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Abstract
Economic disruptions generally create winners and losers. The compensation problem consists of

designing a reform of the existing income tax system that offsets the welfare losses of the latter by
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∗Schulz: University of Mannheim. Tsyvinski: Yale University. Werquin: Federal Reserve Bank of Chicago,
Toulouse School of Economics, and CEPR. Opinions expressed in this article are those of the authors and do not
necessarily reflect the views of the Federal Reserve Bank of Chicago or the Federal Reserve System. We are particularly
grateful to Dominik Sachs. We thank Andy Atkeson, Gadi Barlevy, Marco Bassetto, Joydeep Bhattacharya, Don
Brown, Ariel Burstein, Jeff Campbell, Raj Chetty, Wolfgang Dauth, Georgy Egorov, Eduardo Faingold, Antoine
Ferey, Axelle Ferriere, Sebastian Findeisen, François Gourio, Nathan Hendren, Jim Hines, Marek Kapicka, Louis
Kaplow, Rohan Kekre, Eungsik Kim, Helen Koshy, Nicolas Lambert, Tim Lee, Etienne Lehmann, Jesse Perla, Pascual
Restrepo, Emmanuel Saez, Stefanie Stantcheva, Kjetil Storesletten, Christopher Tonetti, and Gianluca Violante for
useful comments, and Craig Epstein for excellent research assistance. This research has received financial support
from the ADEMU network grant, part of the EU H2020 program (grant agreement No 649396).



Introduction

Economic disruptions, for instance technological change, opening to international
trade, inflows of immigration, or exogenous price shocks, generally create winners
and losers, i.e., real wage and welfare gains for some individuals and welfare losses
for others. The welfare compensation problem consists of designing a reform of the
tax-and-transfer system that offsets the losses by redistributing the winners’ gains.
We solve this problem in an environment where only distortionary taxes are available
and wages are determined endogenously in general equilibrium.

The traditional public finance literature (Kaldor [1939], Hicks [1939, 1940]) shows
that in an economy where individualized lump-sum taxes are available, the tax reform
that redistributes the welfare gains and losses caused by a disruption is straightfor-
ward: It simply consists of raising (resp., lowering) the lump-sum tax liability of
agents whose welfare increases (resp., decreases) from the shock by an amount equal
to their compensating variation. This standard Kaldor-Hicks approach is flawed,
however. First, because of asymmetric information, as in Mirrlees [1971], the only
tax instrument at the government’s disposal, the labor income tax, is distortionary.
Second, many economic shocks require explicitly modeling the endogeneity of wages.

Consider for instance an inflow of low-skilled immigration—i.e., an exogenous
(relative) increase in the total supply of low-skilled labor. In partial equilibrium, i.e., if
wages were exogenous, this would not affect the individual utility of resident workers.
In general equilibrium, this disruption lowers the wage of low-skilled workers whose
marginal product of labor is decreasing and raises the wage of high-skilled workers
whose labor is complementary to the tasks performed by the incoming workers; see,
e.g., Card [2009]. Therefore, immigration flows have non-trivial welfare consequences
only because the endogeneity of wages is explicitly taken into account. Similarly, the
impact of automation on inequality can be understood as a race between education—
the supply of high-skilled workers—and technology; see, e.g., Katz and Murphy [1992].
In both of these examples, movements in the relative labor supplies of different skills
fundamentally drive trends in relative wages. As a result, standard public finance
models in which labor supply is endogenous but wages are exogenous cannot properly
account for the welfare implications of these disruptions.

Now suppose that in response to the disruption, the government implements a
tax reform that aims at compensating the welfare losses of agents whose wages are
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adversely impacted. Since the only available policy tools are distortionary taxes, such
a reform affects workers’ labor supply choices. These labor supply adjustments im-
pact individuals’ wages and utility by the same general equilibrium forces as we just
described. The resulting welfare effects need themselves to be accounted and compen-
sated. But this can only be done through the distortionary tax code, which creates
further welfare gains and losses, and so on. Hence the combination of distortionary
taxes and endogenous wages leads to an a priori complex fixed point problem for the
compensating tax reform.

We start by analyzing the welfare compensation problem in a partial-equilibrium
environment where wages are exogenous. We show that the design of the compen-
sating tax reform that brings every agent’s utility back to its pre-disruption level
is simple, even when distortionary income taxes are the only available instrument.
The key insight here is that individual utility is only affected by the average tax
rates of the reform—that is, the changes in marginal tax rates do not impact welfare.
This follows from an envelope theorem argument: The marginal tax rate that the
individual faces affects their indirect utility only through their optimal labor supply
decision so that the corresponding welfare effect is second-order. As a consequence, it
is straightforward to show that a suitably designed adjustment in the average tax rate
is sufficient to achieve exact welfare compensation: namely, one that exactly cancels
out the after-tax income gain or loss caused by the exogenous disruption, regardless
of the marginal tax rate changes that it induces.

The analysis becomes significantly more complex when distortionary taxes are
coupled with general equilibrium forces. In this case, despite the envelope theo-
rem, endogenous changes in labor supply do matter for welfare through their impact
on wages, resulting from the decreasing marginal productivities and the production
complementarities. Therefore, in general equilibrium, because of the labor supply re-
sponses that they generate, the tax reform’s marginal rates directly affect the agent’s
utility, even conditional on the average tax rate change. As a result, to determine
the compensating tax reform, we must solve for its average and marginal rates simul-
taneously. This is the key difference from the partial-equilibrium environment and
the main technical challenge of our paper. We show that the solution to the welfare
compensation problem can be formalized as the solution to an integro-differential
equation.

Our first main result is to derive a formula for the compensating tax reform in
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general equilibrium in terms of elasticity variables that can be measured empirically.
This formula is valid for arbitrary preferences, initial tax code, production function,
and wage disruptions as long as they are marginal—that is, our tax reform compen-
sates for the first-order welfare effects caused by general disruptions. Our second main
result is to derive a formula for the fiscal surplus, i.e., the impact of the disruption
and its compensation on the government budget. Thus, our analysis generalizes the
traditional Kaldor-Hicks criterion and provides a simple test to determine whether
economic shocks or policies are compensable, in the sense that offsetting the individ-
ual welfare changes using only distortionary tax instruments is budget-feasible. More
generally, the value of the fiscal surplus (and not only its sign) provides a relevant
monetary measure of the aggregate welfare gains or losses from the disruption.

We first show that, unless the disruption affects all wages uniformly, the compen-
sating tax reform features an element of progressivity that departs from the simple
partial-equilibrium policy. This is because, when the marginal product of labor is de-
creasing, the compensation must be designed such that the (positive) welfare effects
caused by the average tax rate cuts counteract the (negative) welfare effects caused
by the lower marginal tax rates. Thus, agents who face a lower average tax rate must
also face a lower marginal tax rate. All else equal, this naturally leads tax rebates to
grow with income at a rate of progressivity that is determined by the ratio between
the labor supply and labor demand elasticities, net of the rate of progressivity of the
initial tax code. This implies that the general-equilibrium compensation front-loads
the tax cuts whenever the disruption causes non-uniform income losses.

Second, skill complementarities in production generate additional indirect wage
adjustments that also need to be compensated. The marginal tax rates of this second
round of compensation cause, in turn, further wage and welfare changes, which them-
selves need to be compensated, and so on. We show that we can generally solve this
fixed point problem by defining inductively a sequence of functions that each cap-
ture a round of general-equilibrium wage changes and their compensation. In other
words, when the shock hits, we adjust the tax schedule to compensate for it, ignoring
production complementarities. We then compute the first round of general equilib-
rium effects on wages, compensate for them again, and so forth until convergence.
If the production function is CES, this series boils down to a uniform shift of the
marginal tax rates, in addition to the progressive reform described in the previous
paragraph. We explore quantitatively the robustness of the compensating tax reform
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to the size of the labor supply and demand elasticities, the initial tax schedule, and
the (non-marginal) size of the disruption. We show in particular that our tax reform
compensates for at least 95 (resp., 78, 53) percent of the welfare losses of a disruption
that leads to 1 percent (resp., 5 percent, 10 percent) wage losses.

We finally apply our theory in the context of the robotization of the U.S. economy
between 1990 and 2007. Acemoglu and Restrepo [2020] estimate the impact of an
additional robot per one thousand workers on the wages of different skills—roughly
the amount observed in the U.S. between these dates. The closed-form solution that
we derive allows us to easily evaluate the compensating reform quantitatively. For
instance, we find that an additional robot per thousand workers requires compensating
agents at the 10th (resp., 85th) percentile of the wage distribution by 97 percent of
their income loss (resp., 132 percent of the income gain) from the disruption. This
represents a 0.7 percentage point (resp., 0.08 pp) decrease in their average tax rate
and generates a $145 budget deficit for the government.

Related literature. Our theoretical analysis builds on Kaplow [2004, 2012] and
Hendren [2020], who extend the Kaldor-Hicks principle to the case of distortionary
taxes in partial equilibrium using inverse-optimum weights (see, e.g., Jacobs et al.
[2017]). Our main contribution is the analysis of the general equilibrium environment
in which wages are endogenous. Guesnerie [1998], Itskhoki [2008], and Antras, de Gor-
tari, and Itskhoki [2016] study compensating tax reforms and the welfare implications
of trade liberalization in a general-equilibrium framework similar to ours. They re-
strict the analysis to specific classes of distortionary taxes and tax reforms, however:
linear for Guesnerie [1998] and with a constant rate of progressivity (as in Bénabou
[2002], Heathcote, Storesletten, and Violante [2017]) for Antras, de Gortari, and It-
skhoki [2016]. While we do not consider a sophisticated model of trade, we solve the
compensation problem allowing for arbitrarily nonlinear tax schedules and nonlinear
tax reforms. The generality of the tax reforms, in particular, is necessary to ensure
that every agent’s welfare is compensated for. Andersen and Bhattacharya [2017,
2020], Andersen et al. [2020] extend the Kaldor-Hicks approach to dynamic OLG
settings; they focus on achieving generation-by-generation Pareto-neutrality via tax-
ation and debt and do not consider intra-generational heterogeneity. More broadly,
our model is within the class of Mirrleesian economies in general equilibrium. Stiglitz
[1982a], Rothschild and Scheuer [2013], Sachs, Tsyvinski, and Werquin [2020] study
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optimal taxes in this environment for given production and social welfare functions.
Ales, Kurnaz, and Sleet [2015], Guerreiro, Rebelo, and Teles [2017], Thuemmel [2018],
Costinot and Werning [2018], Hosseini and Shourideh [2018], Beraja and Zorzi [2021]
characterize optimal income taxes, robot taxation, or trade policies following dis-
ruptions. Costinot and Werning [2018], in particular, derive optimal robot taxes by
studying, like us, tax changes that keep utility unchanged. In contrast to these pa-
pers, our goal is to study the specific tax reform that achieves such compensation in
general equilibrium. Finally, our paper is related to the literature that analyzes the
set of Pareto efficient taxes—an important alternative to the standard optimal tax
problem that does not require positing a social welfare function; see, e.g., Werning
[2007], Scheuer and Werning [2017], Bierbrauer and Boyer [2014], Lorenz and Sachs
[2016], Bierbrauer et al. [2020]. We discuss in more detail the relationship to the op-
timal and Pareto efficient taxation literature in Section 4.1. Finally, from a technical
viewpoint, our derivations are based on the general-equilibrium tax incidence analysis
of Sachs, Tsyvinski, and Werquin [2020]; however, this paper does not address the
compensation problem, which requires solving not only for labor supply changes in
response to a given tax reform, but simultaneously for the tax reform itself.

Outline. In Section 1, we set up the model and define the welfare compensation
problem. In Section 2, we solve for the compensating tax reform and the fiscal
surplus in partial and general equilibrium. In Section 3, we analyze the compensating
tax reform by considering various examples of disruptions, as well as an empirical
application to the robot disruption. Section 4 concludes with a discussion of the
differences between the compensation approach and the standard optimal taxation
approach. The proofs are gathered in the Appendix.

1 Welfare Compensation Problem

1.1 Initial Equilibrium

There is a continuum of measure 1 of individuals indexed by their skill i ∈ [0, 1]. In
the initial (undisrupted) economy, agents i earn a pre-tax wage rate wi ∈ R+ that
they take as given. Without loss of generality, we order skills so that wages wi are
increasing in i. Thus, the skill index i ∈ [0, 1] can be interpreted as the agent’s
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percentile in the wage distribution of the initial economy.
Agents with skill i have preferences over consumption c and labor supply l that

are represented by the utility function ui (c, l). They choose effort li and earn pre-tax
income yi = wili. Under standard assumptions on preferences, income yi = wili is
strictly increasing in i, so that there are one-to-one maps between skills i, wages wi,
and incomes yi in the initial equilibrium.1 We assume that incomes yi belong to an
interval [y, ȳ] ⊂ R+ and have a continuous density f (·).

The government levies a non-linear income tax. The tax schedule T : R+ → R
is twice continuously differentiable. Agents i consume their after-tax income ci =
yi − T (yi). Their indirect utility Ui is thus given by

Ui = ui (wili − T (wili) , li) , (1)

where the labor supply li satisfies the first-order condition2

−
∂ui

∂l
(wili − T (wili) , li)

∂ui

∂c
(wili − T (wili) , li)

= (1 − T ′ (wili))wi. (2)

There is a continuum of mass one of identical firms whose inputs in production
are the aggregate labor supplies Lj of all types j ∈ [0, 1]. The production function
has constant returns to scale and is denoted by F (L), where L ≡ {Lj}j∈[0,1]. In
equilibrium, firms earn no profits and the wage wi is equal to the marginal product
of labor of skill i,

wi = ∂F
∂Li

(L) . (3)

We finally denote government revenue by

R =
� 1

0
T (wili) di. (4)

For future reference, we define the local rate of progressivity of the tax schedule at
income yi as (minus) the elasticity of the retention rate ri = 1 − T ′ (yi) with respect

1This is the case, for instance, if agents have a common utility function u that satisfies the
Spence-Mirrlees condition. Importantly, because we focus on marginal perturbations, this ordering
of wages need not be preserved by the disruption and the tax reform.

2We assume that this equation has a unique solution.
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to gross income yi, that is, p (yi) ≡ −∂ ln(1−T ′(yi))
∂ ln yi

.

1.2 Wage Disruption and Tax Reform

Consider an exogenous perturbation ŵE = {ŵE
i }i∈[0,1] of the wage distribution w =

{wi}i∈[0,1], where ŵE
i ∈ R for all i. That is, the wage of agent i changes, on impact,

from wi to wi(1 + µŵE
i ), where µ > 0 is a constant. Such a disruption can be caused

by various exogenous shocks—e.g., technological change, which affects the production
function F , or immigration flows, which modify the relative shares of different skills in
the economy.3 Without loss of generality, we normalize supi∈[0,1] |ŵE

i | = 1.4 Thus, the
map {ŵE

i }i∈[0,1] defines the (infinite-dimensional) direction of the disruption, while
the scalar µ parametrizes its size.

Following the disruption, the government can implement an arbitrarily non-linear
tax reform T̂ (·), whereby the statutory tax payment at income yi changes from T (yi)
to T (yi) + µT̂ (yi).5

In response to the wage disruption ŵE and the tax reform T̂ , individuals optimally
adjust their labor supply. In general equilibrium, these decisions impact their wages,
which in turn further modify their labor supply choices, and so on. We denote by
µŵi and µl̂i the total endogenous percentage changes in the wage and labor supply
of individual i between the initial and the perturbed equilibria. Thus, the wages and
labor supplies in the disrupted economy are respectively given by wi(1 + µŵE

i + µŵi)
and li(1 + µl̂i).

We define agent i’s compensating variation µÛi as the change in utility between
the initial and the perturbed equilibria, normalized by the (initial) marginal utility of
consumption ∂ui

∂c
so as to obtain a monetary measure of the welfare gains and losses.

Finally, we denote by µR̂ the change in government revenue caused by the disruption
and the tax reform, or fiscal surplus.

3For instance, the wage disruption implied by a change in the production function from F to F̃
is given by µŵE

i ≡ 1
wi

[ ∂F̃
∂Li

− ∂F
∂Li

] for all i.
4Throughout the paper, we focus on continuously differentiable functions i 7→ ŵE

i on [0, 1].
5In Section 2.4, we assume that the tax reforms T̂ that the government can implement belong

to the Banach space of functions that are continuously differentiable, bounded, with bounded first
derivative.
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1.3 Compensation Problem

Compensating Tax Reform. The welfare compensation problem consists of de-
signing a reform T̂ of the existing tax code that offsets the welfare gains and losses of
the wage disruption µŵE. Hence, the tax reform T̂ must be designed such that each
agent’s compensating variation is equal to zero:

Ûi = 0, ∀i ∈ [0, 1] . (5)

We say that the disruption {ŵE
i }i∈[0,1] is compensable if the fiscal surplus is non-

negative, i.e., R̂ ≥ 0.

Marginal Wage Disruptions. In this paper, we characterize analytically the so-
lution to the welfare compensation problem for marginal wage disruptions, i.e., as
µ → 0. Thus, our exercise consists of designing, and evaluating the fiscal impact
of, a tax reform T̂ that compensates the first-order welfare effects of a small wage
disruption in the direction ŵE. In Section 3.4, we explore quantitatively how our
compensating tax reform fares against large shocks.

Aggregate Gains of Disruptions. If a disruption is compensable, then it is pos-
sible to find a reform of the initial tax code T that achieves a strict Pareto improve-
ment.6 Conversely, it is possible that a disruption generates strictly positive aggregate
gains, both in terms of gross incomes and government revenue, but that these gains
are not compensable (i.e., the fiscal surplus R̂ is negative), if the labor supply dis-
tortions that the compensation would generate outweigh these gains. More generally,
the value of the fiscal surplus, and not only its sign, carries important information: It
provides a metric that allows us to compare, in monetary units, the aggregate welfare
gains (or losses) of different economic shocks. For example, suppose that a given
disruption (say, automation) generates more revenue, after implementing the com-
pensating tax reform, than another (say, an inflow of immigration). It follows that
the government can achieve a strictly better Pareto improvement from the former
shock.

6For instance, the government can redistribute lump-sum the budget surplus uniformly to all
workers.
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Remark: A More General Problem. It is natural to wonder what a compen-
sating tax reform would be if the government’s objective were to compensate every
agent to make their welfare at least as large (rather than exactly as large) as in the
initial economy, i.e., Ûi ≥ 0 for all i. To address this problem, we can directly specify
the non-zero welfare improvements (or losses) Ûi = hi ∈ R that one wants to achieve
for each skill level. We then solve the compensation problem by replacing 0 with hi in
the right-hand side of (5). The differential equation derived in Lemma 2 below now
features the exogenous function h. The corresponding tax reform and fiscal surplus
can then be straightforwardly derived following identical steps as in the proofs of
Propositions 1 and 2.

2 Compensating Tax Reform and Fiscal Surplus

2.1 Elasticity Concepts

As a preliminary step, we start by defining the elasticities—of labor supply, labor
demand, and substitution—on which the solution to the compensation problem de-
pends. All of them are standard and can be naturally mapped to empirical estimates.

Elasticities of Labor Supply. We decompose the uncompensated (Marshallian)
elasticity ∂ ln li

∂ ln ri
of labor supply of skill i with respect to the retention rate ri as er

i −en
i ,

where er
i ≡ ∂ ln lci

∂ ln ri
> 0 is the compensated (Hicksian) elasticity, or substitution effect,

and en
i ≡ ri

∂ ln li
∂(−ni) > 0 is the income effect parameter—i.e., (minus) the semi-elasticity

of labor supply with respect to non-labor income ni. The elasticity of labor supply
with respect to the wage wi is then equal to ew

i = (1 − p (yi)) er
i − en

i . We define the
corresponding elasticities along the non-linear budget constraint7 by εx

i ≡ ex
i

1+p(yi)er
i

for
x ∈ {r, n, w}. The scaling factor 1+p (yi) er

i accounts for the fact that the direct labor
supply response ex

i endogenously affects the agent’s marginal tax rate T ′ (yi) by the
rate of progressivity p (yi), which in turn causes a further labor supply adjustment
given by p (yi) er

i .

Elasticities of Labor Demand and Substitution. We define the cross-wage
elasticity γij of the wage of skill i with respect to the aggregate labor of skill j,

7See, e.g., Scheuer and Werning [2017], Jacquet and Lehmann [2021].
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and the own-wage elasticity (or inverse elasticity of labor demand) 1/εd
j of the wage

of skill j with respect to Lj, by ∂ ln wi

∂ ln Lj
= γij − 1

εd
j
δ (i− j), where δ (·) is the Dirac

delta function.8 For instance, if the production function has a constant elasticity of
substitution between skills (CES),9 the own-wage elasticity 1/εd is constant, and the
cross-wage elasticity is equal to γij = 1

εd

yj

Ey
. In this case, we have γij > 0 for all i, j,

so that different skills are Edgeworth complements in production. Moreover, γij does
not depend on i, implying that an increase in the labor supply of type j raises the
wages of all types i ̸= j by the same percentage amount.

2.2 Incidence of Disruptions and Tax Reforms

To characterize the compensating tax reform and the fiscal surplus, we derive first-
order Taylor expansions as µ → 0 of the perturbed equilibrium conditions (equations
(19)-(22) in the Appendix) around the initial equilibrium (1)-(4). This variational
approach was pioneered by Saez [2001] and extended to general-equilibrium environ-
ments by Sachs et al. [2020].

Welfare Changes. The (normalized) change Ûi in the utility of agent i induced by
the wage disruption ŵE and the tax reform T̂ is given by

Ûi = (1 − T ′ (yi)) yi[ŵE
i + ŵi] − T̂ (yi) = 0, (6)

where the second equality imposes that, once the new tax schedule is implemented,
agent i keeps the same level of welfare in the disrupted economy as in the initial
equilibrium. The first term on the right-hand side of (6) shows that the change in the
utility of agent i is equal to their total income gain or loss yi[ŵE

i + ŵi] caused by both
the exogenous shock ŵE

i and the general-equilibrium adjustments ŵi,10 weighted by
the share (1 − T ′ (yi)) of this income change that they keep after paying taxes. The
second term shows that their utility also responds to the change in their tax liability
T̂ (yi), which makes them poorer (resp., richer) if T̂ (yi) > 0 (resp., < 0).

8The Dirac notation ensures that the Euler theorem holds:
� 1

0 wiLi × Lj

wi

∂wi

∂Lj
di = 0.

9The CES production function is defined by F(L) = [
� 1

0 θjL
1−1/εd

j dj]εd/(εd−1).
10Recall that ŵi is a percentage wage change, so that wiŵi is the absolute wage change, and

li × (wiŵi) is the gross income change.
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Labor Supply Changes. The disruption ŵE and the tax reform T̂ induce changes
in labor supply equal to:

l̂i = εw
i [ŵE

i + ŵi] − εr
i

T̂ ′ (yi)
1 − T ′ (yi)

+ εn
i

T̂ (yi)
(1 − T ′ (yi)) yi

. (7)

This equation shows that agent i adjusts their effort upwards, l̂i > 0, if their wage
increases (first term on the right hand side of (7)), their marginal tax rate decreases
(second term), and their total tax liability—or average tax rate—increases (third
term). For future reference, we denote the labor supply response to a disruption and
a tax reform absent any endogenous wage adjustment ŵi (i.e., in partial equilibrium)
by

l̂Ei = εw
i ŵ

E
i − εr

i

T̂ ′ (yi)
1 − T ′ (yi)

+ εn
i

T̂ (yi)
(1 − T ′ (yi)) yi

. (8)

Endogenous Wage Changes. The disruption ŵE and the tax reform T̂ lead to
endogenous wage changes equal to:

ŵi = − 1
εd

i

l̂i +
� 1

0
γij l̂jdj. (9)

Intuitively, a 1 percent increase in the labor supply of individuals with skill i leads
to a −1/εd

i percent change in their own wage, because the marginal product of labor
is decreasing. A 1 percent increase in the labor supply of agents with skill j ∈ [0, 1]
leads to a γij percent change in the wage of type i through complementarities between
skills in production.

Fiscal Surplus. Finally, the fiscal surplus generated by the disruption ŵE and the
tax reform T̂ is given by

R̂ =
� 1

0

[
T̂ (yi) + T ′ (yi) yi(ŵE

i + ŵi + l̂i)
]
di. (10)

The first term in square brackets is the mechanical effect of the compensation on
government revenue due to the statutory changes in tax rates. The second term
accounts for the fiscal externalities from changes in workers’ earnings yi via wage
adjustments and labor supply choices. The marginal tax rate T ′ (yi) captures the
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share of these earnings gains or losses that accrues to the government.

2.3 Compensation in Partial Equilibrium

In this section, we show that the solution to the compensation problem takes a simple
form in partial equilibrium, even when when taxes are distortionary. Suppose that
the production function is given by F(L) =

� 1
0 θiLidi, so that for any i, the wage

wi is equal to the exogenous technological parameter θi. The marginal product of
labor is then constant (εd

i → ∞), and skills are infinitely substitutable in production
(γij = 0). In this case, a disruption ŵE generates no further endogenous adjustment
in the wage: ŵi = 0 for all i. Equation (6) thus gives immediately the compensating
tax reform T̂ . Since there is a one-to-one map between skills i and incomes y ≡ yi in
the initial equilibrium, we denote ŵE (y) ≡ ŵE

i and εx
y ≡ εx

i for x = r, n, w.

Proposition 1. In partial equilibrium, the tax reform that compensates a marginal
wage disruption in the direction ŵE is given by

T̂ (y) = (1 − T ′ (y)) y ŵE (y) . (11)

The fiscal surplus generated by the disruption and the compensating tax reform is
given by

R̂ = E
[
y ŵE (y)

]
− E

[
T ′ (y) y εr

yψ̂ (y)
]
, (12)

where ψ̂ (y) ≡ dŵE(y)
d ln y

measures the local variation of the exogenous wage disruption
along the income distribution.

Equation (11) shows that if wages are exogenous, the compensating tax reform
simply consists of increasing or decreasing the average tax rate (ATR) T̂ (yi)

yi
of each

agent i by an amount equal to their net-of-tax wage gain or loss resulting from the
disruption, (1 − T ′ (yi)) ŵE

i . This makes them just as well off as if the disruption
had not occurred. Equation (12) allows us to determine whether a given economic
shock {ŵE

i }i∈[0,1] is compensable. Note in particular that calculating the fiscal surplus
does not require actually implementing or even computing the compensating tax
reform: The expression for R̂ depends only on the exogenous disruption and the
characteristics—tax rates, income distribution, labor supply elasticities—of the initial
(undisrupted) economy.
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Taking Stock. The feature that allowed us to trivially solve for the compensating
tax reform T̂ in partial equilibrium is that, in the absence of endogenous wage ad-
justments (ŵi = 0), the changes in marginal tax rates (MTR), T̂ ′ (yi), do not enter
equation (6). That is, conditional on the total tax change T̂ (yi), the MTR does not
matter for welfare. This follows from the envelope theorem: The MTR that an in-
dividual faces affects their utility only through their labor supply decision (equation
(2)); but since labor supply is initially chosen optimally, these behavioral responses
induce no first-order effect on welfare. As a result, it is sufficient to adjust every
agent’s total tax payment (or ATR) to neutralize their income gain or loss due to the
exogenous disruption, regardless of the changes in MTR that such a reform implies.
Of course, while the endogenous labor supply responses (8) are irrelevant for the wel-
fare compensating tax reform, they determine the deadweight loss of the reform and,
therefore, the fiscal surplus R̂.

2.4 Compensation in General Equilibrium

We now characterize the compensating tax reform and the fiscal surplus when wages
are endogenous. In general equilibrium, equation (6) no longer gives directly the tax
reform T̂ that compensates the exogenous disruption ŵE, because the wage changes
ŵi are endogenous to the tax reform. Specifically, these wage responses are determined
by the labor supply responses via equation (9). In turn, these labor supply changes
are driven by the changes in marginal and average tax rates via equation (7).

Labor Supply Changes. The first step of the analysis is to solve for the total
labor supply changes following the disruption and tax reform. Substituting for ŵi into
equation (7) using equation (9) implies that the labor supply adjustments {l̂Ei }i∈[0,1]

are the solution to an integral equation. The following lemma follows from Proposition
1 in Sachs, Tsyvinski, and Werquin [2020] and is proved in the Appendix.

Lemma 1. Assume that
�

[0,1]2 |ϕiε
w
i γij|2 didj < 1, where ϕi ≡ 1

1+εw
i /εd

i
.11 The change

in labor supply of agent i in response to a wage disruption and a tax reform is given

11This condition ensures that the series defining Γij converges. It is straightforward to derive
sufficient conditions on primitives for this condition to hold: e.g., a CES production function, a CRP
tax schedule, and a quasilinear utility function with isoelastic disutility of labor.
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by

l̂i = ϕil̂
E
i + ϕiε

w
i

� 1

0
Γijϕj l̂

E
j dj, (13)

where l̂Ei is defined by (8). If the production function is CES, we have Γij = 1� 1
0 ϕk

yk
Ey

dk
γij

with γij = 1
εd

yj

Ey
. More generally, we have Γij ≡ ∑∞

n=0 Γ(n)
ij with Γ(0)

ij = γij and for all
n ≥ 1, Γ(n)

ij =
� 1

0 Γ(n−1)
ik ϕkε

w
k γkjdk.

The first term on the right-hand side of equation (13) is the partial-equilibrium
change in labor supply l̂Ei , scaled by a factor ϕi. This scaling factor accounts for the
fact that the marginal product of labor is decreasing, so that the agent’s initial (say,
positive) labor supply adjustment lowers their wage by a factor 1/εd

i , which in turn
leads them to reduce their labor supply by a factor εw

i /ε
d
i —thus dampening their

initial response by ϕi ≡ 1/
[
1 + εw

i /ε
d
i

]
.

The second term on the right-hand side of (13) captures the change in the labor
supply of agent i caused by the behavioral responses of all other agents j ∈ [0, 1]
through complementarities in production. An increase in the labor supply of skill
j raises the wage of skill i by the cross-wage elasticity Γij, which in turn raises the
labor supply of skill i proportionately to εw

i . If the production function is CES, Γij is
simply proportional to the structural elasticity γij. For a general production function,
it is defined by a series ∑∞

n=0 Γ(n)
ij that comprises the direct effect Γ(0)

ij = γij of the
labor supply lj on the wage wi, as well as the infinite sequence of indirect effects that
occur in general equilibrium: For each n ≥ 1, Γ(n)

ij accounts for the impact of lj on wi

via the wage and, hence, labor supply adjustments of n intermediate types—e.g., for
n = 1, lj

γkj−→ wk

εw
k−→ lk

γik−→ wi.

Integro-Differential Equation Characterization. Combining equations (6), (9)
and (13) yields an implicit characterization of the compensating tax reform.

Lemma 2. The compensating tax reform T̂ is the solution to

T̂ (yi)
yi

= (1 − T ′ (yi)) Ω̂E
i + ϕi

εd
i

[
εr

i T̂
′ (yi) − εn

i

T̂ (yi)
yi

]
+ (1 − T ′ (yi))ϕiΛi, (14)

14



where Ω̂E
i is the total wage disruption faced by agent i and is defined by

Ω̂E
i = ϕiŵ

E
i + ϕi

� 1

0
Γijϕjε

w
j ŵ

E
j dj, (15)

and where Λi is equal to

Λi =
� 1

0
Γijϕj

[
−εr

j

T̂ ′ (yj)
1 − T ′ (yj)

+ εn
j

T̂ (yj)
(1 − T ′ (yj)) yj

]
dj. (16)

Moreover, the (income-weighted) mean change in average tax rates is equal to the
mean exogenous disruption: E

[
y
Ey

T̂ (y)
(1−T ′(y))y

]
= E

[
y
Ey

Ω̂E
y

]
.

The interpretation of equation (14) is again that the ATR change T̂ (yi)
yi

must
compensate the wage (and hence welfare) gains or losses incurred by agent i. The
first term on the right-hand side, (1 − T ′ (yi)) Ω̂E

i , is the net-of-tax wage change caused
by the exogenous disruption. In partial equilibrium, we have Ω̂E

i = ŵE
i , so that (14)

reduces to (11). In general equilibrium, Ω̂E
i accounts for the full incidence of the initial

shock—absent any tax reform—on the wage of agent i. Equation (15) shows that this
total disruption comprises the direct impact ŵE

i scaled by the own-wage dampening
factor ϕi, plus all of the indirect effects caused by the wage adjustments {ŵE

j }j∈[0,1],
which affect the wage of skill i via cross-skill complementarities Γij. Empirical studies
that evaluate the impact of a disruption on the wage distribution may already account
for these labor demand spillovers. In this case, the compensation formula we derive
below can be applied using {Ω̂E

i }i∈[0,1], rather than {ŵE
i }i∈[0,1], as a primitive.

The remaining terms on the right-hand side of (14) account for the welfare gains
and losses triggered by changes in the tax rates themselves. The key observation is
that, in general equilibrium, both the average and—this is new—the marginal tax
rates impact welfare: This is because they generate labor supply distortions which,
despite the envelope theorem, have a first-order effect on utility through their impact
on wages. The welfare consequences of a given tax reform are thus much richer,
and the design of the compensation correspondingly more complex, than in partial
equilibrium. The second term (in square brackets) on the right-hand side of (14)
captures the welfare effects of agent i’s own tax rate changes, while the third term
captures the welfare effects caused by the tax changes of all other agents j ̸= i.

Formally, an increase in the MTR of agents i by T̂ ′ (yi) reduces their labor supply
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(substitution effect) by ϕiε
r
i T̂

′ (yi) and hence, because the marginal product of labor
is decreasing, raises their own wage by ϕiε

r
i

εd
i
T̂ ′ (yi). Analogously, an increase in the

ATR of agents i by T̂ (yi)
yi

raises their labor supply (income effect) by ϕiε
n
i

T̂ (yi)
yi

and
hence, reduces their own wage by ϕiε

n
i

εd
i

T̂ (yi)
yi

. Therefore, while a higher average tax
rate at income yi hurts the welfare of agent i by directly making them poorer (as
in partial equilibrium) and by triggering increases in labor supply, a higher marginal
tax rate, by discouraging effort and consequently raising wages, increases the welfare
of agent i.12 Analogously, an increase in the marginal (respectively, average) tax rate
of any agent j ̸= i by T̂ ′ (yj) > 0 (resp., T̂ (yj) > 0) leads to a reduction (resp.,
increase) in their labor supply and hence in the wage of agent i whenever these skills
are complementary in production (Γij > 0). Summing over all j leads to the term Λi

in equation (16).

Taking Stock. To sum up, equation (14) formalizes the insight that, in general
equilibrium, the ATR and the MTR of the tax reform have to be determined simulta-
neously as they both affect welfare: The compensating policy must be designed such
that the total effect of these two instruments exactly offsets that of the exogenous
disruption. Suppose, for instance, that the planner implements the tax reform (11)
that would compensate every agent’s welfare in partial equilibrium. This tax reform
is constructed so that its average tax rates exactly compensate the wage gains or
losses of the disruption. While the implied adjustments in marginal tax rates can
be ignored in partial equilibrium because of the envelope theorem, in general equi-
librium they lead to additional, unintended welfare consequences. These first-order
welfare effects themselves need to be compensated (second term in the right hand
side of (14)), which requires further changes in marginal tax rates, and so on. As
a result, the combination of distortionary tax instruments and elastic labor supply
(whereby marginal tax rates affect labor supply behavior) and general equilibrium
(whereby labor supply decisions determine wages) leads to a fixed point problem for
the compensating tax reform, formalized by expressing the compensating reform T̂

as the solution to the integro-differential equation (14).

12The fact that an agent is made better off from a higher marginal tax rate (conditional on a
total tax payment) follows from the same logic as the “trickle-down” result of Stiglitz [1982b] that
implies lower optimal high-income tax rates than in partial equilibrium.
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Solution to the Compensation Problem. The next proposition gives the so-
lution to equation (14): It is the main result of this paper. As before, since there
is a one-to-one map between skills i and incomes y ≡ yi, we can change variables
and denote the wage disruption (15) by Ω̂E (y), the welfare effects due to production
complementarities (15) by Λ (y), the labor supply and demand elasticities by εx

y for
x = r, n, w, d, and the cross-wage elasticities in (13) by Γy,z.13

Proposition 2. The tax reform that compensates a marginal wage disruption in the
direction ŵE is given by

T̂ (y) = (1 − T ′ (y)) y
� y

y

Π (y, z)
[
ϕ−1

z Ω̂E (z) + Λ (z)
]
dz, (17)

and the fiscal surplus is given by14

R̂ = E
[
y Ω̂E (y)

]
− E

[
T ′ (y) y

� y

y

εd
y

εd
z

Π (y, z) εr
zΨ̂ (z) dz

]
, (18)

with Ψ̂ (z) ≡ d
d ln z

[ϕ−1
z Ω̂E (z) + Λ (z)]. In these expressions, we let

Π (y, z) = εd
z

εr
zz

exp
(

−
� z

y

εd
x

εr
xx
dx

)

and Λ (z) = ∑∞
n=1 Λ(n) (z) is defined inductively by Λ(0) (z) = ϕ−1

z Ω̂E (z) and

Λ(n) (z) =
� ȳ

y

Γz,yε
d
y

[
ϕyΛ(n−1) (y) −

� ȳ

z

Π (y, x) Λ(n−1) (x) dx
]
dy, ∀n ≥ 1.

If the production function is CES, Λ (z) is a constant E[y(ϕyΛ(0)(y)−
� ȳ

y Π(y,x)Λ(0)(x)dx)]
E[y � ȳ

y Π(y,x)dx] .

Formulas (17) and (18) depend only on the exogenous wage disruption Ω̂E (or ŵE)
and on variables that are observed in the pre-disruption economy—statutory marginal
tax rates, elasticities of labor supply εr

y, ε
n
y , ε

w
y , elasticities of labor demand εd

y, and

13The relevant change of variables for the cross-wage elasticities reads γyi,yj ≡ γij/y′
j and Γyi,yj ≡

Γij/y′
j , where y′

j ≡ ∂yj

∂j . In particular, if the production function is CES, we have γij = yj

εdEy
and

γyi,yj
= yj

εdEy
f (yj), where f is the density of incomes.

14This expressions assumes for simplicity that ȳ → ∞; the general expression is derived in the
proof in the Appendix.
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elasticities of substitution between skills Γy,z (or γy,z). It is thus straightforward to
implement such a tax reform in practice. In Section 3, we analyze the shape of the
compensation (17) in detail and study various examples and empirical applications.

Remark: Extensive Margin of Labor Supply. Our results extend to a setting
where, in addition to adjusting their labor effort on the intensive margin, workers can
respond to wage disruptions and tax changes by deciding to enter or exit the labor
force. Suppose that agents differ along two dimensions: their skill i ∈ [0, 1], as in
the previous sections, and their fixed cost of participating in the labor force κ ∈ R+.
These two characteristics can be arbitrarily correlated in the population. An agent
with types (i, κ) has idiosyncratic preferences over consumption c and labor supply l
described by ui (c, l) − κ I{l>0}, where I{l>0} is an indicator function equal to 1 if the
agent is employed. Agent i participates if their fixed cost of work κ is smaller than
a threshold κi equal to the difference between the utility conditional on employment,
ui [wili − T (wili) , li], and the utility conditional on unemployment, ui [−T (0) , 0].
We can easily show that the tax reform derived in Proposition 2, along with a fixed
unemployment transfer −T (0), continues to solve the compensation problem in this
setting. Indeed, this reform leaves unchanged the worker’s utility both conditional
on employment and on unemployment, so that no agent switches participation status
after the disruption and its compensation.15

3 Analysis of the Compensating Tax Reform

In this section, we analyze the economic implications of Proposition 2 by applying
the compensation (17) to various disruptions. In Sections 3.1 and 3.2, we start by
analyzing two polar cases: a disruption that affects all skills uniformly and one that
affects the wage of a single skill. These two special cases serve to establish the
main principles of welfare compensation in general equilibrium. We then study in
Section 3.3 a more general class of disruptions that affect a range of skills (e.g., the
middle-class, or the top decile). In Section 3.4, we evaluate the robustness of our
results to the size of the behavioral elasticities, the shape of the initial tax schedule,

15This argument implies in particular that the values of the elasticities of participation with re-
spect to the tax rates (which otherwise would matter to determine the endogenous wage adjustments
ŵi) are irrelevant for the construction of the compensating tax reform.
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and the size of (non-marginal) disruptions. Finally, Section 3.5 turns to a concrete
empirical application: the compensation of robots in the U.S. Unless stated otherwise,
throughout this section we impose the following assumption:

Assumption 1. The initial (pre-disruption) production function is CES. Preferences
take the form u (c, l) = 1

1−η
c1−η − 1

1+1/e
l1+1/e with e > 0 and η ≥ 0. The initial tax

schedule has a constant rate of progressivity (CRP), i.e., T (y) = y − 1−τ
1−p

y1−p with
τ ∈ R and p < 1.

Assumption 1 ensures that the rate of progressivity p (y) = p, the Hicksian elastic-
ity er

i = e
1+pe+(1−p)eη

, the income effect parameter en
i = (1 − p) ηer, the labor supply

elasticities εr
i , ε

n
i , ε

w
i , the labor demand elasticity εd

i , and the elasticity of substitution
between skills, are all constant.16

3.1 Uniform Disruptions

We first study a perturbation that reduces the wages of all workers by the same
amount in percentage terms.

Corollary 1. Suppose that Assumption 1 holds. Consider a uniform wage disruption,
so that ŵE

i ≡ ŵE for all i ∈ [0, 1]. Then the general-equilibrium compensation (17)
coincides with the partial-equilibrium compensation (11).

To understand this result, notice first that the partial- and general-equilibrium
compensations coincide if and only if the endogenous wage adjustments ŵi in (9)
vanish; that is, if − 1

εd l̂i +
� 1

0 γij l̂jdj = 0. Now, Euler’s homogeneous function theorem
imposes that − 1

εd +
� 1

0 γijdj = 0. Thus, it suffices to prove that, under Assumption
1, the labor supply response to the disruption and the compensation is uniform,
i.e., l̂Ei = l̂Ej for all i, j. But this is straightforward to show by plugging (11) into
(8). Therefore, for a uniform wage disruption and the assumed preferences and tax
schedule, the own-wage and cross-wage effects just offset each other, thus yielding zero
general-equilibrium wage adjustments. As a result, the partial-equilibrium tax reform
achieves exact welfare compensation even in the general-equilibrium environment.

The uniform disruption and its compensation are represented in Figure 1. We
calibrate the elasticity of labor supply to e = 0.33 (Chetty [2012]) and the elasticity

16Moreover, we then have (1 − T ′ (y)) Π (y, z) = (1 − τ) εd

εr
yεd/εr−p

zεd/εr+1 .
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of substitution between skills to εd = ∞ (partial equilibrium) or εd = 1.5 (Katz and
Murphy [1992], Card and Lemieux [2001], Card [2009]). We suppose moreover that
there are no income effects on labor supply: η = 0. We take a rate of progressivity for
the initial tax schedule equal to p = 0.15 and a level parameter of τ = −3 (Heathcote,
Storesletten, and Violante [2017]). The marginal tax rate is thus increasing with
income: It is equal to 9% at $20,000, to 23% at $60,000, and to 29% at $100,000.
We match the U.S. annual earnings distribution by positing a (truncated) log-normal
distribution below $150, 000 with mean 10 and variance 0.95 and appending a Pareto
distribution with a tail parameter that decreases from a = 2.5 at $150, 000 to a = 1.5
for all incomes above $350, 000 (Diamond and Saez [2011]). As in Saez [2001], we infer
the wage distribution from the observed earnings distribution and the individuals’
first-order conditions (see Sachs et al. [2020] for details on the extension of this method
to the general-equilibrium setting).

Figure 1: Uniform Disruption and Compensation
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The left panel shows that the disruption reduces the wage of all agents by 1 per-
cent. These wage losses translate into pre-tax income losses represented by the black
curve in the right panel: E.g., workers with income equal to $60,000 (respectively,
$100,000, $500,000) before the disruption suffer pre-tax earnings losses of $600 (resp.,
$1,000, $5,000). The blue and red curves in the right panel show the compensation in
partial and general equilibrium, respectively. Recall that the decrease in the agent’s
average tax rate implied by the tax reform mirrors the after-tax income losses due
to the wage disruption. Since the initial tax schedule is progressive, this implies that
the compensation is flatter than the gross income losses: Losing a dollar of pre-tax
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income does not hurt higher-paid workers as much, since they retain a smaller share
1 − T ′ (y) of that dollar. Quantitatively, a pre-tax income loss of $1,000 at $100,000
(respectively, $5,000 at $500,000) translates into an after-tax income loss—and thus
requires a reduction in tax payment—of $712 (resp., $2,796).

3.2 Dirac Disruptions

Consider next a disruption that affects only the wage of agents with a given skill i∗.17

Specifically, in Figure 2, we construct a 1 percent wage disruption µŵE
i∗ at income level

yi∗ = $60, 000.18 This leads to a pre-tax income loss of yi∗µŵE
i∗ = $600 (black curve

in the right panel) and an after-tax income loss of (1 − T ′ (yi∗)) yi∗µŵE
i∗ = $461 (blue

curve in the right panel). As shown in Proposition 1, the compensating tax reform in
partial equilibrium tracks the after-tax income loss (blue curve). This compensation,
however, creates large movements in marginal tax rates around income yi∗ , which
yield large unintended welfare consequences in general equilibrium: For instance, an
agent with skill just below i∗ is strictly worse off after the compensation than in the
initial equilibrium, because of the large decrease in their marginal tax rate—recall
that this raises labor supply and hence lowers their wage and welfare.

Figure 2: Dirac Disruption and Compensation
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As a result, the general-equilibrium compensation no longer mirrors the shape of
the income losses. The main difference is that the reduction in tax payment of the

17Note that this perturbation is not differentiable: We approximate it with a smooth wage disrup-
tion centered around income yi∗ (or, equivalently, around the percentile i∗ of the wage distribution).

18The calibration is the same as in Figure 1.
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disrupted agents i∗ is much smaller than in partial equilibrium, while at the same
time agents who earn an income lower than yi∗ now also face substantial tax rebates
even though they were not initially hurt by the exogenous disruption. Agents with
income larger than yi∗ also face a tax cut, albeit of small magnitude.19 Intuitively,
the wage disruption lowers the labor incentives of workers with skill i∗. In general
equilibrium, this labor supply reduction marginally raises their wage, so that the
government needs to compensate a smaller wage decline. In other words, the wage
disruption is partly self-limiting. By the same token, the government lowers the tax
bill of initially unaffected workers (above and below i∗), who are adversely affected
by the lower labor supply of workers with skill i∗. To interpret formally the shape of
the compensating tax reform, we focus on the ODE characterization given in Lemma
2.

Own-Wage Effects. Ignore for now the cross-wage complementarities, so that Λ =
0. Suppose first that εd

ϕεr = 1, or εd

εr = p.20 Equation (14) then reduces to T̂ (yi)
yi

= T̂ ′ (yi)
for all i < i∗. In order to reduce the tax liability of agent i∗, the marginal tax rates
of agents with lower skills i < i∗ must be reduced, T̂ ′ (yi) < 0. But this creates
welfare losses in general equilibrium. These must therefore be offset by welfare gains
of equal magnitude through reductions in average tax rates T̂ (yi)

yi
< 0. The equality

of the marginal and average tax rates of the reform implies immediately that the
compensating tax schedule T̂ must be linear on [y, yi∗).

For more general values of εd and εr, the ratio between the average and marginal
tax rates must be constant: T̂ (yi)

yi
= εd

ϕεr T̂
′ (yi). As a result, the compensating tax

reform satisfies T̂ (yi)
yi

∝ y
εd/εr−p
i for all i < i∗: It is progressive on [y, yi∗) if and only

if the ratio of elasticities of labor demand and labor supply εd/εr is larger than the
rate of progressivity p of the pre-existing tax code.21 Intuitively, reducing the tax
liability of an agent i < i∗ requires reducing their marginal tax rate—so as to keep

19Note also that the compensation peaks at a skill i∗∗ that is strictly below the the skill of the
agent i∗ who incurs the largest wage loss. Indeed, by definition the agent with the highest tax
reduction (i∗∗) has a zero marginal tax rate change. Thus, an agent with a slightly higher skill gets
almost the same total tax rebate (the difference between the two is second-order since T̂ ′ (yi∗∗) = 0)
and a strictly higher marginal tax rate change (the difference is first-order if T̂ ′′ (yi∗∗) > 0), and
hence a strictly higher compensation. This explains why we must have i∗∗ < i∗.

20This follows from the fact that ϕ = 1/[1 + (1−p)εr

εd ], which implies εd

ϕεr = 1 + εd

εr − p.
21Empirically, the inequality εd

εr > p (or, equivalently, εd

ϕεr > 1) is clearly satisfied, since we have
p ≈ 0.15, εr ≈ 0.3, and εd ≥ 0.5.
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them indifferent—more than one-for-one. But this mechanically lowers further the
tax bill of agents with slightly higher skill, thus requiring an even larger cut in their
marginal tax rate, and so on. This “race” between the MTR and the ATR leads
to exponentially decreasing tax rates. The (inverse of the) ratio εr/εd is the key
determinant of the progressivity of the compensation as it determines the extent to
which welfare drops in response to a cut in the marginal tax rate: It raises labor
supply proportionately to εr, which in turn lowers the wage proportionately to 1/εd.

Cross-Wage Effects. Next, we need to account for the cross-wage complemen-
tarities, i.e., the last term on the right-hand side of (14). For a general production
function, compensating the exogenous wage disruption Λ(0) (z) ≡ ϕ−1

z Ω̂E (z) accord-
ing to the “naive” formula (1 − T ′ (y)) y

� y

y
Π (y, z) Λ(0) (z) dz analyzed in the previ-

ous paragraph—which only accounts for the decreasing marginal product of labor—
generates further wage changes for agent z. These wage changes due to complemen-
tarities Γz,y are given by Λ(1) (z) in Proposition 2. These must be in turn compensated
by (1 − T ′ (y)) y

� y

y
Π (y, z) Λ(1) (z) dz (second round of “compensating the compensa-

tion”), thus leading to further changes in wages, and so on. Repeating this procedure
for all n ≥ 2 yields the full compensation (17), where each term Λ(n) (z) in the series
captures the wage changes caused by the (n− 1)th round of compensation. In other
words, when the exogenous shock hits, we adjust the tax schedule to compensate
for it, ignoring the endogeneity of wages due to production complementarities—i.e.,
treating each labor market, with its own labor demand curve, independently of the
others. We then compute the first round of general-equilibrium effects on wages,
compensate for them again, and so forth until we have settled.

When the production function is CES, this iterative procedure becomes particu-
larly simple. In this case, each intermediate round of compensation leads to uniform
wage changes across workers, Λ(n) (z) ≡ Λ(n) for all z. As a result, the series Λ (·)
collapses to a constant that must be added to the exogenous disruption. If the tax
schedule is CRP, this amounts to adding a constant (in percentage terms) change in
the retention rate of the tax schedule, T̂ ′(yi)

1−T ′(yi) = (1 − p) Λ, to the naive (own-wage)
compensation.22 This is equivalent to an increase in the parameter τ of the baseline
tax schedule by an amount τ̂

1−τ
= (1 − p) Λ, that is, a uniform percentage shift in the

22For an arbitrary (non-CRP) initial tax schedule, the additional correction is given by T̂ ′(yi)
1−T ′(yi) =

yi

(
1 − exp

(
−
� ȳ

yi

εd
x

εr
xx dx

))
Λ.

23



tax rates of the compensation above and beyond the progressive reform described in
the earlier paragraphs. This additional correction implies in particular a reduction
in the tax rates of agents i > i∗, while these were left unchanged both in partial
equilibrium and in the absence of cross-wage effects. In the right panel of Figure 2,
these tax cuts above i∗ are barely noticeable, because the disruption affects a small
number of workers and thus generates small cross-wage effects. They become more
important when a larger number of workers are disrupted, as we show in the next
paragraph.

3.3 Interval Disruptions

We finally consider disruptions that are intermediate between the two polar (uniform
and Dirac) cases studied above. Figure 3 constructs two such experiments. In the top
panels, a smooth disruption hurts middle-class workers and peaks at yi∗ = $60, 000.
In the bottom panels, the disruption affects uniformly all workers with earnings higher
than $120, 000. The top and bottom left panels depict the direct and total wage losses
ŵE

i and Ω̂E
i , respectively. The black curves in the top and bottom right panels depict

the corresponding gross earnings losses.
The key insights described in the previous sections carry over to these cases. First,

the compensation in partial equilibrium tracks the shape of the after-tax earnings
losses due to the exogenous disruption. These are represented by the dashed blue
curves in the top and bottom right panels. As before, a given percentage change in
the wage leads to larger absolute earnings losses at higher income levels, although
these losses are dampened by the progressivity of the initial tax code. In general
equilibrium, the compensation—represented by the solid red curves in the top and
bottom right panels—accounts for the additional wage adjustments induced by the
disruption and tax changes. For instance, a wage loss for high-income workers (bottom
panels) lowers their labor supply, which marginally increases their wages and lowers
the compensation necessary to keep utility unchanged. At the same time middle- and
low-income workers need to be compensated because the labor supply reductions of
high-income workers adversely affect their wages via production complementarities.
Typically, whenever the partial-equilibrium compensation implies sharp changes in
marginal tax rates, and hence large unintended welfare effects, the general-equilibrium
forces smooth out such non-linearities by front-loading the tax changes. The top right
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Figure 3: Interval Disruptions and Compensation
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panel of Figure 3 also shows that the general equilibrium compensation reduces the
tax rates even for the high-income workers who are not directly impacted by the
disruption: This reflects the compensation of the general-equilibrium wage changes
due to cross-skill complementarities described in the previous section.

3.4 Robustness of the Results

In this section, we evaluate the robustness of our results to the values of the labor
supply and demand elasticities, the shape of the baseline tax schedule, and the size
of the exogenous disruption. Throughout this section, we focus on the middle-class
disruption studied in the top panel of Figure 3.
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Behavioral Elasticities. The top left panel of Figure 4 displays the compensation
for different values of the Frisch elasticity e ∈ {0.25, 0.33, 0.5}, otherwise keeping the
same calibration as in the previous sections. The top right panel of Figure 4 plots the
compensation for various values of the income effect on labor supply, η ∈ {0, 0.25, 0.5}.
While the partial-equilibrium compensation in unaffected by these different behavioral
elasticities, the general-equilibrium compensation is sensitive to the values of e and
η. Recall from Lemma 2 that income effects increase the welfare cost of raising an
individual’s total tax liability: They make the agent work more, which reduces their
wage. As a result, higher income effects move the general-equilibrium compensation
closer to the partial-equilibrium one. Moreover, the endogenous wage adjustments
are driven by the magnitude of the labor supply responses to tax and wage changes,
which is in turn determined by the Frisch elasticity. Accordingly, the compensation in
general equilibrium is closer to the partial-equilibrium compensation for smaller values
of e. The bottom panel of Figure 4 displays the compensations for different labor
demand elasticities εd ∈ {0.5, 1.5, 2.5,∞}. This exercise shows that the magnitude
of general-equilibrium effects plays a critical role for the compensation of the middle-
class disruption. A smaller value of εd implies stronger own- and cross-wage effects,
lowering the middle class’s compensation and raising the tax cuts for higher incomes.
Conversely, as εd grows larger, the compensation converges to the partial-equilibrium
case (εd = ∞).

Baseline Tax Schedule. In our previous simulations, we assumed that the initial
tax schedule had a constant rate of tax progressivity (CRP). This may be unrealistic
for at least two reasons: The phasing out of low-income transfers may lead to high
marginal tax rates at the bottom (rather than negative tax rates in the case of a CRP
tax code), and the tax rates converge to a value lower than 100% at the top. We now
evaluate formula (17) for alternative tax codes. To illustrate the impact of these two
features, we use the optimal Mirrlees tax schedule (in partial or general equilibrium)
as the baseline tax code. As is well known, the optimal tax schedule has high marginal
tax rates at the bottom, and the tax rate at the top is bounded away from 1, with an
overall U-shape for the marginal tax rates. Figure 5 plots the compensation of the
middle-class disruption studied above. The left panel (resp., right panel) shows the
compensation in partial equilibrium (resp., general equilibrium) for these alternative
baseline tax schemes. The shape of the compensating tax reform is qualitatively
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Figure 4: Robustness to the Behavioral Elasticities
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robust to the initial tax scheme—it always follows the shape of the disruption in
dollar values. However, the size of the compensation is sensitive to the pre-existing
tax rates. The CRP tax scheme has the lowest marginal tax rates in the depicted
income range and, hence, the highest retention rates. Accordingly, the tax cuts are
largest in this case. By contrast, the tax changes under the optimal Mirrlees tax
schedules are substantially smaller. The optimal tax schedule in general equilibrium
features lower marginal tax rates and, hence, higher retention rates than the Mirrlees
optimum in partial equilibrium, so that the compensation under the former tax code
is slightly closer to that obtained under a CRP tax scheme. Properly accounting for
the schedule of marginal tax rates in the pre-existing economy is therefore important
for the design of the welfare compensation.
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Figure 5: Robustness to the Baseline Tax Schedule
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Large Disruptions. A key assumption we have made throughout this paper is that
the disruption is marginal. In other words, our compensation scheme only compen-
sates for the first-order effects of a disruption of the wage distribution. A natural
question is whether appropriately scaling up our compensating tax reform accurately
compensates workers against a large disruption in a given direction. We study this
question in Figure 6. Again, we consider the middle-class disruption studied above,
but contrast a 1 percent with a 5 percent wage shock in that direction (solid vs.
dashed curves). The figure displays the utility changes, expressed as a percentage of
pre-tax income, that result from the correspondingly scaled-up compensations in par-
tial equilibrium (blue curves in the left panel) and in general equilibrium (red curves
in the right panel).23 That is, a value of −0.01 means that the utility loss is equal
to 1 percent of income. We compare these utility changes to those we would obtain
in the absence of compensation (purple curves in both panels). For the 1 percent
disruption, the compensation approach performs very well: It offsets almost exactly
(at least 95.8 percent of) the utility losses from the disruption.24 For the 5 percent

23The figures depict the actual utility gains and losses of the disruption and the compensation,
that is, µÛi; these are proportional to the size of the disruption µ, and are consequently much
larger for the 5 percent disruption than for the 1 percent disruption. Of course, our comparison
of utility losses between these disruptions does not consist of reporting the value of µÛi in both
cases: This would trivially and spuriously imply that the compensation gets proportionately more
accurate as µ → 0. Instead, we compare the unweighted utility changes Ûi: Recall that we designed
the compensating tax reform such that these unweighted values converge to 0 as µ → 0.

24The value 95.8 percent is computed as (1 minus) the maximum value of the ratio of utility
changes (in absolute value) without vs. with compensation. Note that some adversely impacted
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disruption, the compensation is no longer exact but still offsets at least 78 percent of
the utility losses in general equilibrium and at least 97.3 percent of the losses of those
workers whose utility after compensation remains strictly lower than in the initial
economy. For a very large disruption of 10 percent of initial wages (not represented
in the figure), our tax reform still offsets at least 53.6 percent of the utility losses
from the disruption, and at least 87.4 percent of the losses of the workers who remain
worse off than in the initial equilibrium.

Figure 6: Robustness to the Size of the Disruption
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3.5 Empirical Application: Robots

In this section, we show how our theoretical results can be implemented in an em-
pirical application: compensating for the welfare consequences of robotization in the
U.S. Using the 1990 and 2007 U.S. Census data, Acemoglu and Restrepo [2020] have
estimated the impact of one additional robot per thousand workers25 on wages, em-
ployment, and hours worked. These estimates are obtained by comparing people in
the same skill cell but who reside in commuting zones with different exposure to
robots. They include both the direct effects of robots on employment and wages and
any indirect spillover effects that might arise because of a resulting decline in local
demand; in other words, they estimate the total disruption Ω̂E rather than the direct
impact ŵE.
workers realize a net utility gain after the compensation. If we exclude these workers, the remaining
utility losses represent less than 0.6 percent of the losses due to the disruption.

25This corresponds to the increase in robots observed in the U.S. between 1990 and 2007.
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The left panel of Figure 7 plots the wage disruption, i.e., the percentage change in
the wage, along the baseline earnings distribution, as well as the standard errors. We
use panel A in Figure 10 of Acemoglu and Restrepo [2020] to calculate the impact of
robots throughout the income distribution. Since the effects are only calculated for
the 5th, 10th, ..., and 95th wage percentiles, we use a linear extrapolation to estimate
the disruption for the entire wage distribution and keep constant the disruption for all
workers above the 95th percentile. The figure shows that, for the bottom and middle
percentiles, the change in wages is increasing with the agent’s position in the income
distribution. At the top, wages start to decline again. The wage of the 10th wage
percentile in 1990 was reduced by 0.76%, while the 85th percentile experienced an
estimated increase in their wage of 0.06%. The wage at the 90th percentile declines
by 0.05%. The solid black curve in the right panel of Figure 7 gives the corresponding
changes in annual income.

In the right panel of Figure 7, we plot the compensating tax reform (dashed blue
curve) obtained in the partial-equilibrium environment (formula (11)). (We use the
same baseline calibration as in Section 3.1.) The partial-equilibrium compensation
tracks one-for-one the shape of the income gains and losses (solid black curve), cor-
recting only for the fact that the initial tax schedule is progressive so that gross
income changes differ from net income changes. Workers in the 10th income per-
centile ($9,500 per year) have their tax bill reduced by $73 (i.e., 101 percent of their
income loss), while in the 85th income percentile ($74,500 per year) they face a tax
increase of $33 per year (i.e., 74 percent of their income gain).

Figure 7: Robots Disruption and Compensation
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The solid red curve in the right panel of Figure 7 plots the compensation in
general equilibrium. Up to an income of $80,000, the wage losses of the disruption
are declining with income. The compensation is achieved by smoothing-out the tax
changes: Middle-class workers face tax cuts that are smaller than their income losses.
They are made indifferent by the joint effects of reduced total tax liabilities and higher
marginal tax rates. This front-loading avoids the steep decline in marginal tax rates
at low and middle incomes that the partial-equilibrium compensation would create.
Symmetrically, the compensation in the upper regions of the income distribution is
flatter than the disruption. Moreover, in general equilibrium, the decline in marginal
tax rates resulting from the shape of the disruption reduces the welfare of these
workers. The compensation therefore lowers their total tax payments (red curve)
strictly more than in partial equilibrium (dashed blue curve).

Quantitatively, a low-income worker in the 10th percentile (whose annual income
is $9,500) now receives a compensation of $70 (97% of the income loss). At the same
time, a high-income worker in the 85th percentile (whose annual income is $75,500)
also experiences a tax cut of $58 (−132% of the income gain). The average tax pay-
ment of the low-income (resp., high-income) worker declines by 0.7 percentage points
(resp., 0.08 percentage points), versus 0.8 percentage points (resp., 0.04 percentage
points) in partial equilibrium.26 The disruption and the compensation generate a
fiscal deficit (−$145 in partial and general equilibrium), which is only partly due to
the disruption itself, whose fiscal cost without compensation is −$47.

4 Discussion

4.1 Comparison with Optimal Taxation

The compensation and optimal tax approaches address conceptually different ques-
tions. The optimal taxation problem starts by positing a social welfare—typically,
weighted utilitarian—objective and proceeds by characterizing the tax schedule that
maximizes this objective subject to a government budget constraint. In response to
a given disruption, this approach would compare the optimal tax-and-transfer sys-
tem before and after the disruption, keeping the social welfare function fixed, and

26Recall that these numbers are for 1 additional robot per thousand workers. The compensation
should be scaled accordingly when more robots are introduced.
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infer how the optimal tax rates should be adjusted; for an illustration of this exer-
cise in a similar setting as this paper, see, e.g., Ales, Kurnaz, and Sleet [2015]. An
important alternative approach, explored by Werning [2007], Bierbrauer and Boyer
[2014], Lorenz and Sachs [2016], Scheuer and Werning [2017], Bierbrauer et al. [2020],
avoids taking a stand on the social welfare objective and characterizes instead the set
of Pareto efficient tax systems. That is, the goal is to provide bounds on tax rates
below which any redistribution necessarily entails winners and losers; in response to
a disruption, the boundary of this Pareto set adjusts.

The compensation problem studied in this paper contrasts with, and complements
both of these alternatives. It places constraints on the realized, individual-level utility
gains and losses rather than on the fiscal surplus functional. On the one hand, the
main benefit of our approach is that, as the latter set of papers, it relies only on
the Pareto principle: We do not need to choose a social welfare function nor make
interpersonal comparisons of welfare. Yet, as the optimum approach, it pins down a
unique tax reform in response to a disruption, rather than a set of possible reforms.
A practical advantage of our solution is that the policy response to an economic
disruption is given by a reform of the actual (e.g., U.S.) tax schedule rather than of a
fictitious, optimal one which was not implemented in the first place.27 On the other
hand, the main drawback of our approach is that it is silent about how to redistribute
the resulting fiscal surplus or deficit, if any.

Figure 8 illustrates how the policy prescriptions of the optimum and the com-
pensation approaches differ, employing a concrete example. Consider the interval
disruption studied in Section 3.3 that reduces middle-class workers’ wages (top panel
of Figure 3). To make the comparison between both approaches transparent, we
suppose that the tax schedule in the initial (undisrupted) economy is the Rawlsian
optimum.28 The solid red curve in the left panel depicts the compensating tax reform.
The dashed blue curve plots the change in tax payments required to implement the
new Rawlsian optimum, i.e., the optimum associated with the perturbed wage distri-
bution.29 While both tax reforms cut the tax liabilities of the most adversely affected

27The compensation formula also depends on sufficient statistics (endogenous elasticities and
income distribution) estimated with current data, rather than evaluated at the optimum—
unobserved—tax system.

28The rest of the calibration is the same as in Sections 3.1 to 3.3.
29We construct the figure by backing out the changes in the exogenous labor productivity pa-

rameters of the CES production function that rationalize the wage disruption.
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(middle-class) workers, the optimum approach responds much more sensitively to the
disruption and involves large tax hikes (resp., cuts) at the bottom (resp., top) of
the income distribution. The resulting utility gains and losses, depicted in the right
panel of Figure 8, reflect the shape of these reforms: While the compensation does
not induce any welfare changes—up to small approximation errors—by construction
(solid red curve), the Rawlsian optimal reform causes large welfare losses among low-
and high-income workers, and large welfare gains for the middle-class. Notice that
the compensating tax reform generates a fiscal deficit of −$161 since everyone faces
wage losses. To facilitate the comparison between the two approaches, the dotted
line in the left panel plots a uniform upward shift of the tax payments that restores
budget balance. The corresponding utility losses in the right panel are also uniform
since we assumed a quasilinear utility function.30

The preceding discussion naturally raises the question of how to redistribute the
fiscal surplus. One possibility, of course, would consist of choosing a social welfare
function and optimally redistributing the surplus according to this objective. But
there would then be little benefit to using the compensation rather than the opti-
mum approach to begin with. However, we can also let the policy-maker redistribute
the surplus according to other, not necessarily explicit objectives. For instance, the
redistribution depicted in the dotted curves of Figure 8, which equalizes the welfare
losses from the disruption across the population, can be rationalized as the maxi-
mization of some underlying social welfare function; but this social welfare function
does not need to be known ex-ante, let alone specified analytically, to implement
this redistributive objective. In the same vein, the compensation approach allows a
policy-maker to design redistributive schemes that respond to various political econ-
omy considerations in response to the disruption—for instance, ensuring that the
welfare of a given coalition that amounts to half of the electorate improves. Thus,
directly targeting the ex-post levels of welfare gains and losses across the income dis-
tribution, rather than specifying a social welfare objective ex-ante without knowing
a priori how the resulting utility gains and losses will be distributed, allows us to
achieve specific objectives that the standard approach would find more difficult to
handle.

30Note that the y-axis of Figure 8 gives the absolute utility gains and losses (in dollars, since
preferences are quasilinear in consumption). By contrast, Figure 6 represented these utility changes
as a percentage of the worker’s initial income.
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Finally, even though we think that the shape of the compensating tax reform is in-
teresting in its own right—it has recently been a particularly salient policy question—
one can also view our paper in a more positive (as opposed to normative) light.
The fiscal surplus defines a relevant notion of aggregate welfare gains or losses of a
disruption—e.g., a measure of the “gains from trade” (or from automation, etc.) that
accounts for the distortionary nature of redistributive tax instruments, and that does
not rely on the choice of a social welfare function. In this light, our paper general-
izes the analysis of Hendren [2020] to the case where taxes have general-equilibrium
effects.

Figure 8: Compensation Approach vs Optimum Approach
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4.2 Directions for Future Research

Our analysis abstracts from several important dimensions that we view as fruitful
directions for future research. First, throughout most of our analysis, we have focused
on marginal disruptions. Our formulas are thus well-suited for compensating the
impact of, say, the progressive introduction of robots in the economy (see Section
3.5), less so for the impact of a large one-time event such as the “China shock.” A
systematic analysis of the compensation for large disruptions would require accounting
for the second- and higher-order effects of tax changes on labor supply, wages, and
welfare.

Second, our analysis does not allow for multi-dimensional worker heterogeneity.
In particular, the disruptions we consider do not have heterogeneous effects condi-
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tional on income. A one-dimensional income tax instrument would no longer be
able to compensate for such multi-dimensional shocks. We can easily add “tags” and
implement tax reforms that target specific sectors (say), as long as there is no endoge-
nous switching between sectors. However, in its full generality, the multi-dimensional
compensation problem would require richer policy instruments.

Third, we also ignored the dynamic effects that an economic disruption and its
compensation may cause. For instance, the literature on optimal taxation highlights
the importance of incorporating the endogenous accumulation of human capital. An
economic disruption, e.g., caused by automation, may alter the incentives for workers
to obtain higher education. At the same time, the compensation of low-income house-
holds may disincentivize them from acquiring human capital if they anticipate tax
relief. The level of compensation we derived in our static setting is a first step towards
understanding the design of tax changes over the life cycle or over time. Andersen
and Bhattacharya [2017, 2020], Andersen et al. [2020] and, more recently, Dávila and
Schaab [2021], who extend the generalized marginal social welfare weights approach
of Saez and Stantcheva [2016] to dynamic environments, provide useful steps in these
directions.

Conclusion

The classic policy question of compensating winners and losers from an economic
disruption becomes quite involved when the environment features distortionary taxes
and general-equilibrium responses. At the same time, both of these considerations are
important in many applied and policy settings (e.g., to compensate for the adverse
effects of technical change). We derive and analyze a general closed-form formula for
the design of the welfare-compensating tax reform and its impact on the government
budget. This equation is straightforward to implement in practical applications.

35



References

Daron Acemoglu and Pascual Restrepo. Robots and jobs: Evidence from us labor
markets. Journal of Political Economy, 128(6):2188–2244, 2020.

Laurence Ales, Musab Kurnaz, and Christopher Sleet. Technical change, wage in-
equality, and taxes. The American Economic Review, 105(10):3061–3101, 2015.

Torben M Andersen and Joydeep Bhattacharya. The intergenerational welfare state
and the rise and fall of pay-as-you-go pensions. The Economic Journal, 127(602):
896–923, 2017.

Torben M Andersen and Joydeep Bhattacharya. Intergenerational debt dynamics
without tears. Review of Economic Dynamics, 35:192–219, 2020.

Torben M Andersen, Joydeep Bhattacharya, and Pan Liu. Resolving intergenerational
conflict over the environment under the pareto criterion. Journal of Environmental
Economics and Management, 100:102290, 2020.

Pol Antras, Alonso de Gortari, and Oleg Itskhoki. Globalization, inequality and
welfare. Working Paper, 2016.

Roland Bénabou. Tax and education policy in a heterogenous-agent economy: What
of levels of redistribution maximize growth and efficiency? Econometrica, 70(2):
481–517, 2002.

Martin Beraja and Nathan Zorzi. Inefficient automation. Technical report, MIT
working paper, 2021., David Y. Yang, and Noam Yuchtman,âData-intensive âŠ,
2021.

Felix Bierbrauer, Pierre Boyer, and Emanuel Hansen. Pareto-improving tax reforms
and the earned income tax credit. 2020.

Felix J Bierbrauer and Pierre C Boyer. The pareto-frontier in a simple mirrleesian
model of income taxation. Annals of Economics and Statistics/Annales d’Économie
et de Statistique, (113/114):185–206, 2014.

David Card. Immigration and inequality. American Economic Review, 99(2):1–21,
2009.

36



David Card and Thomas Lemieux. Can falling supply explain the rising return to
college for younger men? a cohort-based analysis. Quarterly Journal of Economics,
116(2):705–746, 2001.

Raj Chetty. Bounds on elasticities with optimization frictions: A synthesis of micro
and macro evidence on labor supply. Econometrica, 80(3):969–1018, 2012.

Arnaud Costinot and Iván Werning. Robots, trade, and luddism: A sufficient statistic
approach to optimal technology regulation. Technical report, National Bureau of
Economic Research, 2018.

Eduardo Dávila and Andreas Schaab. Welfare assessments with heterogeneous indi-
viduals. 2021.

Peter Diamond and Emmanuel Saez. The case for a progressive tax: From basic
research to policy recommendations. Journal of Economic Perspectives, 25(4):165–
90, 2011.

Joao Guerreiro, Sergio Rebelo, and Pedro Teles. Should robots be taxed? Technical
report, National Bureau of Economic Research, 2017.

Roger Guesnerie. Peut-on toujours redistribuer les gains à la spécialisation et à
l’échange? un retour en pointillé sur ricardo et heckscher-ohlin. Revue économique,
pages 555–579, 1998.

Jonathan Heathcote, Kjetil Storesletten, and Giovanni L Violante. Optimal tax pro-
gressivity: An analytical framework. The Quarterly Journal of Economics, 132(4):
1693–1754, 2017.

Nathaniel Hendren. Measuring economic efficiency using inverse-optimum weights.
Journal of public Economics, 187:104198, 2020.

John R Hicks. The foundations of welfare economics. The Economic Journal, 49
(196):696–712, 1939.

John R Hicks. The valuation of the social income. Economica, 7(26):105–124, 1940.

Roozbeh Hosseini and Ali Shourideh. Inequality, redistribution and optimal trade
policy: A public finance approach. Available at SSRN 3159475, 2018.

37



Oleg Itskhoki. Optimal redistribution in an open economy. Working Paper, 2008.

Bas Jacobs, Egbert LW Jongen, and Floris T Zoutman. Revealed social preferences
of dutch political parties. Journal of Public Economics, 156:81–100, 2017.

Laurence Jacquet and Etienne Lehmann. Optimal income taxation with composition
effects. Journal of the European Economic Association, 19(2):1299–1341, 2021.

Nicholas Kaldor. Welfare propositions of economics and interpersonal comparisons of
utility. The Economic Journal, pages 549–552, 1939.

Louis Kaplow. On the (ir) relevance of distribution and labor supply distortion to
government policy. Journal of Economic Perspectives, 18(4):159–175, 2004.

Louis Kaplow. Optimal control of externalities in the presence of income taxation.
International Economic Review, 53(2):487–509, 2012.

Lawrence F Katz and Kevin M Murphy. Changes in relative wages, 1963-1987: Supply
and demand factors. The Quarterly Journal of Economics, 107(1):35–78, 1992.

Normann Lorenz and Dominik Sachs. Identifying laffer bounds: a sufficient-statistics
approach with an application to germany. The Scandinavian Journal of Economics,
118(4):646–665, 2016.

James Mirrlees. An exploration in the theory of optimum income taxation. The
Review of Economic Studies, 38(2):175–208, 1971.

Casey Rothschild and Florian Scheuer. Redistributive taxation in the roy model. The
Quarterly Journal of Economics, 128(2):623–668, 2013.

Dominik Sachs, Aleh Tsyvinski, and Nicolas Werquin. Nonlinear tax incidence and
optimal taxation in general equilibrium. Econometrica, 88(2):469–493, 2020.

Emmanuel Saez. Using Elasticities to Derive Optimal Income Tax Rates. Review of
Economic Studies, 68(1):205–229, 2001. ISSN 1467-937X.

Emmanuel Saez and Stefanie Stantcheva. Generalized social marginal welfare weights
for optimal tax theory. American Economic Review, 106(1):24–45, 2016.

Florian Scheuer and Iván Werning. The taxation of superstars. The Quarterly Journal
of Economics, 132(1):211–270, 2017.

38



Joseph E. Stiglitz. Self-selection and pareto efficient taxation. Journal of Public
Economics, 17(2):213–240, 1982a.

Joseph E Stiglitz. Self-selection and pareto efficient taxation. Journal of Public
Economics, 17(2):213–240, 1982b.

Uwe Thuemmel. Optimal taxation of robots. Technical report, CESifo Working
Paper, 2018.

Iván Werning. Pareto efficient income taxation. Technical report, mimeo, MIT, 2007.

39



A Proofs

Definition of the perturbed equilibrium. After a disruption and a tax reform,
the perturbed indirect utility of agent i is given by

Ũi = ui[w̃il̃i − T (w̃il̃i) − µT̂ (w̃il̃i), l̃i], (19)

where the equilibrium labor supplies l̃i = li(1+µl̂i) and wages w̃i = wi(1+µŵE
i +µŵi)

are defined by the perturbed first-order condition

−
u′

i,l[w̃il̃i − T (w̃il̃i) − µT̂ (w̃il̃i), l̃i]
u′

i,c[w̃il̃i − T (w̃il̃i) − µT̂ (w̃il̃i), l̃i]
= [1 − T ′(w̃il̃i) − µT̂ ′(w̃il̃i)]w̃i, (20)

and the perturbed wage equation

w̃i = F̃ ′
i({Lj(1 + µl̂j)}j∈[0,1]). (21)

The perturbed government revenue is given by

R̃ =
� 1

0
[T (w̃il̃i) + µT̂ (w̃il̃i)]di. (22)

Proof of equation (6). The change in utility of agent i in response to the disrup-
tion and tax reform is given by:

µÛi ≡ Ũi − Ui = ui[w̃il̃i − T (w̃il̃i) − µT̂ (w̃il̃i), l̃i] − ui [wili − T (wili) , li] ,

where w̃i = wi(1 + µŵE
i + µŵi) and l̃i = li(1 + µl̂i). A first-order Taylor expansion of

this equation around the initial equilibrium (as µ → 0) yields:

Ũi − Ui = µ
[
(1 − T ′ (yi)) (yil̂i + yiŵ

E
i + yiŵi) − T̂ (yi)

]
u′

i,c + µlil̂iu
′
i,l + o (µ) .(23)

But the first-order condition (2), or the envelope theorem, implies (1 − T ′ (yi)) yil̂iu
′
i,c+

lil̂iu
′
i,l = 0. We thus obtain (6).

Proof of equation (7). The perturbed first-order condition of agent i in response
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to the disruption and tax reform is given by:

0 = [1 − T ′(w̃il̃i) − µT̂ ′(w̃il̃i)]w̃iu
′
i,c[w̃il̃i − T (w̃il̃i) − µT̂ (w̃il̃i), l̃i]

+u′
i,l[w̃il̃i − T (w̃il̃i) − µT̂ (w̃il̃i), l̃i].

A first-order Taylor expansion of this equation around the initial equilibrium (as
µ → 0) gives:

0 =
[
(1 − T ′ (yi))2

w2
i u

′′
i,cc + 2 (1 − T ′ (yi))wiu

′′
i,cl + u′′

i,ll − w2
i T

′′ (yi)u′
i,c

]
lil̂i

+
[
(1 − T ′ (yi))2

wiliu
′′
i,cc + (1 − T ′ (yi)) liu′′

i,cl + (1 − T ′ (yi) − wiliT
′′ (yi))u′

i,c

]
wi(ŵE

i + ŵi)

−wiu
′
i,cT̂

′ (yi) −
[
(1 − T ′ (yi))wiu

′′
i,cc + u′′

i,cl

]
T̂ (yi) .

The Hicksian (compensated) labor supply elasticity er
i and the income effect param-

eter en
i are respectively equal to (see, e.g., Saez [2001] p. 227):

er
i =

u′
i,l

li(
u′

i,l

u′
i,c

)2
u′′

i,cc − 2
(

u′
i,l

u′
i,c

)
u′′

i,cl + u′′
i,ll

, en
i =

(
u′

i,l

u′
i,c

)2
u′′

i,cc −
(

u′
i,l

u′
i,c

)
u′′

i,cl(
u′

i,l

u′
i,c

)2
u′′

i,cc − 2
(

u′
i,l

u′
i,c

)
u′′

i,cl + u′′
i,ll

. (24)

Solving the previous equation for l̂i then implies

l̂i = (1 − p (yi)) er
i − en

i

1 + p (yi) er
i

(ŵE
i + ŵi)

− er
i

1 + p (yi) er
i

T̂ ′ (yi)
1 − T ′ (yi)

+ en
i

1 + p (yi) er
i

T̂ (yi)
(1 − T ′ (yi)) yi

.

Using the definitions of the elasticities along the nonlinear budget constraint εr
i , ε

n
i , ε

w
i

leads to equation (7).

Proof of equation (9). Consider an exogenous disruption µF̂E of the production
function and a tax reform µT̂ , with µ > 0. The corresponding wage disruption is
defined by

ŵE
i = ∂F̂E

∂Li

({Lj}j∈[0,1]).

Denote by µŵi and µl̂i the first-order endogenous percentage changes as µ → 0 in the
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wage and labor supply of type i, and let w̃i = wi(1 + µŵE
i + µŵi) and l̃i = li(1 + µl̂i).

In the perturbed equilibrium, the wage is equal to the marginal product of the labor
of the corresponding type:

w̃i = ∂[F + µF̂E]
∂Li

({Lj(1 + µl̂j)}j∈[0,1]).

The Gateaux derivative of the wage functional is given by:

ŵi ≡ lim
µ→0

1
µwi

[w̃i − wi − µŵE
i ]

= lim
µ→0

1
µwi

{
∂[F + µF̂E]

∂Li

({Lj(1 + µl̂j)}j∈[0,1])

− ∂F
∂Li

({Lj}j∈[0,1]) − µ
∂F̂E

∂Li

({Lj}j∈[0,1])
}
.

This expression is equal to

ŵi = 1
wi

� 1

0
l̂jLj

∂2F (L)
∂Li∂Lj

dj.

The own-wage (or inverse labor demand) and cross-wage elasticities are defined by:

Lj

wi

∂wi

∂Lj

≡ γij − 1
εd

j

δ (j − i) ,

for all i, j. In particular, when the production function is CES, the cross-wage elas-
ticities are given by, for i ̸= j,

Lj

wi

∂2F (L)
∂Li∂Lj

= Lj

wi

∂2

∂Lj

θiL
−1/εd

i

[� 1

0
θjL

1−1/εd

j dj

] 1
εd−1


= 1

εd

θjL
1−1/εd

j� 1
0 θkL

1−1/εd

k dk
= 1

εd

wjLj

F (L) ≡ γj,
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and the own-wage elasticities by

Li

wi

∂2F (L)
∂L2

i

= Li

wi

∂2

∂Li

θiL
−1/εd

i

[� 1

0
θjL

1−1/εd

j dj

] 1
εd−1


= γi − 1

εd

1
wi

θiL
−1/εd

i

[� 1

0
θjL

1−1/εd

j dj

] 1
εd−1

δ (0) = γi − 1
εd
δ (0) .

Substituting into the formula for ŵi leads to

ŵi =
� 1

0
l̂j

{
γij − 1

εd
j

δ (j − i)
}
dj,

which leads to equation (9).

Proof of equation (10). The effect of the wage disruption and the corresponding
compensating tax reform on government budget is given by

R̂ = lim
µ→0

1
µ

{� 1

0

[
T (w̃il̃i) + µT̂ (w̃il̃i)

]
di−

� 1

0
T (wili) di

}
,

A first-order Taylor expansion around the initial equilibrium easily leads to (10).

Proof of Lemma 1. This lemma follows from Sachs, Tsyvinski, and Werquin [2020];
for completeness, we give its proof here. Substituting for ŵi into equation (7) using
equation (9) leads to

l̂i = ϕil̂
E
i + ϕiε

w
i

� 1

0
γij l̂jdj, (25)

where we let ϕi = 1
1+εw

i /εd
i

and

l̂Ei = εw
i ŵ

E
i − εr

i

T̂ ′ (yi)
1 − T ′ (yi)

+ εn
i

T̂ (yi)
(1 − T ′ (yi)) yi

. (26)

This is a Fredholm integral equation in {l̂i}i∈[0,1]. To solve for the labor supply changes
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for a general production function, substitute for l̂j in the integral to obtain

l̂i = ϕil̂
E
i + ϕiε

w
i

� 1

0
γij

[
ϕj l̂

E
j + ϕjε

w
j

� 1

0
γjk l̂kdk

]
dj

=
[
ϕil̂

E
i + ϕiε

w
i

� 1

0
γijϕj l̂

E
j dj

]
+ ϕiε

w
i

� 1

0

[� 1

0
γikϕkε

w
k γkjdk

]
l̂jdj

≡
[
ϕil̂

E
i + ϕiε

w
i

� 1

0
γijϕj l̂

E
j dj

]
+ ϕiε

w
i

� 1

0
Γ(1)

ij l̂jdj,

where Γ(0)
ij = γij and Γ(1)

ij =
� 1

0 Γ(0)
ik ϕkε

w
k γkjdk. By induction, it is easy to show that

for all N ≥ 0,

l̂i =
[
ϕil̂

E
i + ϕiε

w
i

� 1

0

{
N∑

n=0
Γ(n)

ij

}
ϕj l̂

E
j dj

]
+ ϕiε

w
i

� 1

0
Γ(N+1)

ij l̂jdj

where for all n ≥ 0, Γ(n+1)
ij =

� 1
0 Γ(n)

ik ϕkε
w
k γkjdk. The condition

� 1
0

� 1
0 | ϕiε

w
i γij |2

didj < 1 ensures that the series ∑N
n=0 Γ(n)

ij converges as N → ∞. This implies equation
(13). Note that we can write the endogenous wage changes as

ŵi = ϕi

εd
i

[
−εw

i ŵ
E
i + εr

i

T̂ ′ (yi)
1 − T ′ (yi)

− εn
i

T̂ (yi)
(1 − T ′ (yi)) yi

]

+ϕi

� 1

0
Γijϕj

[
εw

j ŵ
E
j − εr

j

T̂ ′ (yj)
1 − T ′ (yj)

+ εn
j

T̂ (yj)
(1 − T ′ (yj)) yj

]
dj, (27)

which follows from equations (7) and (13). Finally, if the initial production function
is CES, the cross-wage elasticities γij depend only on j. Multiplying both sides of
(25) by γi and integrating from 0 to 1 then leads to:

� 1

0
γil̂idi =

� 1

0
γiϕil̂

E
i di+

(� 1

0
γiϕiε

w
i di

)(� 1

0
γj l̂jdj

)

=
� 1

0 γiϕil̂
E
i di

1 −
� 1

0 γiϕiεw
i di

.

Substituting this expression into (25) yields

l̂i = ϕil̂
E
i + ϕiε

w
i

� 1

0
Γjϕj l̂

E
j dj,

44



where Γj ≡ γj

1−
� 1

0 γkϕkεw
k

dk
. Using the expression of the cross-wage elasticities γk = yk

εdEy
,

we can write 1 −
� 1

0 γkϕkε
w
k dk =

� 1
0

yk

Ey

(
1 − ϕkεw

k

εd

)
dk. Using ϕk = 1

1+εw
k

/εd finally gives
Γj = γj� 1

0 ϕk
yk
Ey

dk
.

Proof of Lemma 2. Substitute for ŵE
i + ŵi in (6) using (7) to get

T̂ (yi) = 1
εw

i

(1 − T ′ (yi)) yil̂i + εr
i

εw
i

yiT̂
′ (yi) − εn

i

εw
i

T̂ (yi) .

Using the expression we derived above for l̂i leads to

T̂ (yi) =
[

1
εw

i

(1 − T ′ (yi)) yiϕil̂
E
i + εr

i

εw
i

yiT̂
′ (yi) − εn

i

εw
i

T̂ (yi)
]

+ (1 − T ′ (yi)) yiϕi

� 1

0
Γijϕj l̂

E
j dj.

Replacing the partial-equilibrium labor supply changes l̂Ei with their expression (26)
allows us to rewrite this equation as

T̂ (yi) = (1 − T ′ (yi)) yiϕi

[
ŵE

i +
� 1

0
Γijϕjε

w
j ŵ

E
j dj

]

+ εr
i/ε

d
i

1 + εw
i /ε

d
i

yiT̂
′ (yi) − εn

i /ε
d
i

1 + εw
i /ε

d
i

T̂ (yi)

− (1 − T ′ (yi)) yiϕi

� 1

0
Γijϕj

[
εr

j

T̂ ′ (yj)
1 − T ′ (yj)

− εn
j

T̂ (yj)
(1 − T ′ (yj)) yj

]
dj.

This leads to equation (14). Rearranging and summing over all agents leads to

� 1

0

T̂ (yi)
1 − T ′ (yi)

=
� 1

0
yiΩ̂E

i di+
� 1

0

ϕi

εd
i

yi

[
εr

i

T̂ ′ (yi)
1 − T ′ (yi)

− εn
i

T̂ (yi)
(1 − T ′ (yi)) yi

]
di

−
� 1

0
ϕiyiΛidi.

The last integral in this expression can be rewritten as

� 1

0
ϕiyiΛidi =

� 1

0

{� 1

0
ϕiyiΓijdi

}
ϕj

[
εr

j

T̂ ′ (yj)
1 − T ′ (yj)

− εn
j

T̂ (yj)
(1 − T ′ (yj)) yj

]
dj.

An application of Euler’s homogeneous function theorem (see Lemma 2, equation (24)
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in Sachs, Tsyvinski, and Werquin [2020]) implies that
� 1

0 ϕiyiΓijdi = 1
εd

j
yj. We thus

obtain E
[

T̂ (yi)
1−T ′(yi)

]
= E

[
yiΩ̂E

i

]
.

Proof of Proposition 1. Equation (11) is a special case of (14) obtained by setting
Γij = 0 and letting εd → ∞. Using this formula for the compensating tax reform in
partial equilibrium along with ŵi = 0, the fiscal surplus (10) can be expressed as

R̂ =
� 1

0
[ŵE

i + T ′ (yi) l̂i]yidi.

Differentiate T̂ (y) with respect to y in (11) to obtain the marginal tax rates of the
compensating tax reform. Letting y′

i ≡ dyi

di
, we obtain:

T̂ ′ (yi) = 1
y′

i

[
−y′

iT
′′ (yi) yiŵ

E
i + (1 − T ′ (yi)) y′

iŵ
E
i + (1 − T ′ (yi)) yi

dŵE
i

di

]
.

Using p (yi) = yiT
′′(yi)

1−T ′(yi) , we can thus write

l̂i = εw
i ŵ

E
i − εr

i

[
(1 − p (yi)) ŵE

i + yi

y′
i

dŵE
i

di

]
+ εn

i ŵ
E
i = −εr

i

yi

y′
i

dŵE
i

di
,

where we used the fact that εw
i = (1 − p (yi)) εr

i − εn
i . Substituting into the above

expression for R̂ and changing variables from skills to incomes leads to equation
(12).

Proof of Proposition 2. Since there is a one-to-one map between skills i and in-
comes yi, we can change variables to express the ODE (14) in terms of incomes. We
obtain

T̂ ′ (y) −
(

1 − p (y) +
εd

y

εr
y

)
T̂ (y)
y

= − (1 − T ′ (y))
εd

y

εr
y

A (y) ,

where we used 1/(ϕi
εr

i

εd
i
) = 1 − p (yi) + εd

i −εn
i

εr
i

, and where

A (y) ≡ ϕ−1
y Ω̂E (y) +

� ȳ

y

Γy,zϕz

[
−εr

z

T̂ ′ (z)
1 − T ′ (z) + εn

z

T̂ (z)
(1 − T ′ (z)) z

]
dz

= ϕ−1
y Ω̂E (y) + Λ (y) ,
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with

Ω̂E (y) = ϕyŵ
E (y) + ϕy

� ȳ

y

Γy,zϕzε
w
z ŵ

E (y) dz.

We can solve this equation as a first-order ODE. The general solution to the homo-
geneous equation is given by

T̂H (y) = Ce
−

� ȳ
y

(
1−p(z)+ εd

z
εr

z

)
dz
z = C

(1 − T ′ (y)) y
(1 − T ′ (ȳ)) ȳ e

−
� ȳ

y

εd
z

εr
z

dz
z

where C is a constant, and where the second equality uses the fact that p(z)
z

=
T ′′(z)

1−T ′(z) , so that
� y

x
(1 − p (z)) dz

z
= log (1−T ′(y))y

(1−T ′(x))x . Using the method of variation of the
parameter, we find a particular solution of the form

T̂P (y) = C (y) (1 − T ′ (y)) y
(1 − T ′ (ȳ)) ȳ e

−
� ȳ

y

εd
z

εr
z

dz
z ,

where the function C (y) satisfies

C (y)
(1 − T ′ (ȳ)) ȳ =

� ȳ

y

εd
x

εr
x

e
� ȳ

x

εd
z

εr
z

dz
z A (x) dx

x
.

The general solution to (14) is thus equal to

T̂ (y) = (1 − T ′ (y)) y
� ȳ

y

Π (y, x) A (x) dx+ C
(1 − T ′ (y)) y
(1 − T ′ (ȳ)) ȳ e

−
� ȳ

y

εd
z

εr
z

dz
z ,

where Π (y, x) = εd
x

εr
xx
e

−
� x

y

εd
z

εr
z

dz
z . If the initial tax schedule is Pareto efficient, the tax

reform should be T̂ (·) = 0 in the absence of a disruption (Ω̂E (·) = 0). (Note that as
ȳ → ∞, the last term in the previous expression converges to zero for any value of
C.)

If the production function is CES, Γy,z does not depend on y, and hence Λ (y)
is equal to a constant Λ ∈ R. To find Λ, recall that E

[
T̂ (y)

1−T ′(y)

]
= E

[
yΩ̂E (y)

]
.

Substituting the solution to the ODE into this condition (setting C = 0) yields

Λ =
E
[
yΩ̂E (y)

]
− E

[
y
� ȳ

y
Π (y, x)ϕ−1

x Ω̂E (x) dx
]

E
[
y
� ȳ

y
Π (y, x) dx

] .
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For a general production function, we can use the ODE and insert its solution into
the definition of the auxiliary function A (·) to rewrite it as

A (y) = ϕ−1
y Ω̂E (y) −

� ȳ

y

Γy,zϕz

[(
εw

z + εd
z

) T̂ (z)
(1 − T ′ (z)) z − εd

zA (z)
]
dz

= ϕ−1
y Ω̂E (y) +

� ȳ

y

Γy,zϕzε
d
zA (z) dz −

� ȳ

y

Γy,zε
d
z

[� ȳ

z

Π (z, x) A (x) dx
]
dz,

where the second equality uses ϕz

(
εw

z + εd
z

)
= εd

z. Inverting the order of the two
integrals in the last line implies that this expression can be rewritten as

A (y) = ϕ−1
y Ω̂E (y) +

� ȳ

y

Γy,zϕzε
d
z −

� z

y

Π (x, z) Γy,xε
d
xdx

A (z) dz.

But this is a standard linear Fredholm integral equation, with kernel equal to K(0)
y,z ,

where
K(0)

y,z ≡ Γy,zε
d
zϕz −

� z

y

Π (x, z) Γy,xε
d
xdx.

Assume that �
[y,ȳ]2

∣∣∣K(0)
y,z

∣∣∣2 dydz < 1,

which ensures the convergence of the series ∑∞
n=0 K

(n)
y,z defined below. Following anal-

ogous steps as in the proof of Lemma 1, we get

A (y) = ϕ−1
y Ω̂E (y) +

� ȳ

y

{ ∞∑
n=0

K(n)
y,z

}
ϕ−1

z Ω̂E (z) dz,

with K(n)
y,z =

� ȳ

y
K(n−1)

y,x K(0)
x,zdx for all n. Inverting one more time the integrals leads to

� ȳ

y

K(0)
y,zϕ

−1
z Ω̂E (z) dz

=
� ȳ

y

Γy,zε
d
zΩ̂E (z) dz −

� ȳ

y

Γy,zε
d
z

[� ȳ

z

Π (z, x)ϕ−1
x Ω̂E (x) dx

]
dz

≡
� ȳ

y

λ(0) (y, z) dz,
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where we denote

λ(0) (y, z) = Γy,zε
d
z

[
ϕz

(
ϕ−1

z Ω̂E (z)
)

−
� ȳ

z

Π (z, x)
(
ϕ−1

x Ω̂E (x)
)
dx

]
.

Now, for any n ≥ 1, we can write

� ȳ

y

K(n)
y,z

[
ϕ−1

z Ω̂E (z)
]
dz =

� ȳ

y

K(n−1)
y,x

� ȳ

y

K(0)
x,zϕ

−1
z Ω̂E (z) dz

 dx
=

� ȳ

y

K(n−1)
y,z

� ȳ

y

λ(0) (z, x) dx
 dz,

so that

∞∑
n=0


� ȳ

y

K(n)
y,z ϕ

−1
z Ω̂E (z) dz


=

� ȳ

y

λ(0) (y, z) dz +
∞∑

n=1


� ȳ

y

K(n−1)
y,z

� ȳ

y

λ(0) (z, x) dx
 dz


= Λ(1) (y) +

∞∑
n=0


� ȳ

y

K(n)
y,z Λ(1) (z) dz

 ,
where we denote

Λ(1) (y) ≡
� ȳ

y

λ(0) (y, z) dz

=
� ȳ

y

Γy,zε
d
z

[
ϕz

(
ϕ−1

z Ω̂E (z)
)

−
� ȳ

z

Π (z, x)
(
ϕ−1

x Ω̂E (x)
)
dx

]
dz.

By induction, repeating the above steps for n ≥ 2 leads to

∞∑
n=0


� ȳ

y

K(n)
y,z ϕ

−1
z Ω̂E (z) dz

 =
N∑

n=1
Λ(n) (y) +

∞∑
n=0


� ȳ

y

K(n)
y,z Λ(N) (z) dz

 ,
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for all N , where for all n ≥ 2,

Λ(n) (y) =
� ȳ

y

K(0)
y,z Λ(n−1) (z) dz

=
� ȳ

y

Γy,zε
d
z

[
ϕzΛ(n−1) (z) −

� ȳ

z

Π (z, x) Λ(n−1) (x) dx
]
dz.

Assuming that the series converges as N → ∞, we finally obtain

A (y) = ϕ−1
y Ω̂E (y) +

∞∑
n=1

Λ(n) (y) .

For completeness, let us compute Λ (z) from the series representation when the
production is CES. In this case, recall that Γy,z = 1

E[yϕy ]
1
εd zf (z), so that

Λ(1) (y) ≡ 1
E [yϕy]

� ȳ

y

z

[
ϕz

(
ϕ−1

z Ω̂E (z)
)

−
� ȳ

z

Π (z, x)
(
ϕ−1

x Ω̂E (x)
)
dx

]
f (z) dz

= 1
E [yϕy]E

[
zΩ̂E (z)

]
−

E
[
z
� ȳ

z
Π (z, x)

(
ϕ−1

x Ω̂E (x)
)
dx
]

E [yϕy] .

Note that Λ(1) (y) ≡ Λ(1) is a constant that does not depend on y. By induction,
assuming that Λ(n−1) (z) is a constant, we get, for any n ≥ 2,

Λ(n) (y) = 1
E [yϕy]

� ȳ

y

z

[
ϕzΛ(n−1) −

� ȳ

z

Π (z, x) Λ(n−1)dx

]
f (z) dz

= Λ(n−1)E [yϕy] − E
[
z
� ȳ

z
Π (z, x) dx

]
E [yϕy] ,

which is a constant. We thus obtain

∞∑
n=1

Λ(n) =
E
[
zΩ̂E (z)

]
− E

[
z
� ȳ

z
Π (z, x)

(
ϕ−1

x Ω̂E (x)
)
dx
]

E [yϕy]

+
∞∑

n=2

1 −
E
[
z
� ȳ

z
Π (z, x) dx

]
E [yϕy]

Λ(n−1).
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Solving for Λ ≡ ∑∞
n=1 Λ(n) leads to

∞∑
n=1

Λ(n) =
E
[
zΩ̂E (z)

]
− E

[
z
� ȳ

z
Π (z, x)

(
ϕ−1

x Ω̂E (x)
)
dx
]

E
[
z
� ȳ

z
Π (z, x) dx

] ,

which is indeed the expression we found above.
We finally compute the fiscal surplus (10). Substituting for l̂i using (7) and for

ŵE
i + ŵi using (6) in this expression, we can write

R̂ =
� 1

0
T̂ (yi) di−

� 1

0
T ′ (yi) yi

[
εr

i

T̂ ′ (yi)
1 − T ′ (yi)

− (1 + εw
i + εn

i ) T̂ (yi)
(1 − T ′ (yi)) yi

]
di.

The ODE (14) can be rewritten as

T̂ ′ (yi)
1 − T ′ (yi)

=
(

1 − p (yi) + εd
i

εr
i

)
T̂ (yi)

(1 − T ′ (yi)) yi

− εd
i

εr
i

ϕ−1
i Ω̂E

i − εd
i

εr
i

Λi.

Using this equation to substitute for T̂ ′ (yi) in the fiscal surplus expression yields

R̂ =
� 1

0

[
1 +

(
1 − εd

i

) T ′ (yi)
1 − T ′ (yi)

]
T̂ (yi) di+

� 1

0
T ′ (yi) yiε

d
i

[
ϕ−1

i Ω̂E
i + Λi

]
di.

Using the relationship E
[

T̂ (y)
1−T ′(y)

]
= E

[
yΩ̂E

y

]
allows us to rewrite the first integral

on the right-hand side as
� 1

0 yiΩ̂E
i di −

� 1
0

T ′(yi)
1−T ′(yi)ε

d
i T̂ (yi) di. Using the solution for T̂

leads to

R̂ =
� 1

0
yiΩ̂E

i di

+
� 1

0
T ′ (yi) yiε

d
i

{[
ϕ−1

i Ω̂E
i + Λi

]
−
� ȳ

yi

Π (yi, yj)
[
ϕ−1

j Ω̂E
j + Λ (yj)

]
dyj

}
di.

Changing variables from skills to incomes and integrating the last term by parts,
letting X (z) ≡ ϕ−1

z Ω̂E (z) + Λ (z), leads to:

R̂ = E
[
yΩ̂E (y)

]
− E

[
T ′ (y) y

(� y

y

εd
y

εd
z

Π (y, z) εr
zzX

′ (z) dz
)]

+E
[
T ′ (y) yεd

ye
−

� y
y

εd
x

εr
xx

dx

]
X (y) .
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If the ratio εd
x/ε

r
x is constant, then the last term in this expression is proportional to

ȳ−εd/εr and converges to zero as ȳ → ∞. This holds more generally as long as εd
y/ε

r
y

is bounded away from zero, since in this case 0 < e
−

� y
y

εd
x

εr
xx

dx → 0 as ȳ → ∞.

Proof of Corollary 1. Suppose that the production function is CES, the tax sched-
ule is CRP, and the labor supply elasticities are constant. Consider a uniform wage
disruption, i.e., ŵE (y) = ŵE,∀y ∈

[
y, y

]
. The partial-equilibrium compensation

reads

T̂P E (y) = (1 − T ′ (y)) yŵE,

T̂ ′
P E (y) = (1 − T ′ (y)) (1 − p) ŵE.

The general-equilibrium wage disruption—absent any compensation—is given by

Ω̂E
i = ϕi

ŵE
i +

� 1
0 ϕjε

w
j γjŵ

E
j dj� 1

0 ϕj
yj

Ey
dj

 = ϕŵE + ϕ
εw

εd
ŵE = ŵE,

where the last equality follows from ϕ εw

εd = 1 − ϕ. The ODE (14) thus simplifies to

ŵE =
(

1 + ϕ
εn

εd

)
T̂ (yi)

(1 − T ′ (yi)) yi

− ϕ
εr

εd

T̂ ′ (yi)
1 − T ′ (yi)

+ ϕ

� 1

0

yj

Ey

[
εr

εd

T̂ ′ (yj)
1 − T ′ (yj)

− εn

εd

T̂ (yj)
(1 − T ′ (yj)) yj

]
dj.

Plugging in the partial-equilibrium compensation in the right-hand side leads to

(
1 + ϕ

εn

εd

)
ŵE − ϕ

εr

εd
(1 − p) ŵE + ϕ

� 1

0

yj

Ey

[
εr

εd
(1 − p) ŵE − εn

εd
ŵE

]
dj = ŵE.

Therefore, T̂P E satisfies equation (14).
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