higher. When pL is set at a

sufficiently high level, price competition is completely eliminated, and the winning bidder

is selected randomly. At the other extreme, when pL is set below the lowest possible cost,

the LoLA becomes a standard second-price auction.

We show that, under mild regularity assumptions, the buyer’s expected surplus is

maximized by a LoLA among all interim IC and IR mechanisms. To our knowledge, this

1See Decarolis and Klein (2011), p. 2.
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is the first time that a floor price emerges as part of an optimal selling mechanism. In

real-world procurement settings, we are aware of only one case where minimum prices

have been used.2

Intuitively, a floor price is most helpful when the buyer’s quality concerns come from the

lower-cost suppliers: in this case, the floor price can make it less likely that most-aggressive

bidders – who, presumably, are also the lowest-cost ones – win the auction. Setting the

buyer-optimal floor price pL entails a trade-off: lowering pL saves the buyer some money,

but it increases the quality concerns associated with selecting a cheaper supplier. We will

show that if the quality concerns are more severe, in a sense that will be made formal

later, then the optimal floor price p∗L is higher. If the auction designer maximizes social

welfare rather than buyer revenues, then the optimal mechanism remains a LoLA but,

under fairly general conditions, one with a higher optimal p∗L. This is intuitive because a

benevolent designer does not internalize the buyer’s monetary savings from lowering pL.

The buyer may also choose to augment the LoLA with a “reserve price” that excludes

any bid above a certain threshold. A LoLA with a reserve price is reminiscent of the

ABA in that both high and low bids are curbed. But in a LoLA the reserve and floor

prices are exogenous, whereas in an ABA the disqualification thresholds are a function of

the bid distribution. And, whereas the ABA has a continuum of symmetric pure-strategy

equilibria, none of which is in (even weakly) dominant strategies (see Decarolis 2014),

under mild conditions, the LoLA has a unique equilibrium, and this equilibrium is in

weakly dominant strategies.

To illustrate the gains from the optimal mechanism we perform a counterfactual experi-

ment on Italian government procurement auctions. Using information generously provided

by Francesco Decarolis, and making some assumptions about how quality enters the gov-

ernment’s objective function, we compute the gain that the government could have made,

had it used the optimal mechanism (which happens to be a LoLA), relative to a first-price

auction, which is the format the government actually used. We find that, in a reasonably

calibrated model, these savings can be nontrivial.

Finally, we created two software applications and made them publicly available. These

applications compute the buyer-optimal procurement mechanisms in the presence of qual-

ity concerns, whether or not the optimal mechanism is a LoLA.

2This is the case of some Japanese procurement auctions, see Chassang and Ortner (2019).
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The theoretical literature on optimal procurement in the presence of quality concerns

is sparse. When there is no lemons problem, the first-price auction and the second-price

auction are both socially optimal and maximize the buyer’s surplus (Myerson 1982). When

the lemons problem is sufficiently severe, Manelli and Vincent (1995) show that it is opti-

mal to select the wining bidder randomly. Both results obtain as polar cases in our setting

because, indeed, both mechanisms are LoLAs for suitably chosen values of pL. Manelli

and Vincent (2004) study several functional-form examples with two players, in which cer-

tain sequential mechanisms maximize the social surplus in a “lemons” environment. Our

implementation, in contrast, is through a sealed-bid auction. Of course, if the functional

form in one of their examples satisfies our assumptions, their optimal mechanism and ours

must yield the same allocation and payoffs.3

The formal literature on (non-optimal) procurement in the presence of quality concerns

goes back to, at least, Dini et al. (2006) and Albano et al. (2006). The latter have shown

that a mechanism in the spirit of the ABA admits a continuum of equilibria in which

the bidders coordinate to keep prices high. Decarolis (2014) documented empirically the

severity of the lemons problem in first-price auctions compared to ABAs. The drawbacks

of the ABA format, i.e., multiple coordination equilibria and vulnerability to collusion,

are documented empirically by Conley and Decarolis (2016). Decarolis (2018) compares

the performance of ABA and first price auctions. When contracts are allocated using the

ABA, Decarolis (2018) shows that bidders bid extremely close to each other, which can be

interpreted as evidence of an “approximately random” allocation. The winner’s quality

seems to be better when winners are chosen “randomly,” suggesting that these auctions

suffer from adverse selection.4 In a dynamic model of bidder collusion, Chassang and

Ortner (2019) document theoretically and empirically that, counterintuitively, introducing

minimum prices can lower the winning-bid distribution.5

In sum, our first and main contribution relative to the literature is that we character-

ize the optimal procurement mechanism in the presence of adverse selection. The optimal

mechanism was not known before, except in the extreme case where the adverse selection

was so severe that random assignment was optimal. Our proposed mechanism is similar

3This is the case for the functional form studied in their Theorem 2. It should be noted that Manelli
and Vincent’s (2004) analysis is not a special case of ours because some of their examples do not satisfy
our assumptions.

4Specifically, Decarolis (2018) shows that delays and cost overruns tends to be lower in the ABA than
in a first price auction (where contracts are allocated to the lowest bidder).

5Calzolari and Spagnolo (2006) also study repeated procurement in the presence of quality concerns.
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enough to the ABA format that, we think, it could be perceived as “natural” by practition-

ers and, thus, implemented in practice. A second contribution is the calibration exercise

with Italian procurement data: we show that the LoLA is in fact the optimal mechanism

in that setting, and quantify the gain over the existing procurement protocol. We view

the calibration method as the main contribution of this exercise, because the method has

external validity beyond the specific setting of Italian auctions. A third contribution is a

pair of software applications that we have created and made available for the computation

of the optimal mechanism (which may or may not be a LoLA). We believe that this con-

tribution is mainly pedagogical; we hope that, by making it easy to compute the optimal

auction, we can promote the adoption of the LoLA in real-world settings.

The paper proceeds as follows. The next section contains a simple illustrative exam-

ple. Section 3 lays out the model. Section 4 derives the optimal mechanism and some

comparative static results. Section 5 analyzes the Italian procurement auctions. Section

6 describes the software we created. Section 7 concludes.

2 An Illustrative Example

This section provides a functional form example to build intuition for the general results

to follow.

A buyer faces two suppliers. Each supplier’s production cost ci is privately known and

is an i.i.d. random variable distributed uniformly on [0, 1]. The buyer’s willingness to pay

for supplier i’s product is given by:

v(ci) ≡ 4 ci − 2 c2i (1)

The function v(·) is increasing and concave on [0, 1], which means that the buyer’s use value

increases with production cost, albeit at a decreasing rate. The increasingness captures

the lemons problem: more-reliable suppliers have higher costs. The concavity means,

intuitively, that the lemons problem is more severe where the function v(·) increases more

steeply, i.e., at lower values of c.

A LoLA coincides with a second-price auction except when both bidders bid less than

pL, in which case either wins with equal probability and pays pL. In a LoLA, it is a

dominant strategy to bid one’s cost; this will be proved in Theorem 1. Figure 1 shows the
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outcome of the LoLA with a floor price pL ∈ (0, 1), for any realization of the suppliers’

costs.

c2

c1

1

0 1

pL

pL

supplier 1 sells at price c2

each supplier sells

at price pL,

with equal probability

su
p
p
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a
t
p
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c 1
Figure 1: Outcome of the LoLA with floor price pL

Note that setting pL = 0 yields the first price auction, and pL = 1 yields the random as-

signment mechanism. In the inner-square region, there is no competition between bidders.

This happens to be the region where, intuitively, the lemons problem is worse, because

the function v(·) is steeper. Thus, in the LoLA, the buyer gives up the monetary benefits

of competition precisely in the region where the lemons problem is most severe, but not

in other regions.

The expected buyer surplus generated by a LoLA with threshold price pL is:

V (pL) = 2

∫ 1

pL

(∫ c2

0

[v(c1)− c2] dc1

)
dc2 +

∫ pL

0

∫ pL

0

[
1

2
v(c1) +

1

2
v(c2)− pL

]
dc1dc2.

=
1

3
+

1

3
· (pL)3 · (1− pL).

(2)

The first double integral covers the right-trapezoid region in which bidder 2 bids more

than her opponent and above the “floor price” pL. In this case, the LoLA prescribes that

the lowest bidder supplies the good and is paid the second-lowest bid c2. This term is

doubled to account for the specular case in which bidder 1 bids the most. The second
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Figure 2: Expected buyer surplus V and social surplus S. V is maximal at pL
∗ = 3/4

under a LoLA with floor price pL.

double integral covers the inner-square region where two or more bidders bid below pL.

In this case, the LoLA prescribes that one of these bidders is randomly selected to supply

the good and is paid pL. The last equality follows from substituting for v(·) from (1) and

solving the integrals.

The expected social surplus generated by a LoLA with threshold price pL is:

S(pL) = 2

∫ 1

pL

∫ c2

0

[v(c1)− c1] dc1dc2 +

∫ pL

0

∫ pL

0

[
1

2
(v(c1)− c1) +

1

2
(v(c2)− c2)

]
dc1dc2

=
2

3
+

1

3
·
(
3

2
− pL

)
· (pL)3.

(3)

Figure 2 graphs the expected buyer surplus V and expected social surplus S as a

function of pL. The function V attains a maximum of about 0.37. By comparison, the

first price auction and the random assignment mechanism, which correspond to LoLAs

with pL = 0 and pL = 1, respectively, achieve a buyer’s surplus of roughly 0.33 each.
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Therefore, in this example the buyer-optimal LoLA is seen to improve the buyer’s surplus

by more than 10% relative to either the first price auction or the random assignment

mechanism. The fact that the buyer-optimal pL is interior indicates that the lemons

problem is severe enough that the first price auction is not optimal; but not so severe that

random allocation is optimal (i.e., Manelli and Vincent 1995 does not apply here).

By contrast, the expected social surplus S(·) is monotonically increasing in pL, which

implies that the socially optimal LoLA has pL = 1. Therefore, in this example, random

allocation is socially optimal but not buyer-optimal. That V (·) peaks earlier than S(·) is
a general property: the buyer prefers a lower pL than the social planner (see Proposition

3). This is intuitive: a small decrease from pL to pL − ϵ has first-order benefits for the

buyer (the decrease in payment is realized whenever the winning bidder’s type is smaller

than pL) but only second-order benefits for the social planner (the allocation improves

only when the winning bidder’s type is between pL and pL − ϵ).

3 Model

A buyer with known type ξ seeks to procure an indivisible good from one of N potential

suppliers. The suppliers’ costs c1, ..., cN are elements of the interval [cL, cH ]. These costs

are privately known, and they are independently drawn from the same distribution with

density f . If a supplier with cost c is selected and paid m, the supplier’s profit is

m− c,

and the buyer’s surplus is

v(c, ξ)−m.

The function v represents the buyer’s value from procuring the good from a buyer with

cost c. If v is independent of c, we have the classic setting of Myerson (1981). If v is

increasing in c there are quality concerns. The scalar ξ parameterizes the severity of the

buyer’s quality concerns: we assume that vc ξ(c, ξ) ≥ 0, meaning that when ξ is larger,

intuitively, the quality concerns are more severe. For analytical convenience, we also

assume v(cL, ξ) ≥ cL, meaning that there are gains from trade at the lowest supplier type.

This assumption does not imply that there are gains from trade for all types.

8



The virtual valuation function is defined as:

w(c; ξ, β) ≡ v(c; ξ)− c− β
F (c)

f(c)
. (4)

The ratio F (c)
f(c)

represents the information rent earned by a supplier with type c. As we will

show later, the scaling parameter β ∈ [0, 1] encodes the designer’s concern for the buyer’s

share of the social surplus. When β = 1 the designer is solely focused on maximizing the

buyer’s surplus, as in Myerson (1981). When β = 0 the designer focuses entirely on social

surplus. Interior values of β capture intermediate degrees of concern for buyer vs. social

surplus. When β = 0 (resp., 1) we refer to (4) as the buyer’s virtual valuation (resp., gains

from trade).

From now on, we maintain the following regularity assumption.

Assumption 1 (Regularity of the virtual valuation function). The virtual valuation func-

tion w(c; ξ, β) is quasiconcave in c.

If w is decreasing in c, the lemons problem is mild or absent. In this special case of

Assumption 1, Myerson (1981) proved that a second price auction is optimal. Assumption

1 allows for w to increase, because it only requires w to be single-peaked. The slope of w

is partly determined by the slope of v. If v is sharply increasing there is a severe lemons

problem, and w may be increasing in c.

A sufficient (but far from necessary) condition for Assumption 1 to hold is that w be

concave in c. If v is concave and F
f
is convex, then w is concave. The ratio F

f
is convex

if F is a Power distribution (of which the Uniform distribution is special case), a Pareto

distribution, or an Exponential distribution.6 Assumption 1 will be used to establish the

optimality of a LoLA (Theorem 1).

The buyer can commit to any trading mechanism. By the revelation principle, any

equilibrium outcome of any trading procedure is also the truth-telling equilibrium outcome

of a direct mechanism. A direct mechanism is a set of 2N functions

qi(ci, c−i), mi(ci, c−i)

6If F is a Power distribution then F
f is linear. If F (c) = 1 − x−α is a Pareto distribution F

f (x) is

proportional to xα+1 − x which is convex in x. If F (x) = 1− e−λx is an Exponential distribution F
f (x) is

proportional to eλx − 1 which is convex in x.
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that, for each each i and any reported type profile c, specifies the probability that supplier

i sells the object, and the expected payment that it receives from the buyer.

4 Results

We are interested in direct mechanisms that maximize any weighted average of the ex-

pected buyer surplus and the expected social surplus, with respective weights β and 1−β,

for any β ∈ [0, 1]. Formally, we solve the following maximization problem:

Weighted welfare maximization problem

max
q,m

∫
[cL,cH ]N

[
N∑
i=1

[v(ci, ξ)− (1− β) · ci] · qi(ci, c−i)− β ·mi(ci, c−i)

]
N∏
i=1

f(ci) dci

(5)

subject to, for all i, c ∈ [cL, cH ]
N , ci, c

′
i ∈ [cL, cH ]:

N∑
i=1

qi(ci, c−i) ≤ 1 (6)

qi(ci, c−i) ≥ 0 (7)∫
[cL,cH ]N−1

[mi(ci, c−i)− ci · qi(ci, c−i)]
∏
j ̸=i

f(cj) dcj

≥
∫
[cL,cH ]N−1

[mi(c
′
i, c−i)− ci · qi(c′i, c−i)]

∏
j ̸=i

f(cj) dcj

(8)

∫
[cL,cH ]N−1

[mi(ci, c−i)− ci · qi(ci, c−i)]
∏
j ̸=i

f(cj) dcj ≥ 0. (9)

In this section we prove that, for any ξ ≥ 0 and β ∈ [0, 1], the above optimization

problem is solved by a LoLA with suitably chosen “minimum price” pL and reserve price

pH . In the optimal LoLA, it is an equilibrium for all suppliers to bid their cost (“sincere

bidding”), and this equilibrium generates probabilities qi(ci, c−i) and payments mi(ci, c−i)

that solve the above optimization problem. The LoLA format is formally defined next.
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Lowball lottery auction (LoLA): formal definition

A LoLA with floor price pL and reserve price pH ≥ pL is the following sealed-bid

auction.

Let k denote the number of suppliers that bid at or below pL:

- if k ≤ 1, the outcome is the same as in the second-price auction with reserve

price pH ;

- if k > 1, each of these k suppliers sells at price pL and is paid pL, with

probability 1/k

Individual rationality is guaranteed in a LoLA because any bidder can opt out by

bidding above pH . The next proposition is the main result of the paper.

Theorem 1 (Optimality of the LoLA). In a LoLA with any pL ≤ pH , it is a (weakly)

dominant strategy for all suppliers to bid their cost. The resulting equilibrium implements

the solution to optimization problem (5-9) if pL and pH are chosen such that:

pH
∗ = sup{c ∈ [cL, cH ] s.t. w(c; ξ, β) > 0}, (10)

and

pL
∗ = sup

{
p ∈ [cL, cH ] s.t.

∫ p

cL

wc(c; ξ, β)·F (c)·dc > 0

}
. (11)

Proof. See Appendix A. ■

The challenge in proving Theorem 1 is that the monotonicity of the allocation function,

i.e., the property that lower-cost bidders must win with weakly higher expected probability,

can be binding (unless the optimal floor price equals cL). Hence the standard proof

technique, which hinges on side-stepping all monotonicity constraints, cannot be applied

in our setting. Our approach relies on finding explicit expressions for the shadow values

of violating these constraints, for all types. This is the most innovative part of our proof,

and it is done in Lemma 4.

The reserve price pH
∗ defined in (10) is the same as the reserve price in standard

auctions: it is the type at which the virtual valuation w becomes negative. The floor

price pL
∗ defined in (11) identifies the threshold such that, if two or more suppliers have

a cost below the threshold, the designer would prefer to source from the higher-cost type.

11



However, given the mononotonicity constraints mentioned above, the best feasible option

is to randomize among them. A number of comparative static results about pH
∗ and pL

∗

follow immediately from conditions (10) and (11).

Proposition 1 (Comparative statics on pH
∗ and pL

∗).

1. Floor and reserve prices pL
∗ and pH

∗ are independent of the number of bidders.

2. The floor price is increasing in the severity of the lemons problem, i.e., pL
∗ is non-

decreasing in ξ for any β.

3. If F is log-concave, the floor price is increasing in the degree to which the designer

takes social welfare into account, i.e., pL
∗ is nonincreasing in β for any ξ.

4. The reserve price is increasing in the degree to which the designer takes social welfare

into account, i.e., pH
∗ is decreasing in β for any ξ.

Proof. Part 1 Conditions (10) and (11) do not depend on N .

Part 2 Because vcξ ≥ 0 by assumption, increasing ξ shifts the function wc (at least

weakly) upward (see eq. 4), and then condition (11) yields the result.

Part 3 Log-concavity of F implies that the ratio F (c)
f(c)

is increasing in c, therefore

increasing β shifts the function wc down (see eq. 4), whence the result follows.

Part 4 Increasing β shifts the function wc downward (see eq. 4), and then condition

(10) yields the result. ■

The property in Part 1 is shared by the reserve price in a standard auction (Myerson

1981). Part 2 says that the floor price is increasing in the parameter ξ that encodes the

severity of the lemons problem. This is intuitive, because the only reason to have a floor

price is to guard against lowball bidders. It is interesting that this effect obtains even

if β = 0, i.e., when the designer maximizes social welfare. Part 3 requires log-concavity.

Since most commonly-used F ’s are log-concave,7 “typically,” pL
∗ will be nonincreasing in

β. The economic intuition for this results was provided earlier at the end of Section 2:

the buyer prefers a lower pL than the social planner because a small decrease from pL to

pL − ϵ has first-order benefits for the buyer (the decrease in payment is realized whenever

7See Tables 1 and 3 in Bagnoli and Bergstrom (2005). Log-concavity of F obtains not only whenever
f is log-concave (Bagnoli and Bergstrom 2005, Theorem 1) but also, often, when f is not log-concave.
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the winning bidder’s type is smaller than pL) but only second-order benefits for the social

planner (the allocation improves only when the winning bidder’s type is between pL and

pL − ϵ).

The next result concerns uniqueness.

Proposition 2 (Sincere bidding is the unique equilibrium). Consider any LoLA with

reserve price pH < cH and three or more bidders. If the density f is positive on [cL, cH ]

then the equilibrium outcome is unique almost surely. Up to changes of the bid functions

on a set of measure zero, any equilibrium strategy profile entails sincere bidding for types

with cost above pL, and bidding any number less than or equal to pL for all other types.

Proof. The proof follows almost verbatim that of Proposition 1 in Blume and Heidhues

(2004). ■

This result is a direct consequence of Corollary 1 in Blume and Heidhues (2004), who

study uniqueness in Vickrey auctions. The reserve price is needed to rule out equilibria

of the following form. Fix some ĉ ∈ (pL, cH). Bidder 1 bids sincerely if her cost is below

ĉ, and bids ĉ otherwise. All other bidders bid sincerely if their cost is below ĉ, and bid

cH otherwise. In the absence of a reserve price, these strategies constitute an equilibrium.

With a reserve price pH < cH , however, if bidder 1’s cost exceeds the reserve price then

bidder 1 prefers not to bid at all rather than to follow the recommended strategy.

5 Illustrative application: optimal procurement mech-

anisms for Italian public sector

This section illustrates the benefits of running the optimal auction in an adverse selection

environment. Using information that was generously provided by Francesco Decarolis,8

we perform a counterfactual experiment on Italian government procurement auctions. By

making some stark assumptions about how quality enters the government’s objective func-

tion (expression 12), we are able to compute the gain (buyer surplus) that the government

could have made, had it used the optimal mechanism – which, conveniently, happens to

be a LoLA – relative to a first-price auction, which is the format the government actually

used.
8This information relates to Decarolis’ (2014, 2018) structural analysis of Italian procurement firms.
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The goal of this section is not to give policy recommendations, but merely to sketch

out how real-world data can be used to find the optimal mechanism. Therefore, we forego

the battery of robustness checks that would be essential if our goal was to give policy

recommendations.

5.1 The available data

The available data is depicted in Figure 3. Panel A shows the estimated distribution of

bidder costs f̂ , which was structurally estimated by Decarolis (2018) and corresponds to

our f(c).9 Panels B and C show the empirical distributions of two measures of the auction

winner’s quality: the delivery delay ratio D, and the cost overrun ratio O.10 The figure

indicates that, in most cases, the government suffers a delay, a cost overrrun, or both.11

9In Decarolis’ (2018) structural model, supplier i’s cost in a given auction is given by:

ci = y + zi,

where the zi’s are idiosyncratic and privately-known cost components, and y is an auction-specific and
commonly-known scalar. Decarolis (2018) estimates that z1, ..., zN are i.i.d. draws from a random variable
Z whose density is depicted in Figure 3, panel A. In what follows we assume, without loss of generality,
that y = 0, which allows us to interpret zi’s as ci’s.

10Delay ratios D are measured as the difference between contractually-stipulated and actual delivery
dates, divided by the former. Cost overrun ratios O are measured as the difference between the money
eventually paid by the government and the winning bid, divided by the auction’s reserve price.

11Note, for future reference, that panels B and C display the quality supplied by the winner in a
first-price auction, which is not representative of the quality that would have been supplied by a random
bidder.
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Distributions of cost and quality measures
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Figure 3: The left-hand panel depicts the estimated p.d.f. f̂Z of the idiosyncratic cost
component Z (unit is 105 euros) from Decarolis’ (2018) assumed cost structure ci = y+zi,
where the zi’s are iid draws from Z, and y is an auction-specific scalar. Without loss
of generality we normalize y = 0, which allows us to replace zi with ci in the left-hand
panel. The middle and right-hand panels display the empirical marginal distributions gD
and gO of, respectively: the delay ratio D, which is the difference between the actual and
the contractual time, as a percentage of the contractual time; and of the overrun ratio O
which is the difference between the final payment and the winning bid as a percentage of
the reserve price. See Decarolis (2014, p. 117). Kernel (Epanechnikov) smoothed distri-
butions, the bandwidth used are 11000, 18.15 and 3.0071 respectively. Data generously
provided by Francesco Decarolis.

5.2 Calibrating the buyer’s payoff function v(c, ξ)

Based on these three distributions, we seek to obtain a calibrated counterpart for our

theoretical construct v(c, ξ). To cut down on expositional complexity, we assume the

starkest possible functional form:

v(c, ξ) = const−KE [D(c, ξ) +O(c, ξ)] , (12)
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where D(c, ξ) and O(c, ξ) are unobserved random variables that represent the delays and

cost overrruns, respectively, that are stochastically delivered by a supplier with cost c,

conditional on the parameter ξ. The rationale for the minus sign is that delays and cost

overruns decrease the buyer’s value. K is a positive scaling parameter whose value will be

calibrated later.12

The parameter ξ in expression (12) moderates the correlation between a supplier’s cost

c, and the qualities D and O stochastically provided by that supplier. This role appears

to be conceptually different from the interpretation given to ξ in our theoretical model:

in the theory, ξ is conceptualized as a buyer type; in(12), ξ is conceptualized as a feature

of the supply-delivery technology. This conceptual distinction does not make a difference

here because, operationally, what matters is that ξ determines the slope of the buyer’s

valuation, as it does in expression (13) below.

The distributions of the random variablesD(c, ξ) and O(c, ξ) are as yet unspecified. We

calibrate them semi-parametrically by requiring that, given that c ∼ f̂ , their distributions

for any given ξ coincide with the empirical marginal distributions gD and gO depicted

in Figure 3.13 Definition 2 in Appendix B provides formulae for constructing calibrated

D̂(c, ξ) and Ô(c, ξ) with the desired marginals, for any value of the parameter ξ. Using

these formulae allows us not to take a stand on the value of ξ. Plugging these formulae into

expression (12) yields the following expression for the calibrated buyer payoff function:

v̂(c, ξ) = const−KE
[
D̂(c, ξ) + Ô(c, ξ)

]
= const(ξ)− ξK [δ(c) + ω(c)] , (13)

where const(ξ) is independent of c and, from Definition 2, we have:

δ (c) = G−1
D

([
1− F̂ (c)

]N)
,

ω (c) = G−1
O

([
1− F̂ (c)

]N)
,

(refer to Appendix B.2 for the computations). Expression (13) is the calibrated buyer’s

12There is no difficulty in making expression (12) more complex. For example, one could pre-multiply
D(c, ξ) and O(c, ξ) by positive constants, and the analysis would be essentially unchanged. We don’t do
this, in order to minimize expositional complexity.

13Formally this means that, denoting the winning bidder’s cost by C(1) = min {C1, ..., CN}, the random
variable D(C(1), ξ) has density gD, and O(C(1), ξ) has density gO.
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payoff. This expression is a fully specified function of (c, ξ) up to a constant. Indeed,

the three quantities F̂ , GD, and GO are given in Figure 3; and the parameters N,K are

assigned numerical values as described in Appendix B.2.

The parameter ξ will be treated as a free parameter. This parameter determines the

sensitivity of the buyer’s payoff to the quality concerns. If ξ = 0 the function v̂(c, ξ)

does not depend on c and, therefore, there buyer has no quality concerns. If ξ > 0 the

function v̂(c, ξ) is increasing in c (this is because δ (c) and ω (c) are decreasing functions

of c). Intuitively, the parameter ξ modulates the buyer’s quality concerns because, in

the construction of D̂(c, ξ) and Ô(c, ξ), this parameter governs the correlation between

supplier cost and quality.

The function v̂ satisfies the two theoretical assumption imposed on page 8. Indeed, it

can be checked from expression (13) that v̂cξ ≥ 0. Furthermore, we can (and will) make

const(ξ) in expression (13) large enough that v̂(cL, ξ) ≥ cL for all ξ ∈ [0, 1].

5.3 Buyer-optimal and socially optimal mechanisms are LoLAs

We compute the calibrated virtual valuation function:

ŵ(c; ξ, β) ≡ v̂(c; ξ)− c− β
F̂ (c)

f̂(c)
, (14)

by substituting v̂ from (13) and F̂ from Figure 3 into the expression for the virtual valu-

ation (4). We set const(ξ) large enough that the virtual valuation (14) is positive for all

values of c and β, which implies that it is optimal not to set any reserve price pH in the

LoLA.14

Each of the left-hand panels in Figure 4 displays ŵ as a function of c, for β = 0 (gains

from trade, dashed red line) and β = 1 (buyer’s virtual valuation, solid blue line). These

functions are shown for ξ = 0, 0.33, 0.67, and 1, respectively, in panels A-D. In all four

left-hand panels, the buyer’s virtual valuation and the gains from trade happen to be

quasi-concave functions of c, so Assumption 1 is satisfied. Therefore, by Theorem 1 the

LoLA is the buyer-optimal and the socially-optimal auction for all displayed values of ξ.

14const(ξ) can be made arbitrarily large by setting const large enough in expression (12): refer to
Appendix B.2 for information about the calibration.
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The right-hand panels of Figure 4 are calibrated counterparts to Figure 2. Each right-

hand panel displays the expected buyer (solid blue line) and social (dashed red line) surplus

in a LoLA with floor price pL. The optimal floor prices are determined by equation (11)

after setting β equal to one or zero: accordingly, they maximize the expected (buyer or

social) surplus, as shown in Figure 4. Within each right-hand panel, the socially optimal

floor price always exceeds the buyer-optimal one. This is a consequence of Proposition 1

part 3, because the estimated cost distribution F̂ happens to be log-concave (see Figure

6).

As we move down from panel A to panel D, the parameter ξ (correlation between cost

and quality) increases. Therefore, the buyer’s quality concerns also increase, causing more-

costly suppliers to become more socially valuable (as we move down the left-hand panels,

the gains-from-trade dashed red line becomes increasing). Consistent with Proposition 1

part 2, the buyer-optimal and socially optimal floor prices increase with ξ: see the righ-

hand panels. For low values of ξ, the buyer- and socially optimal auctions coincide with a

first (or equivalently, second) price auction because the optimal floor prices coincide with

cL. As ξ increases, the optimal floor prices increase until, for sufficiently high values of ξ,

the supplier is randomly selected in the socially optimal auction.

18



Optimal mechanisms with varying degrees of quality concerns
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Figure 4: Virtual valuation functions w (c) and gains from trade v(c) − c for different
values of ξ (left-hand column); expected buyer and social surplus in a LoLA with floor
price pL and no reserve price for different values of ξ (right-hand column). Recall that in
our calibration it is optimal not to have a reserve price. Units of c are 105. As quality
concerns increase (i.e., ξ increases), more-costly suppliers become more socially valuable
(left panel, dashed red line). With minimal quality concerns, the optimal LoLAs reduce
to standard auctions, i.e., first- or second-price auctions (ξ = 0, top right panel). With
maximal quality concerns, the socially optimal LoLA reduces to the random allocation
mechanism (ξ = 1, bottom-right panel).

5.4 Performance of the buyer-optimal mechanism vs. first-price

auction

Figure 5 shows the performance gain of the buyer-optimal mechanism, which in our case

is a LoLA with optimal floor price p∗L and no reserve price, over a first-price (or, which is
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the same in our case, a second-price) auction, as ξ varies.15 We analyze three performance

metrics: expected buyer surplus (top panel), expected supplier profit (middle panel), and

expected social surplus (bottom panel). In all three metrics, the buyer-optimal LoLA

outperforms a conventional auction: for example, when ξ = 1 buyer surplus is 15% higher

in the optimal LoLA than in a first price auction. The performance gain is increasing in

the level of ξ, as one would expect. Even at relatively lower levels of ξ ≈ 0.5, that is, when

the quality concerns are relatively mild, a LoLA affords gains in the 2.5% range, which

are nontrivial from a policy perspective.

Performance of buyer-optimal mechanisms relative to first-price auction
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Figure 5: Performance improvement of optimal LoLA over first-price (or second-price)
auction.

15The optimal floor p∗L (not shown in the figure) changes as ξ varies.

20



6 Software for computing optimal procurement mech-

anisms

This section describes two software applications that we have created and made publicly

available.16 These applications compute the buyer-optimal procurement mechanisms in the

presence of quality concerns. The purpose of disseminating these applications is twofold.

First, we wish to allow business practitioners to assess whether they can benefit from a

buyer-optimal LoLA and, if so, with what floor and reserve prices. Second, for pedagogical

purposes, we want to facilitate the teaching of this paper in an engaging way.

6.1 App 1

An Excel-based visual interface asks the user to input a probability distribution of costs

(corresponding to f(c) in our theoretical model), a function v(c) (corresponding to v(c, ξ)

for some fixed ξ), and the number of bidders N . The application assumes, as we did,

that bidder costs are drawn independently from the cost distribution, and requires that

v(cL) > cL.

The program then calls on Matlab to compute the virtual valuation function w(c)

using equation (4), and displays it. A prompt asks the reader to verify that w(c) is quasi-

concave, i.e., to check that Assumption 1 holds.17 After this user check, if a reserve price is

buyer-optimal then the program alerts the user and visually identifies the optimal reserve

price in the graph of w(c). Finally, the program displays the buyer and social surplus

functions as a function of the LoLA floor price pL, and displays the optimal floor and

reserve prices (analogous to the right-hand panel of Figure 4). The program also displays

the ratio between the social (or buyer) surplus under a LoLA with reserve price pL, over

a first price auction.

Screenshots for App number 1, and further details, are available in Appendix C.1.

16Downloadable from https://www.alessandrotenzinvilla.com/research.html.
17This check could have been done automatically, but prompting the reader to visually verify Assump-

tion 1 has pedagogical value.
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6.2 App 2

The second application is not visual, but it is more powerful. This application is realized

in Matlab and IBM ILOG CPLEX. The application requires the same inputs as Appli-

cation 1, and it computes the optimal mechanism even when that mechanism is not a

LoLA. Therefore, Application 2 dispenses with Assumption 1 and with the requirement

that v(cL) > cL. The application yields the buyer-optimal direct revelation mechanism,

expressed through the interim probability Q(c) that a generic bidder with cost c wins the

auction. This application is helpful to deal with settings where assumptions made in this

paper are violated, and so Theorem 1 does not apply.

7 Conclusions

Adverse selection is a major concern in procurement. In this paper we have presented

a mechanism called LoLA which, under some regularity conditions, is the best incentive

compatible mechanism for maximizing either the seller’s or the social surplus (or any

combination thereof). The mechanism features a floor (or minimum) price, and a reserve

(or maximum) price. The sincere-bidding equilibrium of the LoLA is in dominant strate-

gies, implements the surplus-maximizing allocation, and is unique under mild regularity

conditions.

To illustrate the gains from the optimal mechanism, we performed a counterfactual

experiment on Italian government procurement auctions. We computed the gain that the

government could have made, had it used the optimal mechanism (which happens to be a

LoLA), relative to a first-price auction, which is the format the government actually used.

We find that, in a reasonably calibrated model, these savings can be nontrivial.

Our analysis has sidestepped the issues of repeated interaction and collusion. In the

presence of collusion, it is possible that the presence of a floor price might help, as has

been suggested in the literature. However, finding the optimal mechanism in the presence

of collusion is beyond the scope of this paper.

We hope that our analysis can lead procurement agencies to consider experimenting

with the LoLA.
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A Proofs

For any pair pL and pH such that cL ≤ pL ≤ pH ≤ cH , consider the LoLA with threshold

prices pL and pH . Sincere bidding in the LoLA induces the following outcome:

qLi (ci, c−i; pL, pH) ≡


1

κ+1
, if ci ≤ pL & c

(κ)
−i ≤ pL < c

(κ+1)
−i

1, if pL < ci & ci < c
(1)
−i

(15)

and

mL
i (ci, c−i; pL, pH) ≡


1

κ+1
· pL, if ci ≤ pL & c

(κ)
−i ≤ pL < c

(κ+1)
−i

c
(1)
−i , if pL < ci & ci < c

(1)
−i

(16)

where c
(κ)
−i denotes the κ-th lowest cost among all supplier i’s opponents.

The functions (qL,mL) may also be interpreted as a direct revelation mechanism. We

now show that, in this direct revelation mechanism, truthful reporting is a (weakly) dom-

inant strategy.

Lemma 1. (qL, mL) satisfies, ∀i = 1, ..., N,

∀ci, c′i, c−i, mi(ci, c−i)− ci · qi(ci, c−i) ≥ mi(c
′
i, c−i)− ci · qi(c′i, c−i) (17)

and

∀ci, c−i, mi(ci, c−i)− ci · qi(ci, c−i) ≥ 0. (18)

Proof. It is well known in mechanism design that conditions (17-18) hold if and only if

the following conditions hold jointly: ∀c−i ∈ [cL, cH ]
N−1

mL
i (cH , c−i; pL, pH) ≥ cH · qLi (cH , c−i; pL, pH) (19)

qLi (·, c−i; pL, pH) is nonincreasing, (20)

and

∀ ci ∈ [cL, cH ] mL
i (ci, c−i; pL, pH) = ci · qLi (ci, c−i; pL, pH) +

∫ cH

ci

qLi (t, c−i; pL, pH) dt.

(21)

Therefore, it suffices to show that (19-21) hold. To this end, observe that the inequalities
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in (19) and the monotonicity in (20) are immediate. The envelope condition in (21) holds

because both mL and qL are constant in ci on [cL, pL) ∪ (pL, cH ], and

pL·
[
lim
x↑pL

qLi (x, c−i; pL, pH)− lim qx↓pLq
L
i (x, c−i; pL, pH)

]
= lim

x↑pL
mL

i (x, c−i; pL, pH)− lim
x↓pL

mL
i (x, c−i; pL, pH)

■

Our strategy of proof will involve restricting attention to candidate mechanisms that

are symmetric, and this will be without loss of generality. Next, we introduce a formal

definition of symmetric mechanism.

Definition 1. A mechanism (qi,mi)i=1,...,N is symmetric if, for all i,

qi(cπ(1), cπ(2), ..., cπ(N)) = qπ(i)(c1, c2, ..., cN),

and

mi(cπ(1), cπ(2), ..., cπ(N)) = mπ(i)(c1, c2, ..., cN),

for every permutation π of {1, 2, ..., N}. A symmetric mechanism is given by two functions

q ≡ q1 : [cL, cH ]
N → [0, 1] and m ≡ m1 : [cL, cH ]

N → [0, 1]

which are invariant to permutations of the last N − 1 variables, i.e., letting N be the set

of numbers {1, ..., N}, ∀i ∈ N , ∀ permutation π of N we have:

qi(c1, c2, ..., cn) = q(ci, c2, ..., ci−1, c1, ci+1, ..., cN),

and

mi(c1, c2, ..., cn) = m(ci, c2, ..., ci−1, c1, ci+1, ..., cN).

If we restrict attention to symmetric mechanisms, the original weighted welfare maxi-

mization problem (5- 9) can be written more simply. We write down the simplified problem

next and then, in Lemma 2, we show that the two maximization problems are equivalent.
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First reformulation of the weighted welfare maximization problem

max
Q,M

N

∫
[cL,cH ]

[ [v(ci, ξ)− (1− β) · ci] ·Q(ci)− β ·M(ci)] f(ci) dci (22)

subject to:

for all ci, c
′
i ∈ [cL, cH ]:

M(ci)− ci ·Q(ci) ≥ M(c′i)− ci ·Q(c′i), (23)

for all ci ∈ [cL, cH ]:

M(ci)− ci ·Q(ci) ≥ 0, (24)

for all ci ∈ [cL, cH ]:

Q(ci) ≥ 0, (25)

and

N

∫ c1

cL

Q(y) f(y) dy ≤ 1− [1− F (c1)]
N . (26)

Lemma 2. Restrict attention to symmetric mechanism. The value of the weighted welfare

maximization problem (5- 9) is the same as the value of problem (22- 26).

Proof. Define:

Q(c1) ≡
∫
[cL,cH ]N−1

q(c1, c−1)·
∏
j>1

dF (cj)

M(c1) ≡
∫
[cL,cH ]N−1

m(c1, c−1)·
∏
j>1

dF (cj).

(27)

Because in solving problem (5- 9) we are restricting attention to mechanisms (qi,mi)i=1,...,N

that are symmetric, the objective function (5) can be re-written as (22). Similarly, the con-

straints (8) and (9) can be re-written as: (23) and (24). Furthermore, Border (1991) proves

that, if the function q is symmetric in the sense of Definition 1, the demand constraints

(6) and nonnegativity constraints (7) hold if and only if (25) and (26) are satisfied.

■

Problem (22- 26) can be further simplified, as follows.
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Second reformulation of the weighted welfare maximization problem

max
Q

N

∫ cH

cL

w(c; ξ, β) ·Q(c) · f(c) dc (28)

where w(c; ξ, β) is defined in (4), subject to:

Q is nonincreasing, (29)

and, for all c ∈ [cL, cH ]:

Q(c) ≥ 0, (30)

and

N

∫ c

cL

Q(y) f(y) dy ≤ 1− [1− F (c)]N . (31)

Lemma 3. The weighted welfare maximization problem (22- 26) can be reformulated as

(28- 31).

Proof. The incentive constraints (23) and (24) can be replaced without loss of generality

by (29) and the envelope condition:

∀ c ∈ [cL, cH ] M(c) = c ·Q(c) +

∫ cH

c

Q(t)dt. (32)

(This result is standard: see, e.g., Proposition 5.2 at p. 66 of Krishna 2010). Next, we

use (32) to eliminate M from the problem. Substituting it into (22) and simplifying yields

(28). Finally, (30) and (31) are identical to (25) and (26). ■

Next is the final reformulation of the problem.
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Final (relaxed) formulation of the weighted welfare maximization prob-

lem

max
Q

N

∫ cH

cL

w(c; ξ, β) ·Q(c) · f(c) dc (33)

where w(c; ξ, β) is defined in (4), subject to:

N

∫ cH

cL

w(c; ξ, β) ·Q(c) · f(c) dc ≤ N

∫ cH

cL

w(c; ξ, β) ·QL(c, p∗L, p
∗
H) · f(c) d(c), (34)

where QL(c, p∗L, p
∗
H) is given by expression (27) with q being replaced by

qLi (ci, c−i; p
∗
L, p

∗
H) from expression (15).

Problem (33-34) below is actually a relaxation of (28- 31). Aggregating constraints

(29-31) into the single inequality (34) is the most innovative part of the proof. This

aggregation is proved in the next lemma.

Lemma 4. Any allocation function Q that satisfies (29-31) also satisfies (34).

Proof. The proof consists of multiplying both sides of each inequality (29-31) by a non-

negative multiplier (which does not change the constraint), and then integrating over c on

both sides of each constraint, and finally summing the three resulting inequalities. The

resulting inequality identifies a superset of the original feasible set, and happens to equal

( 34).

The multipliers equal zero except:

∀c ∈ (p∗H , cH ] : η(c) ≡ −w(c; ξ, β)·f(c)

∀c ∈ (p∗L, p
∗
H) : δ(c) ≡ −w′(c; ξ, β)

∀c ∈ [cL, p
∗
L) : µ(c) ≡ F (c)

F (p∗L)

∫ p∗L

cL

w(t; ξ, β) dF (t)−
∫ c

cL

w(t; ξ, β) dF (t)

(35)

To save on notation, in the rest of this proof we omit the dependence of w on (ξ, β).

Let us first show that the multipliers are nonnegative. We have η(c) ≥ 0 ∀c ∈ (p∗H , cH ],

because w is negative on the interval (p∗H , cH ]. We have δ(c) ≥ 0 ∀c ∈ (p∗L, p
∗
H), because
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w is decreasing on the interval [p∗L, p
∗
H ]. Finally, consider µ on [cL, p

∗
L). First note that

µ(cL) = µ(p∗L) = 0 (36)

If cL < p∗L, then the definition of p∗L in (11) implies w(cL) < w(p∗L). Since w is quasiconcave,

there exists a point p0 such that w(p0) = w(p∗L) and

∀c ∈ [cL, p0) w(p∗L)− w(c) ≥ 0, and

∀c ∈ (p0, p
∗
L] w(p∗L)− w(c) ≤ 0,

Thus the derivative

µ′(c) = f(c) [w(p∗L)− w(c)]

is positive for c < p0, and negative for c > p0, that is µ is single-peaked on [cL, p
∗
L].

This, together with (36), implies that µ is nonnegative on [cL, p
∗
L]. Thus nonnegativity is

established.

Now, we multiply both sides of: (29) by µ(c), (30) by η(c), (31) by δ(c). We then

integrate over c. Finally, we sum the three resulting inequalities. We arrive at:

∫ p∗L

cL

µ(y) dQ(y) +

∫ p∗H

p∗L

δ(t)

∫ t

cL

Q(y)f(y) dy dt−
∫ cH

p∗H

η(y)Q(y) dy ≤
∫ p∗H

p∗L

δ(c)B(c) dc.

(37)

where

B(c) ≡ 1

N
·
(
1− [1− F (c)]N

)
c ∈ [cL, cH ]. (38)

Let’s focus first on the LHS of (37). The first integral can be rewritten as:

=0︷ ︸︸ ︷
µ(p∗L) ·Q(p∗L)−

=0︷ ︸︸ ︷
µ(cL) ·Q(cL)−

∫ p∗L

cL

Q(y)µ′(y) dy

=−
∫ p∗L

cL

µ′(y)Q(y) dy. (39)
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The second integral on the LHS of (37) can be rewritten as:∫ p∗L

cL

(∫ p∗H

p∗L

δ(t)dt

)
Q(y)f(y)dy +

∫ p∗H

p∗L

(∫ p∗H

y

δ(t)dt

)
Q(y)f(y)dy

=

∫ p∗L

cL

(∫ p∗H

p∗L

δ(t)dt

)
Q(y)f(y)dy +

∫ p∗H

p∗L

w(y)Q(y)f(y)dy, (40)

where equality holds because:∫ p∗H

y

δ(t)dt = w(p∗H)−
∫ p∗H

y

w′(c)dc = w(y).

Adding (39) and (40) yields:∫ p∗L

cL

(∫ p∗H

p∗L

δ(t)dt− µ′(y)

f(y)

)
Q(y) f(y) dy

=

∫ p∗L

cL

w(y)Q(y) f(y) dy, (41)

where equality holds because:

∫ p∗H

p∗L

δ(t) dt− µ′(y)

f(y)
=

=w(p∗L)︷ ︸︸ ︷
w(p∗H)−

∫ p∗H

p∗L

w′(t)dt−µ′(y)

f(y)

= w(p∗L)−
(

1

F (p∗L)
·
∫ p∗L

cL

w(t)f(t)dt− w(y)

)

=

=0︷ ︸︸ ︷
w(p∗L)−

1

F (p∗L)
·
∫ p∗L

cL

w(t)f(t)dt +w(y)

= w(y)

The third integral on the LHS of (37) can be rewritten as:

−
∫ cH

p∗H

η(y)Q(y)dy =

∫ cH

p∗H

w(y)f(y)Q(y)dy. (42)
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Combining (41) and (42) we can rewrite the LHS of (37) as∫ cH

cL

w(y)Q(y)f(y)dy.

Let’s now focus on the RHS of (37). Plugging in the expression for δ and simplifying

yields:

−
∫ p∗H

p∗L

w′(c)B(c) dc

=w(p∗L)B(p∗L) +

∫ p∗H

p∗L

w(c)B′(c) dc

=

∫ p∗H

p∗L

w(c) (1− F (c))N−1 f(c) dc+

∫ p∗L

cL

1− [1− F (pL)]
N

N · F (pL)
w(c) f(c) dc, (43)

where the second equality follows from the definition of B in (38). Now observe that:

QL(c1; p
∗
L, p

∗
H) ≡

∫
[cL,cH ]N−1

q(c1, c−1; p
∗
L, p

∗
H)·
∏
j>1

dF (cj)

=


0, c1 ∈ (p∗H , cH ] ;

[1− F (c1)]
N−1 , c1 ∈ (p∗L, p

∗
H ] ;

1−[1−F (pL)]
N

N ·F (p∗L)
, c1 ∈ [cL, p

∗
L] .

(44)

Hence (43) boils down to:

∫ p∗H

p∗L

w(c)QL(c, p∗L, p
∗
H) f(c) dc+

∫ p∗L

cL

w(c)QL(c, p∗L, p
∗
H) f(c) dc

=

∫ p∗H

cL

w(c)QL(c, p∗L, p
∗
H) f(c) dc

=

∫ cH

cL

w(c)QL(c, p∗L, p
∗
H) f(c) dc.
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This completes the proof.

■

We are now ready to prove Theorem 1.

Proof of Theorem 1

Proof. Lemma 1 shows that the direct mechanism (qL,mL) satisfies both IC and IR ex

post. Therefore, sincere bidding in the LoLA is a (weakly) dominant strategy equilibrium.

Moreover, (qL,mL) is a feasible mechanism, i.e., it satisfies constraints ( 6 - 9). Indeed,

unit demand (6) and nonnegativity (7) can be checked directly from the definition (15),

and the fact that (qL,mL) satisfy the ex-post incentive constraints, as proved in Lemma

1, immediately implies that it also satisfies their interim counterparts (8) and (9).

It remains to show that the mechanism (qL,mL) defined in (15) and (16) solves the

weighted welfare problem. We proceed in two steps.

Maskin and Riley (1986, footnote 11) show that, in our setting, given any optimal

mechanism for the weighted welfare problem, there is a symmetric mechanism that attains

the same (maximal) value. Therefore, we can restrict the search for an optimal mechanism

to the set of symmetric mechanisms (of which (qL,mL) is one) without loss of generality.

After restricting to symmetric mechanisms, Lemmas 2 -4 yield a relaxed problem with a

set of feasible mechanisms (34) that contains the original feasible set. If a LoLA solves this

relaxed problem, then a fortiori the LoLA solves the original problem. The LoLA defined

by (44) solves this relaxed problem because QL(c, p∗L, p
∗
H) satisfies (34) with equality.

■
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B Material for Section 5

B.1 Semi-parametric identification of D̂ and Ô

We seek to recover the unobserved distribution of supplier quality conditional on cost c,

that gives rise to the empirical distributions gD and gO in Figure 3. We take a guess-and-

verify approach. In the next definition we guess a semi-parametric form of the distribution

of supplier quality conditional on c; then we verify that the guess gives rise to the empirical

distributions gD and gO, as it should.

Definition 2. (guess: distribution of supplier quality conditional on supplier

cost) For any ξ ∈ [0, 1] define:

D̂ (c, ξ) =

{
δ (c) w.p. ξ

D w.p. 1− ξ

Ô (c, ξ) =

{
ω (c) w.p. ξ

O w.p. 1− ξ,

where δ (c) = G−1
D

([
1− F̂ (c)

]N)
and ω (c) = G−1

O

([
1− F̂ (c)

]N)
, and D and O are

the random variables with distributions depicted in Figure 3.

Intuitively, D̂ (c, ξ) is a random variable that represents the delay associated with a

generic supplier with cost c. With probability ξ this delay is identically equal to the num-

ber δ (c); with complementary probability this delay is a random draw from the random

variable D whose distribution is depicted in Figure 3, panel B. The same intuition holds

for Ô (c, ξ). The functions δ (c) and ω (c) are specifically constructed so that the random

variables D and O give rise to the “empirically correct marginals,” in the following sense.

Lemma 5. (verify: D̂ and Ô have the correct marginals) Denote: C(1) =

min {C1, ..., CN} . Then for any ξ ∈ [0, 1] we have: D̂
(
C(1), ξ

)
∼ D and Ô

(
C(1), ξ

)
∼ O.
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Proof. We show the proof for the random variable D.

Pr
(
δ
(
C(1)

)
≤ d
)

= Pr

[
G−1

D

([
1− F̂

(
C(1)

)]N)
≤ d

]

= Pr

[[
1− F̂

(
C(1)

)]N
≤ GD (d)

]
= Pr

[
1− [GD (d)]1/N ≤ F̂

(
C(1)

)]
= Pr

[
F̂−1

(
1− [GD (d)]1/N

)
≤ C(1)

]
Since

Pr
(
x ≤ C(1)

)
=
[
1− F̂ (x)

]N
,

then:

Pr
(
δ
(
C(1)

)
≤ d
)

=
{
1− F̂

(
F̂−1

(
1− [GD (d)]1/N

))}N

=
{
1−

(
1− [GD (d)]1/N

)}N

=
{
GD (d)1/N

}N

= GD (d) .

The proof for the random variable O is virtually identical. ■

This lemma proves that, if C is distributed according to f̂ , the delays and overruns

of a bidder with cost c are drawn from D̂ (c, ξ) and Ô (c, ξ), and there are N bidders,

then the lowest bidder’s marginal distributions of delays and overruns equals the observed

marginal distributions of D and O from Figure 3. This property holds for any value of

the parameter ξ. The parameter ξ encodes the correlation between cost and quality.

The calibrated buyer surplus function reads:

v̂(c, ξ) = const−KE
[
D̂(c, ξ) + Ô(c, ξ)

]
= const− (1− ξ)KE [D +O]− ξK [δ(c) + ω(c)]

= const(ξ)− ξK [δ(c) + ω(c)] . (45)
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B.2 Calibration of v̂

From expression (13), the calibrated buyer’s payoff reads:

v̂(c, ξ) = const(ξ)− ξK

[
G−1

D

([
1− F̂ (c)

]N)
+G−1

O

([
1− F̂ (c)

]N)]
. (46)

Our goal is to fully calibrate this function of (c, ξ). The constant const(ξ) reads, from

(45):

const(ξ) = const− (1− ξ)KE [D +O] . (47)

We set const large enough that the virtual valuation ŵ is everywhere positive,18 and K

large enough that, as ξ varies between 0 and 1, the slope of the social welfare function

(dashed red line in Figure 4) changes from positive to negative, while keeping at a mag-

nitude that is reasonable. Specifically, we set const = 1.0775 × 106 and K = 2 × 103.

With these values ŵ is always positive (albeit barely so when c is small and ξ is large).

Furthermore, the variation of the social surplus caused by a variation in supplier cost is

reasonable. Indeed, given that the standard deviation of the distribution f̂ (Figure 3,

left-hand panel) equals 4.76×104, increasing the supplier’s cost by one standard deviation

around the mean (about one tick on the c-axis in Figure 4) yields variations in social sur-

plus (dashed red line in Figure 4 ) that are plausible in magnitude, that is, not too large

relative to average cost. With this choice of const and K, the social welfare evaluated at

mean cost is of the same magnitude as the average cost for any ξ, which we view as a

reassuring sanity check.

The three quantities F̂ , GD, and GO are given in Figure 3.

The number of bidders N is set equal to 7, the average number of bidders in the (first

price) auctions studied by Decarolis (2014, 2016).

18This guarantees that the optimal LoLA does not involve a reserve price.
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Log-concavity of F̂
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Figure 6: log(F̂ ) is concave.
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C Software applications

C.1 Software 1

This software is a visually handy procedure realized in Matlab that does not require IBM

ILOG CPLEX. The user specifies three inputs in an excel spreadsheet called “Input.xlsx”,

as shown in Figure 7 (where input cells are colored in orange). There are four inputs:

(i.) the minimum cost cL (cell D21) and the maximum cost cH (cell M21) used by the

spreadsheet to automatically generate a linear cost grid with 10 nodes, (ii.) the 10 relative

weights used to infer the cost distribution f(c) (cells D20:M20), (iii.) the 10 values that

represent the willingness to pay v(c) (cells R20:AA20), and (iv.) the number of bidders

N (cell R25).

Figure 7: The figure shows the inputs of the visual program that solves for the optimal
LoLA among all LoLAs.

The Matlab script “FindOptimalLola.m” (which needs to be located in the same folder

of the input file “Input.xlsx”) reads the 4 aforementioned inputs and calculates the virtual

valuation function w. The script also re-samples all inputs on a grid with T = 100 nodes

to increase the precision of the calculation. Given a grid {ci}Ti=1, the virtual valuation w

is calculated as {
wi = vi − ci, i = 1

wi = vi − ci − (ci − ci−1) · Fi

fi
, ∀i > 1

(48)

The result for w is showed to the user as in figure 9. The user is asked to check whether

w is single-peaked in accordance to assumption 1.
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Figure 8: The figure shows w and it involves the user’s participation by asking whether
or not w is single-peaked.

If the user clicks “yes” the procedure continues, otherwise it stops as assumption 1 is

violated. If “yes” is clicked, the procedure checks whether w has a root. If it does have

a root, the software shows it in a new pop-up window as shown by figure 10. Hence, the

software asks for the user’s confirmation to set the root of w as a reservation price pH .
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Figure 9: The figure shows the root of w calculated with a solver and using piece-wise
linear interpolation on w. It involves the user’s participation by acknowledging the root
will be used as the reservation price.

Hence, the procedure iterates on all possible floor prices {pL,j}Tj=1 between cL and cH .

For each floor price pL,j, it calculates the associated buyer surplus
∑T

i=1 wi · fi · Qi,j and

social surplus
∑T

i=1(vi−ci)·fi ·Qi,j. Note that Qi,j = Q(ci, pL,j, pH) is calculated piece-wise

as in equation 27 and it is function of the number of bidders N . The script terminates by

showing the two resulting surpluses, optimal prices and benchmarks against the associated

First Price Auction (FPA). The program shows results as reported in figure 10 and 11.
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Figure 10: The figure shows the buyer surplus and social surplus in function of the floor
price pL,j. The points at which these functions are maximized correspond to the respective
optimal LoLAs. In addition, the reservation price is also reported.

Figure 11: The figure shows the final report with the optimal floor and reservation prices.

C.2 Software 2

This software is realized in Matlab and IBM ILOG CPLEX. The entry point is “main.m”.

There are 5 inputs: (i.) the number of nodes T of the cost grid, (ii.) the minimum cost

cL, (iii.) the maximum cost cH , (iv.) a vector of the willingness to pay [v1, · · · , vT ], (v.) a

vector of the cost distribution [f1, · · · , fT ].
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Given a distribution f , the virtual valuation is calculated as in (48). Then, the software

passes all inputs to the script “CallCPLEX.m” in order to solve the linear program. This

script generates two files: (i.) AMPL and (ii.) DAT.

The AMPL’s file tells CPLEX how to generate the objective function and all con-

straints. In particular, it embeds the logic to generate: (i.) the demand constraints, (ii.)

the non-negativity constraints, and (iii.) the monotonicity constraints.19 The DAT’s file

specifies all numerical inputs.

Then, the program calls CPLEX to perform the high-scale optimization.

19CPLEX is preferable to Matlab because the optimization problem is large.

43


	Optimal procurement with quality concerns.pdf
	Introduction
	An Illustrative Example
	Model
	Results
	Illustrative application: optimal procurement mechanisms for Italian public sector
	The available data
	Calibrating the buyer's payoff function v(c,)
	Buyer-optimal and socially optimal mechanisms are LoLAs
	Performance of the buyer-optimal mechanism vs. first-price auction

	Software for computing optimal procurement mechanisms
	App 1
	App 2

	Conclusions
	Proofs
	Material for Section 5
	Semi-parametric identification of  and  
	Calibration of 

	Software applications
	Software 1
	Software 2



