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Abstract

This paper develops a simulation-based solution method to solve large state space macro-

finance models using machine learning. We use a neural network (NN) to approximate the

expectations in the optimality conditions in the spirit of the stochastic parameterized expecta-

tions algorithm (PEA). Because our method can process the entire information set at once, it is

scalable and can handle models with large and multicollinear state spaces. We demonstrate the

computational gains by extending the optimal government debt management problem studied

by Faraglia et al. (2019) from two to three maturities. We find that the optimal policy prescribes

an active role for the newly added medium-term maturity, enabling the planner to raise financial

income without increasing its total borrowing in response to expenditure shocks. Through this

mechanism the government effectively subsidizes the private sector in recessions, resulting in a

welfare gain of 2.38% when the number of available maturities increases from two to three.
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1 Introduction

This paper introduces a new stochastic simulation method to solve DSGE models. In particular,

we use a neural network (NN) to approximate the expectation terms contained in the optimality

conditions of a DSGE model, in the spirit of the Parameterized Expectations Algorithm (PEA)

introduced by den Haan and Marcet (1990). In general, machine learning has been used successfully

as a computational tool for optimization to approximate and interpolate multidimensional functions.

Our method leverages the stochastic simulation mechanism in a similar fashion to the PEA. On

the one hand, stochastic simulation methods allow us to tackle problems with a large state space,

since they calculate solutions only in the states that are visited in equilibrium (i.e., the ergodic

set). On the other hand, when the set of state variables is generated by a stochastic simulation,

it is likely to suffer from multicollinearity. The contribution of this paper is to show that an NN-

based Expectations Algorithm can deal efficiently with multicollinearity and alleviate the curse of

dimensionality. As a result, it allows us to explore the solution of models of increased complexity

that feature a large multicollinear state space and non-linearities in the decision rules (e.g., caused

by occasionally binding constraints). We demonstrate the computational gains of the NN-based

Expectations Algorithm by extending the optimal debt management problem studied by Faraglia

et al. (2019) to three maturities, and we investigate how the hedging benefits provided by additional

maturity contribute to households’ welfare.

We consider this application particularly challenging for four reasons. First, the number of

state variables increases in the number and length of maturities available. Second, this class of

problems includes forward-looking constraints, and the problem can be made recursive at the cost

of adding even more state variables. Following Marcet and Marimon (2019), we formulate the

recursive Lagrangian to solve for the time-inconsistent optimal contract under full commitment

with three maturities. When markets are incomplete, the Ramsey planner needs to keep track of all

promises made in the previous periods. Because of these reasons, optimal maturity management

problems suffer from the curse of dimensionality (see Bellman 1961). For example, the optimal debt

management problem with three maturities considered in section 4 features 27 state variables.1

Third, the state space includes lagged values of the same variables, such as outstanding bonds

and recursive Lagrange multipliers. This feature makes the stochastic simulation of the state

1In the model we use borrowing and lending constraints on each maturity and on the total portfolio and use the
values of the multipliers associated with these constraints as part of the state space. Because of this, effectively we solve
the model using 61 state variables.
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space multicollinear.2 Fourth, in this class of problems the optimal government debt level tends

to converge to a long-run limit, as documented in Aiyagari et al. (2002), and tends to frequently

hit the borrowing and lending constraints. Such properties make it hard to solve the model by

perturbing the system around the steady state.3

In section 4, we use our method to study the welfare effects of government debt management

by allowing the Ramsey planner to issue an increasing number of debt instruments. Typically,

the prices of longer maturities are more responsive to shocks than prices of shorter maturities.

This differential response creates opportunities for hedging by borrowing in long-term and saving

in short-term bonds. In this case, the value of liabilities falls by more than the value of assets in

response to negative shocks (see Angeletos 2002, Buera and Nicolini 2004 and Faraglia et al. 2019).

Additionally, the fact that short bond prices are not as responsive to shocks allows the planner to

smooth the price of new debt issuance by rebalancing the portfolio toward the longer maturities in

economic booms and toward the shorter maturities in recessions. We find that the planner actively

uses additional maturities to exploit both the hedging and the price smoothing opportunities.

It holds leveraged positions and rebalances the portfolio with more emphasis on the shorter

maturities in recessions. As a consequence, we find that as the number of available maturities

increases from one to three, the total debt becomes procyclical. The additional maturities allow the

government to respond to expenditure shocks by raising financial income without increasing the

total outstanding debt. Through this mechanism, the government effectively subsidizes the private

sector in recessions, resulting in a welfare gain of 2.38% when the number of available maturities

increases from two to three.

Literature Review Our method builds on the seminal work of den Haan and Marcet (1990), who

introduced PEA. PEA has been extended more recently (see Faraglia et al. 2014 and Faraglia et al.

2019) to deal with multicollinearity (Condensed PEA) and over-identification (Forward-States PEA).

The main contribution of our paper is to introduce an NN-based Expectations Algorithm, allowing

for machine learning to reduce the state space endogenously and handling multicollinearity

2Multicollinearity in the state space might prevent standard regression based algorithms from converging because the
estimated regression coefficients may never stabilize due to high estimation variance and because misspecification of the
true policy function under multicollinearity may lead to severe prediction bias, as we show in section 2.6. Alternatively,
people have used the stochastic simulation based on regularization, see Judd et al. (2011), or have extended the PEA
algorithm to Condensed PEA, see Faraglia et al. (2019). In section 5 we discuss how the NN-based Expectations
Algorithm improves upon these methods.

3Bhandari et al. (2017) propose a method that allows one to approximate a system around a current level of government
debt, and Lustig et al. (2008) on the other hand, solve the optimal fiscal policy problem in incomplete markets with seven
maturities up to 7 periods using value function iteration on a sparse grid.
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effectively when a stochastic simulation approach is adopted. In contrast, Condensed PEA achieves

this result by introducing an external loop that tests a subset of the state space as a candidate

to solve the model. Other papers that use neural networks to solve economic models include

Scheidegger and Bilionis (2019), Azinovic et al. (2021), Fernández-Villaverde et al. (2020), Maliar

et al. (2021) and Duarte (2018). Fernández-Villaverde et al. (2020) use deep neural networks to

approximate the aggregate laws of motion in a heterogeneous agents model featuring strong

non-linearities and aggregate shocks. Duarte (2018) casts the economic model in continuous time

and uses neural networks to approximate the Bellman equation. Maliar et al. (2021) and Azinovic

et al. (2021) approximate all the model equilibrium conditions using neural networks and use the

simulated data to train them. Maliar et al. (2021) illustrates the method in the Krusell and Smith

(1998) model, and Azinovic et al. (2021) solve the life-cycle model with borrowing constraints,

aggregate shocks, and financial frictions using unsupervised machine learning. The main difference

of our paper is to leverage on supervised machine learning to deal effectively with the problem

of multicollinearity typical of stochastic simulation approaches. In this context, we show how

our algorithm can alleviate the curse of dimensionality, allowing us to explore the problem of the

optimal maturity structure of government debt in a more realistic environment.

On the one hand, simulation-based methods allow us to tackle problems with a larger state

space, since they allow us to calculate solutions only in a subset of the state space. On the other

hand, when the set of state variables is generated by a stochastic simulation, they are likely to

be jointly multicollinear. In the spirit of PEA, the literature tackles this problem by introducing

the Condensed PEA (Faraglia et al., 2019), which requires an iterative procedure that looks for

an orthogonal set of regressors. It is conceptually similar to principal component extraction.

However, in contrast to principal component extraction, Condensed PEA features a number of

factors determined endogenously. The main contribution of this paper is to show that the NN-

based Expectations Algorithm can approximate these expectations, digesting all information set at

once, allowing for machine learning to reduce the state space endogenously. PEA can potentially

be used in combination with other standard econometric techniques that tackle the problem of

multicollinearity, as in Judd et al. (2011). Similar to our paper, Judd et al. (2011) adopt a stochastic

simulation approach and show how already established methods in econometrics can be used

to alleviate the multicollinearity problem using a multi-country neoclassical growth model. We

discuss the relation between our method and the methods of Faraglia et al. (2019) and Judd et al.

(2011) in greater detail in section 5.
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Our application also contributes to the strand of literature in optimal fiscal policy. In particular,

it is relevant to the literature on optimal maturity structure of government debt.4 Lustig et al. (2008)

find that the optimal policy prescribes an almost exclusive role to the longest maturity in a model

with lending constraints and where fiscal and monetary policies interact. Bhandari et al. (2017)

study the optimal maturity structure in an open economy with two types of bonds available, and

Bigio et al. (2021) allow for an arbitrary number of bonds in a closed economy where they study

an equilibrium in which aggregate shocks are anticipated but not realized. Faraglia et al. (2019)

is the closest paper to ours and studies the role of frictions in a closed economy with two types

of bonds. Solving the Ramsey problem considered in this paper is particularly challenging, as

the dimension of its state space increases significantly in function of the length of the maturities

and the number of bonds. Moreover, this class of problem includes forward-looking constraints,

so the commonly used recursive representation can not be adopted. Marcet and Marimon (2019)

provide an alternative formulation to solve for the time-inconsistent optimal contract under full

commitment: a recursive Lagrangian or saddle-point functional equation. The solution involves

adding even more state variables to the original problem. These additional state variables, necessary

to recursify the problem, create history dependence. In this context, we use our methodology to

extend the literature to study optimal debt management with three maturities in a closed economy.

We find that the optimal policy prescribes an active role for the medium-term bond. This additional

maturity enables the planner to reduce the total debt portfolio while at the same time raising

financial revenue in response to expenditure shocks. We show that the use of additional maturities

leads to significant welfare gains.

The paper is organized as follows. Section 2 is a user guide that introduces the reader to PEA,

machine learning, and how to combine them in a simple Neoclassical Growth Model example.

Section 3 introduces the reader to the problem of multicollinearity using a one-bond economy

studied in Aiyagari et al. (2002) and describes the details of the NN-based Expectations Algorithm

using a general model with N maturities. Section 4 presents and discusses the calibration and the

quantitative results for the extended model with three maturities. Section 5 discusses and compares

the NN-based Expectations Algorithm to other state-of-the-art methods. Section 6 concludes.

4Aiyagari et al. (2002), Angeletos (2002), Buera and Nicolini (2004), Lustig et al. (2008), Faraglia et al. (2019), Bhandari
et al. (2017), and Bigio et al. (2021).
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2 User guide: Machine Learning and PEA

This section serves as a user guide to introduce the reader to the basics of machine learning and

how to use it to solve a dynamic economic model in a similar fashion to PEA. Hence, the purpose

of this section is solely to introduce the methodology in a simple environment. The method allows

us to investigate more realistic models of increased complexity. Its benefits are highlighted in the

application presented in section 3 and arise from the ability of the algorithm to approximate generic

non-linear policy functions in the presence of a large and multicollinear state space.

2.1 Environment

The typical dynamic model contains Euler equations and laws of motion

f (ct, Xt) = E [g(ct+1, Xt+1)|Xt] ,

Xt+1 = h(Xt, ct, ξt+1),

where ct ∈ RC is a vector of C controls, Xt ∈ RS is a vector of endogenous and exogenous state

variables, f : RC ×RS → RC, g : RC ×RS → RC, and ξt+1 is a vector of innovation shocks.

For example, in the stochastic neoclassical growth model ct is consumption, f is marginal utility,

g = f (ct+1)
(

zt+1Kα−1
t+1 + 1− δ

)
, Xt = {Kt, zt} is a vector that contains capital stock and TFP, and

h(Xt, ct, ξt+1) is a function that describes the laws of motion for capital stock, given by the resource

constraint Kt+1 = (1− δ)Kt − ctztKα
t and the TFP Markov process. The typical PEA approximates

the conditional expectations in the Euler equations as polynomial functions of the state space Xt

E [g(ct+1, Xt+1)|Xt] ' Pn(Xt; η).

The polynomial typically used in the PEA is

Pn(Xt; η) = exp

(
a0 +

P

∑
p=1

S

∑
s=1

[
ap,s · (ln Xs,t)

p]) ,

where η = [a0, a1,1, · · · , a1,S, . . . ]. For a given sequence of exogenous aggregate shocks {ξt}T
t=1,

an initial guess of the polynomials’ parameters η1, the standard stochastic PEA (described in

Algorithm 1) aims to find parameters ηn that solve all Euler equations and all laws of motion.

When X ≡ {Xt}T
t=T0

is generated by a stochastic simulation as in Algorithm 1, the matrix XTX
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is often ill-conditioned.5 Hence, with a finite-precision computer, the inverse of XTX cannot be

computed reliably and it is challenging to compute the linear regression in line 9 of Algorithm 1.

This problem potentially leads to jumps in the regression coefficients and failure to converge.

Algorithm 1 Stochastic (simulations) PEA

Precondition: initial state X0, sequence {ξt}T
t=0, initial guess η1

n, and dampening 0 < w < 1
1: while ηi

n converges do
2: for t← 0 to T do . Generate X ≡ {Xt}T

t=0
3: ct ← f−1(Pn(Xt; ηn))
4: Xt+1 ← h(Xt, ct, ξt+1)
5: end for
6: for t← 0 to T do . Generate Y ≡ {yt+1}T

t=0
7: yt+1 ← g(ct+1, Xt+1)
8: end for
9: η̂i

n ← (XTX)−1XTY . Regress to find new weights
10: ηi+1

n ← w · η̂i
n + (1− w) · ηi

n . Update with dampening
11: end while

Moreover, in the simple illustrative case of the neoclassical growth model a first order poly-

nomial (P = 1) is enough to approximate the expectation term in the Euler equation. Generically

speaking, richer models that feature a larger state space and non-linearities require the use of

higher order approximation (P� 1) and/or cross-state terms. These circumstances further aggra-

vate the multicollinearity problem as the matrix X̂TX̂, with X̂ ≡
{

Xt, X2
t , · · ·

}T

t=0
, is even more

ill-conditioned.

2.2 Supervised Machine Learning

In this paper, we use machine learning as a tool to learn how to represent the function that maps

from the set of simulated state variables {Xt}T
t=0 to the set of simulated terms {yt+1}T

t=0. For

example, in the neoclassical growth model this would serve the purpose to represent the function

P(Kt, zt) = E
[
c−1

t+1

(
zt+1Kα−1

t+1 + 1− δ
)
|Kt, zt

]
.

Machine learning proposes a flexible structure for the function P and infers a function from the

generated data {Xt}T
t=0 (which we label training data) to the set of generated examples {yt+1}T

t=0

(which we label training examples). This particular task of using machine learning to learn a

5Let λ = λ1, · · · , λS be the vector of eigenvalues of the matrix XT X, such that λ1 ≥ λ2 ≥ · · · ≥ λS ≥ 0. Ill-
conditioning refers to the fact that the ratio λ1/λn is large, implying the matrix is close to being singular.
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function that maps from inputs to outputs based on training data and examples is referred to the

literature as supervised learning. A powerful class of universal approximators able to deal with

strong non-linearities is neural networks.

2.3 Artificial Neural Networks

Neural networks can be used for both regression and classification purposes. They are typically

composed of three types of layers: (i) input, (ii) hidden and (iii) output. They can contain multiple

hidden layers but, for regression purposes, typically one or two hidden layers are sufficient. The

universal approximation theorem (see Cybenko, 1988 and Hornik et al., 1989) ensures that every

bounded continuous function can be approximated with arbitrarily small error, by a network with

one hidden layer. Moreover, any function can be approximated to arbitrary accuracy by a neural

network with two hidden layers (Cybenko, 1988). In our application, the input layer takes as input

the state space Xt ∈ RS. The hidden layer performs an intermediate transformation of the state

space. The output layer predicts the expectation terms contained in the model optimality conditions

E [g(ct+1, Xt+1)|Xt] ' f (Xt; w, β) ∈ RE. See figure 7 in appendix B for a graphical illustration. If

the problem requires approximation of E expectations terms, a neural network with one hidden

layer has the following functional form

X̃m = H

(
S

∑
s=0

wm,s · Xs,t

)
, m = 1, · · · , M,

fe(Xt; w, β) = β0,e +
M

∑
m=1

βm,e · X̃m, e = 1, · · · , E.

The hidden layer transforms the state space Xt ∈ RS through M linear combinations of the

state variables, further transformed through an activation function H(x). The activation function is

typically a sigmoid

H(x; α) =
1

1 + exp(−α · x) ,

where α is a parameter that regulates the activation rate. Intuitively, the larger is α the more H(x; α)

resembles to a step function as shown in figure 1.
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Figure 1: Sigmoid Function
Notes: The plot of the sigmoid function H(x; α), typically used in the hidden layer of a neural network. Solid blue
line: Plot of the sigmoid function when α = 1. Dashed purple line: Plot of the sigmoid function when α = 10. The
higher is α the more the sigmoid function acquires the shape of a step function.

2.4 Fitting Neural Networks

A neural network is characterized by unknown weights {w, β}. The objective of the training phase

is to seek weights such that the neural network fits the samples {Xt, yt}T
t=0. More precisely, the

problem is to find

{w0,m, wm; m = 1, 2, · · · , M}, {β0,e, βe; e = 1, 2, · · · , E},

such that the sum of squares

R(w, β) =
E

∑
e=1

T

∑
t=0

(yt,e − fe(Xt; w, β))2

is minimized. There are two important aspects to keep in mind compared to the standard PEA

polynomial regression approach: (i) training a neural network typically does not require seeking a

global minimizer for R(w, β) since that solution is likely an overfit, and (ii) unlike OLS the network

is trained using a gradient iterative procedure (e.g. gradient descendant). The gradient can be

derived using the chain rule for differentiation. An iteration n of gradient descendant updates the
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weight according to

w(n+1)
m = w(n)

m − γr

K

∑
k=1

∂Rk(w)

∂wm
,

β
(n+1)
e = β

(n)
e − γr

K

∑
k=1

∂Rk(w)

∂βe
.

Back-Propagation The partial derivatives ∂Rk(w)
∂wm

and ∂Rk(w)
∂βe

can be efficiently computed through

back-propagation (Rumelhart et al., 1986). Back-propagation is a two-pass algorithm that applies

the chain-rule sequentially, iterating from the output layer to the input layer. Each neuron in

the hidden layer receives and dispatches information only from and to neurons that are directly

connected. For this reason this process can be efficiently parallelized. When the back-propagation

algorithm is applied to a single-layer neural network, it is known as the delta rule (Widrow and

Hoff, 1960).

Training Epoch Completing a training epoch means that all training samples have had a chance

to update the model parameters. Batch (or offline) learning builds the model digesting the entire

training set at once, whereas online training allows the network to update the weights as new

observations come in. The former is typically implemented by batch gradient descent, when the

latter can typically handle larger training sets and is implemented by stochastic gradient descent.

Learning Rate The learning rate γr is similar in spirit to a dampening parameter. It refers to the

speed at which the model changes when the weights are updated. Intuitively, it represents how

quickly the model “learns”. It can either be a constant (for batch learning) or optimized dynamically

at each update by minimizing the error function.

Initial Weights Initial neural network’s weights are chosen as near zero random values. Figure 1

suggests that when the weight α is close to zero, the sigmoid approaches a linear function. This

choice of initial weights allows the model to adapt to non-linearities starting from the linear case.

Overfitting The model should not overfit the data. Since stochastic simulation methods such

as PEA only explore the ergodic set of state variables, it is particularly important to optimize

the model for out-of-sample predictions. We split the simulated data randomly in training set

9



(in-sample) and validation set (out-of-sample) with a 70-30 proportion, respectively. The number of

epochs is determined by maximizing the neural network’s performance on the validation set.

Inputs Normalization All inputs are normalized to have mean zero and unitary standard devia-

tion. This procedure ensures that all inputs have a comparable magnitude. If some inputs were of a

bigger order of magnitude, the weights linked to those inputs would experience a faster update

speed. This could potentially impair the learning process and lead to a slower convergence, or

worst mean squared prediction errors.

Number of Neurons The choice of the number of neurons in the hidden layer should be guided

by the trade-off between in-sample fit and out-of-sample performance, as illustrated in figure 2

(the figure refers to the neoclassical growth model that we present as an illustrative example in the

next section). Increasing the number of hidden units tends to increase the in-sample fit but leads

to over-fitting. We select the number of units by minimizing the mean squared prediction error

calculated on the validation set.

10



Figure 2: Root Mean Squared Error (RMSE) in function of the number of neurons in the hidden layer
Notes: The figure shows the relation between the number of hidden units and neural network performance in the
neoclassical growth model. Solid blue line - network performance on the training set. Dashed purple line - network
performance on the validation set. Circles show network performance for a specific number of units. Lines represent
the moving averages.

2.5 Example: Neural Networks and PEA Applied to the Neoclassical Growth Model

This section describes the implementation of the NN-based Expectations Algorithm applied to the

neoclassical growth model. We use Matlab and we leverage on the Statistics and Machine Learning

Toolbox. The illustrative example code, together with the comparison with other methods and

the procedure that selects the optimal number of neurons is publicly available.6 The purpose of

using Matlab and disseminating this application is to facilitate the adoption of machine learning in

economics with well known tools in an easy-to-adopt package. In this example we use a single layer

neural network with 12 neurons (this number of neurons minimize the mean squared prediction

error out-of-sample as shown in figure 2).

We first calculate the steady-state, which is particularly useful to build a guess to initialize the

neural network weights. The command feedforwardnet(12) creates a neural network with one hidden

6Downloadable from https://www.alessandrotenzinvilla.com/research.html.
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Algorithm 2 NN-Based Expectations Algorithm applied to the Neoclassical Growth Model

Precondition: parameters β, α, δ, ρ, σε, k1, and ε; utility functions u(c) = log(c), u1(c) = c−1.

1: . Simulate log AR(1) process and an initial guess for k and c
2: log(zt+1)← ρ · log(zt) + εt+1
3: k I,t ← [(1− β(1− δ))/(β · α · zt)]1/(α−1)

4: cI,t ← zt · kα
I,t − δ · k I,t

5: . Create and train the NN using the initial k I and z alongside the RHSt
6: Net← feedforwardnet(12)
7: RHSt ← u1(cI,t+1)[α · zt+1 · kα−1

I,t+1 + 1− δ]
8: Net← train(Net, [k I,t, zt], RHSt)
9: kold ← k I

10: . Solve the model
11: while error > ε do
12: . Generate {ct}T

t=1 and {kt}T
t=1

13: for t← 1 to T do
14: Et[RHSt+1]← Net([kt; zt])
15: ct ← u−1

1 (β ·Et[RHSt+1])
16: kt+1 ← zt · kα

t + (1− δ) · kt − ct
17: end for
18: . Train the NN using the new k and z alongside the above RHS
19: RHSt ← u1(ct+1) · (α · zt+1 · kα−1

t+1 + 1− δ)
20: Net← train(Net, [k I,t, zt], RHSt)
21: . Checking convergence and updating kold
22: error←max(|kold,t − kt|)
23: kold,t ← kt
24: end while

12



layer that contains 12 neurons. By default, this neural network is trained (through the function

train) with Levenberg-Marquardt backpropagation, and has a maximum number of epochs set to

1000. We generate an initial dataset using the deterministic steady-state and substituting the value

of the shock.

We then proceed to solve the model using the equivalent of Algorithm 1, except we use the

neural network to approximate the expectation contained in the optimal condition of the model.

We call this the NN-based Expectations Algorithm and a detailed description of the code is laid out

in algorithm 2.

In a more complex environment with a large state space - where a stochastic simulation ap-

proach is desirable - the advantages of this method lie in the interaction between a satisfactory

approximation of the model non-linearities and the degree of multicollinearity among the simulated

states. In PEA the choice of polynomials is quite arbitrary as the policies’ functional forms are

ex-ante unknown (one has to rely on an ex-post accuracy test to make sure that the approximation

is satisfactory). If the functional form of the chosen approximator cannot satisfactorily approximate

the equilibrium policies, the presence of multicollinearity can lead to bias in the parameter estimates.

The neural network does not suffer from this problem as it is a universal approximator. In the next

section we conclude the user’s guide illustrating this point.

2.6 Neural Networks and Multicollinearity

One general problem is that the functional form, not just the parameters, that links the state

variables and the approximated terms is ex-ante unknown. A standard practice is to make these

approximations using polynomials with order and cross-terms typically chosen through trial and

error. When the policies are correctly specified, multicollinearity leads to consistent, yet noisy

parameter estimates. However, if the chosen functional forms are not suitable to approximate

the true policy functions, multicollinearity can potentially lead to severely biased and less precise

predictions as we show in the following simple example.

Imagine that we would like to approximate a policy function with the true functional form

y(x1, x2) = αx1 + βx2 + γx2
2, (1)

and true parameters α = 2, β = 3, and γ = 1. Imagine also that we use the optimality conditions

of the model to generate, through stochastic simulation, equilibrium sequences {Xt, yt}∞
t=0, where

13



Xt = [x1,t x2,t] is a vector that contains the two state variables. The objective is to use {Xt, yt}∞
t=0

in order to infer: (i) the functional form of equation 1 and (ii) the true parameters α, β, and

γ. When X ≡ {Xt}T
t=0 is generated by a stochastic simulation as in Algorithm 1, the matrix

XTX is often ill-conditioned. We simulate different degrees of multicollinearity by randomly

generating sequences {x1,t}T
t=0 and {x2,t}T

t=0 with different degrees of correlation, and we calculate

the associated {yt}T
t=0 using equation 1. We evaluate the success of the prediction in function of

different degrees of multicollinearity using a (i) linear polynomial and a (ii) neural network. Note

that on purpose we incorrectly assume that the mapping between state variables and policy is

linear yt = β1x1,t + β2x2,t.7 Also note that the neural network has a flexible non-parametric nature

and, therefore, does not require making ex-ante assumptions about the functional form of the

actual data generating process. The success of the prediction is assessed using the mean squared

prediction error (MSPE), which is the average prediction error at time t over many training samples.

The error can be decomposed in bias and variance terms

MSPEt = E
[
(yt − ŷt)

2] = [yt −E(ŷt)]
2︸ ︷︷ ︸

Bias2
t

+E [ŷt −E(ŷt)]
2︸ ︷︷ ︸

Variancet

. (2)

Figure 3 reports the average MSPE for the entire validation set in function of the correlation between

{x1,t}T
t=0 and {x2,t}T

t=0. Note that the higher the correlation, the higher the multicollinearity between

{x1,t}T
t=0 and {x2,t}T

t=0.

7We purposely choose a polynomial that cannot correctly approximate the true policy functions, since often the true
functional form is ex-ante unknown. We check that the results are robust to many types of misspecification. However,
the purpose of the following example is to simply illustrate the possibility that misspecification under multicollineatity
can lead to biased predictions. This problem would not arise with a universal approximator, such as neural networks,
because they do not require prespecification of the functional form.
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Figure 3: Mean squared prediction error with neural network and polynomial
Notes: The figure shows the means squared prediction error 1/n ∑n

t=1 [yt −E(ŷt)]
2 in function of the correlation

between x1 and x2. Blue line with circles - NN, purple line with crosses - polynomial regression.

The higher the correlation between the state variables, the higher the inaccuracy of the poly-

nomial regression model. Moreover, if we decompose the MSPE using equation 2, we find that

most of the prediction error comes from the bias-square term (see appendix B figures 8 and 9).

Because of its non-parametric nature, the neural network adapts to the shape of the function to

approximate without having to guess the functional form ex-ante. This experiment suggests that

the non-parametric nature of a neural network is particular handy in solving economic models

characterized by policy functions with functional forms that are ex-ante unknown and that poten-

tially contain significant non-linearities and whose domain presents multicollinear states.8 In the

next section we illustrate the use of neural networks in a model that contains such features.

3 Model and Solution Method

The model we work with is an extension of the one bond economy analyzed in Aiyagari et al. (2002)

and extended to two bonds in Faraglia et al. (2019). We work with this model for two reasons.

First, it is a difficult computational problem that features a large multicollinear state-space with

non-linearities difficult to approximate with a parametric approach (i.e., borrowing and lending
8Note that another option would be to specify a rich polynomial structure with many higher order and cross terms.

One problem with such approach is that higher order terms of the same variable are extremely multicollinear.

15



constraints).9 Second, extending Faraglia et al. (2019) to more than two maturities is a relevant

economic problem since it helps in determining the optimal maturity structure of government debt.

We start by introducing the reader to a one-bond economy with a single maturity of N periods. We

then present our methodology in a general model with N maturities. The numerical advantages of

our methodology allow us to explore the optimal maturity structure of government debt with three

bonds. Quantitative results are presented in section 4.

3.1 Illustrative Model: One-Bond Economy

The economy is populated by a representative household with preferences over consumption c

and leisure l. The representative household chooses sequences of consumption {ct}∞
t=0 and leisure

{lt}∞
t=0 to maximize its time-0 expected lifetime utility

E0

∞

∑
t=0

βt[u(ct) + v(lt)],

subject to the budget constraint

pN
t bN

t + ct = (1− τt)(1− lt) + pN−1
t bN

t−1,

where bN
t indicates an N-periods maturity bond and pN

t is its corresponding price.10 The only source

of aggregate risk in the economy is an exogenous stream of government expenditures {gt}∞
t=0. In

each period, the government can finance gt by: (i) levying a proportional labor tax τt and (ii) by

issuing a non-state contingent bond with maturity of N periods. Hence, the government’s budget

constraint is:

gt + pN−1
t bN

t−1 = τt(1− lt) + pN
t bN

t .

The aggregate resource constraint of the economy is ct + gt = 1− lt, where 1− lt is the period’s

GDP. We assume the government can buy back and reissue the entire stock of outstanding debt in

each period. The government sets taxes and issues debt to solve a Ramsey taxation problem. We

adopt the primal approach and assume the government’s ability to borrow and lend is bounded.

9The non-parametric nature of a neural network makes it suited to approximating policy functions with strong
non-linearities, which would be harder to capture with polynomials.

10In principle, households are able to trade government securities in the secondary market. However, since we assume
households are identical, there is no trade in equilibrium and, for ease of notation, we omit these trades from the
household’s budget constraint.
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Under these conditions, the government’s problem is

max
{ct}∞

t=0,{bt}∞
t=0

E0 ∑
t

βt [u(ct) + v(1− ct − gt)] ,

subject to a sequence of measurability constraints11

bN
t βNEt [uc,t+N ]− bN

t−1βN−1Et [uc,t−1+N ]− gtuc,t + (uc,t − vl,t)(gt + ct) = 0,

with borrowing and lending limits12

M̄ ≥ bN
t , M ≤ bN

t .

The government’s optimality conditions are

uc,t − vl,t + µt(ucc,tct + uc,t + vll,t(ct + gt)− vl,t) + ucc,t(µt−N − µt−N+1)bN
t−N = 0, (3)

µt = Et(uc,t+N)
−1
[

Et(uc,t+Nµt+1) +
ξU,t

βN −
ξL,t

βN

]
, (4)

bN
t βNEt(uc,t+N) = bN

t−1βN−1Et(uc,t+N−1)− gtuc,t − (uc,t − vl,t)(gt + ct), (5)

where µt is the Lagrange multiplier on the time t measurability constraint, ξU,t and ξL,t are the

Lagrange multipliers on the upper and the lower bounds, respectively. By issuing debt at time

t, the government commits to increasing taxes and/or to reissuing debt at time t + N. When the

government sets taxes between time t and time t + N, it needs to take into account its past actions

in the form of all lags of the state variables up to N. More formally, the Ramsey planner’s state

space Xt is

Xt =

{
gt, {µt−i}N

i=1, {bi
t−i}N

i=1

}
.

The state space contains 2N + 1 variables, with many lags of the same state variable (e.g., µ), which

tend to be highly correlated with each other. Moreover, equation 4 reveals that the Lagrange

multiplier on the implementability constraint µt follows a random walk, creating an additional

source of multicollinearity between the state variables. We solve the model with maturity N = 10,

and we report in figure 4 the autocorrelation function of the simulated equilibrium bond’s sequence

{bN
t }. It is clear that the previous 10 lags of the same variable, which are all part of the state space,

11See AMSS (2002) for details on how to use the recursive Lagrangian approach in this context.
12 M̄N ≥ bN

t is the government saving constraint, which is equivalent to a household’s borrowing constraint.
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are highly correlated with each other in the simulated sequence.

1 2 3 4 5 6 7 8 9 10

0.85

0.9

0.95

1

Lag

Figure 4: Autocorrelation function of the equilibrium bond sequence
Notes: The figure shows the autocorrelation function of bN

t . The numbers are obtained after simulating the model
equilibrium dynamics for T=800.

For this reason, the model is hardly solvable using PEA (algorithm 1). The multicollinearity

problem poses a challenge and requires approximating the expected values in equations 3, 4,

and 5 using functions of a subset XC
t of the state space Xt (XC

t is also called the core set). These

approximations are Et(uc,t+N) ' P1(XC
t ; η1), Et(uc,t+N−1) ' P2(XC

t ; η2) and Et(uc,t+Nµt+1) '

P3(XC
t ; η3), where both the functions and the core set (including its cardinality) are ex-ante unknown.

The subset XC of the information set X is selected through an iterative procedure called Condensed

PEA. In essence, this method adds an additional loop to PEA and keeps extracting orthogonal

components from the state space, similarly to the Principle Component Analysis (PCA), but the

number of factors does not have to be chosen ex-ante. A more detailed description of the procedure

can be found in section 5 algorithm 4, where we compare our methodology to existing ones in the

literature. In the next section, we present our methodology in a model with N maturities. Due to

the presence of multiple lagged bonds, the multicollinearity problem is further accentuated.

3.2 Optimal Maturity Management with N Bonds

The economy is populated by a representative household with preferences over consumption c

and leisure l. The representative household chooses sequences of consumption {ct}∞
t=0 and leisure
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{lt}∞
t=0 to maximize its time-0 expected lifetime utility:

E0

∞

∑
t=0

βt [u(ct) + v(lt)] ,

subject to the budget constraint:

pN
t

N

∑
i=1

bi
t + ct = (1− τt)(1− lt) +

N

∑
i=1

pi−1
t bi

t−1,

where bi
t indicates an i-periods maturity bond and pi

t is its corresponding price. The only source of

aggregate risk in the economy is an exogenous stream of government expenditures {gt}∞
t=0. In each

period, the government can finance gt by: (i) levying a proportional labor tax τt and (ii) by issuing

non-state contingent bonds with maturity 1, · · · , N. The government’s budget constraint reads

N

∑
i=1

pi−1,tbi
t = τtht − gt +

N

∑
i=1

pi,tbi
t+1.

Sequential Formulation of the Ramsey Problem Combining the technology constraint, ct + gt =

ht, with the household’s labor optimality condition, 1− τt = ul,t/uc,t, yields an expression for

surplus

st ≡ τtht − gt = ct − (1− τt)ht = ct −
ul,t

uc,t
(ct + gt).

Substitute bonds prices pi,t, pinned down by the household’s Euler equations, to get

N

∑
i=1

bi
tEt

[
βi−1 uc,t+i−1

uc,t

]
= st +

N

∑
i=1

bi
t+1Et

[
βi uc,t+i

uc,t

]
,

with borrowing and lending limits13

∀i : M̄ ≥ bi
t, M ≤ bi

t, M̄total ≥
N

∑
i=1

bi
t, Mtotal ≤

N

∑
i=1

bi
t.

13 M̄N ≥ bN
t is the government saving constraint, which is equivalent to a household’s borrowing constraint.
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The optimality conditions are

ct : uc,t − vl,t + µt
[
uc,t − vl,t + ucc,tc + vll,t(ct + gt)

]
+

N

∑
i=1

(µt−i − µt−i+1)bi
t−iucc,t = 0,

∀i, bi
t+1 : µt = [Etuc,t+i]

−1

[
Etµt+1uc,t+i +

ξ i
U,t

βi −
ξ i

L,t

βi +
ξTotal

U,t

βi −
ξTotal

L,t

βi

]
,

µt :
N

∑
i=1

bi
tEt

[
βi−1 uc,t+i−1

uc,t

]
= st +

N

∑
i=1

bi
t+1Et

[
βi uc,t+i

uc,t

]
,

where ξU,t and ξL,t are the Lagrange multipliers on the upper and the lower bounds, respectively,

and ξTotal
U,t and ξTotal

L,t are the Lagrange multipliers on the upper and the lower bounds on the total

bond portfolio. In the following section we describe in detail our computational strategy. Details

on the implementation and results using Epstein-Zin preferences can be found in appendix A.

3.3 NN-based Expectations Algorithm

In this section we describe the main algorithm, which is an extension of the basic idea illustrated

in section 2.5, applied to an optimal fiscal policy model with incomplete markets and multiple

maturities. Here we present the key steps, while implementation details can be found in appendix

C. There are N bonds available with maturities from 1 to N periods. The state space at time

t is It = {gt, {{bi
t−k}

N−1
k=0 }N

i=1, {µt−k}N
k=1}. The neural network needs to approximate Et [uc,t+i],

Et [µt+iuc,t+i] and Et [uc,t+i−1] in function of It. We model these relationships using one single-

layer neural network ANN (It). In particular, if the long maturity is N > 1, then the terms to

approximate are

ANN i
1(It) = E [uc,t+i|It] for i = [1...N],

ANN i
2(It) = E [µt+iuc,t+i|It] for i = [1...N],

ANN i
3(It) = E [uc,t+i−1|It] for i = [1...N].

For example, in the two-bond case there are six terms to approximate and, if the short bond has 1

period maturity, they reduce to five.14 Given starting values for µt and {bi
t}N

i=1 and initial weights

for ANN , simulate a sequence of {ct}T
t=1, {µt}T

t=1 and {{bi
t}N

i=1}
T+1
t=2 as follows.15

14The six terms are Et(uc,t+N), Et(uc,t+N−1), Et(uc,t+N−1µt+1), Et(uc,t+S), Et(uc,t+S−1), Et(uc,t+Sµt+1), and the term
that does not require approximation in the latter case is Et(uc,t+S−1) is just uc,t. S and N denote bond maturities.

15The network can be initially trained using an educated guess for {bi
t}N

i=1, ct, µt. It is important that the initial training
sequence is not constant. More details can be found in appendix C.
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1. Impose the Maliar moving bounds on all debts instruments, see Maliar and Maliar (2003).

These bounds are particularly important and need to be tight and open slowly. Proper penalty

functions are used instead of the ξ terms to avoid out of bound solutions.16 Since µt is

identified by the first order condition for bi
t, it is over-identified if the number of available

maturities is greater than one.

∀i : µt = ANN i
1(It)

−1

[
ANN i

2(It) +
ξ i

U,t

βi −
ξ i

L,t

βi +
ξTotal

U,t

βi −
ξTotal

L,t

βi

]
.

We tackle this problem by using the forward-states approach described in Faraglia et al. (2019).

This involves approximating the expected value terms at time t + i with a function of the state

variables that are relevant at t + 1 instead of t and invoking the law of iterated expectations,

such that we use EtANN i
1(It+1) instead of ANN i

1(It).17

2. To perform the stochastic simulation, choose T big enough and find {ct}T
t=0, {µt}T

t=0 and

{{bi
t+1}N

i=1}T
t=0 that solve the following system of (N + 2)T equations:


∀i : µt =

[
EtANN i

1(It+1)
]−1

[
EtANN i

2(It+1) +
ξ i

U,t
βi −

ξ i
L,t
βi +

ξTotal
U,t
βi −

ξTotal
L,t
βi

]
,

uc,t − vl,t + µt
[
uc,t − vl,t + ucc,tc + vll,t(ct + gt)

]
+ ∑N

i=1(µt−i − µt−i+1)bi
t−iucc,t = 0,

∑N
i=1 bi

tβ
i−1EtANN i

3(It+1) = Uc,tst + ∑N
i=1 bi

t+1βiEtANN i
1(It+1).

(6)

3. If the solution error in the stochastic simulation is large, or a reliable solution could not be

found, the algorithm automatically restores the previous period neural network and performs

the stochastic simulation with a reduced Maliar bound.18

4. If the solution calculated shrinking the bound at iteration i− 1 is not satisfactory, the algorithm

does not go back another iteration but uses the same neural network and tries to lower the

Boundi−1 again towards Boundi−2. Once a reliable solution is found, the algorithm proceeds

to calculate the solution for iteration i again, but with Boundi = Boundi−1 + (Boundi−1 −

Boundi−2). In this way, if an error is detected multiple times we guarantee that both Boundi

16We also find that including ξ terms explicitly in the training set improves prediction accuracy. More details can be
found in appendix C.

17A more detailed explanation of forward-states approach can be found in appendix C.
18If the unreliable solution has been detected in iteration i the algorithm restores iteration i − 1 environment and

performs the stochastic simulation with Boundi−1 = αBoundi−1 + (1− α)Boundi−2.
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and Boundi−1 keep shrinking toward Boundi−2 and there must exist a point close enough to

Boundi−2 such that the system can be reliably solved with both Boundi−1 and Boundi.

5. If the solution found at iteration i is satisfactory, the neural network enters the learning phase

supervised by the implied model dynamics, the Maliar bounds are increased, and a new

iteration starts again.

Keep repeating until the neural network predictions converge and the simulated sequences of

{bi
t}N

i=1, and ct do not change.19 Algorithm 3 describes the algorithm in greater detail.

4 Numerical Results

In this section we use the NN-based Expectations Algorithm to study the welfare effects of addi-

tional maturities in a government debt management problem presented in section 3. Specifically,

we are interested in the welfare effects arising from the additional hedging opportunities. We first

present the calibration and then inspect how additional maturities influence household welfare

and government finances.

4.1 Calibration

We calibrate the model following the strategy of Faraglia et al. (2019). Specifically, we use additively

separable utility in consumption and leisure

U(c, l) =
c1−γ

1− γ
+ χ

l1−ηl

1− ηl
,

with γ = 1.5 and ηl = 1.8, respectively. We calibrate χ such that households spend on average 2/3

of their time endowment on leisure in the steady state, which gives the value of 2.87.

We set β to 0.96 and for the sake of comparison we follow the calibration strategy for gt

from Faraglia et al. (2019). We assume that gt follows an AR(1) process gt = µg + ρggt−1 + εt,

εt ∼ N(0, σ2
g) with ρh equal to 0.95. Then we look for the value of µg such that government

expenditure is on average equal to 25% of GDP. This gives the value of 0.0042. Lastly, we set the

value for σg such that gt is always at least 15% and at most 35% of GDP in a simulated sample of 10

thousand periods, which gives the value of 0.0031. Note that such parameterization is also broadly

19There is no need to check µt, which can be backed out analytically from the first order condition for ct.
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Algorithm 3 NN-Based Expectations Algorithm applied to Optimal Maturity Management

Precondition: parameters from table 1; utility functions u(c) = c1−γ

1−γ , uc(c) = c−γ, i = 0,
Bound(0) = 0.

1: . Simulate log AR(1) process
2: log(gt+1)← µg + ρg · log(gt) + εg+1

3: . Create and train the NN using initial conditions
4: Net← feedforwardnet(Num. Neurons)

5: . Solve the model
6: while Bound(i) < Bmax OR OutofBoundIter < NumOutofBound do
7: . Generate {ct}T

t=1, {µt}T
t=1, and {{bi

t+1}N
i=1}T

t=1
8: for t← 1 to T do
9: for r← 1 to maxrep do

10: xguess ← {c(r)guess, b(r)1
guess, · · · , b(r)N

guess}
11: {ct(r), µt(r), {bi

t+1(r)}N
i=1, residuals(r)}← Solve system 6 given ANN (It+1), Bound(i) and xguess

12: end for
13: r∗ ←minr residuals(r)
14: {ct, µt, {bi

t+1}N
i=1} ← {ct(r∗), µt(r∗), {bi

t+1(r
∗)}N

i=1}
15: end for
16: if residuals(r∗) > threshold then Restart from line 7 with a smaller bound
17: end if
18: . Train the NN using the new simulated sequences
19: It ← {gt, {{bi

t−k}
N−1
k=0 }N

i=1, {µt−k}N
k=1}

20: RHSi
1,t ← uc,t+i for i = [1...N]

21: RHSi
2,t ← µt+iuc,t+i for i = [1...N]

22: RHSi
3,t ← uc,t+i−1 for i = [1...N]

23: Net← train(Net, It+1, RHSt)
24: . Checking convergence and updating {bi

old,t}N
i=1 and cold,t

25: errorb ←max(|{bi
old,t}N

i=1 − {bi
t}N

i=1|)
26: errorc ←max(|cold,t − ct|)
27: if max(errorb, errorc) < ε then Break
28: end if
29: {bi

old,t}N
i=1 ← {bi

t}N
i=1

30: cold,t ← ct
31: Bound(i)← Bound(i) + BoundStep
32: if Bound(i) > M̄ then
33: Bound(i)← M̄
34: OutofBoundIter← OutofBoundIter + 1
35: end if
36: i← i + 1
37: end while
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aligned with the estimates from the data.20

The government has three debt instruments at its disposal. We set maturities to S=1, M=5, and

N=10 and denote them as short, medium, and long bonds, respectively. In addition to debt limits

on individual bonds, we introduce a total debt limit of ±125% of GDP both in our benchmark

model with only short and long bonds and in our calibration with three bonds. A fixed limit on

total debt allows us to make a fair comparison and isolate the effects of the hedging benefits of the

additional bond on the household’s welfare. Table 1 summarizes the parameter values.

Parameter Value
Preferences Discount factor β 0.96

Risk aversion γ 1.5
Labor disutility χ 2.87
Leisure curvature ηl 1.8

Government Average gt µg 0.0042
Volatility of gt σg 0.0031
Autocorr. of gt ρg 0.95
Debt limits M̄, M, M̄total, Mtotal ± 125% of GDP

Table 1: Calibrated parameters

Before proceeding, it is worth noting that we tested our methodology with the two-bond case.

We replicated the results of Faraglia et al. (2019), where the optimal debt portfolio includes a

negative short bond position and a positive long bond position, as shown in table 2. Moreover, as

shown in table 3, the dynamics of the two bonds are highly negatively correlated and, like in Buera

and Nicolini (2004) the positions are large and volatile. It is optimal for the government to borrow

using the long-term bond and lend using the short-term bond as in Angeletos (2002).

4.2 Optimal Debt Management with Three Bonds

Tables 2 reports the equilibrium outstanding debt-to-GDP ratio for each maturity and for each model

with an increasing number of bonds. Moments are calculated given a sequence of government

expenditure shocks with persistence and volatility specified in table 1.

20We obtain very similar estimates using the sum of government consumption and gross investment from the NIPA
tables.
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Model E(bS/GDP) E(bM/GDP) E(bL/GDP) σ(bS/GDP) σ(bM/GDP) σ(bL/GDP)
1 Bond 0.000 - - 0.564 - -
2 Bonds -0.026 - 0.353 0.1 - 0.124
3 Bonds -0.784 1.01 0.894 0.476 0.283 0.425

Table 2: Selected Bond Moments: Means and Variances
Notes: The table shows the average outstanding debt for each maturity. Moreover, the table also reports the standard
deviations of each outstanding position.

Model ρ(gt, bS
t ) ρ(gt, bM

t ) ρ(gt, bL
t ) ρ(bS

t , bM
t ) ρ(bS

t , bL
t ) ρ(bL

t , bM
t )

1 Bond 0.431 - - - - -
2 Bonds 0.686 - -0.598 - -0.918 -
3 Bonds 0.487 -0.325 -0.5 -0.962 -0.994 0.954

Table 3: Selected Bond Moments: Correlations
Notes: The table shows the correlations between each maturity of outstanding debt and government expenditure.
Moreover, the table also reports the cross-correlations among the bonds.

As shown in tables 2 and 3, the optimal policy includes a positive amount of medium-term

bonds, which is also positively correlated with the long bonds. When the number of bonds increases

from two to three, long and short bonds become even more negatively correlated. As shown in

table 4, the additional hedging benefits of the third bond are reflected in an increase in welfare of

more than 2%, compared to the two-bond model.

1 Bond 2 Bonds 3 Bonds
0% 1.49% 3.91%

Table 4: Welfare gains
Notes: The table shows the welfare gains in two and three bonds models calculated in terms of a consumption
equivalent with respect to the one-bond economy.

In terms of allocations, table 5 reveals that the additional increase in welfare is linked to a higher

average leisure and a lower consumption volatility, while the economy sustains a lower average

consumption. Labor tax volatility and autocorrelation also decrease significantly, while the average

level rises.

Model E(ct) E(lt) σ(ct) σ(lt) σ(τt) ρ(τt, τt−1) E(τt)
1 Bond 0.252 0.666 0.008 0.006 0.037 0.992 0.246
2 Bonds 0.25 0.667 0.007 0.003 0.026 0.923 0.257
3 Bonds 0.245 0.672 0.006 0.004 0.021 0.891 0.286

Table 5: Allocations and Policies
Notes: The table shows the effects of the optimal policy on consumption and leisure as the number of bonds increases.
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Next, we inspect the economic mechanism that links the hedging benefit provided by the

additional bond to the increase in the household’s welfare. As known since Angeletos (2002),

differences in long and short bond prices provide a tool to hedge against shocks by borrowing in

long bonds and accumulating assets in the short term. Since long prices are more volatile than short

prices, when a negative shock hits, the value of government liabilities falls more than the value of

government assets, thus providing insurance against negative shocks. In addition to decreasing

the government liability, the differential response of long and short prices also affects the terms

of issuing new debt. Since long prices fall more than the shorter ones, it becomes cheaper for the

planner to obtain funds by issuing shorter debt. This is why we observe portfolio rebalancing and

a negative correlation between the long and short bonds.

Table 6 shows how optimal debt management affects government finances as we increase the

number of debt instruments.

1 Bond 2 Bonds 3 Bonds
ρ(Debt/GDP, gt) 0.429 -0.15 -0.34
ρ(Net Financial Income, gt) 0.162 0.342 0.706
ρ(Net Financial Income (constant price), gt) 0.037 0.067 -0.025
Av. Net Financial Income 0.151 -0.843 -3.449
Av. Labor Tax Income 24.717 25.846 28.801

Table 6: Government Income and Borrowing
Notes: The table shows selected moments from the models with one, two, and three maturities. First row shows
the correlation between the outstanding debt/GDP ratio and expenditure shocks. Rows two and three show the
correlation between government financial income and expenditure shocks. The last two rows show the average
net financial income and the average labor tax income. Net Financial Income is defined as the inflow from issuing
new debt at the net of the cost of buying back the outstanding debt. Net Financial Income (constant price) is the
counterfactual and it corresponds to Net Financial Income holding bond prices fixed at their average values.

First, we decompose government income into labor tax income and net financial income, which

is the inflow from issuing new bonds minus the outflow due to outstanding debt. Most impor-

tantly, as the number of maturities increases, the correlation between total debt and government

expenditures changes sign, as shown in the first row of table 6.

In the one- and two-bond economy, the government borrows from the private sector to finance

expenditure shocks. In the three-bond economy, the government reduces its total debt to subsidize

the private sector and smooth its consumption. At the same time, net financial income becomes

even more positively correlated with gt and allows for smoother labor taxes, despite a falling

total debt in bad times. Reduction of total debt together with rising financial income is achieved

precisely because the planner holds leveraged positions and responds to expenditure shocks by
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substituting to short bonds.

As further evidence of this mechanism, we construct a counterfactual measure of net financial

income assuming that bond prices were fixed at their mean values. The counterfactual correlation

is reported in the third row of table 6. As the number of optimally managed bonds increases, the

correlations in the third row decrease. This suggests that the co-movement between net financial

income and government expenditures is achieved by exploiting the differential response of short,

medium, and long prices.

Looking at the averages in rows four and five, we see that as the number of maturities increases,

the government becomes a net payer to the private sector and collects a larger share of its income

in labor taxes. This happens because the increase in labor taxes outweights the decrease in average

labor supply. Although average household labor income falls, the household gets compensated for

holding government debt.

5 Comparison with Alternative Methods

There are other simulation-based numerical methods designed to address the issue of multicollinear-

ity among state variables. In this section we discuss and compare our method to the two most

prominent ones: the Condensed PEA used in Faraglia et al. (2019) and GSSA, described in Judd

et al. (2011).

5.1 Relation to Condensed PEA

This method extracts orthogonal components from the information set, similarly to the Principle

Component Analysis (PCA), but the number of factors does not have to be chosen ex-ante. As a

brief reminder to the reader, here is a high level description of the algorithm, see Faraglia et al.

(2014) for more details.

1. Parameterize the expectations in the optimality conditions as functions of a subset of the state

space (called the core set), given an initial guess of the polynomial parameters.21

• Set the bounds for the bonds (Maliar and Maliar, 2003).

• Simulate the model given the parameters.

• Use the simulated dynamics to update the parameters’ values.

21Initial parameters can be given by a simulated sequence with {bt}T
t=0.
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• Iterate and stop when the predictions and simulated sequences converge.

2. Regress the remaining state variables on the core set and save the residuals. Then regress

the realized values of the approximated expectations on the core set and the saved residuals.

Add these residuals, multiplied by the estimated coefficients, to the core set and go back to

point 1 till convergence on the path of debt is reached.

Algorithm 4 reports the pseudo-code of the algorithm and highlights with colors the part of

Condensed PEA that changes when the NN-based Expectations algorithm is implemented. In

particular, we remove the external loop (lines 1, 13, 14, 15, 16, and 17) as the neural network digests

the information set at once.

Algorithm 4 From Condensed PEA to NN-based EA

Precondition: initial state X0, initial XC,1 and XOut, sequence {ξt}T
t=0, initial guess η1

n, dampening
0 < w < 1

1: while core set XC,k converges do
2: while ηi

n converges do
3: for t← 0 to T do . Generate X ≡ {Xt}T

t=0
4: ct ← f−1(Pn(XC,k

t ; ηn))
5: Xt+1 ← h(Xt, ct, ξt+1)
6: end for
7: for t← 0 to T do . Generate Y ≡ {yt+1}T

t=0
8: yt+1 ← g(ct+1, Xt+1)
9: end for

10: η̂i
n ← argmin (Y− Pn(XC,k; ηi

n)
2 . Regress to find new weights

11: ηi+1
n ← w · η̂i

n + (1− w) · ηi
n . Update with dampening

12: end while
13: ω← argmin XOut −ωXC,k . Update core set
14: XRes ← XOut −ωXC,k

15: λ← argmin Y− Pn(XC,k; ηi
n)− λXRes

16: XC,k+1 ← XC,k ∪ λXRes

17: end while

On the one side, eliminating the external loop (line 1) reduces the time complexity of the

algorithm significantly, since Condensed PEA requires testing an unknown number of combinations

of core regressors. On the other side, our algorithm requires substituting OLS (lines 10 and 11) with

a neural network training algorithm, which has a higher time complexity.

Recall that S also corresponds to the number of neurons in the input layer, M is the number of

neurons in the hidden layer, E is the number of expectations to approximate (which also corresponds

to the number of neurons in the output layer), and T is the number of training examples.
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Time Complexity of Condensed PEA In a least squares regression, the matrix multiplication

(XTX) dominates asymptotically the Cholesky factorization of XTX.22 Hence, the time complexity

to approximate E expectations terms with OLS isO(E · S2 · T). In the condensed PEA, this operation

is repeated for an unknown number of iterations nCPEA. We estimate the time complexity of the

Condensed PEA as

O(nCPEA · nInternalLoop · (κ(E, S, T) + E · S2 · T)),

where κ(E, S, T) indicates the time complexity to compute lines 3-9 and nInternalLoop is the un-

bounded number of iterations required for model convergence (while-loop in line 2).

Time Complexity of NN-based Expectations algorithm The time complexity of a single iteration

of back-propagation to train a neural network that has 3 layers (with S, M, and E nodes) is

O(T · (S ·M + M · E)). Assuming there are more neurons in the hidden layer than the number

of expectations to approximate (M > E) and nNN is the number of epochs (which is in principle

unbounded), we estimate the time complexity to train a neural network as O(nNN · T · S ·M). We

estimate the time complexity of the NN-based Expectations algorithm as

O(nInternalLoop · (κ(E, S, T) + nNN · T · S ·M)).

Given our estimates, our algorithm has a better time complexity when23

nInternalLoop · (κ(E, S, T) + nNN · T · S ·M) < nCPEA · nInternalLoop · (κ(E, S, T) + E · S2 · T).

After rearranging, we get a simplified expression

nNN · T · S ·M︸ ︷︷ ︸
NN training

< (nCPEA − 1) · κ(E, S, T) + nCPEA · E · S2 · T︸ ︷︷ ︸
CPEA regression

. (7)

The left hand side captures the time complexity of training the neural network. The right

hand side contains the term that captures the time complexity of the regressions involved in the

Condensed PEA and an additional term (nCPEA− 1) · κ(E, S, T) that captures the difference between

the complexity of the stochastic simulation as computed with Condensed PEA and NN-based

Expectations algorithm. While κ(E, S, T) is unknown, we can still compare the nNN · T · S ·M and

22We assume that the number of features (state variables) is smaller than the number of samples. That is, T > S.
23We assume that nInternalLoop and κ(E, S, T) are the same in both methods.
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nCPEA · E · S2 · T terms, which further reduces to comparing nNN · M with nCPEA · E · S. In our

application S = 27, E = 8, M = 10, and nNN = 20 on average. Given these numbers, the two

algorithms have comparable complexity when nCPEA = 1.24 When nCPEA > 1, the inequality in 7

clearly holds since (nCPEA − 1) · κ(E, S, T) > 0.

5.2 Relation to GSSA

Judd et al. (2011) propose a related method called generalized stochastic simulation algorithm

(GSSA) to deliver high accuracy predictions as well as resolving the multicollinearity problem.

Judd et al. (2011) resolve the multicollinearity problem using standard econometric techniques,

such as single value decomposition (SVD), principal components or ridge regression. At the same

time, high accuracy is achieved by approximating the policy functions and integrating them using

Gauss-Hermite quadrature, instead of approximating the whole expectation terms in the optimality

conditions. While the GSSA method has multiple advantages and has been successfully applied in

different contexts, we find that its application to the Ramsey problem analyzed in this paper poses

challenges.

First, in this application it is particularly challenging to approximate the policy functions

directly, because the expectations are over N periods ahead. In the context of the model presented

in section 2 of this paper, the evaluation of E[u′(ct+1)] requires knowing Kt+2, which is a function

of Kt+1, which itself is a function of Kt and zt, Kt+1 = φ(Kt, zt). That is, ct+1 = zt+1φ(Kt, zt)α +

(1− δ)φ(Kt, zt)− φ(φ(Kt, zt), zt+1). When the expectation is N periods ahead, the evaluation of

E[u′(ct+N)] using the GSSA approach would require iterating on the approximated policy functions

and the budget constraint N times to have the value for Kt+N+1, which would result in an imprecise

evaluation of the expectations and lower stability of the algorithm compared to an application

where the forecast is one period ahead.

Second, methods such as ridge regression impose a penalty on the size of the coefficients,

providing stability but causing them to be downward biased. The choice of this penalty parameter

is the source of instability. It is particularly hard to choose the penalty parameter in the context of

solving the model, since the regression is performed on simulated data which are not fixed and not

exogenous from the choice of the penalty. Simulated data depend on the coefficients and penalties

obtained in the previous iteration of the algorithm. Typically the choice of penalty parameter

24Note that when nCPEA = 1, the Condensed PEA is essentially a standard PEA algorithm. It is possible that the
Condensed PEA converges in one iteration but that requires a good guess of the initial set of core state variables, which
needs to be found through trial and error.
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requires adding an additional loop and solving the model with multiple values. However, it is not

obvious which penalty parameter is optimal because the optimal penalty is different at every step

of the PEA iteration as the Maliar bounds become increasingly open.

In order to compare our method with GSSA and other standard econometric techniques, in this

section we solve the one-bond model from section 3, with short-term debt N = 1. We solve it with

standard PEA, except that we use ridge regression. In order to pick the penalty parameter we use

a cross-validation approach, where we change the penalty dynamically at each step of the fixed

point iteration in the regression stage. We select the penalty parameter that minimizes the mean

squared prediction error between predicted and simulated sequences.25 Equation 8 illustrates the

penalty selection procedure.

min
κ
||Y− Xβ̂||22 s. t.

β̂ = arg min
β

||Y− Xβ||22 + κ||β||22
(8)

We use ridge regression as opposed to SVD or a principal component analysis for two reasons.

First, ridge regression is supposed to work better than SVD when the multicollinearity is severe, as

is the case in the model of section 4. Second, we do not use principal component analysis, since the

Condensed PEA effectively does the same extraction of orthogonal components, just iteratively.

From our numerical experiments, we discover that PEA combined with ridge regression con-

verges only under specific conditions. Note that throughout the paper we have been using debt

limits. This effectively introduces an occasionally binding constraint, which makes the multi-

collinearity problem even more severe if the debt sequence visits the constrained region frequently.

Besides, the algorithm requires using Maliar bounds, which potentially cause even more instability

since the borrowing constraint changes as the bounds progressively open. We find this to be

crucially important. For illustration we consider the one-bond model with tight (M̄, M at ±100%

of GDP) and loose (M̄, M at ±200%) borrowing constraints. At every iteration we compute the

maximum difference between the ridge regression coefficients at the current and the previous

iteration. When the borrowing constraint is loose, the regression coefficients stabilize after the

Maliar bounds are wide enough and the borrowing constraint stops binding. In contrast, in the

specification with tight constraints, the constraint binds more often, requiring the use of a large

25Similarly, Judd et al. (2011) choose the smallest penalty that ensures numerical stability of the fixed point iteration,
which also provides a high accuracy solution.
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penalty parameter, which prevents the algorithm from converging.

Tight Constraint Loose Constraint
E(∆β) 3.81 .08
% constraint binds 38.2% 0

Table 7: Solution using ridge regression
Notes: Table shows selected statistics from model specifications with tight and loose borrowing constraints when
solving the model using PEA with Ridge regression. Tight refers to the case when M̄, M at ±100% and loose refers to
the case when M̄, M at ±200%. First row shows the average change in the Ridge coefficients in the last five iterations.
Second row shows the percentage of time the bond hits the constraint. The specification with loose constraints
converges in 198 iterations. The specification with tight constraints never converges, therefore, we stop the code at
iteration 198.

Table 7 illustrates this point. The first row shows the average change in ridge coefficients across

consecutive PEA iterations for the last 50 iterations. The second row shows the percentage of

time that debt visits the constraint in the last iteration. In the specification with tight borrowing

constraint, the bond stays around 43% of the time close to the constraint and ridge coefficients

never stabilize. Alternatively, this can be seen in figure 5, which plots the total model prediction

error across the PEA iterations as the Maliar bound is being opened. In the specification with loose

constraints, the forecast errors begin to stabilize when the Maliar bound stops changing and the

algorithm slowly converges. In contrast, when constraints are tight, the ridge penalty parameter

keeps changing and the forecast errors never stabilize and remain large (see table 8).
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Figure 5: Convergence of model forecast errors using ridge regression
Notes: The figure shows the convergence of the model using ridge regression. Left panel shows the value of Maliar
bound in function of the algorithm iteration. Right panel shows the total model forecast error in function of the
algorithm iteration. Solid blue line - loose borrowing constraint. Dashed purple line - tight borrowing constraint.
Tight constraint refers to the case when M̄, M at ±100% and loose constraint refers to the case when M̄, M at ±200%.
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Et(uc,t+Nµt+1) Et(uc,t+N) Et(uc,t+N−1)
Tight Constraint 0.1634 0.2786 0.2664
Loose Constraint 0.0117 0.0679 0.0668

Table 8: Prediction accuracy using ridge regression
Notes: The table shows the average absolute forecast errors from model specifications tight and loose borrowing
constraint when solving them using PEA with Ridge regression. Tight refers to the case when M̄, M at ±100% and
loose refers to the case when M̄, M at ±200%. First row shows the average change in the Ridge coefficients in the
last five iterations. The specification with loose constraints converges in 198 iterations. The specification with tight
constraints never converges, therefore, we stop the code at iteration 198. We define the average absolute forecast
error as 1

T ∑
∣∣Yt+N − Êt(Yt+N)

∣∣.
We have also attempted to solve the two-bond model using ridge regression but in this case,

the problem of instability becomes even more severe as the long and the short bonds are negatively

correlated and highly volatile. As a result, bonds hit the constraint very frequently and the

algorithm fails to converge even before the Maliar bounds are open.26

6 Conclusion

This paper introduces a new stochastic simulation method to solve large state space macro-finance

models. In particular, we use a neural network to approximate the expectation terms contained in

the optimality conditions of a model in the spirit of the stochastic Parameterized Expectations Algo-

rithm, introduced by den Haan and Marcet (1990). We call the method the NN-based Expectations

Algorithm. Its benefits are highlighted in the application presented in section 3 and arise from the

ability of the algorithm to approximate generic non-linear policy functions, whose functional forms

are ex-ante unknown, in presence of a large and multicollinear state space generated by solving the

model through a stochastic simulation approach. In particular, we demonstrate the computational

gains of our methodology by extending the optimal government debt problem studied by Faraglia

et al. (2019) from two to three maturities and investigating how the hedging benefits provided by

the additional bond contribute to the household’s welfare. We find that optimal debt management

with three maturities allows the government to respond to expenditure shocks by raising financial

income and, at the same time, reducing total outstanding debt. Through this mechanism, the

government effectively subsidizes the private sector. In our calibration it results in a welfare gain

of 2.38%, mainly driven by a lower consumption volatility and increased leisure.

26In the one bond code ridge penalty is a scalar. When solving the 2 bonds model we allow coefficients to have
different penalties, without any noticeable improvement.
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A Appendix A - Optimal Fiscal Policy with Epstein-Zin Preferences

This appendix presents the general model with N bonds and Epstein-Zin preferences, describes the

computation algorithm, and presents the equilibrium dynamics of the Epstein-Zin model with two

bonds.

The Household’s Problem Households have Epstein-Zin preferences where the instantaneous

utility comes from consumption (ct) and leisure (lt). Parameter ρ controls the substitutability in

time and parameter γ controls the attitude towards risk.27 When ρ = γ, preferences collapse to

CRRA, where consumption and leisure are additively separable. Preferences are

Vt = [(1− β)U(ct, lt)
1−ρ + β(EtV

1−γ
t+1 )

1−ρ
1−γ ]

1
1−ρ .

Time endowment is equal to 1, therefore hours worked are ht = 1− lt. Household cash-on-hand

consists of after-tax labor income and current bond holdings. This can be either consumed or spent

on the purchase of new bonds. The budget constraint (BC) is

ct + qtbt+1 = bt + (1− τt)ht.

Defining Wt = bt and Rt+1 = Wt+1/qtbt+1 = 1/qt, the BC can be rewritten as

ct + qtWt+1 = Wt + (1− τt)ht

=⇒ Wt+1 = Rt+1(Wt − ct + (1− τt)ht).

Given the redefinition of the BC, the household’s problem can be rewritten as

Vt(Wt) = max
ct,ht

[(1− β)U(ct, 1− ht)
1−ρ + β(EtVt+1(Wt+1)

1−γ)
1−ρ
1−γ ]

1
1−ρ ,

Wt+1 = Rt+1(Wt − ct + (1− τt)ht).

27When instantaneous utility includes leisure, the relative risk aversion is not γ but 1− (1− γ)(1− ρ), see Swanson
(2012) or Swanson and Rudebusch (2012) for a detailed explanation.
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Define the certainty equivalent (CE) as Rt(Vt+1) ≡ (EtV
1−γ
t+1 )

1
1−γ . The optimality condition for

consumption (FOCc) is

Vρ
t

(
(1− β)(1− ρ)U−ρ

t Uc,t − β(1− ρ)(EtV
1−γ
t+1 )

γ−ρ
1−γ Et

[
V−γ

t+1Rt+1VW,t+1

])
= 0

=⇒ (1− β)U−ρ
t Uc,t = βRγ−ρ

t Et

[
V−γ

t+1Rt+1VW,t+1

]
.

The optimality condition for labor supply (FOCh) is

Vρ
t

(
−(1− β)(1− ρ)U−ρ

t Ul,t + β(1− ρ)(EtV
1−γ
t+1 )

γ−ρ
1−γ Et

[
V−γ

t+1(1− τt)Rt+1VW,t+1

])
= 0

=⇒ (1− β)U−ρ
t Ul,t = (1− τt)βRγ−ρ

t Et

[
V−γ

t+1Rt+1VW,t+1

]
.

The envelope condition is

VW,t = Vρ
t βRγ−ρ

t EtV
−γ
t+1Rt+1VW,t+1.

Combine FOCc with FOCh to get

Ul,t

Uc,t
= 1− τt.

Combine FOCc with the envelope condition to get

VW,t = Vρ
t (1− β)U−ρ

t Uc,t =⇒ VW,t+1 = Vρ
t+1(1− β)U−ρ

t+1Uc,t+1,

which implies

(1− β)U−ρ
t Uc,t = βRγ−ρ

t Et

[
V−γ

t+1Rt+1Vρ
t+1(1− β)U−ρ

t+1Uc,t+1

]
.

Plugging this back in the FOCc, rearranging and simplifying leads to the following inter-temporal

Euler equation

1 = βEt

[
Mt(Vt+1)

(
Ut+1

Ut

)−ρ Uc,t+1

Uc,t
Rt+1

]
,
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where Mt(Vt+1) ≡
(

Vt+1
Rt(Vt+1)

)ρ−γ
. The bond’s price qt is the expected value of the stochastic

discount factor

qt = βEt

[
Mt(Vt+1)

(
Ut+1

Ut

)−ρ Uc,t+1

Uc,t

]
.

Ramsey Problem

The Ramsey problem consists of finding {ct, bi
t+1, µt, Vt}∞

t=0 in order to maximize the household’s

welfare taking household intra- and inter-temporal first order conditions as constraints. Hence, the

Lagrangian of the problem is

L = V0 + E0

∞

∑
t=0

βt

{
µt

(
U−ρ

t Uc,tst +
N

∑
i=1

Etβ
ibi

t+1Mt(Vt+i)U
−ρ
t+iUc,t+i−

N

∑
i=1

Etβ
i−1bi

tU
−ρ
t+i−1Uc,t+i−1Mt(Vt+i−1)

)
+

N

∑
i=1

ξ i
U,t(BU − bi

t+1) +
N

∑
i=1

ξ i
L,t(b

i
t+1 − BL)

}
.

In addition, the Ramsey planner needs to respect the recursivity constraint for Vt

Vt = [(1− β)U(ct, 1− ct − gt)
1−ρ + β(EtV

1−γ
t+1 )

1−ρ
1−γ ]

1
1−ρ .

Optimality Conditions

In order to calculate the first order condition with respect to ct, it is necessary to calculate an

expression for the derivative of welfare V0 with respect to ct. Note that V0 contains all the consump-

tion path from 0 throughout ∞, which we derive in subsection A. Knowing ∂V0
∂ct(gt)

the first order

condition with respect to consumption is28

Vρ
0 (1− β)X0,tU

−ρ
t

∂Ut

∂ct(gt)
+ µt

(
∂U−ρ

t Uc,t

∂ct(gt)
st +

∂st

∂ct
U−ρ

t Uc,t

)
+

∂U−ρ
t Uc,t

∂ct(gt)

N

∑
i=1

(µt−iMt−i(Vt)− µt−i+1Mt−i+1(Vt)) bi
t−i+1 + λV

t V−ρ
t (1− β)U−ρ

t
∂Ut

ct(gt)
= 0,

where λV
t is the time-t Lagrange multiplier associated with the recursive constraint and Xt1,t2 ≡

∏t2−t1
k=1 Mt1+k−1(Vt1+k) with Xt1,t2 ≡ 1, ∀t2 ≤ t1. Note that X admits a recursive representation.29

28With ∂V0
∂ct(gt)

= Vρ
0 βt(1− β)X0,tπ(gt|g0)U−ρ

t
∂Ut

∂ct(gt)
.

29Xt1,t2 ≡ ∏t2−t1
k=1 Mt1+k−1(Vt1+k) =Mt2−1(Vt2 )∏t2−t1−1

k=1 Mt1+k−1(Vt1+k) =Mt2−1(Vt2 )Xt1,t2−1.
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The first order condition with respect to bi
t+1 yields the following inter-temporal expression for the

promise keeping Lagrange multiplier µ

µt =
[
EtMt(Vt+i)U

−ρ
t+iUc,t+i

]−1
[

Etµt+1Mt+1(Vt+i)U
−ρ
t+iUc,t+i +

ξU
t

βi −
ξL

t
βi

]
.

The first order condition with respect to Vt is

βt−i
N

∑
i=1

π(gt−i|g0)βiµt−iπ(gt|gt−i)bi
t−i+1Uc,tU

−ρ
t

∂Mt−i(Vt)

∂Vt(gt)
−

βt−i+1
N

∑
i=1

π(gt−i+1|g0)βi−1µt−i+1π(gt|gt−i+1)bi
t−i+1Uc,tU

−ρ
t

∂Mt−i+1(Vt)

∂Vt(gt)
−

λV
t βtπ(gt|g0) + βt−1π(gt−1|g0)λV

t−1βVρ
t−1Rt−1(Vt)

−ρMt−1(Vt)
−γ

ρ−γ π(gt|gt−1) = 0,

which, after rearranging, yields the following recursion for λV
t

30

λV
t =

N

∑
i=1

(
µt−i

∂Mt−i(Vt)

∂Vt(gt)
− µt−i+1

∂Mt−i+1(Vt)

∂Vt(gt)

)
bi

t−i+1Uc,tU
−ρ
t + λV

t−1

(
Vt−1

Vt

)ρ

Mt−1(Vt).

The remaining first order condition with respect to µt just gives back the inter-temporal government

implementability constraint.

1. Derivation of ∂Vt/∂ct+j

If j < 0:

∂Vt/∂ct+j = 0.

If j = 0:

∂Vt

∂ct
= (1− β)Vρ

t U−ρ
t

∂Ut

∂ct
.

30Where: ∂Mt−i(Vt)
∂Vt

= (ρ− γ)Mt−i(Vt)
Vt

[
1−Mt−i(Vt)

1−γ
ρ−γ π(gt|gt−i)

]
.
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If j = 1:

∂Vt

∂ct+1(gt+1)
= Vρ

t βRt(Vt+1)
γ−ρπ(gt+1|gt)V−γ

t+1
∂Vt+1

∂ct+1(gt+1)

= Vρ
t βRt(Vt+1)

γ−ρπ(gt+1|gt)V−γ
t+1

(
(1− β)Vρ

t+1U−ρ
t+1

∂Ut+1

∂ct+1(gt+1)

)
= Vρ

t β(1− β)Mt(Vt+1)π(gt+1|gt)U−ρ
t+1

∂Ut+1

∂ct+1(gt+1)
.

If j = 2:

∂Vt

∂ct+2(gt+2)
= Vρ

t βRt(Vt+1)
γ−ρπ(gt+1|gt)V−γ

t+1
∂Vt+1

∂ct+2

= Vρ
t βRt(Vt+1)

γ−ρπ(gt+1|gt)V−γ
t+1

(
Vρ

t+1β(1− β)Rt+1(Vt+2)
γ−ρπ(gt+2|gt+1)Vρ−γ

t+2 U−ρ
t+2

∂Ut+2

∂ct+2

)
= Vρ

t β2(1− β)
2

∏
k=1
Mt+k−1(Vt+k)

2

∏
k=1

π(gt+k|gt+k−1)U−ρ
t+2

∂Ut+2

∂ct+2(gt+2)
.

For a generic j ≥ 0:

∂Vt

∂ct+j(gt+j)
= Vρ

t βj(1− β)Xt,t+jπ(gt+j|gt)U−ρ
t+j

∂Ut+j

∂ct+j(gt+j)
.

2. Derivation of ∂Mt−1(Vt)
∂Vt

∂Mt−1(Vt)

∂Vt
= (ρ− γ)

Mt−1(Vt)
ρ−γ−1

ρ−γ

Rt−1(Vt)2

Rt−1(Vt)−VtMt−1(Vt)
−γ

ρ−γ π(gt|gt−1)︸ ︷︷ ︸
∂Rt−1(Vt)

∂Vt


= (ρ− γ)

Mt−1(Vt)
ρ−γ−1

ρ−γ(
Vt

Mt−1(Vt)
1

ρ−γ

)2

[
Rt−1(Vt)−VtMt−1(Vt)

−γ
ρ−γ π(gt|gt−1)

]

= (ρ− γ)
Mt−1(Vt)

ρ−γ+1
ρ−γ

V2
t

[
Mt−1(Vt)

−1
ρ−γ Vt −VtMt−1(Vt)

−γ
ρ−γ π(gt|gt−1)

]
= (ρ− γ)

Mt−1(Vt)
ρ−γ+1

ρ−γ

Vt

[
Mt−1(Vt)

−1
ρ−γ −Mt−1(Vt)

−γ
ρ−γ π(gt|gt−1)

]
= (ρ− γ)

Mt−1(Vt)

Vt

[
1−Mt−1(Vt)

1−γ
ρ−γ π(gt|gt−1)

]
.
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Algorithm to Solve the Model with Epstein-Zin Preferences

Here we describe an algorithm to solve the model with Epstein-Zin preferences. Generally, it is very

similar to the one used to solve the model with CRRA preferences, with the exception that there

are additional state variables and additional terms that the neural network has to approximate. At

every instant t, the information set is It = {gt, {{bi
t−k}

N−1
k=0 }N

i=1, {µt−k}N
k=1, {λV

t−k}N
k=1}. Consider

projections ofRt−i(Vt), EtMt(Vt+i)U
−ρ
t+iUc,t+i, Etµt+iMt+1(Vt+i)U

−ρ
t+iUc,t+i and

EtMt(Vt+i−1)U
−ρ
t+i−1Uc,t+i−1 on It. We model these relationships using one single-layer artificial

neural network ANN (It). For example, with two bonds we would have 4N + 1 inputs and 8

outputs.31 In particular, use the following notations for each output:

ANN i
1 = Rt−i(Vt) for i = {1, N − 1, N},

ANN i
2 = EtMt(Vt+i)U

−ρ
t+iUc,t+i for i = {1, N},

ANN i
3 = Etµt+iMt+1(Vt+i)U

−ρ
t+iUc,t+i for i = {1, N},

ANN i
4 = EtMt(Vt+i−1)U

−ρ
t+i−1Uc,t+i−1 for i = {N}.

Given starting values µt−1 = λV
−1 = 0 and initial weights for ANN , simulate a sequence of {ct},

{λV
t }, {µt} as follows:

1. Impose the Maliar moving bounds on all debts instruments, see Maliar and Maliar (2003).

These bounds are particularly important and need to be tight and open slowly, since the

neural network at the beginning can only make accurate predictions around zero debt - that

is our initialization point. Proper penalty functions are used instead of the ξ terms to avoid

out of bound solutions, see Faraglia et al. (2014) for more details.

2. Use forward-states on the following i equations

∀i : µt =
[
EtANN i

1(It+1)
]−1

[
EtANN i

2(It+1) +
ξ i

U,t

βi −
ξ i

L,t

βi

]
.

31One with maturity 1 and the other with maturity N.
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3. Find λV
t , µt, ct and {bi

t+1}N
i=1 that solve the following system of equations:

i. λV
t =

N

∑
i=1

(
µt−i

∂Mt−i(Vt)

∂Vt(gt)
− µt−i+1

∂Mt−i+1(Vt)

∂Vt(gt)

)
bi

t−i+1Uc,tU
−ρ
t + λV

t−1

(
Vt−1

Vt

)ρ
(

Vt

ANN 1
1(It+1)

)ρ−γ

,

ii. Vρ
0 (1− β)X0,tU

−ρ
t

∂Ut

∂ct(gt)
+ µt

(
∂U−ρ

t Uc,t

∂ct(gt)
st +

∂st

∂ct
U−ρ

t Uc,t

)
+

∂U−ρ
t Uc,t

∂ct(gt)

N

∑
i=1

µt−i

(
Vt

ANN i
1(It+1)

)ρ−γ

− µt−i+1

(
Vt

ANN i−1
1 (It+1)

)ρ−γ
 bi

t−i+1 + λV
t V−ρ

t (1− β)U−ρ
t

∂Ut

ct(gt)
= 0,

iii.
N

∑
i=1

βi−1bi
tANN i

4(It+1) = stU
−ρ
c Uc,t +

N

∑
i=1

βibi
t+1ANN i

2(It+1),

iv. ∀i : µt =
[
EtANN i

1(It+1)
]−1

[
EtANN i

2(It+1) +
ξ i

U,t

βi −
ξ i

L,t

βi

]
,

where

∂Mt−i(Vt)

∂Vt
= (ρ− γ)

(
Vt

ANN i
1

)ρ−γ

Vt

1−
(

Vt

ANN i
1

)1−γ

fgt(gt|gt−i)

 ,

Vt = [(1− β)U(ct, 1− ct − gt)
1−ρ + βANN 1

1(It+1)
1−ρ]

1
1−ρ ,

and

∂Ut

∂ct
= Uc,t −Ul,t.

Note that fgt(gt|gt−1) is the conditional probability density of the exogenous g process.

4. Use the simulated sequence to train the ANN and re-start from point 1 till convergence of

the predicted sequence over the realized one.

Numerical Results with Two Bonds and Epstein-Zin Preferences

Bhandari et al. (2021) and Karantounias (2018) convincingly demonstrate that implications for

optimal portfolios changes once the model contains preferences that match the asset prices. In this

section, we explore the implications for optimal debt management once we change preferences

to Epstein-Zin and add a shock that is orthogonal to the government expenditure process. In
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particular we add an endowment shock zt, such that lt = zt − ht.32 Figure 6 shows that in this

setting the optimal portfolio does not hold any short position, the allocation shares are around equal

among different maturities, and little portfolio re-balancing happens in response to government

shocks. The intuition is that the presence of a shock orthogonal to government expenditure makes

it risky to hold a highly leveraged position, and this risk is magnified by Epstein-Zin preferences.

Bhandari et al. (2021) solve a similar model using a perturbation method around the current level

of government debt. Our results using our methodology are consistent with their intuition.
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Figure 6: Simulated series with 2 bonds and Epstein-Zin preferences
Notes: The figure shows the equilibrium dynamics of the two-bond model with Epstein-Zin preferences. The left
panel plots a sequence of exogenous shocks. Solid black - government expenditure, dashed black - productivity. The
right panel plots the sequence of bonds. Solid blue - long bond with N=10. Dashed purple line - short bond with
N=1.

Parameter Value
Discount factor β = 0.96
RRA γ = 1.5
1/EIS ρ = 1.6
Leisure utility parameter η = 1.8
AR(1) parameter in gt φ1 = 0.8
constant in AR(1) process of in gt c = 0.04
Variance of the disturbances to gt σ2

ε = 0.00001
AR(1) parameter in zt φz = 0.9
constant in AR(1) process of in zt c = 0.1
Variance of the disturbances to zt σ2

εz
= 0.003

Borrowing limits
M̄N , M̄S = 100% of GDP
MN , MS = −100% of GDP

Table 9: Parameter Values used in the model with Epstein-Zin preferences

32zt is independent of gt and follows an AR1 process zt = µzρzzt−1 + εz
t with µz = 0.9, ρz = 0.1, ε ∼ N(0, 0.003).
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B Appendix B: Additional Figures

Input 1

Input 2

Input 3

...

Input N

Output 1

Output 2

Output 3

...

Hidden
layer

Input
layer

Output
layer

Figure 7: Artificial Neural Network Structure
Notes: The figure presents the structure of a single hidden layer artificial neural network. Each circle in the picture
represents an artificial neuron, and the arrows point the direction of the information flow in the prediction process.
Neurons in the hidden layer perform the non linear activation of inputs, which are combined linearly in the output
layer.
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Figure 8: Variance term of MSPE with neural network and polynomial
Notes: The figure shows the variance part of the means squared prediction error 1/n ∑n

i=1 [yi −E(ŷi)]
2 in function of

the correlation between x1 and x2. Blue line with circles - NN, purple line with crosses - polynomial regression.
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Figure 9: Variance term of MSPE with neural network and polynomial
Notes: The figure shows the bias squared part of the means squared prediction error 1/n ∑n

i=1 [yi −E(ŷi)]
2 in function

of the correlation between x1 and x2. Blue line with circles - NN, purple line with crosses - polynomial regression.

C Appendix C: Implementation Details

In this section we describe the practical details of the algorithm used to solve the model in section 4

and described in section 3.3.

Lagrange multipliers The system in step 2 contains multiple constraints, which poses a significant

computational challenge. Ideally one would numerically solve the unconstrained model and then

verify that the constraints do not bind and if, for example, MN binds, set bN
t = M̄N and find

the associated values for consumption and leisure. In a multiple-bond model this is challenging

because after setting bN
t = M̄N , one needs to check if the other constraints do not bind in the

recomputed solution and, if they do, enforce them and recalculate the solution again and so on and

on. To overcome this challenge we approximate Lagrange multipliers with the following function:

ξ i
L,t = φ(Mi − bi

t) + log(1 + φ(M̄i − bi
t)) if bi

t < Mi and ξ i
U,t = φ(bi

t − M̄i) + log(1 + φ(bi
t − M̄i)) if

bi
t > M̄i, where φ controls the relative importance of the constraint. In our implementation we set

φ = 90. We also find that including these multipliers in the training set allows for different bond

dynamics close and away from the constraints and improves prediction accuracy. As a result, in

our implementation

It = {gt, {bS
t−k}

S−1
k=0 , {bM

t−k}
M−1
k=0 , {bL

t−k}
L−1
k=0 , {µt−k}L

k=1, {{ξS
i,t−k}

S−1
k=0}i=L,U , {{ξM

i,t−k}
M−1
k=0 }i=L,U , {{ξL

i,t−k}
L−1
k=0 }i=L,U , {ξTotal

i,t−1}i=L,U}.

With S = 1, N = 5, L = 10 our state space includes 61 variables.
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Forward-States PEA When the model contains more than one maturity, µt is over-identified. This

is because optimality conditions for every maturity identify µt, as the information set It contains

variables that are pre-determined at time t.

∀i : µt = ANN i
1(It)

−1

[
ANN i

2(It) +
ξ i

U,t

βi −
ξ i

L,t

βi +
ξTotal

U,t

βi −
ξTotal

L,t

βi

]
. (9)

We tackle this problem by using a Forward States PEA, introduced in Faraglia et al. (2019).

It uses the current values of the state variables It+1 combined with the law of iterated expec-

tations. This is done in two steps. First, we replace the ANN i(It) terms in the optimality

conditions with EtANN i(It+1) and, instead of approximating Et(Uc(ct+i)), Et(Uc(ct+i−1)) and

Et(Uc(ct+iµt+1)), we use the information set It to approximate Et(Uc(ct+i−1)), Et(Uc(ct+i−1−1))

and Et(Uc(ct+i−1µt+1)) for i = S, L, M. Then, we use Gaussian quadrature to calculate the condi-

tional expectation of the neural network evaluated at It+1.

Neural Network Initialization In order to initialize the neural network weights, we need to make

a guess for bond sequences. We make an educated guess that bL
t+1 = gt/2−E(gt/2); bS

t+1 = −bL
t

and bM
t+1 =

√
gt/10−E(gt/10). Given these sequences, we use the government budget constraint

and the first order condition for ct to find the sequence for µt. Given the guess for bonds, we can

calculate the initial multipliers ξ i
L,t, ξ i

U,t, ξTotal
L,t , and ξTotal

U,t . We calculate them setting the initial bond

constraints equal to M, M̄ = ±.005. We then use these sequences to initialize the neural network.

Generally, the initial guess can be any real sequences as long as it is not constant. Nevertheless,

having a good guess helps the algorithm to converge faster.

Stochastic Simulation We solve the model using Matlab 2020a and build and train the neural

network using functions from the Neural Network toolbox. We run the stochastic simulation from

the starting point where bS
1 = bM

1 = bN
1 = 0 and µ0 = E(µ). To solve the system of first order

conditions at every period t of the simulation, we use the Levenberg-Marquardt algorithm and stop

the solver when the first order condition errors are less than 10−12. We set T=1000 and drop the

first 150 periods in training the neural network. The algorithm converges when the sequences for

bonds and neural network weights do not change between two consecutive stochastic simulations.

Solving the System At every period t of the stochastic simulation we need to solve the system of

first order conditions to get values for ct, bL
t , bM

t , and bS
t . We solve it using the Levenberg-Marquardt
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method. Since this is a local solver, there is no guarantee that the system is solved given a particular

initial guess. In our implementation we attempt to solve the system for at most maxrep number

of different starting points. If the solution errors are below our specified threshold, the algorithm

proceeds with the solution and moves to the next period. If the solution errors are not below our

specified threshold, we pick the solution with the lowest error. In practice we use 10−13 as the

solution criteria and set maxrep to 50 and verify that solution errors are below it for every t in the

stochastic simulation.

Neural Network Hyperparameters We set most of the hyperparameters to standard values

used in the literature. We use one hidden layer to leverage the trade-off between approximation

accuracy and training time. According to the universal approximation theorem, single hidden layer

networks are able to approximate every continuous bounded function with an arbitrarily small

error Cybenko (1988) and have smaller training times than multiple hidden layer networks. We

then choose the number of neurons according to procedure described in section 2.4. We train the

network using gradient descent with an adaptive learning rate. Table 10 summarizes the remaining

hyperparameters.

Parameter Value
Activation function Hyperbolic tangent sigmoid
Training algorithm Gradient descent with an adaptive learn-

ing rate backpropagation
Number of Hidden Layers 1
Number of Neurons 10
Learning Rate 0.0001
Learning Increase Factor 1.01
Learning Decrease Factor 0.9
Maximum Number of Epochs 1000
Performance Goal 0
Maximum Validation Checks 6
Maximum Performance Increase 1.04

Table 10: NN hyperparameters
Notes: The table summarizes the hyperparameters of the neural network used to solve the model in section 4.
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