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Abstract

Half of the jobs in the U.S. feature pay-for-performance. We derive novel inci-

dence and optimum formulas for the overall rate of tax progressivity and the top

tax rates on total earnings and bonuses, when such labor contracts arise from

moral hazard frictions within firms. Optimal taxes account for the fiscal exter-

nalities and welfare consequences of two distinct forces: a direct crowding-out

of private insurance and a countervailing crowding-in due to endogenous labor

effort responses. These imply that the amount of pre-tax earnings risk to which

the worker is exposed is roughly invariant to tax progressivity, whereas the (ad-

verse) welfare consequences of the crowd-out outweigh those of the crowd-in.

Quantitatively, the optimal tax policy with performance-pay contracts is close

to that prescribed by standard models that treat pre-tax earnings risk as ex-

ogenous. Finally, we uncover an efficiency-based argument for taxing bonuses

at strictly lower rates than base earnings.
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Introduction

The dramatic increase in income inequality observed since the 1980s is in large

part due to the explosion of performance-based forms of remuneration at the top of

the income distribution, such as the rise in bankers’ bonuses or CEOs’ stock options

(see, e.g., Bell and Van Reenen 2013, 2014; Lemieux, MacLeod, and Parent 2009;

Piketty and Saez 2003). While performance-pay contracts are particularly prevalent

for high earners, they are common throughout the income distribution and across

occupations, from agricultural workers paid a piece rate to real estate brokers or

retail workers who earn a commission on their sales (Bandiera, Barankay, and Rasul

2005; Levitt and Syverson 2008; Shearer 2004). Performance incentives can also be

provided over time via promotions or salary raises.1 Lemieux et al. (2009) estimate

that in the U.S., almost half of all jobs, and three quarters within the top percentile

of the income distribution, involve performance-based compensation. In the UK, Bell

and Van Reenen (2014) find that bonuses are a feature of more than 80 percent of

the contracts of the top 1 percent earners and can account for up to 35 percent of

their compensation.

Given the importance of performance-based earnings and their contribution to

growing income inequality, it is natural to ask how governments should tax them.

What is the incidence of tax policy on performance-based contracts? Should the

overall progressivity of the income tax schedule be modified to account for the exis-

tence of these jobs? How should income taxes on top earners be designed when their

earnings are partly composed of bonuses? Should bonuses be treated separately from

base earnings by the tax system, and if so, at what rates should they be taxed?

This paper provides answers to these questions. To do so, we set up a model of

moral hazard in the labor market that gives rise to performance pay in equilibrium. In

our model, income disparities arise from two distinct sources: namely, ex-ante ability

differences and ex-post performance (or output) shocks. While the former cannot be

insured by private firms, the impact of the latter on inequality is very much shaped

in the labor market. In particular, if firms can observe workers’ ability (say, their

education level) and their realized output but not their labor effort, they design a

contract that provides only partial insurance against output risk in order to give

1Abrahám, Alvarez-Parra, and Forstner (2016) study the implications of dynamic performance-
pay contracts for wage inequality and wage dynamics.
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incentives to workers to exert the optimal labor effort.2 Importantly, the amount of

earnings risk—the size of the bonus, or the reliance on stock options—is endogenous

to tax policy. In our model, the government uses income taxes to redistribute between

workers with different ex-ante abilities, taking into account their effect on insurance

within firms.

We first take a positive standpoint and evaluate the incidence of nonlinear taxes

on the design of performance pay. In our baseline model, based on Rogerson (1985),

the output of each worker is stochastic and binary: either high or low. Workers can

increase the probability of high output by exerting more (unobservable and costly)

effort. Firms offer a bonus when realized output is high in order to motivate workers

to exert the right amount of labor effort. Since workers are risk-averse, the optimal

contract strikes a balance between such incentives for effort and insurance against

output risk—providing better insurance is a less costly way for the firm to give workers

their reservation utility. Workers’ earnings, including the bonus, are subject to an

income tax. Both the size of the bonus and the frequency of receiving a bonus are

endogenous to the tax system.

We first show in a parametric version of the model that an increase in the rate

of tax progressivity causes two offsetting effects on the labor contract. First, it leads

to a standard crowding-out of the private insurance provided by the firm, that is, a

one-for-one spread of the pre-tax earnings distribution. In response to a change in

social insurance, firms adjust earnings endogenously so that the workers’ incentives

for effort and participation remain unchanged despite the reform.3 Second, it also

generates a crowding-in of the earnings distribution. This is due to the fact that, as in

standard models of taxation—e.g., Mirrlees (1971)—higher marginal tax rates reduce

optimal labor effort. In our setting, this is because higher tax rates on high earnings

make high-powered incentives more costly to provide for the firm.4 In turn, to elicit

2There is strong field-experimental evidence of moral hazard frictions in the workplace (see, e.g.,
the review by Lazear 2018). Performance pay can also be micro-founded by models of adverse
selection, in which incentive pay is offered to attract workers with higher unobserved ability. Lazear
(2000), Leaver, Ozier, Serneels, and Zeitlin (2021) and Brown and Andrabi (2020) find empirical
support for both moral hazard and adverse selection, the former accounting for at least a half of the
overall effect of performance pay on productivity.

3Theoretically, the crowd-out of private insurance has been shown to severely limit the ability of
governments to provide social insurance—see Attanasio and Rıos-Rull (2000), Golosov and Tsyvinski
(2007) and Krueger and Perri (2011). Empirically, crowd-out has been observed in health insurance
(Cutler and Gruber 1996a, 1996b; Schoeni 2002) and unemployment insurance (Cullen and Gruber
2000).

4This argument echoes the wage-cum-labor demand effect of Lehmann, Parmentier, and Van der
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this lower effort level in the presence of moral hazard, the firm lowers the sensitivity

of pre-tax earnings to performance—that is, it compresses the earnings distribution.

This crowd-in mechanism counteracts the usual crowd-out.

Our first main insight is that, regardless of the size of the labor effort elasticity,

these two effects are of the same order of magnitude. Taken separately these effects

are both significant, but summing them implies that taxes barely affect the sensitivity

of (pre-tax) pay to performance. This finding may help explain why empirical studies

of the impact of income taxes on the structure of performance-pay contracts often

fail to find significant crowding-out; see Rose and Wolfram (2002) and Frydman and

Molloy (2011). This insight remains robust to alternative forms of performance pay:

We derive the same result when optimal contracts are a linear function of performance

such as piece rates or commissions (Holmstrom and Milgrom 1987), convex such as

stock options (Edmans and Gabaix 2011), or when incentives are provided over time

(Edmans, Gabaix, Sadzik, and Sannikov 2012; Sannikov 2008). The general principle

that makes our result robust to different forms of performance pay is that the local

incentive constraints in all of these models of moral hazard share a common structure:

namely, they imply that the sensitivity of earnings to performance is proportional to

the marginal disutility of effort. As a result, in order to elicit a given increase in labor

effort, the firm must raise the pass-through of output risk proportionately to the

inverse of the (Frisch) labor effort elasticity. Therefore, the crowding-in of private

insurance, equal to the product of the elasticity of labor effort and the change in

performance-sensitivity required to elicit the desired effort adjustment—the inverse

Frisch elasticity—is large and robust to the size of the labor effort elasticity.

The second part of our theoretical analysis takes a normative standpoint and

characterizes optimal taxes in both our parametric and general environments. Even

though taxes have little effect on the contract, because of offsetting crowd-in and

crowd-out effects, the endogeneity of private insurance can potentially have large

effects on welfare. Indeed, recall that the crowd-in channel operates via optimal

labor effort decisions. By an envelope theorem, the resulting effect on the worker’s

utility is at most second-order. By contrast, the crowding-out of private insurance has

first-order welfare consequences. Consequently, although the amount of within-firm

insurance appears insensitive to tax policy, the worker’s utility reacts as if private

Linden (2011), whereby tax progressivity tends to make high pre-tax wages less attractive (which,
in their setting, leads to lower unemployment).
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insurance was fully crowded out.

We derive three sets of results. First, we characterize the optimal rate of progres-

sivity of the overall tax schedule. The endogeneity of performance-pay contracts af-

fects optimal redistribution mainly via the welfare consequences of crowd-out. Greater

progressivity triggers a crowd-out of within-firm insurance which offsets any gains

from social insurance. This eliminates the role of the income tax as an insurance de-

vice. In addition, the crowding-out generates an additional adverse effect on welfare

by making tax cuts less accurately targeted towards high-marginal-utility agents than

in standard models. To see this, suppose that the tax burden decreases uniformly by a

constant amount. The consumption gain, however, will not be uniform across income

levels, as firms need to adjust gross earnings to preserve effort incentives. We show

that the effective consumption gains are distributed regressively: High-performers of

a given ability type—whose marginal utility of consumption is relatively low—receive

a larger share of the tax cut than do low-performers. This dampens the welfare ben-

efits of redistribution via progressive taxation. These two negative welfare effects of

tax progressivity due to the crowd-out of private insurance are accompanied by new

fiscal externalities: To the extent that the crowd-out and crowd-in do not offset each

other perfectly, mean-preserving changes in earnings risk affect tax revenue when the

income tax is non-linear. Accounting for all of these effects, we show analytically

that the optimal tax progressivity in the presence of performance pay is strictly lower

than in the model with exogenous earnings risk.

Second, we characterize the optimal tax rate on top income earners in the general

model with arbitrarily non-linear taxes. We start with the case where tax rates apply

to total (fixed plus variable) earnings. Our formula generalizes that of Saez (2001)

by accounting for the fiscal and welfare effects of crowd-out and crowd-in, in addition

to standard Pareto coefficients and labor effort elasticities. In particular, a higher

top tax rate creates a fiscal spillover typically ignored by standard models: It affects

the base earnings of agents who would have been in the top tax bracket had they

earned a bonus. In contrast to Chetty and Saez (2010), whose approach is based

purely on reduced-form sufficient statistics, we provide analytical expressions for all

of the relevant parameters in our formulas—including the crowd-in and crowd-out of

private insurance and the social marginal welfare weights.

Third, we ask whether there would be gains from taxing bonuses and base earnings

separately. We first show that it is optimal to tax bonuses strictly less than base pay.
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In particular, starting from a joint tax on total earnings, we construct a reform that (i)

lowers the tax rate on bonuses and raises the tax rate on base pay, (ii) does not affect

the expected utility of any agent, and (iii) generates more tax revenue—a Pareto

improvement—by fostering labor effort. To understand this result, recall that the

bonus is a constrained efficient instrument used by firms to overcome agency frictions

in the labor market. Taxing bonuses erodes the firm’s ability to provide incentives to

workers and is thus highly distortionary. Consequently, it is optimal to shift the tax

burden from bonuses to base pay. Finally, we establish an analytical formula for the

optimal top tax rate on bonuses, for a given tax schedule on base earnings. As in the

case of the joint taxation of overall earnings, the optimal bonus tax rate depends on

the fiscal externalities and welfare effects of the crowd-out and crowd-in.

To complement this theoretical analysis, we calibrate the model to U.S. data.

Our model features both performance-pay and fixed-pay jobs and accurately matches

the earnings distribution, including the incidence of performance-pay jobs by income

quartiles. We first document that, in line with our theoretical findings, changes in

tax progressivity have very little impact on the pay-performance sensitivity of labor

contracts. Quantitatively, the crowd-in effect offsets more than 90 percent of the

crowd-out in terms of the bonus-to-base-pay ratio, and more than 100 percent in

terms of the variance of log earnings. Thus, while higher progressivity does lead

to lower labor effort and lower mean earnings—with implied elasticities that match

empirical evidence—it leaves earnings risk largely unaffected.

We then proceed to computing the optimal tax policy. Our robust finding is

that ignoring the endogeneity of earnings risk due to performance pay when setting

tax policy has a small welfare cost. In other words, applying standard tax formulas

allows the policymaker to reap the vast majority of the welfare gains from the optimal

tax reform. This result first holds when we optimize over the overall rate of tax

progressivity, in which case the welfare loss from applying the standard—rather than

optimal—tax formula is equivalent to a modest 0.29 percent fall in consumption. The

result also holds when we focus on the top tax rates: Those implied by the benchmark

formula of Saez (2001) fall within a 1 percentage point margin of the optimal ones.

Intuitively, since earnings risk is virtually insensitive to tax policy, the policymaker

is not making a large mistake when calculating the fiscal effects of tax reforms using

the standard formulas. In addition, the welfare effects of crowd-out, which are not

accounted for by the standard formulas, are of limited magnitude. In the case of

5



reforming the overall tax progressivity, this is because only half of the jobs in the U.S.

feature performance pay—if all workers had performance-pay contracts, the welfare

cost of ignoring endogenous earnings risk would increase more than fourfold. The

welfare cost of crowd-out is also small in the case of the top tax rate, since top earners

are typically associated with small marginal welfare weights in the social objective.

Finally, we calculate the optimal top bonus tax rate for a given tax schedule on

base pay. Consistent with our theoretical findings, the optimal bonus tax is lower

than the tax on base pay, with a difference of 20 percentage points or more for a

utilitarian or Rawlsian government.

Literature Review. Several papers study optimal taxation with labor markets

constrained by agency frictions. Golosov and Tsyvinski (2007) analyze a model in

which firms employ ex ante identical workers who are subject to private productivity

shocks and can engage in hidden asset trades. They show that tax reforms gener-

ate a large crowd-out of within-firm insurance, which in turn reduces the benefits

of social insurance. The government optimally refrains from providing any insur-

ance and, instead, uses a capital tax to correct the externality generated by hidden

trades. Stantcheva (2014) focuses on the adverse selection model of the labor market

of Miyazaki (1977) and shows that the upward hours distortions (rat race) due to

employer screening allow the government to redistribute more than in the standard

Mirrlees model. Scheuer (2013) studies the role of profit taxes in correcting the choice

between payroll employment and entrepreneurship, which is distorted by adverse se-

lection in the credit market. In contrast to these papers, we study labor markets that

are constrained by moral hazard frictions.

Ferey, Haufler, and Perroni (2022) also focus on moral hazard and show that

globalization in the presence of performance pay can reconcile the joint evolution of

rising earnings inequality and falling optimal tax progressivity. The main difference

between our framework and theirs lies in the labor effort adjustment margin: While

we allow for a continuous effort choice, Ferey et al. (2022) assume that effort is binary,

which limits individual effort responses and the crowd-in effect within firms that is

at the core of our analysis.5 Chetty and Saez (2010) derive a reduced-form sufficient

5In their framework, tax reforms still have a distortionary impact on effort in the aggregate by
affecting the measure of firms that choose to incentivize effort via performance-pay contracts—an
extensive margin response. By contrast, in our framework, taxes distort individual labor effort and
within-firm insurance in already existing performance-pay jobs—an intensive margin response.
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statistics formula for the optimal linear tax in the presence of linear private insurance

contracts that can be subject to agency frictions. By contrast, we provide an explicit

and tractable structural microfoundation for the equilibrium labor contracts. This

allows us to characterize analytically the effects of nonlinear government policy on

private insurance contracts via crowd-out and crowd-in responses, and derive explicit

theoretical formulas for the tax incidence and optimal taxes in terms of underlying

structural parameters. Kaplow (1991) studies optimal linear government policy in a

different (disaster relief) setting that has endogenous private insurance constrained by

moral hazard. He finds that the optimal level of social insurance is zero. This result

holds in our setting as well, but in our model workers are also ex-ante heterogeneous,

thus giving the government a redistributive role.

We contribute to the growing literature on the optimal taxation and regulation of

bonuses. Besley and Ghatak (2013) study the role of bonus taxes in correcting the

excessive risk taking in the financial sector, while Thanassoulis (2012) and Bénabou

and Tirole (2016) show that bonus caps can restrict inefficiencies stemming from the

competition for talent. In contrast to these papers, we focus on the basic model of

moral hazard in which performance pay is constrained efficient, and uncover a force

towards a lower tax rate on bonuses than on base earnings: This policy alleviates the

labor effort distortions implied by income redistribution. Two related papers, Gietl

and Haufler (2018) and Haufler and Nishimura (2022), study bonus tax competition

in settings where top managers are internationally mobile, a feature that we ignore

in this paper.

An important strand of papers studies income taxation in the presence of endoge-

nous consumption insurance, which can take form of private insurance markets (Cre-

mer and Pestieau 1996; Netzer and Scheuer 2007), asset trades (Ábrahám, Koehne,

and Pavoni 2016; Chang and Park 2017; Park 2014) or informal exchanges in family

networks (Attanasio and Rıos-Rull 2000; Heathcote, Storesletten, and Violante 2017;

Krueger and Perri 2011; Raj 2019). In contrast to these papers, it is pre-tax earn-

ings risk—rather than consumption risk—that is endogenous to policy in our model.

This distinction matters since changes in earnings risk have a direct impact on tax

revenue when the income tax is non-linear (as a result of Jensen’s inequality), while

changes in consumption risk with exogenous wages do not have a direct fiscal impact.6

6Naturally, there can be indirect effects from consumption insurance to tax revenue through
precautionary labor supply, as in Netzer and Scheuer (2007).
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Other papers endogenize earnings risk by focusing on human capital accumulation

(Craig 2019; Findeisen and Sachs 2016; Kapička and Neira 2019; Makris and Pavan

2021; Stantcheva 2017), job search (Sleet and Yazici 2017), or wage randomization in

response to excessive tax regressivity (Doligalski 2019).

Finally, our paper relates to the literature on redistributive taxation in environ-

ments with earnings uncertainty and moral hazard; see, e.g., Varian (1980) and, for

models that also allow for ability differences, Eaton and Rosen (1980), Shourideh

(2014), and Boadway and Sato (2015) (who also offer a more complete synthesis of

the literature). In these papers, however, there is no layer of endogenous private

insurance between workers and the government: Earnings risk is thus exogenous, and

the government is the sole provider of insurance.

Outline of the Paper. The paper is organized as follows. In Section 1, we study

a simple version of our model and characterize the optimal rate of tax progressivity.

In Section 2, we study our general environment and characterize the optimal top tax

rates on total earnings and on bonuses when they are taxed separately. The proofs

of our results and various extensions are in the Appendix. In particular, we study

alternative forms of performance pay in Appendix C.

1 Performance Pay and Tax Progressivity

In this section, we set up a simple version of our general model to derive some

of the main insights most transparently. We study the incidence of tax progressivity

on individual earnings and welfare in Section 1.2, characterize the optimal rate of

progressivity in Section 1.3, and evaluate our findings quantitatively in Section 1.4.

Finally, in Section 1.5, we show that our results apply to several alternative models of

performance pay that are aimed at capturing different forms of variable compensation:

bonuses, piece rates or commissions, stock options, and dynamic incentives.

1.1 Environment

There is a continuum of mass one of agents indexed by their exogenous ability

θ ∈ R+ that is distributed according to the c.d.f. F (θ) and density f(θ). Preferences

over consumption c and labor effort ℓ are represented by the utility function u(c)−h(ℓ),
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where u and h are twice continuously differentiable, u is strictly concave, and h is

strictly convex.

A worker with ability θ who provides effort ℓ can produce two levels of output y:

y =

θ with probability π(ℓ)

0 with probability 1− π(ℓ)

where π : R+ → [0, 1] is continuously differentiable and concave. Without loss of

generality, and unless otherwise stated, we normalize units of effort so that π(ℓ) =

ℓ ∈ [0, 1].7

Firms observe both the agent’s ability θ and realized output y, but not their effort

ℓ. As a consequence, the labor contract specifies earnings z as a function of observed

performance. If output is low, the worker earns a base salary z. If output is high,

earnings take a larger value z̄ ≥ z. We define the bonus as the difference between the

high-level pay and the base pay, b = z̄ − z. We also introduce the bonus rate β, or

the pass-through of output risk to log-earnings, defined such that z̄ = eβz.8

The government levies non-linear income taxes. A worker with earnings z con-

sumes their after-tax earnings c = z − T (z) ≡ R(z), where T : R → R is the tax

schedule and R is the retention function. Throughout the paper, we denote the utility

over pre-tax earnings by v(z) ≡ u(R(z)). In this section, we restrict preferences and

taxes to the following functional forms.

Assumption 1 The utility of consumption is logarithmic, u(c) = log c. The tax

schedule has a constant rate of progressivity (CRP):9 There exist τ ∈ R and p ∈
(−∞, 1) such that R(z) = 1−τ

1−p
z1−p.

A firm that hires a worker with ability θ takes the tax schedule and the worker’s

reservation value U(θ) as given. It chooses the earnings contract {z(θ), z̄(θ)} to

7The disutility of effort must then be re-normalized as h̃ ≡ h ◦ π−1. For clarity, we keep the
notation h(ℓ), except in our calibration exercises that require positing functional forms for h(·) and
π(·).

8Intuitively, for a small bonus b, β coincides with the ratio of bonus to base pay b/z.
9The CRP tax code is a good approximation of the U.S. tax system, see for instance, Heathcote

et al. (2017). The rate of progressivity p is equal to (minus) the elasticity of the retention rate R′(z)
with respect to income z. Alternatively, 1−p is equal to the ratio of marginal retained income R′(z)
to average retained income R(z)/z.
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maximize its expected profit:

Π(θ) = max
z,z̄

ℓθ − E[z], (1)

where E[z] = (1− ℓ)z + ℓz̄,10 subject to the following constraints.

First, the incentive constraint requires that the worker’s effort level maximizes

their expected utility over all possible effort choices, taking the labor contract as

given:

ℓ = arg max
l∈[0,1]

(1− l)v(z) + lv(z̄)− h(l). (2)

Second, the participation constraint requires that the worker’s expected utility is

at least as large as their reservation value:

E[v(z)]− h(ℓ) ≥ U(θ), (3)

where E[v(z)] = (1− ℓ)v(z) + ℓv(z̄).

To pin down the workers’ reservation value U(θ), we assume that there is free-entry

of firms in the labor market for workers of type θ. Thus, in equilibrium, expected

profits are equal to zero:

Π(θ) = 0. (4)

Moral Hazard and the Bonus Rate. The incentive constraint (2) can be sim-

plified by taking the first-order condition of the worker’s maximization problem:

h′(ℓ) = v(z̄)− v(z). (5)

We can show that this first-order condition is necessary and sufficient to ensure global

incentive compatibility as long as the equilibrium level of effort is interior.11 Using

Assumption 1, we can rewrite this expression as follows:

β =
h′(ℓ)

1− p
. (6)

10Throughout the paper, unless explicitly stated the operator E denotes the expectation of a
random variable conditional on a given worker θ, as opposed to a population average. We also let
V(· | θ) denote the variance conditional on productivity θ.

11See Lemma 4, which proves this result in the general setting of Section 2.
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This equation plays an important role in our analysis. Intuitively, inducing a

worker to provide a given level of costly effort ℓ requires a larger reward for perfor-

mance (i.e., a higher bonus rate β) if the marginal disutility h′(ℓ) is higher. Since

h is convex, this implies that the sensitivity of earnings to performance β is strictly

increasing in labor effort ℓ. This captures the key moral hazard insight that eliciting

higher effort from the worker requires raising their exposure to output risk.

Optimal Contract. The following proposition characterizes the equilibrium labor

contract between a firm and a worker with ability θ.

Proposition 1 Suppose that Assumption 1 holds. Effort ℓ is then independent of θ,

so that the bonus rate β is constant and given by (6). Equilibrium earnings are given

by

z(θ) =
1

1 + ℓ(eβ − 1)
ℓθ and z̄(θ) =

eβ

1 + ℓ(eβ − 1)
ℓθ. (7)

Optimal labor effort satisfies

θ = b+ b ℓ(1− ℓ)
h′′(ℓ)

1− p
. (8)

Expected utility is given by

U(θ) = v(ℓθ)− h(ℓ)− (1− p) {u(Ez)− E[u(z)]} , (9)

with u(Ez)− E[u(z)] = log(1 + ℓ(eβ − 1))− βℓ.

Full-Insurance Benchmark. To interpret Proposition 1, consider first the bench-

mark setting where the firm can perfectly monitor the worker’s effort, so that the

incentive constraint can be ignored. In this case, the firm provides full insurance

against output risk: Workers with ability θ who provide effort ℓ earn their expected

output regardless of their performance, z = z̄ = θℓ. Their utility is then equal to

U(θ) ≡ v(θℓ) − h(ℓ). Note that this setting is equivalent to the standard Mirrlees

(1971) model, where the relationship z = θℓ between labor effort and income also

holds.

Equilibrium Earnings. With moral hazard frictions, the previous relationship

continues to hold on average: The free-entry condition (4) imposes that workers’
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expected earnings E[z] remain equal to their expected output ℓθ. However, providing

effort incentives implies that realized earnings must now be dispersed around their

mean. The firm provides only partial insurance against output risk: we have 0 < z <

θℓ < z̄ < θ. At the heart of our paper lies the observation that the optimal degree of

within-firm insurance—captured by the parameter β in equation (6)—is endogenous

to the tax system. We analyze this dependence in the next section.

Labor Effort. To interpret the optimality condition for effort (8), suppose that the

firm aims to elicit marginally higher effort from the worker. The expected output

gain, on the left hand side, is θ. Keeping the earnings structure z, z̄, b fixed, inducing

higher effort costs b to the firm, since the worker receives the bonus more frequently.12

This is the first term on the right hand side of (8). In addition, the firm needs to

raise the earnings spread in order to incentivize the worker to actually exert this extra

effort. By equation (6), the bonus rate must increase proportionally to the rise in

the marginal disutility of effort, h′′(ℓ). This creates an additional cost for the firm—

the marginal cost of incentives (MCI)—given by the second term on the right hand

side of (8): Intuitively, since workers are risk averse, exposing them to more earnings

risk while keeping the participation constraint satisfied is costly because it requires

increasing mean earnings.

Expected Utility. Equation (9) decomposes the worker’s expected utility into

three components. The first is the utility they would attain under full insurance,

U(θ) = v(θℓ) − h(ℓ). Second, the incompleteness of private insurance makes the

risk-averse worker worse off: The utility loss associated with a given earnings lottery

z is equal to the utility difference between expected earnings E[z] and the certainty

equivalent.13 This difference is the term in curly brackets in expression (9). Third,

this utility loss is weighted by (1− p): All else being equal, a higher level of tax pro-

gressivity reduces the variance of disposable income that the consumer faces, which

dampens the welfare cost of earnings uncertainty. Thus, keeping earnings risk and

the level of effort fixed, higher social insurance raises welfare.

12Note that, by equation (5), this is just sufficient to compensate the worker for the higher effort
level and keep the participation constraint satisfied.

13Recall that the certainty equivalent zCE is defined by u(zCE) = E[u(z)].
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1.2 Tax Incidence

In this section, we explore how the characteristics of the equilibrium contract:

labor effort ℓ, mean earnings Ez, earnings risk β, and expected utility U(θ), respond

to a change in tax progressivity p.

Effect on Average Earnings and Labor Effort. It is immediate that the effect

of taxes on mean earnings Ez = ℓθ is given by:

∂ logEz
∂ log(1− p)

=
∂ log ℓ

∂ log(1− p)
≡ εℓ,1−p,

where εℓ,1−p denotes the elasticity of labor effort (or of the frequency of receiving a

bonus) with respect to (one minus) the rate of tax progressivity. In the full-insurance

setting, we have εℓ,1−p =
εFℓ

1+εFℓ
where εFℓ ≡ h′(ℓ)

ℓh′′(ℓ)
is the Frisch elasticity of labor

supply.14 The following lemma characterizes εℓ,1−p with endogenously incomplete

insurance.

Lemma 1 Higher tax progressivity reduces optimal labor effort, i.e., εℓ,1−p > 0. Sup-

pose that the disutility of effort is isoelastic, so that the Frisch elasticity εFℓ is constant.

Then εℓ,1−p >
εFℓ

1+εFℓ
.

Lemma 1 shows that, as in standard models of taxation, tax progressivity dis-

incentivizes labor effort. This behavioral response plays a key role in our analysis.

Intuitively, greater progressivity makes high-powered incentives more costly to pro-

vide. Indeed, when high levels of income are taxed away more heavily, eliciting

marginally higher effort requires a larger increase in the dispersion of pre-tax earn-

ings and, therefore, a larger cost for the firm. Formally, both the bonus b and the MCI

term in equation (8) are increasing in p.15 Furthermore, Lemma 1 shows that raising

tax progressivity causes a stronger negative response of effort than in the benchmark

setting without exposure to output risk. Intuitively, this is because the MCI term is

absent when effort is observable.

14This elasticity is lower than the Frisch elasticity because of the income effect of taxes on labor
supply.

15Note that it would not be possible to deliver incentives by lowering base earnings z rather than
raising the bonus, since this would violate the worker’s participation constraint.
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Effect on Earnings Risk. We infer from the local incentive constraint (6) that

taxes affect earnings risk β through two channels that work in opposite directions.

First, β is inversely proportional to 1 − p, so that, ceteris paribus, a higher rate of

progressivity leads to a steeper pre-tax earnings schedule. This direct effect of taxes

is a standard crowding-out of private insurance by social insurance. Intuitively, by

raising tax progressivity, the government compresses the disposable income distribu-

tion and, therefore, reduces the worker’s exposure to output risk. The firm responds

by spreading out pre-tax earnings (i.e., raising β) in order to preserve the worker’s

incentives for effort. The elasticity of output risk to tax progressivity is given by

εβ,1−p ≡ ∂ log β

∂ log(1− p)
= −1,

which means that, absent effort responses, the firm adjusts the contract so as to keep

consumption insurance—the variance of log-consumption—fixed.

Second, β is proportional to h′(ℓ). As a result, tax progressivity affects earnings

risk indirectly via the endogenous choice of labor effort. Recall that a higher rate of

progressivity reduces the optimal labor effort. The strength of this effect is captured

by the elasticity εℓ,1−p > 0. Now, the firm implements this lower level of effort by

reducing the worker’s exposure to risk β: that is, by compressing the pre-tax earnings

distribution. This effect is a crowding-in of private insurance by social insurance. The

elasticity of earnings risk to desired labor effort is given by

εβ,ℓ ≡ ∂ log β

∂ log ℓ
=

ℓh′′(ℓ)

h′(ℓ)
=

1

εFℓ
,

where εFℓ > 0 is the Frisch elasticity.

Lemma 2 The total impact of tax progressivity on earnings risk is given by

d log β

d log(1− p)
= εβ,1−p + εβ,ℓ · εℓ,1−p = −1 +

εℓ,1−p

εFℓ
.

It is negative (net crowding-out) if εℓ,1−p < εFℓ and positive (net crowding-in) other-

wise. By Lemma 1, a lower bound for the net effect is given by d log β
d log(1−p)

> − εFℓ
1+εFℓ

.

Crowd-Out and Crowd-In Approximately Offset Each Other. We now argue

that these two counteracting forces—crowd-out and crowd-in—are of the same order
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of magnitude, so that tax progressivity has only a modest impact on the amount

of within-firm insurance. The key insight is that the strength of the moral hazard

friction is inversely proportional to the Frisch elasticity of labor supply, εβ,ℓ = 1/εFℓ ;

This is an immediate consequence of equation (6). If the elasticity of labor effort

εℓ,1−p is roughly equal to the Frisch elasticity, then the crowd-in effect is equal to
1
εFℓ
εℓ,1−p ≈ 1: that is, about the same size (in absolute value) as the direct crowd-out

εβ,1−p = −1.

Importantly, this insight is robust to small values of the labor effort elasticity.

To see this, suppose that effort hardly diminishes in response to an increase in tax

progressivity, which happens when εFℓ → 0. Lemma 2 shows that the crowd-in effect

is bounded from below by 1/(1 + εFℓ ), which converges to 1 as εFℓ → 0. Thus, in

this case, the crowding-in of private insurance offsets (at least as much as) the entire

crowd-out. Intuitively, it is precisely because of the inelastic behavior that the firm

must dramatically reduce the worker’s exposure to output risk in order to implement

the desired (tiny) reduction in labor effort: formally, εβ,ℓ = 1/εFℓ → ∞. As a result,

the product of elasticities εβ,ℓ εℓ,1−p does not vanish in the limit: The crowd-in effect

remains significant even when effort is almost inelastic.

This discussion is correct as long as the labor effort elasticity is indeed approxi-

mately equal to the Frisch elasticity. In practice, when the Frisch elasticity is bounded

away from zero, this need not be exactly the case. Suppose that the disutility of (un-

normalized) labor effort is isoelastic on R+, h(ℓ) = ℓ1+1/e, with an empirically realistic

value of e = 0.5. The relevant Frisch elasticity εFℓ in Lemma 2, however, is lower than

e, since it is that of the function h ◦ π−1, where π is concave (see footnote 7). If

π(ℓ) =
√
ℓ, for instance, we get εFℓ = e/(2 + e) = 0.2. In this case, we find a lower

bound for the crowd-in effect εβ,ℓ εℓ,1−p >
1

1+0.2
= 0.83. That is, the earnings risk

adjustment due to labor effort responses offsets at least 83 percent of the crowd-out

of private insurance caused by tax progressivity. Even when we raise the Frisch elas-

ticity to e = 1, the high end of empirical estimates, the crowd-in effect offsets at least

75 percent of the crowd-out.

Finally, the above results are based on the assumption that u(c) = log(c), which

implies a particular strength of the income effect on labor effort and a particular

degree of risk aversion. Nevertheless, our prediction—that the crowd-in offsets most

of the crowd-out—continues to hold when there is no income effect and workers are

arbitrarily risk-averse. In Appendix C.1, we study the moral-hazard framework of
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Holmstrom and Milgrom (1987) with preferences u(c, ℓ) = − 1
γ
e−γ(c−h(ℓ)), which imply

no income effect and an arbitrary absolute risk aversion controlled by the coefficient

γ ≥ 0. Assuming that the Frisch elasticity is constant, we show that the rate at which

the crowd-in offsets the crowd-out is decreasing in risk aversion γ. When workers are

risk-neutral, the crowd-in offsets the crowd-out exactly. Even in the limit where

the risk aversion coefficient goes to infinity, the two effects remain of comparable

magnitude. For instance, assuming a Frisch elasticity of 0.5, the crowd-in always

offsets at least two-thirds of the crowd-out.

Effect on Expected Utility. In the full-insurance benchmark, the envelope theo-

rem implies that expected utility U(θ) ≡ v(θℓ)−h(ℓ) = log 1−τ
1−p

+(1−p) log(ℓθ)−h(ℓ)
changes in response to an increase in progressivity by dU(θ)

dp
= 1

1−p
− log(Ez). In our

setting, we obtain the following result.

Lemma 3 The impact of tax progressivity on expected utility is given by

dU(θ)

dp
=
dU(θ)
dp

+ [log(Ez)− E(log z)] +
b

βEz
V(log z | θ) εβ,1−p, (10)

where V(log z | θ) = β2ℓ(1 − ℓ) is the variance of log-earnings conditional on θ.

Note in particular that, to a first order, the worker’s expected utility is unaffected by

changes in labor effort (envelope theorem).

Higher progressivity p raises expected utility when earnings are uncertain by re-

ducing the consumption spread that workers face. This is captured by the second term

(in square brackets) on the right-hand side of (10). In addition, higher progressivity

raises the dispersion of pre-tax earnings via the crowd-out elasticity εβ,1−p = −1.

This causes a loss in expected utility proportional to the variance of log-earnings

V(log z | θ).
Importantly, note that the crowding-in of private insurance, εβ,ℓεℓ,1−p, does not

appear in formula (10). This is because this effect operates via optimal labor effort

choices. The envelope theorem implies that its impact on welfare is only of second-

order.16 Therefore, while the crowd-out and crowd-in have offsetting effects on the

16More precisely: Consider an (equivalent) dual formulation of the firm’s problem, which consists
of maximizing the worker’s expected utility subject to making non-negative profits. The envelope
theorem applied to this problem implies that changes in labor effort do not have first-order effects
on expected utility.
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structure of pre-tax earnings, only the former affects the worker’s utility. In other

words, observing that the amount of pre-tax insurance embedded in the labor contract

is insensitive to taxes does not imply that the endogeneity of private insurance is

negligible for welfare.

1.3 Optimal Taxation

The government chooses the tax schedule, or the retention function R, to maximize

a weighted utilitarian social welfare function:∫ ∞

0

α(θ)U(θ)f(θ)dθ (11)

subject to a budget constraint:∫ ∞

0

E[z(θ)−R(z(θ))]f(θ)dθ ≥ G, (12)

where the Pareto weights α(θ) ≥ 0 satisfy
∫∞
0
α(θ)f(θ)dθ = 1, and where G ≥ 0 is

an exogenous expenditure requirement. We denote by g the ratio of public spending

to aggregate output.

Optimal Tax Progressivity. Recall that, in this section, we restrict the tax sched-

ule to the CRP class. Theorem 1 characterizes the optimal rate of tax progressivity p

under the additional assumptions that the distribution of ability types is lognormal,

and that the social welfare objective is utilitarian.17

Theorem 1 Suppose that log θ ∼ N (µθ, σ
2
θ) and that α(θ) = 1 for all θ. The optimal

rate of progressivity satisfies

p

(1− p)2
=

σ2
θ + κ1(1 + εβ,1−p)V(log z | θ)[

1 + g
(1−g)p

+ ℓκ3
]
εℓ,1−p + κ2 εβ,ℓ εℓ,1−pV(log z | θ)

, (13)

with κ1 =
1

β(1−p)
c̄−c
Ec , κ2 =

1−p
βp

( b
Ez −

c̄−c
Ec ), and κ3 =

1−p
p
( b
Ez −

1
1−p

c̄−c
Ec ), where c, c̄ denote

after-tax earnings in the low- and high-performance states. We have κ1 > 0, κ2 > 0,

and κ3 = 0 if p = 0.

17In the Appendix, we generalize formula (13) to social welfare weights given by α(θ) ∝ θ−a,
where a ≥ 0.
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To understand Theorem 1, it is helpful to decompose it by considering first the

full-insurance benchmark, then the case of exogenously incomplete private insurance,

and finally the general setting with endogenously incomplete private insurance.

A. Full-Insurance Benchmark

Suppose first that firms provide complete insurance against output risk, or equiva-

lently that there is no output risk as in Mirrlees (1971). That is, z = z̄ = ℓθ. Formula

(13) then reduces to
p

(1− p)2
=

σ2
θ[

1 + g
(1−g)p

]
εℓ,1−p

.

The optimal rate of progressivity is increasing in inequality, measured by the

variance of the log-ability distribution σ2
θ , and decreasing in the elasticity of labor

effort εℓ,1−p, which captures the efficiency cost of distortionary taxation. Moreover,

it is decreasing in the share of government expenditures in GDP g: This is because

a marginal tax increase induces a larger deadweight loss if the tax burden is already

large due to high spending needs.

B. Exogenously Incomplete Insurance

Suppose next that the firm provides incomplete insurance against output shocks,

so that z̄ > z, but that earnings risk β > 0 is exogenous. Thus, the elasticities of

crowd-out and moral hazard εβ,1−p and εβ,ℓ are both set equal to zero. Formula (13)

then reads
p

(1− p)2
=

σ2
θ + κ1V(log z | θ)[

1 + g
(1−g)p

+ ℓκ3
]
εℓ,1−p

. (14)

There are two differences to the full-insurance benchmark. First, the dispersion

of earnings in the population is now mechanically larger than that of ability types θ.

Tax progressivity thus plays two roles: redistribution across ex-ante ability differences

(measured by the variance σ2
θ) and social insurance against ex-post earnings risk

(measured by the conditional variance of pre-tax earnings V(log z | θ)). Up to a

second-order as β → 0, the numerator of (14) equals the total variance of log-earnings

in the population, σ2
θ + V(log z | θ). That is, optimal progressivity is an increasing

function of overall earnings inequality, regardless of whether it is driven by innate

ability differences or idiosyncratic performance shocks.
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Second, the labor effort distortions in the denominator of (14) are also modified.

In contrast to the full-insurance benchmark, a change in taxes affects not only the in-

come levels z, z̄ on the intensive margin, but also triggers a response on the frequency

(or extensive) margin by altering the probability ℓ with which the high income level

z̄, and hence the high tax payment, occurs. The former behavioral responses af-

fect government revenue proportionally to the income-weighted marginal tax rates

E[T ′(z)z]εℓ,1−p, while the latter affects revenue proportionally to the gap in total tax

payments between the high- and low-performance states ℓ(T (z̄) − T (z))εℓ,1−p. Ac-

counting for these frequency responses gives rise to the additional term ℓκ3 in the

optimum tax formula.18

C. Endogenously Incomplete Insurance

We finally analyze the general case where earnings risk β is endogenous to taxes.

The optimal progressivity formula (13) is modified by two novel terms. These account

for fiscal externalities (in the denominator) and welfare effects (in the numerator) that

we describe in turn.

Fiscal Externalities from Crowd-Out and Crowd-In. If the tax schedule is

progressive, a spread of the pre-tax earnings distribution caused by the crowding-out

analyzed in Section 1.2 generates a positive fiscal externality, i.e., a first-order gain

in government revenue. Conversely, an earnings compression due to the crowding-in

of private insurance induces a negative fiscal externality. These are consequences of

Jensen’s inequality: A progressive tax code generates more revenue for the government

if earnings are more volatile, keeping their mean constant.

Formally, the crowd-out εβ,1−p < 0 and crowd-in εβ,ℓ εℓ,1−p > 0 affect government

revenue by − p
(1−p)2

κ2(εβ,1−p + εβ,ℓ εℓ,1−p)V(log z | θ). If the tax schedule is linear

(p = 0), these fiscal externalities are equal to zero. If the tax schedule is progressive

(p > 0), the crowd-out (resp., crowd-in) raises (resp., lowers) government revenue

and, hence, the optimal level of taxes. Note finally that the denominator of formula

(13) features only the negative externality from crowd-in. This is because, as we

18When p = 0, we have κ3 = 0. Recall that the fiscal impact of the intensive margin response
depends on the marginal tax rate, while that of the frequency margin response depends on the
average tax rate. Since the marginal and average tax rates are equal when p = 0, there is no need
to correct the efficiency cost of taxes in this case.
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argue next, the positive fiscal externality caused by the crowd-out is (more than)

compensated for by its negative welfare impact.

Welfare Effects of Crowd-Out and Envelope Theorem. The crowd-out of pri-

vate insurance affects the social welfare objective (11) by
[
κ1+

p
(1−p)2

κ2
]
εβ,1−pV(log z |

θ). Thus, since εβ,1−p = −1, it exactly offsets both the insurance benefits of tax pro-

gressivity and the positive fiscal externality discussed in the previous paragraphs.

The fact that the crowd-out of private insurance offsets the welfare benefits of

social insurance (κ1V(log z | θ)) is straightforward. Any attempt by the government

to compress the distribution of disposable income leads the firm to raise the dispersion

of pre-tax earnings one-for-one in order to preserve the worker’s effort incentives.19

Thus, in contrast to the case of exogenous private insurance, the government should

not provide any social insurance against performance shocks: The numerator of (13)

reduces to the benefits of insuring exogenous ability disparities θ, measured by the

variance σ2
θ .

The additional negative welfare effect of the crowd-out is more subtle. It is due

to the fact that tax cuts lead to endogenous changes in the pay structure that render

them less precisely targeted than in the standard framework—we elaborate on this

point in more detail in Section 2. To build intuition, suppose that the tax liabilities at

the base pay T (z) and at the high-level pay T (z̄) are lowered by the same amount. In

Section 2.2 we show that such a reform increases the worker’s reservation value U(θ)

by (say) ∆U > 0. The incentive constraint (5) implies that, to maintain effort ℓ, the

ex-post utility of both low- and high-performers must increase by the same amount

∆U .20 Absent changes in gross earnings, however, the (uniform) tax cut would not by

itself lead to a uniform rise in ex-post utility, since the marginal utility of consumption

is strictly decreasing. Consequently, the firm must raise the bonus and, to ensure that

profits remain non-negative, lower the base pay. This implies that high-performers

capture a disproportionately large share of the tax cut. This regressive distribution of

rents—away from individuals whose marginal utility of consumption is the highest—

further reduces the welfare benefits of redistribution via progressive taxes.

19More precisely, recall that the firm does not actually keep labor effort unchanged. But by the
envelope theorem, the welfare consequences of the corresponding crowding-in are second-order.

20This is a standard consequence of the separability of the utility function; see, e.g., Golosov,
Kocherlakota, and Tsyvinski (2003). We derive this property formally in equations (16) and (17)
below.
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Finally, note that these welfare losses due to the crowding-out are not counteracted

by corresponding gains from the crowding-in responses. As explained in the discussion

following Lemma 3, this is a consequence of the envelope theorem: The crowding-

in of private insurance in response to an increase in tax progressivity operates via

adjustments in labor effort that is chosen optimally, leading to an (at most) second-

order impact on welfare. Hence, the observation that earnings risk is almost invariant

to taxes (Section 1.2) does not imply that optimal tax design can safely ignore the

endogeneity of private insurance.

Taking Stock: Endogenous Insurance Reduces Optimal Progressivity. In

sum, there are two channels through which endogenous earnings risk matters for tax

progressivity: (i) the negative fiscal externality due to crowd-in; and (ii) the negative

welfare effect of crowd-out, which exactly offsets the benefits of social insurance.21

As a result, the optimal rate of progressivity (13) is strictly lower than in a setting

with exogenous earnings risk.

1.4 Quantitative Analysis

To evaluate our results quantitatively, we extend our baseline model with the

following elements. A share spp of workers have a performance-pay job, and the

remaining share sfp = 1−spp have a fixed-pay job. Performance-pay jobs are subject to

the moral hazard friction described above: output is stochastic, equal to the worker’s

ability θ with probability π(ℓpp) and 0 otherwise, where ℓpp is their effort level. The

optimal contract specifies earnings as a function of the output realization according

to the bonus rate β = h′(ℓpp)/(1− p). Fixed-pay jobs, by contrast, are not subject to

agency frictions and guarantee a risk-free earnings level θℓfp, where ℓfp is the worker’s

effort level. In equilibrium, all fixed-pay workers exert the same effort.

We treat the job type of a worker as exogenous. In the data, the share of

performance-pay jobs increases with earnings (see Lemieux et al. 2009, Gittleman

and Pierce 2013, Grigsby, Hurst, and Yildirmaz 2019). To account for this fact in

the model, we allow for a positive correlation between job type and ability. Specif-

ically, we assume that ability is drawn from the job-type-specific Pareto-lognormal

21In the general environment of Section 2, the positive fiscal externality and the additional negative
welfare effect of crowd-out no longer exactly cancel out, and both appear explicitly in the optimal
tax formulas.

21



distribution (Colombi 1990). Thus, conditional on the job type j ∈ {fp, pp}, log-
ability is the sum of independently drawn Gaussian and exponential random variables:

log(θ) = xN + xE, where xN ∼ N(µθ,j, σ
2
θ,j) and xE = Exp(λθ,j).

Calibration. We calibrate to model to match empirical evidence on performance-

pay jobs, earnings elasticities, and the overall earnings distribution in the U.S. The

chosen parameter values are summarized in Table 1.

Lemieux et al. (2009) (LMP) use the Panel Study of Income Dynamics to show

that the fraction of performance-pay jobs spp was 0.45 in 1998, the most recent year

included in their analysis. We replicated their analysis and found that mean earnings

were 58 percent higher in performance-pay jobs than in fixed-pay jobs in 1998. This

value pins down µθ,pp − µθ,fp, the difference in mean log-abilities between the two

types of jobs. We postulate that the probability of a high output realization is given

by π(ℓ) = π̄ ℓρ, with ρ ∈ (0, 1]. In the data, the average probability of receiving a

bonus conditional on having a performance-pay job is 23%, which pins down π̄.22 The

exponent ρ affects the magnitude of earnings risk due to performance pay. LMP report

that the variance of log-earnings in performance-pay jobs is 42 percent higher than in

fixed-pay jobs. This excess variance can be explained either by the additional earnings

risk generated by stochastic bonuses (controlled by ρ) or by a greater dispersion in

the ex ante abilities of performance-pay workers (σ2
θ,pp > σ2

θ,fp). In our baseline

calibration, we assume that the entire excess variance arises from the former channel;

that is, we assume that log-abilities in the two types of jobs have the same dispersion

(σ2
θ,pp = σ2

θ,fp ≡ σ2
θ). This makes performance pay as powerful in affecting earnings

dispersion as the data allows: in our baseline calibration, performance pay explains

30 percent of the cross-sectional variance of log-earnings of performance-pay workers.

We show later that our main conclusions are robust to this assumption.

To calibrate the overall mean and variance of log-earnings in the economy, we turn

to the Survey of Consumer Finances (SCF), which uses data from the IRS Statistics of

Income program to accurately represent the distribution of high-income households.

Based on the SCF, Heathcote and Tsujiyama (2021) report a mean household labor

22Based on Table II and footnote 15 in LMP, we calculate that (i) in the 1990s, 82 percent of
performance-pay jobs used bonuses, while the rest used piece rates or commissions; and (ii) the
average frequency of receiving performance pay, conditional on having a performance-pay job, was
37 percent. Given that piece rates and commissions are paid out with certainty, we calculate that
the probability of receiving a bonus, conditional on having a job with bonuses, is 23 percent.
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Table 1: Calibrated parameters
parameter value description source or target

spp 0.45 share of performance-pay jobs Lemieux et al. (2009)
µθ,fp 3.43 mean log-ability at fixed-pay jobs mean earnings in the economy
µθ,pp 5.29 mean log-ability at perf.-pay jobs diff. in mean earnings between job types
σθ 0.29 normal variance of log-ability variance of log-earnings in the economy
λθ 2.2 tail parameter of log-ability Heathcote and Tsujiyama (2021)
π̄ 45 level parameter of π(·) function mean frequency of bonus payments
ρ 0.82 curvature of π(·) function diff. in var. of log-earnings between job types
εFℓ 0.5 Frisch elasticity of labor effort Chetty et al. (2011),Keane (2011)
p 0.181 tax progressivity Heathcote et al. (2017)
G/Y 0.188 share of government spending in GDP Heathcote and Tsujiyama (2021)

Note: All the target moments are matched exactly.

income of $77, 325 and an overall variance of log-labor income of 0.618 in 2007. They

also estimate that the tail parameter of the log wage distribution is equal to 2.2.

We assume that the ability distributions in both types of jobs have a common tail

parameter λθ,pp = λθ,fp = 2.2 and choose σ2
θ = 0.29 to match the overall variance of

log-earnings.

We model the disutility of labor effort as isoelastic: h(ℓ) = ℓ1+1/εFℓ

1+1/εFℓ
. A Frisch

elasticity εFℓ = 0.5 implies a compensated elasticity at fixed-pay jobs of approximately

0.3. Both values are consistent with empirical evidence (Chetty, Guren, Manoli, and

Weber 2011; Keane 2011). Regarding government policy, Heathcote et al. (2017)

estimate a value of 0.181 for the U.S. rate of tax progressivity, and Heathcote and

Tsujiyama (2021) report a ratio of government purchases to output of 18.8 percent.

The implied distribution of earnings and job types is depicted in Figure 1. Specif-

ically, in panel (b), we compare the (untargeted) shares of performance-pay jobs by

earnings quartiles in the data and in the model.23 The calibrated model successfully

matches the empirical prevalence of performance-pay jobs: Both in the data and

in the model, the share of performance-pay jobs is approximately 40 percent in the

bottom three quartiles and it rises to more than 60 percent in the top quartile.

Incidence of a Large Tax Reform: From the Status Quo to the Optimum.

We extend the optimal progressivity formula in the Appendix to account for fixed-pay

jobs and a Pareto tail of earnings (see the proof of Theorem 1). We find that the

utilitarian optimum rate of progressivity is equal to 0.376. This is more than twice as

23The data shares are computed for the year 1998 from PSID using the methodology of LMP. We
are grateful to Karl Schulz for computing these values.
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Figure 1: Joint distribution of earnings and job types

(a) Densities of log earnings (b) Share of perf.-pay jobs by earnings
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Figure 2: Optimal progressivity and Self-Confirming Policy Equilibrium

(a) Calibrated model (b) Counterfactual: only perf.-pay jobs
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high as the current rate of tax progressivity in the U.S., and the implied increase in

social welfare is equivalent to a 3.7 percent increase in consumption (see panel (a) of

Figure 2). In this paragraph, we analyze the impact of a large reform that implements

the optimal rate of progressivity, while keeping the overall tax revenue unchanged.

The impact of the reform on earnings risk in performance-pay jobs is depicted

in Figure 3. Following a large increase in progressivity, the bonus rate β increases

modestly from 1.08 to 1.11. As a result, the variance of log-earnings conditional on

ability, equal to β2π(ℓpp)(1 − π(ℓpp)), actually slightly decreases, as the impact of

a higher bonus rate β is dominated by the impact of a lower effort ℓpp, distorted

downwards by higher tax progressivity.

Underlying the weak response of earnings risk are two countervailing forces: the

crowding-out and the crowding-in of private insurance. If firms attempted to moti-

vate workers to maintain their original level of effort, better social insurance via tax

progressivity would crowd-out private insurance one-for-one. For that to happen, the

bonus rate β would need to increase from 1.08 to 1.42, raising the log-earnings risk
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Figure 3: Optimal progressivity reform and earnings risk
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Note: Tax progressivity rate is increased from 0.181 (status quo) to 0.376 (utilitarian optimum).

of performance-pay workers by 72 percent. However, in equilibrium firms choose to

elicit a 9 percent lower effort level (which implies the same fall in mean earnings) and

reduce the power of incentive-pay accordingly. This crowding-in effect counteracts

the crowd-out and brings the bonus rate back to the vicinity of its original level. As

a result, workers end up much better insured: The variance of log-consumption falls

by 43 percent.

Importance of Performance Pay for Optimal Tax Progressivity. How im-

portant is it to account for endogenous performance pay when setting tax policy?

To answer this question, we compare the optimal rate of progressivity with a rate

chosen by the government that erroneously assumes that the entire earnings risk is

exogenous. The latter is found by applying the formula for the optimal rate of pro-

gressivity from the model with exogenous partial insurance to our calibrated model

economy—in which private insurance is actually endogenous. Since the rate of pro-

gressivity affects the perceived earnings dispersion, we iterate on the tax formula

from the exogenous-insurance model until convergence to a fixed point. Following

C. Rothschild and Scheuer (2016), we call the resulting allocation a Self-Confirming

Policy Equilibrium (SCPE). The results are depicted in panel (a) of Figure 2.

A policymaker who ignores the endogeneity of earnings risk chooses a rate of

progressivity (0.43) that is higher than the optimum (0.38). While we allow such a

planner to estimate the elasticity of earnings precisely, the rate of progressivity is too

high, since the negative effects of crowd-out on welfare and crowd-in on tax revenue
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are not internalized. Nevertheless, the welfare cost of the policy mistake is relatively

small, equal to approximately 0.3 percent of consumption—this is significantly smaller

than the gains from raising taxes from the status quo to the optimum. Recall that in

the calibration we assumed that it is performance pay, rather than a greater dispersion

of abilities, that explains the higher variance of earnings among performance-pay

jobs. Allowing for more dispersed abilities at performance-pay jobs would reduce the

magnitude of endogenous earnings risk due to stochastic bonuses. Thus, it would

further reduce the already small welfare cost of ignoring the endogeneity of earnings

risk. Hence, our baseline results provide an upper bound for the impact of endogenous

insurance on social welfare.

We also simulate a counterfactual economy, assuming that all the jobs feature

performance pay; see panel (b) of Figure 2. In this economy, the difference between

the rate of progressivity at the optimum and in the SCPE doubles (from 0.055 to

0.11), while the welfare loss from the policy mistake more than quadruples (from 0.3

percent to 1.4 percent). Thus, the finding that the cost of ignoring performance pay

for the design of tax policy is modest is not a theoretical necessity. It is rather a

quantitative result that is due to the fact that only half of the jobs in the U.S. feature

performance pay. If the share of performance-pay jobs continues to increase in the

future, accounting for the welfare effects of endogenous earnings risk may become

important for tax policy.

1.5 Commissions, Stock Options, Dynamic Incentives

Our baseline model, in which earnings are binary, is well suited to analyzing con-

tracts that consist of a base salary and a bonus. We argued above that these represent

more than 80 percent of the performance-based earnings contracts. Nevertheless, it

is important to evaluate whether our main insights carry over to other types of com-

pensation. In Appendix C, we set up several alternative frameworks. The first, based

on Holmstrom and Milgrom (1987), provides conditions under which linear contracts

are optimal: It is thus a natural setting to study piece rates or commissions. Stock

options can be represented by contracts that are convex in performance: To analyze

the impact and optimality of tax policy with such contracts in a tractable way, we

build on Edmans and Gabaix (2011). Finally, high-powered incentives can be pro-

vided over time via, e.g., promotions or salary raises. To study such effects, we use
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the frameworks of Sannikov (2008) or Edmans et al. (2012).

Despite their differences, all of these models share a common structure that is

critical for our analysis: When the utility is logarithmic and the tax schedule is

CRP, the slope of the earnings contract, which measures the sensitivity of earnings

to output shocks, is given by h′(ℓ)/(1 − p).24 This is a direct consequence of the

local incentive constraint, which is common to all of these models and states that

the sensitivity of utility to output shocks must be equal to the marginal disutility of

effort h′(ℓ). In turn, this general principle implies that our discussion of the incidence

of tax progressivity continues to hold: A tax change creates crowd-out and crowd-in

effects on the pre-tax earnings distribution captured by the elasticities εβ,1−p = −1

and εβ,ℓ = 1/εFℓ . To the extent that the impact of the tax change on effort εℓ,1−p is

close to the Frisch elasticity of labor supply, the contract remains insensitive to tax

policy.25 By contrast, taxes have a large impact on welfare since the crowd-in affects

utility only to a second-order. As in Theorem 1, these effects are reflected in the

optimal tax formulas in these respective environments (see, e.g., Theorems 4 and 5

in Appendix C).

2 General Analysis of Non-Linear Taxation

The model we studied in Section 1 relies on several strong assumptions: The

utility of consumption is logarithmic, the tax schedule is a function of total earnings

and has a constant rate of progressivity, and the distribution of earnings is lognormal.

We now relax these restrictions. In particular, we allow the government to tax base

earnings and bonuses either jointly or separately in an arbitrarily nonlinear way. We

characterize the incidence of tax reforms in Section 2.2 and derive analytical formulas

for the optimal tax rate on top earners—levied either on total earnings or on bonuses

separately from the base pay—in Sections 2.3 and 2.4. We evaluate these results

quantitatively in Section 2.5. Additional results are derived in Appendix B.

24In the case of Holmstrom and Milgrom (1987), the theoretical restrictions on agents’ preferences
allow us to study only CARA utility function with affine taxes. In this case, the relevant notion of
pay-performance sensitivity becomes θ−1h′(ℓ)/(1−τ), where τ is the tax rate. Clearly, our discussion
continues to hold once we focus on reforms of the tax rate τ .

25This discussion suggests that these results hold more generally in any moral-hazard model with
a continuous choice of effort in which the first-order approach (or the one-shot deviation principle
in the continuous-time setting of Sannikov 2008) is valid.
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2.1 Environment

The environment is the same as in Section 1, except that the utility of consumption

u is now a twice continuously differentiable and concave function, and the retention

schedule R : R2
+ → R is an a.e. twice continuously differentiable function of the

agent’s base pay and realized bonus. Thus, a worker with high output realization

consumes c = R(z, b) and gets utility v(z, b) ≡ u(R(z, b)), while a worker with low

output realization consumes c = R(z, 0) and gets utility v(z, 0) ≡ u(R(z, 0)). This

specification allows us to consider both the joint taxation of overall earnings, and the

separate taxation of fixed and variable pay. We impose the following assumption,

which ensures that the tax schedule is not “too regressive:”26

Assumption 2 The utility of pre-tax earnings v is concave on R2
+.

The firm maximizes its expected profit (1) subject to, mutatis mutandis, the incen-

tive constraint (2) and the participation constraint (3). The equilibrium reservation

value is pinned down by the free-entry condition (4). The following lemma shows

formally that we can replace the global incentive constraint with the corresponding

first-order condition for effort (5).27

Lemma 4 Suppose that the equilibrium effort level is interior. The firm’s problem is

equivalent to maximizing (1) subject to (3) and the local incentive constraint:

h′(ℓ) = v(z, b)− v(z, 0). (15)

As in the previous section, equation (15) along with the convexity of h implies that

eliciting a higher effort level from workers requires raising their exposure to output

risk. The following characterization of the optimal contract generalizes Proposition

1 and has an analogous interpretation.

26See Appendix for details. In particular, this condition always holds under Assumption 1 regard-
less of the value of p. It is a natural restriction: Doligalski (2019) shows that when this condition
is violated, firms have incentives to offer stochastic earnings even in the absence of moral haz-
ard frictions. Furthermore, a tax schedule that encourages such earnings randomization is Pareto
inefficient.

27Rogerson (1985) credits an unpublished paper by Holmstrom (1984) for the first proof of validity
of the first-order approach in such a setting.
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Proposition 2 The base pay z(θ) and high-level pay z̄(θ) satisfy

v(z, 0)− h(ℓ) = U(θ)− ℓh′(ℓ) (16)

v(z, b)− h(ℓ) = U(θ) + (1− ℓ)h′(ℓ). (17)

The effort level ℓ(θ) exerted by the worker satisfies

θ = b+

[
1

v2(z, b)
−

1− R1(z,b)
R2(z,b)

ℓ

1− ℓ

1

v1(z, 0)

]
ℓ(1− ℓ)h′′(ℓ). (18)

Expected utility U(θ) satisfies z + ℓb = θℓ.

2.2 Tax Incidence

In this section, we evaluate the impact of tax reforms on workers’ labor contracts

and welfare. For conciseness, we focus on the taxation of overall earnings and relegate

the analysis of the separate taxation of bonuses to the Appendix (Lemma 9). Consider

a given baseline retention schedule R : R+ → R and another function (“tax reform”)

R̂ : R+ → R. The first-order change in a functional Ψ(R) in response to the reform

R̂ is given by the Gateaux derivative Ψ̂(R, R̂) ≡ limδ→0 (Ψ(R + δR̂)−Ψ(R))/δ.

Earnings. We start by studying the effect of tax reforms on the worker’s earnings.

We obtain the following characterization:

Lemma 5 The first-order impact of a tax reform R̂ on earnings z, z̄ is given by

ẑ =

[
− R̂(z)

R′(z)
+

Û

v′(z)

]
− ℓh′′(ℓ)

v′(z)
ℓ̂ (19)

ˆ̄z =

[
− R̂(z̄)

R′(z̄)
+

Û

v′(z̄)

]
+

(1− ℓ)h′′(ℓ)

v′(z̄)
ℓ̂, (20)

where Û and ℓ̂ denote the first-order changes in the reservation utility and labor effort

due to the reform. The terms in square brackets constitute the crowd-out, while the

terms multiplied by ℓ̂ constitute the crowd-in.

Lemma 5 shows that the tax reform affects earnings z ∈ {z, z̄} via three channels,

the first two of which jointly constitute the crowd-out, while the last is the crowd-in.
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The first term in equations (19) and (20), −R̂(z)/R′(z), implies that, ceteris paribus,

the agent’s consumption c = R(z) remains unchanged despite the tax change. Indeed,

this term implies

ĉ ≡ R̂(z) +R′(z)ẑ = R̂(z)−R′(z)
R̂(z)

R′(z)
= 0.

Thus, absent any change in the reservation utility and optimal labor effort, the firm

would simply adjust pre-tax earnings so as to keep the worker’s disposable income

levels c and c̄ fixed. In other words, any attempt by the government to affect con-

sumption insurance would be fully offset by the firm in order to preserve incentives.

Second, the tax reform affects the earnings contract via its impact on the equi-

librium reservation utility. The increase in income z resulting from an increase in

the reservation value Û > 0 is inversely proportional to the marginal utility v′(z).

Thus, the earnings of the high-performers increase by a larger amount than those

of the low-performers with the same ability. This ensures that the utility gain Û is

distributed uniformly across agents regardless of their performance, thus preserving

incentive compatibility (15).

Third, the tax reform modifies the desired effort level. Recall that, by equation

(15), eliciting higher effort ℓ̂ > 0 requires widening the gap between the utility of

high- and low-performers by ∆h′(ℓ) = h′′(ℓ)ℓ̂. The implied change in earnings—the

crowd-in effect—is given by the third term in equations (19) and (20).

Expected Utility. Next, we evaluate the effect of tax reforms on the worker’s

expected utility.

Lemma 6 The first-order impact of a tax reform R̂ on expected utility U(θ) is given

by

Û = E
[
µ(z)u′(R(z))R̂(z)

]
where µ(z) =

1
v′(z)

E
[
1
v′

] for z ∈ {z, z̄}, (21)

Note in particular that, to a first order, the worker’s expected utility is unaffected by

changes in labor effort (envelope theorem).

In the standard (full-insurance) model, a tax cut R̂(z) > 0 affects the worker’s

utility in proportion to their marginal utility of consumption u′(R(z)), and the en-

velope theorem ensures that the endogenous behavioral responses have no first-order
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impact on utility. This is no longer true in the model with performance pay. While

the envelope theorem still applies to the endogenous effort (i.e., crowd-in) responses,

the earnings adjustments caused by the crowd-out of private insurance have a first-

order impact on welfare. The additional factor µ present in equation (21) accounts

for these welfare effects.28

The intuition is analogous to that laid out in Section 1: A tax cut initially gen-

erates a rent to the firm—the first term in equations (19) and (20)—which is then

transferred to the worker via free entry and the resulting adjustment of the reservation

value. This transfer needs to keep the original effort level incentive-compatible and,

hence, the utility difference v(z̄) − v(z) unchanged. Thus, earnings z must change

in proportion to 1
v′(z)

, leading to the factor µ(z) in Lemma 6. Since the marginal

utility v′ is decreasing, this means that the high-level pay rises more than the base

pay, resulting in a regressive distribution of rents.

To measure the welfare impact of tax reforms, the standard approach is to use

marginal social welfare weights, defined as the welfare impact of marginally increasing

the consumption of a given agent (Saez & Stantcheva, 2016). In the standard Mirrlees

model, the marginal welfare weight of a worker with ability θ and earnings z is given

by

g(z | θ) = 1

λ
α(θ)u′(R(z)), (22)

where α(θ) is the Pareto weight of type θ in the social objective, and λ is the marginal

value of public funds. The social marginal welfare weights are convenient in the

standard model because, by the envelope theorem, all endogenous responses to tax

changes have at most a second-order impact on the agent’s utility.

By contrast, recall that in our model the envelope theorem does not apply to all

endogenous responses: The crowd-out of private insurance has a first-order impact

on welfare. To account for this effect, we define the modified marginal social welfare

weights g̃(z | θ) as the welfare impact of marginally reducing the tax liability of an

agent with type θ and realized income z.

Corollary 1 The modified marginal social welfare weights satisfy

g̃(z | θ)
g(z | θ)

= µ(z) < 1 and
g̃(z̄ | θ)
g(z̄ | θ)

= µ(z̄) > 1. (23)

28Chang and Park (2017) show a similar partial applicability of the envelope theorem in an Alvarez
and Jermann (2000) economy with asset trades and endogenous borrowing limits.
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Relative to the standard model, the contribution to social welfare of agents with

type θ is adjusted upwards when they receive a bonus, and downwards otherwise.

These regressive adjustments to the marginal social welfare weights reflect the fact

that, as explained above, tax cuts are passed through within the firm primarily to the

high-performing workers. It is therefore more difficult for the government to target

transfers at unlucky workers, i.e., to directly raise the consumption of those whose

marginal utility is relatively large.

Labor Effort. Next, we characterize the incidence of tax reforms on labor effort.

The general analytical expressions for the elasticities of effort with respect to marginal

and average tax rates are given in Lemma 8 in the Appendix. For conciseness, the

following Lemma only focuses on their signs.

Lemma 7 The first-order impact of a tax reform R̂ on labor effort ℓ can be expressed

as

ℓ̂

ℓ
= εℓ,R′(z)

R̂′(z)

R′(z)
+ εℓ,R′(z̄)

R̂′(z̄)

R′(z̄)
+ εℓ,R(z)

R̂(z)

R(z)
+ εℓ,R(z̄)

R̂(z̄)

R(z̄)
. (24)

Suppose that the base pay z and high-level pay z̄ are both located in brackets where

the marginal tax rate is locally constant. A higher marginal tax rate on base (resp.

high-level) pay raises (resp., reduces) labor effort: εℓ,R′(z) < 0 < εℓ,R′(z̄). Suppose

moreover that the utility function is logarithmic. A higher average tax rate on base

pay raises labor effort: εℓ,R(z) < 0. A higher average tax rate on high-level pay reduces

labor effort, so that εℓ,R(z̄) > 0, if and only if R′(z) < R(z)/z.

In the standard model, effort responds negatively to the marginal tax rate (MTR)

due to the substitution effect and positively to the average tax rate (ATR) due to

the income effect. Our model is more complex, as there are two relevant levels of

pay (base and high-level) and, thus, four tax rates that impact behavior. Focusing

first on the average rates, we find that a higher ATR levied on the base pay increases

effort, but a higher ATR levied on the high-level pay reduces effort (when the tax

schedule is progressive). Intuitively, adjusting effort in this way allows the worker to

escape some of the increased tax burden by reducing the probability of receiving the

income that is taxed more heavily.
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Moving on to marginal tax rates, we find that a higher MTR levied on high-level

pay reduces effort, but a higher MTR on base pay, perhaps surprisingly, increases ef-

fort. Note that a change in marginal rates alone does not modify workers’ incentives

for effort, since the incentive constraint (15) is unaffected. What are modified, how-

ever, are the firm’s incentives to offer different pay structures. Intuitively, a higher

MTR gives firms incentives to reduce gross pay and save on payroll, since the implied

reduction in after-tax income—which matters for workers—is now smaller. A higher

MTR at the high-level pay z̄ then leads to a lower value of z̄ and, via the incentive

constraint, to a lower effort level. Conversely, a higher MTR on base pay z leads to

a lower value of z and, hence, a higher effort level.

Summing up, we find that labor effort responds very differently to taxes on base

pay and on high-level pay. In particular, increasing the marginal tax rate on base pay

actually encourages effort. These findings underlie our later results on the efficiency

gains from taxing bonuses at a lower rate than base pay.

Taking Stock: Crowd-Out and Crowd-In. We can now gather our previous

results to obtain a full characterization of the incidence of tax reforms on the earnings

contract. The following result, obtained by substituting expression (21) into (19) and

(20), generalizes the crowding-in and crowding-out forces (highlighted in Section 1)

to arbitrary tax systems and reforms.

Proposition 3 The first-order impact of a tax reform R̂ on earnings z, z̄ is given by

(1− ℓ)ẑ = − (1− εout)(1− ℓ)
R̂(z)

R′(z)
+ εout ℓ

R̂(z̄)

R′(z̄)
− ℓz̄ εin

ℓ̂

ℓ
(25)

ℓˆ̄z = (1− εout)(1− ℓ)
R̂(z)

R′(z)
− εout ℓ

R̂(z̄)

R′(z̄)
+ [ℓz̄εin + z]

ℓ̂

ℓ
, (26)

where the crowd-out parameter εout ∈ (0, 1) and the crowd-in parameter εin > 0 are

respectively given by

εout =
1

E
[

1
v′(z)

] 1− ℓ

v′(z)
and εin =

ℓ(1− ℓ)h′′(ℓ)

z̄ v′(z)
,

and where the labor supply response ℓ̂/ℓ is given by Lemma 7 (and Lemma 8 in the

Appendix).
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Proposition 3 shows that earnings z, z̄ respond to changes in tax payments at both

levels of compensation. A tax hike on high-level earnings R̂(z̄) < 0, for instance, leads

the firm to lower the base pay z and raise the high-level pay z̄. The magnitude of this

crowding-out of private insurance is determined by the parameter εout ∈ (0, 1), for

which our model gives a simple analytic expression.29 Moreover, a tax reform that

leads to a lower optimal effort level, ℓ̂ < 0, triggers an increase in the base pay and a

decrease in the high-level pay. The magnitude of this crowding-in of private insurance

is determined by the product of εin and the percentage change in labor effort ℓ̂/ℓ.

2.3 Optimal Top Tax Rate on Total Earnings

We now proceed to characterizing the optimal non-linear taxes in our setting. In

the main body of the paper, we focus on the problem of finding the optimal tax rate in

the highest bracket, and we relegate the analysis of the full optimal taxation problem

to Appendix B.2. Determining the optimal top tax rate is an especially salient policy

question: A large share of the rise in inequality since the 1980s has been driven by the

explosion of performance-based forms of compensation for the highest income earners,

such as bankers’ bonuses and CEOs’ stock options (see, e.g., Bell and Van Reenen

2013; Lemieux et al. 2009; Piketty and Saez 2003).30

We consider the following policy experiment. Fixing the threshold z∗ of the top

tax bracket, we optimally set the marginal tax rate τ that applies to this bracket.

Before stating our main result, we introduce some notation.

Top and Intermediate Earners. There are two kinds of workers who react to

changes in the top-bracket tax rate. Some (the most productive) of them receive an

income in the top tax bracket regardless of their performance: We refer to them as

“top earners.” Others earn base pay that is below the top bracket threshold z∗, but

high-level pay that is above that threshold. Because they have a positive probability of

landing in the top bracket, their entire contract—including their base salary—adjusts

in response to the tax change. We refer to this group as “intermediate earners.” We

29For instance, if the utility of consumption is CRRA with risk aversion σ and the tax schedule is
CRP, we have εout = (1− ℓ)/[1− ℓ+ ℓe(p+(1−p)σ)β ], where β is the bonus rate defined in Section 1.

30Bell and Van Reenen (2014) show that in the UK, 83 percent of workers in the top percentile
received a bonus in 2008, and that bonuses represented 35 percent of their total compensation (44
percent in the financial sector).

34



denote by σI the fraction of intermediate workers among all (top and intermediate)

workers, and by sI the income share of intermediate earners in the top bracket.

Income distribution. Since earnings of top earners always fall into the top bracket,

it is sufficient to keep track of their mean earnings, which we denote by ZT . By

contrast, for intermediate earners, we need to keep track of the level of their base pay

z, which falls short of z∗, as well as the endogenous frequency with which it (rather

than the high-level pay z + b) is realized. To do so, it suffices to define the mean

frequency-adjusted base pay (1 − ℓ)z among intermediate earners, which we denote

by ZI . Responses of ZI to changes in the top tax rate account for both the level

responses (1 − ℓ)ẑ and the frequency responses −ℓ̂z. Analogously, we denote the

mean frequency-adjusted high-level pay ℓz̄ of intermediate earners by Z̄I , and their

mean labor effort ℓ by LI . Aggregating over intermediate and top earners in the top

bracket yields Z∗ ≡ (1− σI)ZT + σIZ̄I . Finally, we introduce the Pareto coefficient

of the income distribution in the top bracket ρ = E[z|z≥z∗]
E[z|z≥z∗]−z∗

, where E denotes the

expectation with respect to the realized (i.e., observed) earnings distribution.

Elasticities. Consider the tax reform that raises the marginal tax rate τ by τ̂ > 0

above the income level z∗. To keep track of the impact of this tax reform on various

aggregates, we define the elasticity of any variable x (e.g., LI , ZI , Z∗) with respect

to the top net-of-tax rate 1 − τ as ex ≡ −1−τ
τ̂

x̂
x
. This shorthand notation measures

the total percentage change in x caused by the reform τ̂ .31 These elasticities can be

easily expressed in terms of primitives using Lemma 7 and Proposition 5.

Welfare Weights. We defined the modified marginal welfare weights g̃ in Corollary

1. We denote the income-weighted average modified welfare weight in the top bracket

by G̃.

Optimum Top Tax Rate. We now proceed to characterizing the optimal tax rate

on total earnings in the top bracket τ . Suppose for simplicity that the second highest

tax bracket is large enough so that all the intermediate workers pay the same marginal

tax rate t on their base pay.

31The variable ex is thus defined as a “policy elasticity,” a concept proposed by Hendren (2016).
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Theorem 2 The optimal tax rate on total earnings in the top bracket is given by

τ

1− τ
=

1− G̃ − sI
(

t
1−τ

κ1eZI + t−τ
1−τ

κ2eLI

)
ρ eZ∗

, (27)

where κ1 = (ZI/Z̄I)ρI > 0, κ2 = ρI − 1 > 0, and ρI = Z̄I

Z̄I−LIz∗
. The elasticity eZI

can in turn be decomposed as

κ1eZI = εout
I − ρIεineℓ

I + κ1e1−ℓ
I , (28)

where εout
I , εineℓ

I , e1−ℓ
I are income-weighted averages (formally defined in the Ap-

pendix) of the crowd-out, crowd-in and effort elasticities among intermediate earners,

respectively.

The remainder of this section is devoted to analyzing this formula.

Full-Insurance Benchmark. Consider first the setting where firms provide full

insurance against output risk. The optimal top tax rate is then determined by the

following formula (Saez, 2001):

τ

1− τ
=

1− G
ρ eZ∗

, (29)

where G is the aggregate marginal social welfare weights (see equation (22)) in the top

bracket. This expression shows that the optimal tax rate is an increasing function

of income inequality measured by the inverse Pareto coefficient 1/ρ, a decreasing

function of the average elasticity of top earnings eZ∗ that captures the efficiency cost

of raising the tax rate, and a decreasing function of the average social welfare weight

G that the social objective assigns to agents with earnings z ≥ z∗.

Welfare Effect of Crowd-Out. The first novelty introduced by the endogeneity

of private insurance is the adjustment to the marginal social welfare weights, which

accounts for the first-order welfare effects of crowd-out. As shown in Corollary 1,

these responses are captured by placing lower weights on the (unlucky) workers who

do not receive a bonus and higher weights on the (lucky) workers who do. Suppose for

simplicity that the top bracket is only composed of the lucky intermediate earners. In

this case, the average social marginal welfare weight is unambiguously higher than in
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the standard model, i.e., G̃ > G.32 Thus, the crowd-out reduces the welfare benefits

of raising taxes on top incomes and contributes to a strictly lower optimal top tax

rate. In the Appendix, we show that if the utility function is logarithmic, this result

also holds in the presence of top earners who receive both their base pay and their

high-level pay in the top bracket.33

Fiscal Externality: Base-Pay of Intermediate Workers. Second, applying the

benchmark full-insurance formula (29) in our setting would mistakenly ignore that

perturbing the top tax rate spills over to workers who could have, but haven’t, made

it to the top. Indeed, some agents—the unlucky intermediate earners—react to the

top tax rate change even though their income is lower than the threshold z∗. This

fiscal externality is captured by the elasticity eZI in formula (27). This elasticity

can in turn be decomposed into the average crowd-out parameter εout
I , the average

product of the crowd-in parameter and the individual labor effort elasticity εineℓ
I ,

and the average elasticity of the base pay frequency e1−ℓ
I , as shown in expression

(28). Intuitively, the crowd-out and crowd-in forces determine the level response of

base pay, while the effort elasticity captures the change in the frequency of base pay

realization. If the resulting elasticity eZI is negative, say, then a higher top tax rate

leads to a higher average base pay for intermediate workers, which increases the tax

revenue collected from the lower tax bracket. In that case, this fiscal externality

contributes to a higher optimal top tax rate.

Fiscal Externality: Frequency Margin with a Nonlinear Tax Schedule. Fi-

nally, we need to correct the calculation of the fiscal impact of frequency responses

of intermediate earners—i.e., changes in their probability of receiving a bonus due

to a change in the top tax rate—when the tax schedule is nonlinear at the top (i.e.,

τ ̸= t). The elasticities eZ∗ and eZI already incorporate the frequency responses, but

the corresponding fiscal externality terms in formula 27 implicitly assume that both

income levels are taxed at the same rate (τ or t, respectively). However, the fiscal

impact of these responses is proportional to the difference in tax liabilities between

the two states, which is equal to neither τ nor t but to a convex combination of the

32This argument takes as a given the marginal value of public funds λ.
33More generally, this result holds as long as the utility losses caused by raising the top tax rate,

(z − z∗)u′(R(z)), are increasing with income.
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two.34 The last term in the numerator of (27) makes this necessary correction; This

is the same adjustment that led to the term κ3 in formula (13) in Section 1.3.

Taking stock. To sum up, the endogeneity of private insurance modifies the stan-

dard formula (29) in three ways: The marginal social welfare weights are adjusted

to account for the welfare consequences of crowd-out; Two new fiscal externalities

arise from the endogenous responses of base pay in the lower bracket and from the

frequency responses when the tax schedule is nonlinear at the top. We explore the

importance of these effects quantitatively in Section 2.5.

2.4 Separate Taxation of Fixed and Variable Pay

So far, we have focused on tax schedules that are functions of total earnings, i.e.,

the sum of the base pay and, if any, the bonus. This corresponds to the tax treatment

of bonuses in most countries. It is conceivable, however, that the tax system could

treat the two types of pay differently. In the U.S., for instance, CEO compensation in

excess of $1 million used to be deductible from the company’s corporate income tax

only if it was performance-based (Hall & Liebman, 2000).35 Thus, top performance-

based earnings used to have a tax advantage.36

In this section we investigate whether there are gains from separating the tax

treatment of base earnings and bonuses. We show that it is indeed optimal to tax

bonuses at a lower rate than base pay. This provides an explanation for the past tax

practice in the U.S. We then characterize analytically the optimal top tax rate on

bonuses.

Local Gains From Separating Taxes on Fixed and Variable Pay. Suppose

that base earnings and bonuses are initially taxed jointly, as in the previous section.

For clarity of exposition, we assume that the utility function is logarithmic and the

tax schedule is initially linear with rate τ > 0, but the main insight holds more

34To be precise, for intermediate workers we have ℓ̂(T (z̄)− T (z)) = ℓ̂(τ(z̄ − z∗) + t(z∗ − z)).
35Preferential treatment of performance-based compensation ended with the 2017 Tax Cuts and

Jobs Act.
36One may be concerned that taxing bonuses at a lower effective rate will lead to an effort to

disguise base pay as bonuses. This is precisely the reason why performance pay of top CEOs needed
to be qualified (i.e., based on objective targets and administered by an external committee) to remain
deductible (Rose &Wolfram, 2002). Such a qualification is costly and, arguably, not practical beyond
top earners.
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generally. Consider the following policy experiment. Raise the marginal tax rate on

base pay from τ to τ + δz and simultaneously lower the marginal tax rate on bonuses

from τ to τ − δb, with δz, δb > 0, thus effectively decoupling their tax treatment. We

engineer this perturbation in such a way that every worker’s expected utility remains

constant, which is the case when δz =
ℓb
z
δb for all agents.

37

Proposition 4 Suppose that the utility is logarithmic and the tax schedule is initially

a linear function of total earnings with a positive tax rate. Lowering the marginal

tax rate on bonuses by −δb < 0 and raising the marginal tax rate on base pay by

δz =
ℓb
z
δb > 0 yields a strict improvement in social welfare.

To understand this result, note first that by Lemma 9 in the Appendix, the tax

reform keeps expected utility unchanged, Û(θ) = 0 for all θ, so that the social objec-

tive (11) remains constant. As a result, the tax reform improves social welfare if and

only if it yields a strict gain in government revenue.38 We then show that the tax

reform indeed generates higher tax revenue, by raising the effort level of all agents.

As we show in Lemma 7, both the reduction in the bonus tax rate and the increase

in the base pay tax rate boost labor effort. Therefore, the planner achieves a Pareto

improvement by inducing individuals to work harder while keeping their expected

utility unchanged, thereby freeing up resources available for redistribution.

The intuition behind this result is as follows: Compensating workers with bonuses

for high performance is a constrained efficient way of dealing with agency frictions in

the labor market. Taxing bonuses removes the only instrument at the firm’s disposal

to maintain workers’ incentives for effort. It is, thus, highly distortive. On the other

hand, taxing base pay does not have such a large efficiency cost—on the margin

it even encourages effort. It is therefore optimal to tax bonuses at a lower rate to

minimize distortions, and to tax base pay at a higher rate to provide redistribution.

Optimal Top Tax Rate on Bonuses. Our last theoretical result is the charac-

terization of the optimal top tax rate on bonuses for a given tax schedule on base

pay.39

37Recall from our analysis of Section 1 that with log utility and a linear tax schedule, ℓb/z is
independent of θ.

38This tax revenue can, in turn, be rebated to workers to provide a higher level of redistribution.
39We refrain from optimizing simultaneously over the top tax rate on bonuses and the top tax

rate on base pay for the following reason: Suppose for simplicity that neither bonuses nor base pay
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Let [b∗,∞) denote the highest bonus tax bracket, and τb be the corresponding

marginal tax rate. Let [z∗,∞) denote the interval of base earnings of workers whose

bonus falls in the top bracket (“top earners”). We suppose for simplicity that z∗ is

itself in the top bracket of the base pay tax schedule and denote by τz the correspond-

ing marginal tax rate. Our policy experiment consists of choosing optimally the top

bonus tax rate τb, while keeping the bonus tax schedule Tb(·) below b∗ and the base

pay tax schedule fixed.

Denote the mean frequency-adjusted bonus ℓb among top earners by B. Thus,

tracking changes in B accounts for responses to top tax rate changes along two mar-

gins: the level of bonuses (ℓb̂) and their frequency (ℓ̂b). Second, denote by L the

average probability with which top earners receive a bonus and by Z their aver-

age base pay. Finally, the Pareto coefficient of the bonus distribution ρb is given

by ρb =
E[b|b≥b∗]

E[b|b≥b∗]−b∗
= B/L

B/L−b∗
, where E denotes the expectation over the (observed)

distribution of realized bonuses.

Theorem 3 The optimal top tax rate on bonuses is given by

τb
1− τb

=
1− G̃ − τz

1−τb
κ1eZ − tb−τb

1−τb
κ2eL

ρb eB
, (30)

where tb = Tb(b
∗)/b∗ is the average bonus tax rate at b∗, κ1 = (Z/B)ρb and κ2 = 1−ρb,

and the modified marginal social welfare weight G̃ is derived formally in the Appendix.

The elasticity of mean base earnings eZ can in turn be decomposed as

κ1eZ = εout − ρbεineℓ, (31)

where εout, εineℓ are income-weighted averages of the crowd-in and crowd-out param-

are taxed below the respective thresholds b∗ and z∗, but above these thresholds both forms of pay
are taxed with a rate close to 100 percent. In the standard model, taxing top incomes close to 100
percent is never optimal, as it severely distorts the effort of high-ability workers. In the moral-hazard
model, however, the effort incentives of high-ability types are driven by u(R(z, b)) − u(R(z, 0)) ≈
u(z∗ + b∗) − u(z∗). Thus, effort at the top does not converge to zero, but rather remains at the
constant level implied by z∗ and b∗, and the government essentially extracts all the surplus from
high-ability workers with almost no distortions. This is reminiscent of Stantcheva (2014), where
agency frictions in the labor market (in her case, adverse selection) also allowed the government to
redistribute more than in the standard model. We believe that our result, while technically correct,
is not policy-relevant, since such heavy taxation of performance-pay contracts would motivate firms
to find different ways of incentivizing workers’ effort (e.g., via monitoring), which we do not model
explicitly. Fixing the tax schedule on base pay, on the other hand, yields a well-defined and non-
corner optimum top tax rate on bonuses, as shown in Theorem 3.
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eters, and are defined formally in the Appendix.

It is instructive to compare the optimal bonus tax rate to the benchmark Saez

(2001) formula applied to top bonuses:

τb
1− τb

=
1− G
ρb eB

. (32)

The optimum formula (30) differs from this benchmark in three ways, which are

analogous to those we found when studying the optimal joint tax rate on top earnings

in Theorem 2.

First, the average marginal social welfare weight at the top is adjusted upwards

due to the first-order welfare consequences of crowd-out: We show in the Appendix

that, as long as t is not too high relative to τb, G̃ > G. Intuitively, in response to

an increase in the bonus tax rate, a share of the extra tax burden is endogenously

transmitted to the unlucky workers who have not received a bonus. This lowers the

welfare benefits of this tax increase.

Second, a higher tax on bonuses affects the level of base pay according to the

elasticity eZ . This response can in turn be expressed as the difference between average

crowd-out and crowd-in parameters, as shown in equation (31). If, for instance, the

crowd-out dominates the crowd-in on average, then eZ > 0 and a higher tax on

bonuses results in lower base pay. In this case, the spillover to the base earnings tax

base erodes the tax revenue and reduces the optimal bonus tax rate.

Third, the last term in the numerator of formula (30) is a corrective adjustment

to the efficiency cost of taxation due to the frequency margin responses. A reduction

in aggregate labor effort by eL > 0, and hence in the frequency with which the worker

receives a bonus, does not reduce government revenue as much if, rather than being

taxed uniformly at rate τb, bonuses are taxed at a lower average rate up to b∗. Thus,

if tb < τb, this correction tends to raise the optimal top tax rate.

2.5 Quantitative Analysis

We now adapt the quantitative framework with performance-pay and fixed-pay

jobs of Section 1.4 to study the optimal taxation of top incomes and bonuses. We

proceed in two steps. First, we evaluate the optimal top tax rate on total earnings,

characterized theoretically in Section 2.3. Second, we evaluate the optimal top tax
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Figure 4: Optimal Top Tax Rate on Total Income and SCPE

(a) Calibrated model (utilitarian) (b) Calibrated model (Rawlsian)
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rate on bonuses for a given tax schedule on base earnings, as analyzed in Section 2.4.

Optimal Top Tax Rate on Total Earnings. We approximate the empirical

income tax schedule with a piecewise linear function with two brackets and a lump-

sum transfer. The top bracket starts at z∗ = $500, 000 and applies to approximately

the top 1 percent of earnings. The top tax rate in the status quo is equal to the

marginal tax rate implied by the calibrated CRP tax function at z∗. We choose the

bottom tax rate and the lump-sum transfer by matching the aggregate tax revenue

and the average tax rate at z∗ implied by the calibrated CRP tax. We obtain a top

tax rate of 49 percent, a bottom tax rate of 41 percent, and a lump-sum transfer

of $16,460. This gives us a well-defined notion of top tax rate that we will choose

optimally.

We compute the optimal top tax rate under two social objectives: Rawlsian and

utilitarian. The former maximizes the extraction of revenue from top earners, i.e., it

sets the average marginal welfare weight at the top G̃ to zero in (27). We compare the

optimal top rates with the rates obtained if the policymaker ignored the endogeneity

of earnings risk (Self-Confirming Policy Equilibrium, SCPE). More specifically, a

policymaker in the SCPE ignores the impact of changing the top tax rate on earnings

in the lower bracket and calculates the welfare impact of reforms without accounting

for the crowd-out of private insurance.40 The results are depicted in Figure 4.

40Here we ignore the third discrepancy between the standard and the optimal tax formula, which
comes from the fact that the frequency responses are taxed at a different average tax rate than the
level responses (see Theorem 2). Such a policy mistake would arise if the policymaker in the SCPE
tracked only the aggregate earnings in the top bracket. Instead, we are implicitly assuming that the
policymaker can observe individual earnings and, hence, correctly calculate individual tax burdens.
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We find that the top tax rates chosen in the SCPE and in the optimum are almost

identical: They differ by less than 1 percentage point. The welfare cost of such a

policy mistake is minuscule. Furthermore, and unlike the case of the optimal rate

of progressivity analyzed in Section 1.4, we verify that the welfare cost of ignoring

endogenous earnings risk would not be much different if all workers had performance-

pay contracts. This is because performance-pay contracts are already widely adopted

at the top: They account for 76 percent of earnings in the top bracket.

The right panel of Figure 4 shows that the planner who attempts to maximize

tax revenue (Rawlsian), but does not account for the impact of the top tax rate on

earnings in the lower bracket (SCPE), chooses a top rate that is slightly too low. That

is because a higher top rate leads to higher earnings (and, hence, higher tax revenue)

in the lower bracket. To understand why this is the case, focus on the intermediate

earners whose base pay is in the lower bracket and whose high-level pay is in the top

bracket; this group accounts for 90 percent of the performance-pay workers who are

affected by the top tax rate. By Proposition 3, a higher top tax rate affects their base

pay via two channels: the crowd-out, which reduces it, and the crowd-in, which works

in the opposite direction. We quantify these effects in Table 2. While the crowd-out

is sizable, and on its own would imply a 4 percent fall in base pay, the crowd-in has

an almost equal magnitude and offsets most of this change. As a result, the base pay

level falls only by 0.5 percent on average.41 In addition, the mean frequency at which

solely the base pay is paid out increases by 1.7 percent (second column of Table 2).

Taking into account these level and frequency changes, we obtain that the overall

base earnings of intermediate earners increase, leading to higher tax revenue from

spillovers to the lower bracket.

In contrast to the Rawlsian case, the utilitarian policymaker who ignores the en-

dogeneity of private insurance (SCPE) would choose a top tax rate that is marginally

too high. Effectively, this planner makes two mistakes: It underestimates the tax

revenue from the lower tax bracket(similarly to the Rawlsian planner), and it also

underestimates the negative welfare effect on high-income individuals—this second

mistake is new. Focus again on the intermediate earners. A naive planner would

believe that the tax hike affects only the lucky intermediate workers who receive a

41There is a third effect at play: The tax reform also affects the relative probabilities with which
different intermediate earners receive their base pay; this in turn modifies how the average base
pay among these workers is computed in the first column of Table 2. This effect, however, is small
relative to the crowd-out and crowd-in (0.1 percent).
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Table 2: Impact of top tax rate on base pay of intermediate earners

level z frequency 1− π(ℓ) overall z · (1− π(ℓ))

Status quo (initial) $264,360 0.76 $202,210
+ crowd-out −4.0%
+ crowd-in +3.4%
+ change of relative freq. +0.1%

Rawlsian optimum (final) $263,040 (−0.5%) 0.78 (+1.7%) $204,630 (+1.2%)

Note: Top tax rate is increased from 49.3% (status quo) to 63.1% (Rawlsian optimum). All statistics

are averages over intermediate earners.

Table 3: Impact of top tax rate on earnings risk

intermediate earners top earners
bonus rate β V ar(log z | θ) bonus rate β V ar(log z | θ)

Status quo (initial) 1.05 0.2 1.1 0.22
+ crowd-out +9% +18% +16% +35%
+ crowd-in −18% −38% −10% −26%

Rawlsian optimum (final) 0.95 (−9%) 0.16 (−20%) 1.17 (+6%) 0.24 (+9%)

Note: Top tax rate is increased from 49.3% (status quo) to 63.1% (Rawlsian optimum). All statistics

are averages over either intermediate or top earners.

bonus. However, the resulting crowd-out of private insurance contributes to a lower

level of base pay and, thus, also negatively affects the unlucky intermediate workers.

Although this change in base earnings is mostly offset by the crowd-in effect, its wel-

fare impact remains significant due to the envelope theorem. The negative welfare

impact on top earners, whose base pay is in the top bracket, is similarly underesti-

mated. In our quantitative model, the mistake in the welfare effect dominates that

in the revenue from the lower bracket, leading to a tax rate that is too high relative

to the optimum.

Finally, Table 3 shows how increasing the top tax rate influences the earnings risk

of affected workers. Starting from top earners, who earn both their base pay and

their high-level pay in the top bracket, we find that the crowd-in offsets most (63–75

percent) of the crowd-out when measured either by the mean bonus rate β = log(z̄/z)

or by the mean variance of log earnings conditional on ability. As a result, a strong

increase in the top tax rate raises the earnings risk of top earners, but much less than

the crowd-out alone would suggest.
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The picture is quite different for intermediate workers: for them the crowd-in is

twice as large as the crowd-out. As a result, earnings risk actually falls after an in-

crease in the top tax rate. To understand this, recall that the crowd-in effect is driven

by the endogenous labor effort adjustment. Lemma 7 implies that intermediate earn-

ers adjust their labor effort more than do top earners. This is because intermediate

earners experience an increase in the marginal and the average tax rate on their high-

level pay, both of which reduce effort. In addition, top earners face an increase in the

marginal and average tax rates on their base pay, which mitigates their labor effort

responses. Quantitatively, the mean earnings of intermediate workers fall on average

by 5.6 percent, while those of top workers fall by 3.6 percent, leading to a much more

powerful crowd-in for the former group.

These results highlight that (i) the crowd-in is an important force that we need

to take into account; and (ii) the relative size of the crowd-out and crowd-in depends

on the specifics of the tax reform. In particular, strongly progressive reforms (such as

the one experienced by intermediate earners) lead to a stronger effort response and

magnify the crowd-in effect.

Separate Taxation of Top Bonuses. In Section 2.4 we showed that there are

efficiency gains from taxing bonuses at a lower rate than base pay and characterized

the optimal top bonus tax. In this section we quantify these results. In particular,

we compare our economy in which all earnings are taxed jointly with a single tax

schedule to the economy in which top bonuses are taxed with a separate rate that

is chosen optimally, taking as given the tax on base pay. For simplicity, we assume

that the original joint tax schedule is affine, i.e., it consists of a lump-sum transfer

and a constant marginal tax rate.42 We then suppose that a policymaker can adjust

the tax rate on the top 5 percent of bonuses, taking the rest of the tax schedule as

given. The results are shown in Table 4.

We find that the optimal bonus tax rate can be substantially lower than the

tax on base earnings, and that such a separation can bring sizable welfare benefits,

particularly when the initial joint tax rate is high. For instance, consider an initial

joint tax rate that is chosen optimally according to a utilitarian or Rawlsian social

welfare criterion. In the case of utilitarian social preferences, the optimal tax rate

42The assumption that the initial joint tax schedule is affine allows us to represent the tax schedule,
both before and after the reform, in the additively separable form: T (z, b) = Tz(z) + Tb(b), which
significantly simplifies the analysis.
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Table 4: Optimal Tax on Top Bonuses for a Given Base Pay Tax

Utilitarian Rawlsian
joint tax rate (initial) bonus tax rate welfare gain bonus tax rate welfare gain

40% 36.8% 0.0% 38.9% 0.0%
60% 42.1% 0.3% 45.1% 0.4%
62%* 42.8% 0.4% 45.8% 0.5%
80% 51.3% 1.6% 54.5% 1.8%
84%** 54.5% 2.2% 57.5% 2.3%

Note: Welfare gain from the optimal separation of the tax on top 5% of bonuses (taking as given

the tax on base pay and on bonuses below the top) is expressed as an equivalent percentage change

of consumption. * Optimal Utilitarian joint tax rate. ** Optimal Rawlsian joint tax rate.

on top bonuses would then be 19 percentage points lower than that on the base pay

(42.9 percent vs. 62 percent), with a welfare gain from separating the tax treatment

of the two forms of pay equal to 0.4 percent of consumption. In the case of Rawlsian

social preferences, it is optimal to cut the top bonus tax rate relative to the base pay

tax rate by 27 percentage points (57.5 percent vs. 84 percent), with a welfare gain of

2.4 percent of consumption. Note that the welfare gains from separating the tax rates

increase with the size of the initial tax rate. This is because, for a (sub-optimally)

low initial joint tax rate, the efficiency gains from lowering the tax on bonuses are

countervailed by the redistributive losses from smaller taxes on the bonuses of the

most productive agents.

Conclusion

We have set up and analyzed a tractable moral-hazard environment in which

firms design labor contracts that trade off effort incentives with insurance against

performance shocks. The government uses the tax-and-transfer system to redistribute

income across workers who differ in uninsurable ex ante ability. The key feature of

our model is that earnings risk is endogenous and has a productive role as it motivates

labor effort. We found that standard models that ignore the endogeneity of pre-tax

earnings risk come very close to accurately evaluating the impact of taxes on labor

contracts. We derived optimal tax formulas for the overall rate of tax progressivity, the

top tax rate on total earnings, and the top tax rate on bonuses. Perhaps surprisingly,
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we showed that it is optimal to tax bonuses at a strictly lower rate than base earnings.

It would be interesting to extend our analysis in several directions. First, we only

considered the impact of taxes on compensation for already existing performance-pay

jobs. One could also model the incentives of firms to create such performance-pay

jobs (rather than monitored jobs) in the first place. Second, in our model, private

markets are perfectly competitive and constrained efficient. In other words, we gave

private markets their best chance of making government policy redundant. Introduc-

ing market power and frictions such as adverse selection in private markets, whereby

firms cannot perfectly observe workers’ ability are natural next steps. Third, our

theoretical analysis delivers predictions regarding the impact of various types of tax

reforms on the structure of incentive-based compensation. Testing these predictions

empirically should be particularly fruitful.
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A Proofs of Section 1

Proof of Proposition 1. Defining β by z̄ = eβz, the free-entry condition (4) can

be expressed as

(1− ℓ)z + ℓeβz = θℓ.

This immediately leads to the solution (7) for the equilibrium values of the base pay

z and high-performance pay z̄. From a firm’s viewpoint, the participation constraint

(3) determines the base pay z given ℓ and the reservation value U . With log utility

and a CRP tax schedule, it reads:

log
1− τ

1− p
+ (1− p)[(1− ℓ) log(z) + ℓ log(z̄)]− h(ℓ) = U.

The bonus rate β ≡ log(z̄) − log(z) is given as a function of the desired effort level

ℓ by the incentive constraint (6). Substituting β = h′(ℓ)/(1 − p) into the previous

equation, we get:

log
1− τ

1− p
+ (1− p)

[
log(z) + ℓ

h′(ℓ)

1− p

]
− h(ℓ) = U.

Solving for z leads to:

z =

(
1− τ

1− p

)−1/(1−p)

e
1

1−p
Ue

1
1−p

[h(ℓ)−ℓh′(ℓ)] (33)

and hence

z̄ =

(
1− τ

1− p

)−1/(1−p)

e
1

1−p
Ue

1
1−p

[h(ℓ)+(1−ℓ)h′(ℓ)].

Substituting these expressions into the free-entry condition determines the reservation

value U as a function of labor effort:

e
1

1−p
U =

(
1− τ

1− p

)1/(1−p)

e−
1

1−p
[h(ℓ)−ℓh′(ℓ)] θℓ

1− ℓ+ ℓe
1

1−p
h′(ℓ)

,

i.e.,

U = log

(
1− τ

1− p

)
+ (1− p) log(θℓ)− h(ℓ) + (1− p)[ℓβ − log(1− ℓ+ ℓeβ)].
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Noting that u(Ez) = log(θℓ) and E[u(z)] = (1− ℓ) log z+ ℓ log(eβz) = log z+ ℓβ, and

using expression (7), we obtain:

U = v(θℓ)− h(ℓ) + (1− p){E[u(z)]− u(Ez)}.

Finally, the first-order condition for effort is obtained by differentiating the firm’s

expected profit θℓ− [z + ℓb] and equating it to zero:

θ = b+
∂z

∂ℓ
+ ℓ

∂b

∂ℓ
= b+

1

1− p
ℓh′′(ℓ)ze

1
1−p

h′(ℓ) + [1− ℓ+ ℓe
1

1−p
h′(ℓ)]

∂z

∂ℓ
,

where the second equality follows from the fact that b = (eβ − 1)z by definition, with

β = 1
1−p

h′(ℓ) since the contract must respect the incentive constraint (6). Since the

firm takes as given the worker’s reservation utility U , we differentiate equation (33)

to obtain:
∂z

∂ℓ
= −z 1

1− p
ℓh′′(ℓ).

Substituting into the previous expression gives

θ = b+ [e
1

1−p
h′(ℓ) − 1]z

1

1− p
ℓ(1− ℓ)h′′(ℓ),

which leads to (8). Note that in equilibrium, we can use (7) to rewrite this equation

as

1 =
ℓ(eβ − 1)

1 + ℓ(eβ − 1)

[
1 +

1

1− p
ℓ(1− ℓ)h′′(ℓ)

]
,

and hence

ℓ(1− ℓ) =
1

β(eβ − 1)

h′(ℓ)

ℓh′′(ℓ)
.

This expression shows that the optimal effort level ℓ is independent of the worker’s

productivity θ.

Proof of Lemma 1. The first order condition (8) for labor effort can be rewritten

as 1− p = ℓ2(1− ℓ)h′′(ℓ)[eh
′(ℓ)/(1−p) − 1]. Apply the implicit function theorem to get:

εℓ,1−p ≡
1− p

ℓ

∂ℓ

∂(1− p)
=

1 + βeβ

eβ−1

2−3ℓ
1−ℓ

+ βeβ

eβ−1
ℓh′′(ℓ)
h′(ℓ)

+ ℓh′′′(ℓ)
h′′(ℓ)

.
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Recall that
∂Π

∂ℓ
= θ − b

[
1 +

ℓ(1− ℓ)h′′(ℓ)

1− p

]
.

Differentiating this expression using ∂z
∂ℓ

= −ℓz h′′(ℓ)
1−p

and ∂b
∂ℓ

= [z + (1 − ℓ)b]h
′′(ℓ)
1−p

leads

to

∂2Π

∂ℓ2
= −[z + (2− 3ℓ)b]

h′′(ℓ)

1− p
− ℓ(1− ℓ)[z + (1− ℓ)b]

(h′′(ℓ)
1− p

)2
− bℓ(1− ℓ)

h′′′(ℓ)

1− p
.

The second-order condition for optimal labor effort, ∂2Π
∂ℓ2

≤ 0, can therefore be ex-

pressed as

[
ℓβ
ℓh′′(ℓ)

h′(ℓ)
− 1

1− ℓ

1

eβ − 1

]
−
[2− 3ℓ

1− ℓ
+

βeβ

eβ − 1

ℓh′′(ℓ)

h′(ℓ)
+
ℓh′′′(ℓ)

h′′(ℓ)

]
≤ 0,

where we used the fact that z/b = 1/(eβ−1). The first-order condition for labor effort

implies that the first square bracket is equal to zero. Therefore, we obtain εℓ,1−p > 0.

Now, suppose that the disutility of effort is isoelastic, h(ℓ) = ℓ1+1/εFℓ

1+1/εFℓ
with εFℓ constant.

We can then rewrite the labor effort elasticity as

εℓ,1−p =
εFℓ

1 + 1−ℓ/(1−ℓ)
1+βeβ/(eβ−1)

εFℓ
.

This expression implies that εℓ,1−p >
εFℓ

1+εFℓ
, and that εℓ,1−p > εFℓ if and only if

1− ℓ
1−ℓ

< 0, i.e., ℓ > 1
2
.

Proof of Lemma 2. This result follows immediately from equation (6) and Lemma

1.

Proof of Lemma 3. Differentiating equation (9) gives

∂U(θ)

∂(1− p)
=

[
− 1

1− p
+ log(ℓθ) +

(
1− p

ℓ
− h′(ℓ)

)
∂ℓ

∂(1− p)

]
+ (log(Ez)− E[log z])

− (1− p)

{[
eβ − 1

1 + ℓ(eβ − 1)
− β

]
∂ℓ

∂(1− p)
+

(eβ − 1)ℓ(1− ℓ)

1 + ℓ(eβ − 1)

∂β

∂(1− p)

}
.
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But recall that
dU(θ)
d(1− p)

= − 1

1− p
+ log(ℓθ)

and that

∂β

∂(1− p)
=

β

1− p
[εβ,ℓεℓ,1−p + εβ,1−p] =

∂β

∂ℓ

∂ℓ

∂(1− p)
+

β

1− p
εβ,1−p.

Substituting into the previous equation and using ∂β
∂ℓ

= β
ℓ
ℓh′′(ℓ)
h′(ℓ)

and eβ−1
1+ℓ(eβ−1)

= b
Ez

leads to

∂U(θ)

∂(1− p)
=

dU(θ)
d(1− p)

+ (log(Ez)− E[log z])− b

Ez
βℓ(1− ℓ)εβ,1−p

+
1− p

ℓ

[
1− ℓh′(ℓ)

1− p
− ℓ(eβ − 1)

1 + ℓ(eβ − 1)
+ βℓ− β(eβ − 1)ℓ(1− ℓ)

1 + ℓ(eβ − 1)

ℓh′′(ℓ)

h′(ℓ)

]
∂ℓ

∂(1− p)
.

Using the first-order condition for labor effort β(eβ − 1)ℓ(1 − ℓ) ℓh
′′(ℓ)

h′(ℓ)
= 1 derived in

the proof of Proposition 1, we obtain that the term in square brackets that multiplies
∂ℓ

∂(1−p)
is equal to zero. This is a manifestation of the envelope theorem in our setting.

This easily yields expression (10).

Proof of Theorem 1. The proof proceeds in several steps. We first derive the effect

of a change in progressivity on the social objective. Second, we evaluate its impact on

government revenue by decomposing it into a statutory effect, a standard behavioral

effect with exogenous private insurance, and fiscal externalities due to crowd-out and

crowd-in. Third, we compute the marginal value of public funds. Finally, we equate

the sum of these effects to zero to obtain our characterization of optimal tax progres-

sivity.

Social Welfare Effect. Denote the change in the social welfare objective resulting from

a change in tax progressivity by

WE =

∫
α(θ)

∂U(θ)

∂(1− p)
dF (θ).
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By equation (10), we have

WE = − 1

1− p
+

∫
α(θ) log(ℓθ)dF (θ) + log(Ez)− E[log z]− b

Ez
βℓ(1− ℓ)εβ,1−p,

where log(Ez)−E[log z] = log(1+ℓ(eβ−1))−βℓ. Now suppose that log θ ∼ N (µθ, σ
2
θ)

and α(θ) ∝ e−a log θ. Note that, if a random variable x is normally distributed with

mean µ and variance σ2, we have E[e−ax] = e−aµ+ 1
2
a2σ2

. Moreover, letting φ denote

the pdf of x, we have φ′(x) = −x−µ
σ2 φ(x), so that

E[(x− µ)e−ax] =

∫
(x− µ)e−axφ(x)dx = −σ2

∫
e−axφ′(x)dx.

An integration by parts implies that this expression is equal to −aσ2
∫
e−axφ(x)dx =

−aσ2e−aµ+ 1
2
a2σ2

. Therefore, we obtain E[xe−ax] = (µ− aσ2)e−aµ+ 1
2
a2σ2

. Hence,∫
α(θ) log(ℓθ)dF (θ) = log ℓ+

∫
e−a log θ log θf(θ)dθ∫
e−a log θf(θ)dθ

= log ℓ+ µθ − aσ2
θ .

Statutory Revenue Effect. Government revenue is equal to∫
E[T (z)]dF (θ) =

∫
[(1− ℓ)T (z) + ℓT (z̄)]dF (θ) = Z − C,

where Z ≡
∫
E[z]dF (θ) is aggregate income, and C ≡

∫
E[R(z)]dF (θ) is aggregate

consumption. Under the assumptions of Theorem 1, we have

C =
1− τ

1− p

1 + ℓ(e(1−p)β − 1)

[1 + ℓ(eβ − 1)]1−p

∫
(θℓ)1−pdF (θ), (34)

with ∫
(θℓ)1−pdF (θ) =

[
(1− p)µθ +

1

2
(1− p)2σ2

θ

]
ℓ1−p.

The statutory (or mechanical) effect is obtained by evaluating the change in govern-

ment revenue following a change in progressivity keeping the contract (ℓ, z, z̄) and

hence β fixed, that is,

ME =

∫
∂E[T (z)]
∂(1− p)

∣∣∣∣
ℓ,z,z̄

dF (θ)
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We obtain:

ME =

[
1

1− p
− βℓe(1−p)β

1 + ℓ(e(1−p)β − 1)
+ log[1 + ℓ(eβ − 1)]−

∂ log
∫
(θℓ)1−pdF (θ)

∂(1− p)

]
C,

with

∂

∂(1− p)
log

∫
(θℓ)1−pdF (θ) = log ℓ+

∂

∂(1− p)
log

∫
θ1−pdF (θ)

= log ℓ+ µθ + (1− p)σ2
θ .

Behavioral Effect with Exogenous Private Insurance. By equation (7), in response to

a change in progressivity, the income levels change (in percentage terms) by

∂ log z

∂ log(1− p)
=

z

Ez
εℓ,1−p − βℓ

z̄

Ez
(εβ,1−p + εβ,ℓεℓ,1−p),

where we used the fact that 1− ℓb
Ez = z

Ez , and

∂ log z̄

∂ log(1− p)
=

z

Ez
εℓ,1−p + β(1− ℓ)

z

Ez
(εβ,1−p + εβ,ℓεℓ,1−p).

The standard behavioral effect of an increase in 1 − p is equal to the change in

government revenue triggered by labor effort responses ℓ only – that is, keeping the

bonus rate β fixed. We get43

BE =
1

1− p

∫ (
E
[
T ′(z)z

∂ log z

∂ log(1− p)

∣∣∣∣
β

]
+ (T (z̄)− T (z))ℓεℓ,1−p

)
dF (θ)

=
1

1− p

∫
E[T ′(z)z]

z

Ez
εℓ,1−pdF (θ) +

∫
ℓ(T (z̄)− T (z))εℓ,1−pdF (θ).

Since εℓ,1−p and z
Ez are constant (independent of θ), this expression can be rewritten

43Note that, in a model with only intensive-margin responses to taxes, i.e., with an exogenous
probability π of earning the bonus, the free-entry condition Ez ≡ (1 − π)z + πz̄ = ℓθ would imply

∂ log z
∂ log(1−p) = ∂ log z̄

∂ log(1−p) = εℓ,1−p, and the change in government revenue caused by a change in

progressivity would be equal to εℓ,1−p

∫
E[T ′(z)z]dF (θ). This is the expression we would obtain, for

instance, in the full-insurance benchmark.
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as:

BE =
1

1− p

[
z

Ez

∫
E[T ′(z)z]dF (θ) + ℓ

∫
(T (z̄)− T (z))dF (θ)

]
εℓ,1−p.

With a CRP tax schedule, we can write∫
E[T ′(z)z]dF (θ) =

∫
E[z − (1− τ)z1−p]dF (θ) = Z − (1− p)C.

The post-tax bonus rate is equal to log c̄
c
= log

1−τ
1−p

z̄1−p

1−τ
1−p

z1−p = (1 − p)β. Hence, writing

Ec = (1− ℓ)c+ ℓe(1−p)βc leads to 1
1+ℓ(e(1−p)β−1)

= c
Ec and

e(1−p)β

1+ℓ(e(1−p)β−1)
= c̄

Ec . Therefore,
b
Ez and γ

Ec are constant, where γ ≡ c̄ − c. We can thus write the contribution of

extensive margin adjustments to the excess burden of the rise in progressivity as

follows:∫
(T (z̄)− T (z))dF (θ) =

∫ [(
z̄ − 1− τ

1− p
z̄1−p

)
−
(
z − 1− τ

1− p
z1−p

)]
dF (θ)

=

∫
bdF (θ)−

∫
γdF (θ) =

b

Ez

∫
EzdF (θ)− γ

Ec

∫
EcdF (θ) =

b

Ez
Z − γ

Ec
C.

Collecting terms, and using the fact that ℓ γ
Ec = 1− c

Ec , we obtain

BE =
1

1− p

[
z

Ez
Z − (1− p)

z

Ez
C + ℓ

b

Ez
Z − ℓ

γ

Ec
C

]
εℓ,1−p

=− 1

1− p

[
1− Z

C
+ (1− p)

z

Ez
− c

Ec

]
εℓ,1−pC.

Fiscal Externalities from Crowd-Out and Crowd-In. Finally, the change in govern-

ment revenue due to the endogeneity of the bonus rate β, keeping effort ℓ fixed,

is given by

FE =
1

1− p

∫ [
(1− ℓ)T ′(z)z

∂ log z

∂ log(1− p)

∣∣∣∣
ℓ

+ ℓT ′(z̄)z̄
∂ log z̄

∂ log(1− p)

∣∣∣∣
ℓ

]
dF (θ)

=
1

1− p
[εβ,1−p + εβ,ℓεℓ,1−p]βℓ(1− ℓ)

[
z

Ez

∫
T ′(z̄)z̄dF (θ)− z̄

Ez

∫
T ′(z)zdF (θ)

]
,

where the second equality uses the expressions derived above for the earnings elastic-
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ities. The term in square brackets can be rewritten as

z

Ez

∫
[z̄ − (1− τ)z̄1−p]dF (θ)− z̄

Ez

∫
[z − (1− τ)z1−p]dF (θ)

=(1− τ)
1

1 + ℓ(eβ − 1)

eβ − e(1−p)β

[1 + ℓ(eβ − 1)]1−p

∫
(θℓ)1−pdF (θ)

=
1

1− ℓ
(1− p)

[
eβ

1 + ℓ(eβ − 1)
− e(1−p)β

1 + ℓ(e(1−p)β − 1)

]
C,

where the last equality follows from the expression (34) for C derived above. Thus,

we obtain

FE = βℓ

[
eβ

1 + ℓ(eβ − 1)
− e(1−p)β

1 + ℓ(e(1−p)β − 1)

]
[εβ,1−p + εβ,ℓεℓ,1−p]C.

Marginal Value of Public Funds. The marginal value of public funds λ, when the tax

code is restricted to the CRP class, is defined by the effect on social welfare of an

increase the tax parameter τ , normalized to raise government revenue by 1 dollar.

At the optimum tax schedule, λ is the Lagrange multiplier of the government budget

constraint (12). We have

∂
∫
E[T (z)]dF (θ)

∂τ
=
∂Z

∂τ
− ∂C

∂τ
.

The first-order condition for effort (8) implies that ∂ℓ
∂τ

= 0. Thus, ∂Z
∂τ

= 0 and, using

expression (34), ∂C
∂τ

= − C
1−τ

. Hence, we obtain

∂
∫
E[T (z)]dF (θ)

∂τ
=

C

1− τ
.

The impact on social welfare of the normalized tax change is given by

λ =

(
C

1− τ

)−1 ∫
α(θ)

∂U(θ)

∂τ
dF (θ) =

(
C

1− τ

)−1 ∫
α(θ)

1

1− τ
dF (θ) =

1

C
.
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Optimal Rate of Progressivity. The optimal rate of progressivity is the solution to

0 =
∂
∫
α(θ)U(θ)dF (θ)

∂(1− p)
+ λ

∂
∫
E[T (z)]dF (θ)
∂(1− p)

= WE +
1

C
[ME +BE + FE].

That is, the optimal level of p satisfies

0 =− 1

1− p
+ log ℓ+ µθ − aσ2

θ − log(1 + ℓ(eβ − 1)) + βℓ− b

Ez
βℓ(1− ℓ)εβ,1−p

+
1

1− p
− βℓe(1−p)β

1 + ℓ(e(1−p)β − 1)
+ log[1 + ℓ(eβ − 1)]− (log ℓ+ µθ + (1− p)σ2

θ)

− 1

1− p

[
1− Z

C
+ (1− p)

z

Ez
− c

Ec

]
εℓ,1−p

+ βℓ

[
eβ

1 + ℓ(eβ − 1)
− e(1−p)β

1 + ℓ(e(1−p)β − 1)

]
[εβ,1−p + εβ,ℓεℓ,1−p].

Rearranging terms, this formula can be rewritten as

0 =− (1− p+ a)σ2
θ − βℓ(1− ℓ)

e(1−p)β − 1

1 + ℓ(e(1−p)β − 1)

− 1

1− p

[
1− Z

C
+ (1− p)

z

Ez
− c

Ec

]
εℓ,1−p − βℓ(1− ℓ)

e(1−p)β − 1

1 + ℓ(e(1−p)β − 1)
εβ,1−p

+ βℓ

[
eβ

1 + ℓ(eβ − 1)
− e(1−p)β

1 + ℓ(e(1−p)β − 1)

]
εβ,ℓεℓ,1−p.

We saw that 1
1+ℓ(eβ−1)

= z
Ez ,

eβ

1+ℓ(eβ−1)
= z̄

Ez ,
1

1+ℓ(e(1−p)β−1)
= c

Ec , and
e(1−p)β

1+ℓ(e(1−p)β−1)
= c̄

Ec .

We can therefore rewrite the optimal tax equation as (recall that γ ≡ c̄− c)

(1− p+ a)σ2
θ + βℓ(1− ℓ)

γ

Ec
(1 + εβ,1−p)

=

[
1

1− p

Z

C
−
(
z

Ez
+

ℓ

1− p

γ

Ec

)]
εℓ,1−p + βℓ

( z̄

Ez
− c̄

Ec

)
εβ,ℓεℓ,1−p.

Recall that V (log z) = β2ℓ(1−ℓ), z̄
Ez−

c̄
Ec = (1−ℓ)( b

Ez−
γ
Ec), and

Z
C
= 1+ G

Z−G
≡ 1+ g

1−g
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where g is the ratio of public expenditures G to output Z = C +G. We thus get

(1− p+ a)σ2
θ + V(log z)

1

β

γ

Ec
(1 + εβ,1−p)

=

[
g/(1− g) + p

1− p
+ ℓ

(
b

Ez
− 1

1− p

γ

Ec

)]
εℓ,1−p + V(log z)

1

β

(
b

Ez
− γ

Ec

)
εβ,ℓεℓ,1−p.

Dividing through by (1− p) and rearranging terms leads to

p

(1− p)2
=

(1 + a
1−p

)σ2
θ + V(log z) 1

(1−p)β
γ
Ec(1 + εβ,1−p)

εℓ,1−p

[
(1 + g

(1−g)p
) + 1−p

p
ℓ( b

Ez −
1

1−p
γ
Ec)
]
+ V(log z)1−p

βp
( b
Ez −

γ
Ec)εβ,ℓεℓ,1−p

Note that, to a second order as β → 0 (keeping ℓ fixed), we get

κ1V(log z) =
βℓ(1− ℓ)

1− p

e(1−p)β − 1

1 + ℓ(e(1−p)β − 1)
∼ β2ℓ(1− ℓ) = V(log z)

κ2V(log z) = βℓ(1− ℓ)

[
eβ − 1

1 + ℓ(eβ − 1)
− e(1−p)β − 1

1 + ℓ(e(1−p)β − 1)

]
∼ pV(log z).

Note that κ2 > 0 if and only if eβ−1
1+ℓ(eβ−1)

= e(1−p)β−1
1+ℓ(e(1−p)β−1)

, which easily leads to p > 0.

Extension to a model with fixed-pay jobs. Let spp be the fraction of performance-pay

(or “moral-hazard”) jobs, and sfp the fraction of fixed-pay jobs in the economy. The

welfare effect becomes:

WE =− 1

1− p
+ spp(log ℓpp + µθ,pp) + (1− spp)(log ℓfp + µθ,fp)

+ spp

[
logEzpp − E log zpp −

bpp
Ezpp

βℓpp(1− ℓpp)εβ,1−p

]
.

Aggregate consumption is equal to C = sppCpp + (1− spp)Cfp, with

Cpp =
1− τ

1− p

1 + ℓpp(e
(1−p)β − 1)

[1 + ℓpp(eβ − 1)]1−p

[
(1− p)µθ,pp +

1

2
(1− p)2σ2

θ,pp

]
ℓ1−p
pp

Cfp =
1− τ

1− p

[
(1− p)µθ,fp +

1

2
(1− p)2σ2

θ,fp

]
ℓ1−p
fp .
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The mechanical effect can then be written as

ME =
1

1− p
C +

[
− log ℓfp − µθ,fp − (1− p)σ2

θ,fp

]
(1− spp)Cfp

+

[
− βℓppe

(1−p)β

1 + ℓpp(e(1−p)β − 1)
+ log(1 + ℓpp(e

β − 1))− log ℓpp − µθ,pp − (1− p)σ2
θ,pp

]
sppCpp.

The behavioral effect of the perturbation is equal to

BE =
1

1− p

[
Zfp

Cfp

− (1− p)

]
εℓfp,1−p(1− spp)Cfp

− 1

1− p

[
1− Zpp

Cpp

+ (1− p)
zpp
Ezpp

−
cpp
Ecpp

]
εℓpp,1−psppCpp

where Zi is the aggregate output of jobs of type i, and zpp/Ezpp and cpp/Ecpp are

constants defined as above. Finally, the fiscal externalities amount to

FE = βℓpp

[
eβ

1 + ℓpp(eβ − 1)
− e(1−p)β

1 + ℓpp(e(1−p)β − 1)

]
[εβ,1−p + εβ,ℓεℓ,1−p]sppCpp.

The optimal rate of progressivity satisfies 0 = WE + 1
C
[ME +BE + FE]. Using the

previous expressions and rearranging terms following the same steps as above leads

to
p

(1− p)2
=

Σ2
θ +

sppCpp

C
κ1(1 + εβ,1−p)V(log zpp)− κ4

Eℓ,1−p +
sppCpp

C
ℓppκ3εℓpp,1−p +

sppCpp

C
κ2εβ,ℓppεℓpp,1−pV(log zpp)

where we denote the average variance of abilities by

Σ2
θ =

sppCpp

C
σ2
θ,pp +

(1− spp)Cfp

C
σ2
θ,fp,

the average labor supply elasticity by

Eℓ,1−p =
sppCpp

C

(
1 +

1

p

(
Zpp

Cpp

− 1

))
εℓpp,1−p+

(1− spp)Cfp

C

(
1 +

1

p

(
Zfp

Cfp

− 1

))
εℓfp,1−p,
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the constants κ1, κ2, κ3 by

κ1 =
1

β(1− p)

(
c̄pp − cpp
Ecpp

+
1− Cpp

C
Cpp

C

z̄pp − zpp
Ezpp

)

κ2 =
1− p

βp

(
z̄pp − zpp
Ezpp

−
c̄pp − cpp
Ecpp

)
κ3 =

1− p

p

(
z̄pp − zpp
Ezpp

− 1

1− p

c̄pp − cpp
Ecpp

)
and the constant κ4 is given by

κ4 =
1

1− p
(1− spp)

(
1− Cfp

C

)
[µθ,fp + log ℓfp]

+
1

1− p
spp

(
1− Cpp

C

)[
µθ,pp + log ℓpp + log

zpp
Ezpp

+ βℓpp
z̄pp
Ezpp

]
.

This concludes the proof.

B Proofs of Section 2

Concavity of the Utility of Earnings v. Our analysis requires that the utility of

earnings z 7→ v(z) ≡ u(R(z)) is concave. It is easy to show that this is equivalent

to p1(z)p2(z) > −γ(z) where γ(z) ≡ −R(z)u′′(R(z))
u′(R(z))

is the agent’s coefficient of relative

risk aversion, and p1(z) ≡ 1−T (z)/z
1−T ′(z)

, p2(z) ≡ zT ′′(z)
1−T ′(z)

are two measures of the local rate

of progressivity of the tax schedule: the parameter p1(z) is the ratio of the average

and marginal retention rates, and p2(z) is (minus) the elasticity of the retention rate

with respect to income. If the tax schedule has a constant rate of progressivity p

(CRP), these variables are respectively equal to 1
1−p

and p. When we characterize

the optimal tax schedule within the CRP class, we assume that u(c) = log c which

implies that γ(z) = −1. It is easy to verify that in this case the above restriction is

always satisfied regardless of the value of p.

Proof of Lemma 4. Denote the agent’s expected utility of effort ℓ by

V (ℓ) ≡ (1− ℓ)u(R(z(θ))) + ℓu(R(z(θ), b(θ)))− h(ℓ).
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The first-order condition reads V ′(ℓ) = 0, where

V ′(ℓ) = u(R(z(θ), b(θ)))− u(R(z(θ)))− h′(ℓ).

We then have

V ′′(ℓ) = −h′′(ℓ) < 0,

where the inequality follows from the convexity of the disutility of effort. Thus, the

agent’s problem is concave and, as long as the effort choice is interior, the first-order

condition is necessary and sufficient.

Proof of Proposition 2. The participation constraint reads:

(1− ℓ)v(z, 0) + ℓv(z, b)− h(ℓ) = U(θ),

and the local incentive constraint reads:

v(z, b)− v(z, 0) = h′(ℓ).

Solving this linear system of equations for v(z, 0) and v(z, b) as functions of ℓ and U(θ)

immediately delivers equations (16) and (17). The optimal effort level ℓ(θ) maximizes

the firm’s profit ℓθ − (z + ℓb) subject to the participation and incentive constraints,

taking the reservation value U(θ) as given. The first-order condition reads:

θ = b+
∂z

∂ℓ
+ ℓ

∂b

∂ℓ
.

Applying the implicit function theorem to equations (16) and (17) leads to

v1(z, 0)
∂z

∂ℓ
= −ℓh′′(ℓ)

and

v1(z, b)
∂z

∂ℓ
+ v2(z, b)

∂b

∂ℓ
= (1− ℓ)h′′(ℓ).

Solving for ∂z
∂ℓ
, ∂b
∂ℓ

and substituting into the first-order condition yields

θ = b−
[
1− ℓ

v1(z, b)

v2(z, b)

]
1

v1(z, 0)
ℓh′′(ℓ) +

1

v2(z, b)
ℓ(1− ℓ)h′′(ℓ).
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Rearranging terms and noting that v1(z,b)
v2(z,b)

= R1(z,b)
R2(z,b)

leads to equation (18). Finally, the

zero-profit condition z + ℓb = ℓθ pins down the equilibrium reservation utility U(θ).

B.1 Incidence and Optimal Taxation on Total Earnings

Proof of Lemma 5. Suppose that the tax system is over total earnings, so that

R(z, b) ≡ R(z̄+b) for all b ≥ 0. Equations (16) and (17), which characterize the equi-

librium base pay and bonus for a given a recommended effort level ℓ and reservation

utility U(θ), can then be rewritten as:

u(R(z))− h(ℓ) = U(θ)− ℓh′(ℓ)

u(R(z̄))− h(ℓ) = U(θ) + (1− ℓ)h′(ℓ).

Consider a reform δR̂ : R+ → R+ of the tax schedule, where δ ∈ R. Denote by ẑ

and ˆ̄z the Gateaux derivatives of base pay and high-performance pay following this

reform, and by ℓ̂ and Û those of labor effort and reservation utility. To a first order

as δ → 0, the values of ẑ and ˆ̄z are the solution to the following system:

u[R(z + δẑ) + δR̂(z)]− h(ℓ+ δℓ̂) = U(θ) + δÛ − (ℓ+ δℓ̂)h′(ℓ+ δℓ̂)

u[R(z̄ + δ ˆ̄z) + δR̂(z̄)]− h(ℓ+ δℓ̂) = U(θ) + δÛ + (1− ℓ− δℓ̂)h′(ℓ+ δℓ̂).

Linearizing this system around the initial equilibrium leads to

u′(R(z))R̂(z) +R′(z)u′(R(z))ẑ − h′(ℓ)ℓ̂ = Û − [h′(ℓ) + ℓh′′(ℓ)]ℓ̂

u′(R(z̄))R̂(z̄) +R′(z̄)u′(R(z̄))ˆ̄z − h′(ℓ)ℓ̂ = Û + [−h′(ℓ) + (1− ℓ)h′′(ℓ)]ℓ̂.

Rearranging terms and noting that R′u′ = v′ leads to equations (19) and (20).

Proof of Lemma 6. The perturbed free-entry condition reads:

(z + δẑ) + (ℓ+ δℓ̂)(b+ δb̂) = θ(ℓ+ δℓ̂).

Linearizing this system around the initial equilibrium as δ → 0 leads to ẑ+ℓb̂+bℓ̂ = θℓ̂
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or, since b̂ = ˆ̄z − ẑ,

(1− ℓ)ẑ + ℓˆ̄z = (θ − b)ℓ̂.

Substituting expressions (19) and (20) into this equation and rearranging terms, we

obtain [
1− ℓ

v′(z)
+

ℓ

v′(z̄)

]
Û =

1− ℓ

R′(z)
R̂(z) +

ℓ

R′(z̄)
R̂(z̄)

+

[
θ − b−

(
1

v′(z̄)
− 1

v′(z)

)
ℓ(1− ℓ)h′′(ℓ)

]
ℓ̂.

But the first-order condition for labor effort (18) when taxes are levied on total

earnings can be written as

θ = b+

[
1

v′(z̄)
− 1

v′(z)

]
ℓ(1− ℓ)h′′(ℓ). (35)

Thus, the Gateaux derivative of expected utility is given by

Û =
(1− ℓ) R̂(z)

R′(z)
+ ℓ R̂(z̄)

R′(z̄)

(1− ℓ) 1
v′(z)

+ ℓ 1
v′(z̄)

,

which is equal to expression (21).

Lemma 8 Suppose that the initial tax schedule is piecewise linear. The effect of a

tax reform R̂ on labor effort ℓ is given by:

ℓ̂

ℓ
= εℓ,R′(z)

R̂′(z)

R′(z)
+ εℓ,R′(z̄)

R̂′(z̄)

R′(z̄)
+ εℓ,R(z)

R̂(z)

R′(z)z
+ εℓ,R(z̄)

R̂(z̄)

R′(z̄)z̄
(36)

where the elasticities of labor effort with respect to the marginal tax rates at z and z̄

are respectively given by:

εℓ,R′(z) = − 1

D

(
ℓb

z
εin

)
and εℓ,R′(z̄) =

1

D

(
ℓb

z
εin + 1

)
and the elasticities of labor effort with respect to the average tax rates at z and z̄ are
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respectively given by:

εℓ,R(z) = − 1

D

(
1− εout +

(1− ℓ)z

E[1/v′]
E

)
and εℓ,R(z̄) = − 1

D

(
−εout +

(1− ℓ)z

E[1/v′]
E

)
,

where we denote:

D ≡ −ℓ
2

z

∂2Π(θ)

∂ℓ2
> 0 and E ≡

(
ℓb

z
εin + 1

)
−u′′(c̄)
(u′(c̄))2

−
(
ℓb

z
εin

)
−u′′(c)
(u′(c))2

.

In particular, if the utility function u is logarithmic, then we have E = 1 and εℓ,R(z̄) <

0 if and only if R′(z) > R(z)
z

.

Proof of Lemma 8. The first-order condition (35) for labor effort, expressed at the

perturbed tax schedule and to a first order as δ → 0, reads:

θ = b+ δb̂+

[
1

[R′(z̄) + δ(R̂′(z̄) +R′′(z̄)ˆ̄z)]u′[R(z̄) + δ(R̂(z̄) +R′(z̄)ˆ̄z)]
−

1

[R′(z) + δ(R̂′(z) +R′′(z)ẑ)]u′[R(z) + δ(R̂(z) +R′(z)ẑ)]

]
× (ℓ+ δℓ̂)(1− ℓ− δℓ̂)h′′(ℓ+ δℓ̂).

Suppose for simplicity that the tax schedule is piecewise linear, so that R′′(z) =

R′′(z̄) = 0. A first-order Taylor expansion of this expression around the initial equi-

librium leads to

0 =

[
ℓ(1− ℓ)h′′(ℓ)

R′(z)u′(R(z))

]
R̂′(z)

R′(z)
−
[
ℓ(1− ℓ)h′′(ℓ)

R′(z̄)u′(R(z̄))

]
R̂′(z̄)

R′(z̄)

+

[
ℓ(1− ℓ)h′′(ℓ)

u′(R(z))

u′′(R(z))

u′(R(z))

]
R̂(z)

R′(z)
−
[
ℓ(1− ℓ)h′′(ℓ)

u′(R(z̄))

u′′(R(z̄))

u′(R(z̄))

]
R̂(z̄)

R′(z̄)

+

[
ℓ(1− ℓ)h′′(ℓ)

u′(R(z))

u′′(R(z))

u′(R(z))

]
ẑ −

[
ℓ(1− ℓ)h′′(ℓ)

u′(R(z̄))

u′′(R(z̄))

u′(R(z̄))

]
ˆ̄z + b̂

+ ℓ(1− ℓ)h′′(ℓ)

(
1

R′(z̄)u′(R(z̄))
− 1

R′(z)u′(R(z))

)(
1− 2ℓ

1− ℓ
+
ℓh′′′(ℓ)

h′′(ℓ)

)
ℓ̂

ℓ
.

Recall that, by the first-order condition for effort (35) and the zero-profit condition

(4), [
1

R′(z̄)u′(R(z̄))
− 1

R′(z)u′(R(z))

]
ℓ(1− ℓ)h′′(ℓ) = θ − b =

z

ℓ
.
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Moreover, we saw that

ẑ = −
ℓ

v′(z̄)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z)

R′(z)
+

ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z̄)

R′(z̄)
− ℓ

1− ℓ

ℓ(1− ℓ)h′′(ℓ)

v′(z)

ℓ̂

ℓ

and

ˆ̄z =

1−ℓ
v′(z̄)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z)

R′(z)
−

1−ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z̄)

R′(z̄)
+
ℓ(1− ℓ)h′′(ℓ)

v′(z̄)

ℓ̂

ℓ

and hence

b̂ =

1
v′(z̄)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z)

R′(z)
−

1
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z̄)

R′(z̄)
+

[
z

ℓ
+
ℓh′′(ℓ)

v′(z)

]
ℓ̂

ℓ
.

We thus obtain

D
ℓ̂

ℓ
=− ℓ

z

[
ℓ(1− ℓ)h′′(ℓ)

R′(z)u′(R(z))

]
R̂′(z)

R′(z)
+
ℓ

z

[
ℓ(1− ℓ)h′′(ℓ)

R′(z̄)u′(R(z̄))

]
R̂′(z̄)

R′(z̄)

− ℓ

z


1

1−ℓ

R′(z̄)u′(R(z̄))
+
(

u′′(R(z))
R′(z)(u′(R(z)))3

− u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

)
ℓ(1− ℓ)h′′(ℓ)

1−ℓ
R′(z)u′(R(z))

+ ℓ
R′(z̄)u′(R(z̄))

 (1− ℓ)
R̂(z)

R′(z)

+
ℓ

z

 1
ℓ

R′(z)u′(R(z))
−
(

u′′(R(z))
R′(z)(u′(R(z)))3

− u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

)
ℓ(1− ℓ)h′′(ℓ)

1−ℓ
R′(z)u′(R(z))

+ ℓ
R′(z̄)u′(R(z̄))

 ℓ R̂(z̄)
R′(z̄)

where

D =
1− 2ℓ

1− ℓ
+
ℓh′′′(ℓ)

h′′(ℓ)
+ ℓh′′(ℓ)×

+

(
ℓ

z

1− ℓ

R′(z̄)u′(R(z̄))
+
ℓ

z

ℓ

R′(z)u′(R(z))
−
ℓ u′′(R(z))
R′(z)(u′(R(z)))3

+ (1− ℓ) u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

1
R′(z̄)u′(R(z̄))

− 1
R′(z)u′(R(z))

)
.

Now, recall that the firm’s profit is equal to Π(θ) = ℓθ − z − ℓb. Thus, we can write

∂Π(θ)

∂ℓ
= θ − b− ∂z

∂ℓ
− ℓ

∂b

∂ℓ

= θ − b−
[

1

R′(z̄)u′(R(z̄))
− 1

R′(z)u′(R(z))

]
ℓ(1− ℓ)h′′(ℓ).
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The second-order condition to the firm’s maximization problem reads:

∂2Π(θ)

∂ℓ2
≤ 0. (37)

Differentiating the previous expression leads to

∂2Π(θ)

∂ℓ2
=− ∂b

∂ℓ
−
[
u′′(R(z))

(u′(R(z)))2
∂z

∂ℓ
− u′′(R(z̄))

(u′(R(z̄)))2
∂z̄

∂ℓ

]
ℓ(1− ℓ)h′′(ℓ)

− 1

ℓ

[
1

R′(z̄)u′(R(z̄))
− 1

R′(z)u′(R(z))

] [
1− 2ℓ

1− ℓ
+
ℓh′′′(ℓ)

h′′(ℓ)

]
ℓ(1− ℓ)h′′(ℓ).

But recall that

∂z

∂ℓ
= − ℓh′′(ℓ)

R′(z)u′(R(z))
and

∂b

∂ℓ
=

[
1− ℓ

R′(z̄)u′(R(z̄))
+

ℓ

R′(z)u′(R(z))

]
h′′(ℓ).

Hence, we obtain

− ℓ2

z

∂2Π(θ)

∂ℓ2
=

1− 2ℓ

1− ℓ
+
ℓh′′′(ℓ)

h′′(ℓ)
+ ℓh′′(ℓ)×(

ℓ

z

1− ℓ

R′(z̄)u′(R(z̄))
+
ℓ

z

ℓ

R′(z)u′(R(z))
−
ℓ u′′(R(z))
R′(z)(u′(R(z)))3

+ (1− ℓ) u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

1
R′(z̄)u′(R(z̄))

− 1
R′(z)u′(R(z))

)
.

where we used again equation (35) with θ − b = z/ℓ. We can therefore rewrite the

Gateaux derivative of labor effort as(
−ℓ∂

2Π(θ)

∂ℓ2

)
ℓ̂

ℓ
= −

[
ℓ(1− ℓ)h′′(ℓ)

R′(z)u′(R(z))

]
R̂′(z)

R′(z)
+

[
ℓ(1− ℓ)h′′(ℓ)

R′(z̄)u′(R(z̄))

]
R̂′(z̄)

R′(z̄)

−


1

1−ℓ

R′(z̄)u′(R(z̄))
+
(

u′′(R(z))
R′(z)(u′(R(z)))3

− u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

)
ℓ(1− ℓ)h′′(ℓ)

1−ℓ
R′(z)u′(R(z))

+ ℓ
R′(z̄)u′(R(z̄))

 (1− ℓ)
R̂(z)

R′(z)

+

 1
ℓ

R′(z)u′(R(z))
−
(

u′′(R(z))
R′(z)(u′(R(z)))3

− u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

)
ℓ(1− ℓ)h′′(ℓ)

1−ℓ
R′(z)u′(R(z))

+ ℓ
R′(z̄)u′(R(z̄))

 ℓ R̂(z̄)
R′(z̄)

where, by condition (37), the term multiplying ℓ̂/ℓ in the left hand side is positive.
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Using the definition of εout, and noting that

ℓb

z
εin =

ℓ

z

ℓ(1− ℓ)h′′(ℓ)

v′(z)
and

ℓb

z
εin + 1 =

ℓ

z

ℓ(1− ℓ)h′′(ℓ)

v′(z̄)
,

leads to equation (36). Note finally that if the utility function is logarithmic, this

expression simplifies to:

(
−ℓ

2

z

∂2Π(θ)

∂ℓ2

)
ℓ̂

ℓ
= −

[ R(z)
R′(z)

R(z̄)
R′(z̄)

− R(z)
R′(z)

]
R̂′(z)

R′(z)
+

[ R(z̄)
R′(z̄)

R(z̄)
R′(z̄)

− R(z)
R′(z)

]
R̂′(z̄)

R′(z̄)

−

[
ℓ

1−ℓ
R(z̄)
zR′(z̄)

+ 1

(1− ℓ) R(z)
R′(z)

+ ℓ R(z̄)
R′(z̄)

]
(1− ℓ)

R̂(z)

R′(z)
−

[
1− R(z)

zR′(z)

(1− ℓ) R(z)
R′(z)

+ ℓ R(z̄)
R′(z̄)

]
ℓ
R̂(z̄)

R′(z̄)
.

where we used again equation (35). This concludes the proof.

Extension to a locally nonlinear baseline tax schedule. Accounting for the terms in-

volving R′′ in the above Taylor expansion leads to the following more general expres-

sion for the response of labor effort to tax reforms:

D′ ℓ̂

ℓ
=− ℓ

z

[
ℓ(1− ℓ)h′′(ℓ)

R′(z)u′(R(z))

]
R̂′(z)

R′(z)
+
ℓ

z

[
ℓ(1− ℓ)h′′(ℓ)

R′(z̄)u′(R(z̄))

]
R̂′(z̄)

R′(z̄)

− ℓ

z

A ·
1

1−ℓ

R′(z̄)u′(R(z̄))
+
(

u′′(R(z))
R′(z)(u′(R(z)))3

− u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

)
ℓ(1− ℓ)h′′(ℓ)

1−ℓ
R′(z)u′(R(z))

+ ℓ
R′(z̄)u′(R(z̄))

 (1− ℓ)
R̂(z)

R′(z)

+
ℓ

z

A ·
1
ℓ

R′(z)u′(R(z))
−
(

u′′(R(z))
R′(z)(u′(R(z)))3

− u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

)
ℓ(1− ℓ)h′′(ℓ)

1−ℓ
R′(z)u′(R(z))

+ ℓ
R′(z̄)u′(R(z̄))

 ℓ R̂(z̄)
R′(z̄)

where we denote

D′ =
1− 2ℓ

1− ℓ
+
ℓh′′′(ℓ)

h′′(ℓ)
−

ℓ
1−ℓ

R′′(z)

(R′(z))3(u′(R(z)))2
+ R′′(z̄)

(R′(z̄))3(u′(R(z̄)))2

1
R′(z̄)u′(R(z̄))

− 1
R′(z)u′(R(z))

+ ℓh′′(ℓ)×

+

(
ℓ

z

1− ℓ

R′(z̄)u′(R(z̄))
+
ℓ

z

ℓ

R′(z)u′(R(z))
−
ℓ u′′(R(z))
R′(z)(u′(R(z)))3

+ (1− ℓ) u′′(R(z̄))
R′(z̄)(u′(R(z̄)))3

1
R′(z̄)u′(R(z̄))

− 1
R′(z)u′(R(z))

)
,
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and

A = 1−
(

ℓR′′(z)

(R′(z))2u′(R(z))
+

(1− ℓ)R′′(z̄)

(R′(z̄))2u′(R(z̄))

)
.

Note that this term appears in the second and third line of the right hand side of the

expression for ℓ̂/ℓ, which is otherwise identical to the formula derived above.

Proof of Proposition 3. Substituting expression (21) into (19) and (20) implies

ẑ =

[
1−ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

− 1

]
R̂(z)

R′(z)
+

ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z̄)

R′(z̄)
− ℓh′′(ℓ)

v′(z)
ℓ̂

ˆ̄z =

1−ℓ
v′(z̄)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

R̂(z)

R′(z)
+

[
ℓ

v′(z̄)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

− 1

]
R̂(z̄)

R′(z̄)
+

(1− ℓ)h′′(ℓ)

v′(z̄)
ℓ̂.

This system can be rewritten as follows:

ẑ = −

[
1−

1−ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

]
R̂(z)

R′(z)
+

1

1− ℓ

1−ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

ℓ
R̂(z̄)

R′(z̄)
− 1

1− ℓ

ℓ(1− ℓ)h′′(ℓ)

v′(z)
ℓ̂

ˆ̄z =
1

ℓ

[
ℓ

v′(z̄)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

]
(1− ℓ)

R̂(z)

R′(z)
−

[
1−ℓ
v′(z)

1−ℓ
v′(z)

+ ℓ
v′(z̄)

]
R̂(z̄)

R′(z̄)
+

1

ℓ

[
ℓ(1− ℓ)h′′(ℓ)

v′(z̄)

]
ℓ̂.

Defining εout and εin as in the text, and noting that, by equation (35),

ℓ(1− ℓ)h′′(ℓ)

v′(z̄)
=
ℓ(1− ℓ)h′′(ℓ)

v′(z)
+ θ − b

leads to expressions (25) and (26).

Proof of Theorem 2. Suppose that there is a top tax bracket [z∗,∞) with tax

rate τ , and that the tax rate below z∗ is fixed at t. Let θi be the lowest type with

high-level pay in the top bracket, and θt be the lowest type whose earnings are always

in the top bracket. Types [θi, θt) are called “intermediate workers” and types [θt,∞)

are called “top workers”. Denote the share of intermediate workers among both the

top and intermediate workers by σI .

Consider a uniform increase in the marginal tax rate τ in the top bracket [z∗,∞)

by δτ̂ > 0 with δ → 0. This perturbation is represented by R̂(z) = −τ̂(z − z∗)I{z≥z∗}

and R̂′(z) = −τ̂I{z≥z∗}, so that the tax liability levied after the reform on workers
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with income z > z∗ is T (z∗) + (τ + δτ̂)(z − z∗). Let ẑ, ˆ̄z, ℓ̂ be the changes (Gateaux

derivatives) in base pay, high-level pay, and effort in response to this reform.

The Gateaux derivative of a generic variable X of the form X =
∫ θ2
θ1
x dF (θ)
F (θ2)−F (θ1)

is given by X̂ =
∫ θ2
θ1
x̂ dF (θ)
F (θ2)−F (θ1)

. We define the elasticity of X with respect to 1− τ ,

keeping the sets of intermediate and top workers fixed, by eX = −1−τ
τ̂

X̂
X
. There are

two ways to interpret this variable. First, it is the aggregate elasticity of the variable

x keeping the thresholds θ1, θ2 fixed, i.e., ignoring the impact of the tax change on

composition of the two groups—e.g., the elasticity of mean earnings of top agents,

keeping the set of top agents fixed. Alternatively, we can interpret eX as the average

elasticity of x weighted by x/X for a given set of agents—e.g., the elasticity of mean

earnings of top agents, weighted by their relative earnings. To see this, note that we

can write eX = −
∫ θ2
θ1

x
X
· 1−τ

τ̂
x̂
x

dF (θ)
F (θ2)−F (θ1)

.

The impact of the perturbation of the top tax rate τ̂ on the average revenue from

top workers is given by

dTRT =

∫ ∞

θt

{
τ̂ [ℓz̄ + (1− ℓ)z − z∗] + τ [ℓ̂z̄ + ̂(1− ℓ)z]

} dF (θ)

1− F (θt)
.

Denoting average earnings of top workers by ZT =
∫∞
θt
[ℓz + (1 − ℓ)z] dF (θ)

1−F (θt)
, we can

rewrite the previous expression as

dTRT = τ̂

(
ZT − z∗ − τ

1− τ
ZT eZT

)
.

Next, the impact of the reform on the tax payments of intermediate workers is given

by

dTRI =

∫ θt

θi

{
τ̂(z − z∗)ℓ+ t[(1− ℓ)ẑ + τℓẑ + ℓ̂(T (z)− T (z))]

} dF (θ)

F (θt)− F (θi)
,

where T (z) − T (z) = τ(z − z∗) − t(z∗ − z). Introduce the following notation: the

mean effort ℓ of intermediate workers is LI =
∫ θt
θi
ℓ dF (θ)
F (θt)−F (θi)

, the mean frequency-

adjusted high-level pay ℓz̄ of intermediate workers is Z̄I =
∫ θt
θi
ℓz̄ dF (θ)

F (θt)−F (θi)
, and the

mean frequency-adjusted base pay (1− ℓ)z of intermediated workers is ZI =
∫ θt
θi
(1−
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ℓ)z̄ dF (θ)
F (θt)−F (θi)

. We can rewrite the impact on intermediate workers as

dTRI =

∫ θt

θi

{
τ̂(z̄ − z∗)ℓ+ τ ℓ̂z + t ̂(1− ℓ)z + (t− τ)z∗ℓ̂

} dF (θ)

F (θt)− F (θi)

= τ̂

[
Z̄I − LIz∗ − τ

1− τ
Z̄IeZ̄I −

t

1− τ
ZIeZI − t− τ

1− τ
z∗LIeLI

]
.

The average tax revenue impact on the intermediate and top workers is then

dTR = (1− σI)dTRT + σIdTRI

= Z∗ − (1− σI + σILI)z∗ − τ

1− τ

[
(1− σI)ZT eZT + σIZ̄IeZ̄I

]
− t

1− τ
σIZIeZI − t− τ

1− τ
σIz∗LIeLI ,

where Z∗ = (1− σI)ZT + σIZ
I
denotes the mean frequency-adjusted earnings in the

top bracket. It is easy to show that (1− σI)ZT eZT + σIZ̄IeZ̄I = Z∗eZ∗ .

Next, denote the average welfare impact of the reform on intermediate and top

workers by dW . We have

dW = −τ̂
∫ ∞

θi

{
ℓg̃(z | θ)(z̄ − z∗) + (1− ℓ)g̃(z | θ)(z − z∗)I{z>z∗}

} dF (θ)

1− F (θi)

= −τ̂ [Z∗ − (1− σI + σILI)z∗]G̃,

where G̃ is the income-weighted average modified marginal social welfare weight in

the top bracket. The top tax rate is optimal when

dTR + dW = 0.

Substituting the previous expressions and rearranging, we obtain

τ

1− τ
=

1− G̃ − 1
Z∗−(1−σI+σILI)z∗

[
t

1−τ
σIZIeZI + t−τ

1−τ
σIz∗LIeLI

]
ρ eZ∗

.

where ρ = Z∗

Z∗−(1−σI+σILI)z∗
is the (observed) Pareto coefficient of the earnings distri-

bution. Now define the earnings share of intermediate workers in the top bracket as

sI = σI(Z̄I−LIz∗)
σI(Z̄I−LIz∗)+(1−σI)(ZT−z∗)

and the Pareto coefficient for intermediate earners as
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ρI = Z̄I/LI

Z̄I/LI−z∗
. We obtain

τ

1− τ
=

1− G̃ − sI
(

t
1−τ

ZI

Z̄I ρ
IeZi

+ t−τ
1−τ

(ρI − 1)eLI

)
ρeZ∗

which concludes the proof of equation (27).

Structural expression for eZI . By Proposition 3, the response of base pay to the

tax reform τ̂ is given by

(1− ℓ)ẑ = −εoutℓ(z − z∗)
τ̂

1− τ
− zεinℓ̂ = − [εoutℓ(z − z∗)− ℓzεineℓ]

τ̂

1− τ
,

where eℓ = −1−τ
τ̂

ℓ̂
ℓ
is the individual labor effort elasticity with respect to 1−τ . Noting

that ̂(1− ℓ)z = (̂1− ℓ) · z − ℓ̂z, we can express eZI as

eZI = −1− τ

τ̂

1

ZI

∫ θt

θi

̂(1− ℓ)z
dF (θ)

F (θt)− F (θi)

=
1

ZI

∫ θt

θi

{εout(z̄ − z∗)ℓ− ℓz̄εineℓ + (1− ℓ)ze1−ℓ}
dF (θ)

F (θt)− F (θi)
,

where e1−ℓ is the individual elasticity of 1 − ℓ. Define the following averages over

intermediate workers: εout
I is the average crowd-out parameter, εineℓ

I is the average

product of the crowd-in parameter and the labor effort elasticity, and e1−ℓ
I is the

average elasticity of one minus labor effort, all appropriately weighted:

εout
I =

∫ θt

θi

εout
ℓz̄ − ℓz∗

Z̄I − LIz∗
dF (θ)

F (θt)− F (θi)
,

εineℓ
I =

∫ θt

θi

εineℓ
ℓz̄

Z̄I

dF (θ)

F (θt)− F (θi)
,

e1−ℓ
I =

∫ θt

θi

e1−ℓ
(1− ℓ)z

ZI

dF (θ)

F (θt)− F (θi)
.

We can then rewrite the elasticity of mean base pay as

eZi
=
Z̄I − LIz∗

ZI
εout

I − Z̄I

ZI
εineℓ

I + e1−ℓ
I = κ−1

1

(
εout

I − ρIεineℓ
I
)
+ e1−ℓ

I .

This concludes the proof of equation (28).
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B.2 Full Optimum Tax Schedule

Theorem 2 provides a formula for the optimal top-bracket tax rate. We now

derive and analyze a formula (à la Diamond-Saez) for the full optimal non-linear tax

schedule.

Consider an arbitrary tax reform T̂ of a given baseline tax schedule T . The effect

(Gateaux derivative) of this reform on the social objective is WE = 1
λ

∫
Û(θ)dF (θ),

where the impact on individual expected utility Û(θ) is described by Lemma 6, and

λ denotes the marginal value of public funds. The effect of the reform on tax revenue

is

RE =

∫ [
T̂ (z(θ))(1− ℓ(θ)) + T̂ (z(θ))ℓ(θ)

]
dF (θ)

+

∫ [
T ′(z(θ))ẑ(θ)(1− ℓ(θ)) + T ′(z(θ))ẑ(θ)ℓ(θ)

]
dF (θ)

+

∫
[T (z(θ))− T (z(θ))] ℓ̂(θ)dF (θ)

where the first integral is the mechanical effect of the reform, the second integral

captures the responses of base pay and high-level pay, and the third captures the

frequency responses.

We now express these effects in terms of the earnings distribution. We assume

throughout that z(θ) and z̄(θ) are strictly increasing in θ. We can thus change

variables from θ to z = z̄(θ), e.g., ℓ(z), ẑ(z), ˆ̄z(z), and ∆T (z) ≡ T (z̄(θ)) − T (z(θ)).

We use a different convention whenever a variable is naturally indexed by z, in which

case we use a change variables from θ to θ; this is the case below for the elasticities

of base earnings with respect to taxes. Denote the c.d.f. of total earnings by Fz, and

the (scaled)44 c.d.f.s of base pay and high-level pay by Fz and Fz̄, respectively (the

corresponding p.d.f.s are denoted by fz, fz, fz̄).

We can then write the welfare effect as WE = −
∫
g̃(z)T̂ (z)dFz(z), where g̃(z) is

the average modified marginal social welfare weight conditional on earnings z, defined

44The scaling is due to the fact that they would otherwise not converge to 1 as z → ∞, but rather
to the average values of 1− ℓ and ℓ in the economy, respectively.
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by:

g̃(z) =
fz(z)

fz(z)
g̃(z | θz) +

fz̄(z)

fz(z)
g̃(z | θz̄),

where θz and θz̄ follow z(θz) = z̄(θz̄) = z, and where g̃(z | θ) are given in Corollary

1.45

Next, the revenue effect of the tax reform can be written as

RE =

∫ ∞

0

T̂ (z)dFz(z) +

∫ ∞

0

T ′(z)ẑ(z)dFz(z) +

∫ ∞

0

T ′(z)ˆ̄z(z) + ∆T (z)
ℓ̂(z)

ℓ(z)
dFz̄(z).

Define the elasticities of the variables x ∈ {z, z̄, ℓ} with respect to the relevant

marginal and average tax rates as

x̂(θ)

x(θ)
= εx,R′(z)(θ)

R̂′(z(θ))

R′(z(θ))
+εx,R′(z̄)(θ)

R̂′(z̄(θ))

R′(z̄(θ))
+εx,R(z)(θ)

R̂(z(θ))

R(z(θ))
+εx,R(z̄)(θ)

R̂(z̄(θ))

R(z̄(θ))
.

These elasticities can be obtained from Lemma 8 (see extension of the result in the

proof to allow for a fully non-linear initial tax schedule) and Proposition 3. As

explained above we index these elasticities by earnings, e.g., εz,R′(z̄)(z) stands for

εz,R′(z̄)(θ) for θ s.t. z(θ) = z. Furthermore, define the following mappings linking the

two levels of pay: x ≡ z ◦ z̄−1 and x ≡ z̄ ◦ z−1, meaning that x(z) = z(θ) for θ s.t.

z̄(θ) = z, and x(z) = z̄(θ) for θ s.t. z(θ) = z.

To derive the optimal tax formula, consider a reduction of the marginal tax rate

at earnings level z∗ (Saez (2001)). Following Sachs, Tsyvinski, and Werquin (2020),

we can express this reform as T̂ ′(z) = −δ(z∗− z) and T̂ (z) = −I{z>z∗}, where δ is the

Dirac delta function. This reform generates the following effects:

1. Welfare effect: WE =
∫∞
z∗
g(z)dFz(z), with marginal social welfare weights g(z)

defined as in Theorem 2.

2. Mechanical effect: ME = −(1− Fz(z
∗)).

3. Behavioral effects due to the reduction of T ′(z∗):

45The MVPF is defined as the social welfare gain from reducing every agent’s tax payment by
one unit: λ = 1

1+I
∫∞
0

g̃(z)u′(R(z))fz(z)dz where I ≡
∫∞
0

T ′(z) ∂z
∂Rfz(z)dz is the aggregate income

effect that this tax cut induces.
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(a) Effect on earnings at z∗

BEz∗,R′ =
T ′(z∗)

1− T ′(z∗)
z∗
[
εz,R′(z)(z

∗) · fz(z∗) + εz̄,R′(z̄)(z
∗) · fz̄(z∗)

]
Note that we can express the above as T ′(z∗)

1−T ′(z∗)
·z∗ · ε̄z,R′(z)(z

∗)·fz(z∗), where
ε̄z,R′(z)(z

∗) is the average elasticity of earnings at z∗ with respect to the

retention rate at z∗.

(b) Effects on base pay at x(z∗) and high-level pay at x(z∗)

BEz ̸=z∗,R′ =
T ′(x(z∗))

1− T ′(z∗)
x(z∗) · εz̄,R′(z)(x(z

∗)) · fz̄(x(z∗))

+
T ′(x(z∗))

1− T ′(z∗)
x(z∗) · εz,R′(z̄)(x(z

∗)) · fz(x(z∗))

(c) Effects on frequencies ℓ(z∗) and ℓ(x(z∗))

BEℓ,R′ =
∆T (z∗)

1− T ′(z∗)
εℓ,R′(z̄)(z

∗) ·fz̄(z∗)+
∆T (x(z∗))

1− T ′(z∗)
εℓ,R′(z)(x(z

∗)) ·fz̄(x(z∗))

4. Behavioral effects due the reduction of T (z) for z > z∗:

(a) Effects on base pay

BEz,R =

∫ ∞

x(z∗)

T ′(z)

R(x(z))
z · εz,R(z̄)(z)dFz(z) +

∫ ∞

z∗

T ′(z)

R(z)
z · εz,R(z)(z)dFz(z)

(b) Effects on high-level pay

BEz̄,R =

∫ ∞

z∗

T ′(z)

R(z)
z · εz̄,R(z̄)(z)dFz̄(z) +

∫ ∞

x(z∗)

T ′(z)

R(x(z∗))
z · εz̄,R(z)(z)dFz̄(z)

(c) Effects on frequency

BEℓ,R =

∫ ∞

z∗

∆T (z)

R(z)
εℓ,R(z̄)(z)dFz̄(z) +

∫ ∞

x(z∗)

∆T (z)

R(x(z∗))
εℓ,R(z)(z)dFz̄(z)

Summing all the effects, equating the sum to zero and rearranging yields the Diamond-
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Saez formula with performance pay:

T ′(z∗)

1− T ′(z∗)
=

1− G − 1
1−Fz(z∗)

· [BEz ̸=z∗,R′ +BEℓ,R′ +BEz,R +BEz̄,R +BEℓ,R]

ρ(z∗) · ε̄z,R′(z)(z∗)

where ρ(z∗) = z∗fz(z∗)
1−Fz(z∗)

is the local Pareto parameter of the earnings distribution and

G =
∫∞
z∗ g(z)dFz(z)

1−Fz(z∗)
is the average marginal social welfare weight of workers with earnings

above z∗.

The presence of performance pay modifies the standard Diamond-Saez formula by

adjusting the marginal social welfare weights and adding several new fiscal external-

ities. To build intuition about how these modifications affect optimal tax rates, sup-

pose that the ability distribution is bounded with strictly positive infimum: θ ∈ [θ, θ],

with θ > 0 and θ < ∞. As a result, the support of base pay and high-level pay do

not fully overlap: sufficiently low earnings z < zlb can only be reached with base pay,

while sufficiently high earnings z > zub can only be reached with high-level pay. We

describe how tax rates should be chosen at such extremities.46

For simplicity, we assume that the baseline tax schedule T (·) is strictly increas-

ing and progressive: T ′(z) > T (z)
z

for all z ≥ 0, and that the marginal tax rate is

(approximately) constant at the two extremities of the earnings distribution. Thus,

the signs of the effort elasticities with respect to R(z) and R(z̄) are as described in

Lemma 7. Consider the range of earnings which can be reached only with high-level

pay (respectively, base pay). It is straightforward to show that:

1. The marginal social welfare weights are adjusted upwards (downwards) relative

to the standard formula, leading to lower (higher) tax rates. Intuitively, for

the high extremity, the crowd-out implies that the consumption gains from the

lower taxation of high-level pay are partially transferred, via the endogenous

earnings adjustment, to the base pay, where the marginal utility of consumption

is higher.

2. The fiscal externalities due to frequency responses BEℓ,R′ and BEℓ,R are strictly

positive (negative), leading to lower (higher) tax rates.

46We can characterize the tax rate in the lower extremity using a slightly different (mirror image)
tax reform than the Saezian reform described above, namely, a decrease in the marginal tax rate at
z∗ such that the level of taxes increases uniformly below z∗ but is unchanged above.
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3. The fiscal externality BEz ̸=z∗,R′ is negative in both cases, leading to higher tax

rates.

4. The signs of the fiscal externalities BEz,R and BEz̄,R depend on the relative

strengths of the crowding-out and the crowding-in. If they approximately offset

each other, as in Section 1, then these fiscal externalities are approximately

equal to zero.

Thus, as long as the crowd-out and crowd-in approximately offset each other and

the impact of BEz ̸=z∗,R′ is approximately uniform across the earnings distribution,

performance pay tends to reduce to optimal tax progressivity: It leads to relatively

lower tax rates at high earnings levels (that can only be reached with high-level pay)

and relatively higher tax rates at low earnings levels (that can only be reached with

base pay). This is intuitively consistent with our results on the optimal separation of

tax rates on bonuses and base pay. In Proposition 4 we demonstrated that there are

efficiency gains from taxing bonuses at lower rate than base pay, since labor effort is

much more responsive to the tax on bonuses. The tax rate on earnings in the upper

extremity, where no one earns a base pay, is effectively a tax rate on bonuses. Thus,

reducing it brings strong efficiency gains due to higher effort. A mirror image of this

argument applies to the tax rate in the lower extremity of the earnings distribution,

which can be understood as a tax rate on base pay and should be, consequently, set

at a higher level.

In the previous argument, we restricted attention to the regions of the earnings

distribution where all earnings come either exclusively from base pay or exclusively

from high-level pay. We conjecture that this reasoning holds more generally when

both forms of pay coincide, in which case the optimal tax rates should be set higher

(lower) in the regions of the earnings distribution where base pay (high-level pay)

is relatively more prevalent. Given that base pay is necessarily more prevalent than

high-level pay at low earnings levels, this implies that performance pay makes the

optimal tax schedule more regressive than in the standard setting, consistent with

our findings regarding the optimal overall rate of progressivity (Theorem 1).
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B.3 Incidence and Optimal Taxation with Separate Tax Sched-

ules

Lemma 9 Suppose that the tax system is separable between base pay and bonuses, so

that R(z, b) ≡ R(z) + P (b) for all b ≥ 0. A tax reform (R̂, P̂ ) leads to the following

incidence:

ẑ = −(1− ε′out)
R̂(z)

R′(z)
+ ε′outℓ

P̂ (b)

P ′(b)
− bε′inℓ̂ (38)

ℓb̂ = (1− ε′out)
R̂(z)

R′(z)
− ε′outℓ

P̂ (b)

P ′(b)
+
(
bε′in +

z

ℓ

)
ℓ̂ (39)

and

Û

R′(z)u′(R(z))
= ε′out

[
R̂(z)

R′(z)
+ ℓ

P̂ (b)

P ′(b)

]
, (40)

where the crowd-out and moral-hazard elasticities are defined by

ε′out =

1
R′(z)u′(R(z))

1−R′(z)
P ′(b) ℓ

R′(z)u′(R(z))
+ ℓ

P ′(b)u′(R(z)+P (b))

and ε′in =
ℓh′′(ℓ)

bR′(z)u′(R(z))
.

Suppose for simplicity that the utility of consumption is logarithmic. Then the impact

of the tax reform on labor effort is given by(
− 1

h′′(ℓ)

∂2Π(θ)

∂ℓ2

)
ℓ̂

ℓ
(41)

=

[(
1− R′(z)

P ′(b)

) R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

− (1− ℓ)

P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

− 1

ℓh′′(ℓ)

P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

]
R̂(z)

R′(z)

+

[
ℓ

(
1− R′(z)

P ′(b)

) R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

− ℓ(1− ℓ)

P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

+
1

ℓh′′(ℓ)

R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

]
P̂ (b)

P ′(b)

− R(z)

R′(z)

R̂′(z)

R′(z)
+

[
R(z)

P ′(b)
+ (1− ℓ)

P (b)

P ′(b)

]
P̂ ′(b)

P ′(b)
.
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Proof of Lemma 9. Equations (16) and (17) can be rewritten as follows:

u(R(z))− h(ℓ) = U(θ)− ℓh′(ℓ)

u(R(z) + P (b))− h(ℓ) = U(θ) + (1− ℓ)h′(ℓ).

After a perturbation (δR̂, δP̂ ), to a first order as δ → 0, this system becomes

u[R(z + δẑ) + δR̂(z)]− h(ℓ+ δℓ̂) = U(θ) + δÛ − (ℓ+ δℓ̂)h′(ℓ+ δℓ̂)

and

u[R(z + δẑ) + P (b+ δb̂) + δ(R̂(z) + P̂ (b))]− h(ℓ+ δℓ̂)

=U(θ) + δÛ + (1− ℓ− δℓ̂)h′(ℓ+ δℓ̂).

Linearizing this system around the initial equilibrium leads to

u′(R(z))R̂(z) +R′(z)u′(R(z))ẑ − h′(ℓ)ℓ̂ = Û − [h′(ℓ) + ℓh′′(ℓ)]ℓ̂

and

u′(R(z) + P (b))[R̂(z) + P̂ (b) +R′(z)ẑ + P ′(b)b̂]− h′(ℓ)ℓ̂

=Û + [−h′(ℓ) + (1− ℓ)h′′(ℓ)]ℓ̂.

Rearranging terms leads to

ẑ = − R̂(z)

R′(z)
+

Û

R′(z)u′(R(z))
− ℓh′′(ℓ)

R′(z)u′(R(z))
ℓ̂

and

b̂ =− R̂(z)

P ′(b)
− P̂ (b)

P ′(b)
− R′(z)

P ′(b)
ẑ +

Û

P ′(b)u′(R(z) + P (b))
+

(1− ℓ)h′′(ℓ)

P ′(b)u′(R(z) + P (b))
ℓ̂

=− P̂ (b)

P ′(b)
+

[
1

P ′(b)u′(R(z) + P (b))
− 1

P ′(b)u′(R(z))

]
Û

+

[
1− ℓ

P ′(b)u′(R(z) + P (b))
+

ℓ

P ′(b)u′(R(z))

]
h′′(ℓ)ℓ̂.
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The free-entry condition implies

ẑ + ℓb̂+ bℓ̂ = θℓ̂.

Substituting the expressions for ẑ and b̂ into this condition leads to[
1− ℓR

′(z)
P ′(b)

R′(z)u′(R(z))
+

ℓ

P ′(b)u′(R(z) + P (b))

]
Û =

R̂(z)

R′(z)
+ ℓ

P̂ (b)

P ′(b)

+

[
θ − b−

(
1− ℓ

P ′(b)u′(R(z) + P (b))
−

1− ℓR
′(z)

P ′(b)

R′(z)u′(R(z))

)
ℓh′′(ℓ)

]
ℓ̂.

But the first-order condition for labor effort (18) can be rewritten as

θ = b+

 1

P ′(b)u′(R(z) + P (b))
−

1−ℓ
R′(z)
P ′(b)

1−ℓ

R′(z)u′(R(z))

 ℓ(1− ℓ)h′′(ℓ). (42)

Thus, the Gateaux derivative of expected utility is given by

Û =
1

1−ℓ
R′(z)
P ′(b)

R′(z)u′(R(z))
+ ℓ

P ′(b)u′(R(z)+P (b))

[
R̂(z)

R′(z)
+ ℓ

P̂ (b)

P ′(b)

]
.

Substitute this expression into the above equations to get:

ẑ =

 1
R′(z)u′(R(z))

1−ℓ
R′(z)
P ′(b)

R′(z)u′(R(z))
+ ℓ

P ′(b)u′(R(z)+P (b))

− 1

 R̂(z)

R′(z)

+

 1
R′(z)u′(R(z))

1−ℓ
R′(z)
P ′(b)

R′(z)u′(R(z))
+ ℓ

P ′(b)u′(R(z)+P (b))

 ℓ P̂ (b)
P ′(b)

− ℓh′′(ℓ)

R′(z)u′(R(z))
ℓ̂
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and

ℓb̂ =−

 1
R′(z)u′(R(z))

1−ℓ
R′(z)
P ′(b)

R′(z)u′(R(z))
+ ℓ

P ′(b)u′(R(z)+P (b))

− 1

 R̂(z)

R′(z)

=−

 1
R′(z)u′(R(z))

1−ℓ
R′(z)
P ′(b)

R′(z)u′(R(z))
+ ℓ

P ′(b)u′(R(z)+P (b))

 ℓ P̂ (b)
P ′(b)

+

[
1− ℓ

P ′(b)u′(R(z) + P (b))
+

ℓR
′(z)

P ′(b)

R′(z)u′(R(z))

]
ℓh′′(ℓ)ℓ̂.

Using equation (42) to substitute for ℓ(1−ℓ)h′′(ℓ)
P ′(b)u′(R(z)+P (b))

, the above expressions can be

rewritten as (38), (39), and (40).

Suppose that the utility function is logarithmic. The crowd-out elasticity is then

equal to

ε′out =

R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

=
pz

pz +
ℓb
z
pb
,

where ℓb
z
is the ratio of expected bonus to base pay, and pz, pb are tax progressivity

parameters defined as the ratios of average to marginal tax rates of the base pay and

bonus tax schedules:

pz ≡
R(z)

zR′(z)
, pb ≡

P (b)

bP ′(b)
.

For more general utility functions, we can approximate the difference in inverse

marginal utilities as a function of the difference in consumption levels and the risk

aversion (resp., prudence) via first- (resp., second-) order Taylor expansions around

b = 0. We get

ε′out ≈
1

R′(z)u′(R(z))

1
R′(z)u′(R(z))

+ ℓP (b)
P ′(b)

[
− u′′(R(z))

(u′(R(z)))2

] =

R(z)
R′(z)

R(z)
R′(z)

+ ℓP (b)
P ′(b)

[
−R(z)u′′(R(z))

u′(R(z))

] =
pz

pz +
ℓb
z
pbσ

,

where σ ≡ −R(z)u′′(R(z))
u′(R(z))

is a risk aversion coefficient.

Next, suppose that z, b are located in locally linear portions of the tax schedule,

so that R′′(z) = P ′′(b) = 0. After the perturbation, the first-order condition for effort
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reads

θ = b+ δb̂+ (ℓ+ δℓ̂)h′′(ℓ+ δℓ̂)×[
1− ℓ− δℓ̂

{P ′(b) + δP̂ ′(b)}{u′(R(z) + P (b)) + δ[R̂(z) + P̂ (b) +R′(z)ẑ + P ′(b)b̂]u′′(R(z) + P (b))}

−
1− (ℓ+ δℓ̂)R

′(z)+δR̂′(z)

P ′(b)+δP̂ ′(b)

{R′(z) + δR̂′(z)}{u′(R(z)) + δ[R̂(z) +R′(z)ẑ]u′′(R(z))}

 .
To a first-order as δ → 0, this implies

θ = b+ δb̂+ ℓh′′(ℓ)

[
1 + δ

(
1 +

ℓh′′′(ℓ)

h′′(ℓ)

)
ℓ̂

ℓ

]
× (1− ℓ)

[
1− δ ℓ

1−ℓ
ℓ̂
ℓ

]
P ′(b)u′(R(z) + P (b))

[
1 + δ

(
P̂ ′(b)
P ′(b)

+ [R̂(z) + P̂ (b) +R′(z)ẑ + P ′(b)b̂]u
′′(R(z)+P (b))
u′(R(z)+P (b))

)]

−

(
1− ℓR

′(z)
P ′(b)

)[
1− δ

ℓ
R′(z)
P ′(b)

1−ℓ
R′(z)
P ′(b)

(
ℓ̂
ℓ
+ R̂′(z)

R′(z)
− P̂ ′(b)

P ′(b)

)]
R′(z)u′(R(z))

[
1 + δ

(
R̂′(z)
R′(z)

+ [R̂(z) +R′(z)ẑ]u
′′(R(z))
u′(R(z))

)]


i.e.,

θ = b+ ℓh′′(ℓ)

(
1− ℓ

P ′(b)u′(R(z) + P (b))
−

1− ℓR
′(z)

P ′(b)

R′(z)u′(R(z))

)

+ δℓh′′(ℓ)

[(
1− 2ℓ

P ′(b)u′(R(z) + P (b))
−

1− 2ℓR
′(z)

P ′(b)

R′(z)u′(R(z))

)
+(

1− ℓ

P ′(b)u′(R(z) + P (b))
−

1− ℓR
′(z)

P ′(b)

R′(z)u′(R(z))

)
ℓh′′′(ℓ)

h′′(ℓ)

]
ℓ̂

ℓ

+ δℓh′′(ℓ)

(
1− ℓR

′(z)
P ′(b)

R′(z)

u′′(R(z))

(u′(R(z)))2
− 1− ℓ

P ′(b)

u′′(R(z) + P (b))

(u′(R(z) + P (b)))2

)[
R̂(z) +R′(z)ẑ

]
− δℓh′′(ℓ)

(
1− ℓ

P ′(b)

u′′(R(z) + P (b))

(u′(R(z) + P (b)))2

)[
P̂ (b) + P ′(b)b̂

]
+ δb̂

+ δℓh′′(ℓ)

[
1

R′(z)u′(R(z))

R̂′(z)

R′(z)
−
(

ℓ

P ′(b)u′(R(z))
+

1− ℓ

P ′(b)u′(R(z) + P (b))

)
P̂ ′(b)

P ′(b)

]
.
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Use the first-order condition for effort and assume that the utility is log to get[(
1− R′(z)

P ′(b)

)
R(z)

R′(z)
+ (2ℓ− 1)

P (b)

P ′(b)
−
((

R′(z)

P ′(b)
− 1

)
R(z)

R′(z)
+ (1− ℓ)

P (b)

P ′(b)

)
ℓh′′′(ℓ)

h′′(ℓ)

]
ℓ̂

ℓ

=

(
R′(z)

P ′(b)
− 1

)[
R̂(z)

R′(z)
+ ẑ

]
+ (1− ℓ)

P̂ (b)

P ′(b)
+

(
1− ℓ+

1

ℓh′′(ℓ)

)
b̂

+

(
R(z)

R′(z)

)
R̂′(z)

R′(z)
−
(
R(z)

P ′(b)
+ (1− ℓ)

P (b)

P ′(b)

)
P̂ ′(b)

P ′(b)
.

Next, recall the incidence of the tax reform on ẑ and b̂ when the utility is logarithmic

is given by

ẑ = −
ℓ P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

R̂(z)

R′(z)
+

R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

ℓ
P̂ (b)

P ′(b)
− R(z)

R′(z)
ℓh′′(ℓ)ℓ̂

ℓb̂ =
ℓ P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

R̂(z)

R′(z)
−

R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

ℓ
P̂ (b)

P ′(b)
+

(
R(z)

P ′(b)
+ (1− ℓ)

P (b)

P ′(b)

)
ℓh′′(ℓ)ℓ̂.

Substitute these expressions into the previous equation to get

D
ℓ̂

ℓ
=

[(
1− R′(z)

P ′(b)

) R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

− (1− ℓ)

P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

− 1

ℓh′′(ℓ)

P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

]
R̂(z)

R′(z)

+

[
ℓ

(
1− R′(z)

P ′(b)

) R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

− ℓ(1− ℓ)

P (b)
P ′(b)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

+
1

ℓh′′(ℓ)

R(z)
R′(z)

R(z)
R′(z)

+ ℓ P (b)
P ′(b)

]
P̂ (b)

P ′(b)

− R(z)

R′(z)

R̂′(z)

R′(z)
+

[
R(z)

P ′(b)
+ (1− ℓ)

P (b)

P ′(b)

]
P̂ ′(b)

P ′(b)

where

D = −
(
1− 2

R′(z)

P ′(b)

)
R(z)

R′(z)
− (3ℓ− 2)

P (b)

P ′(b)

−
[(

R′(z)

P ′(b)
− 1

)
ℓ
R(z)

R′(z)
− (1− ℓ)

(
R(z)

P ′(b)
+ (1− ℓ)

P (b)

P ′(b)

)]
ℓh′′(ℓ)

+

[(
R′(z)

P ′(b)
− 1

)
R(z)

R′(z)
+ (1− ℓ)

P (b)

P ′(b)

]
ℓh′′′(ℓ)

h′′(ℓ)
.
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Now, differentiate the firm’s profit Π(θ) = ℓθ − z − ℓb to get

∂Π(θ)

∂ℓ
= θ − b− ∂z

∂ℓ
− ℓ

∂b

∂ℓ

= θ − b+ ℓh′′(ℓ)

[
1− ℓR

′(z)
P ′(b)

R′(z)u′(R(z))
− 1− ℓ

P ′(b)u′(R(z) + P (b))

]

where we used

∂z

∂ℓ
= −ℓh′′(ℓ) 1

R′(z)u′(R(z))

ℓ
∂b

∂ℓ
= ℓh′′(ℓ)

[
1− ℓ

P ′(b)u′(R(z) + P (b))
+

ℓ

P ′(b)u′(R(z))

]
.

Differentiating once more gives the following expression for ∂2Π(θ)
∂ℓ2

:

− ∂b

∂ℓ
+ h′′(ℓ)

(
1 +

ℓh′′′(ℓ)

h′′(ℓ)

)[
1− ℓR

′(z)
P ′(b)

R′(z)u′(R(z))
− 1− ℓ

P ′(b)u′(R(z) + P (b))

]

− ℓh′′(ℓ)

[
1

P ′(b)u′(R(z))
+

(
1− ℓ

R′(z)

P ′(b)

)
u′′(R(z))

(u′(R(z)))2
∂z

∂ℓ

]
+ ℓh′′(ℓ)

[
1

P ′(b)u′(R(z) + P (b))
+ (1− ℓ)

u′′(R(z) + P (b))

(u′(R(z) + P (b)))2

(
R′(z)

P ′(b)

∂z

∂ℓ
+
∂b

∂ℓ

)]
i.e., when the utility is logarithmic,

1

h′′(ℓ)

∂2Π(θ)

∂ℓ2
=

(
1− 2

R′(z)

P ′(b)

)
R(z)

R′(z)
+ (3ℓ− 2)

P (b)

P ′(b)

+

[
(2ℓ− 1)

R(z)

P ′(b)
− ℓ

R(z)

R′(z)
− (1− ℓ)2

P (b)

P ′(b)

]
ℓh′′(ℓ)

−
[(

1

P ′(b)
− 1

R′(z)

)
R(z) + (1− ℓ)

P (b)

P ′(b)

]
ℓh′′′(ℓ)

h′′(ℓ)
.

As a result, the second-order condition of the firm’s problem implies

D = − 1

h′′(ℓ)

∂2Π(θ)

∂ℓ2
≥ 0.

Equation (41) follows.
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Proof of Proposition 4. Suppose that the tax reform satisfies

R̂(z)

R′(z)
= −ℓ P̂ (b)

P ′(b)
.

Recall that the utility is log and R′(z) = P ′(b) = 1 − τ in the baseline tax system.

Lemma 9 gives the impact of this perturbation on the worker’s base pay:

ẑ = − R̂(z)

1− τ
− R(z)

1− τ
ℓh′′(ℓ)ℓ̂,

on the bonus:

ℓb̂ =
R̂(z)

1− τ
+
R(z) + (1− ℓ)P (b)

1− τ
ℓh′′(ℓ)ℓ̂,

and on expected utility:

Û(θ) = 0.

If the tax rates are perturbed for types [θ∗,∞), the impact of the reform on govern-

ment revenue R̂ is given by∫ ∞

θ∗

[
T̂ (z(θ)) + ℓ(θ)T̂B(b(θ)) + TB(b(θ))ℓ̂(θ) + T ′(z(θ))ẑ(θ) + T ′

B(b(θ))ℓ(θ)b̂(θ)
]
dF (θ)

=

∫ ∞

θ∗

[
TB(b(θ)) +

τ

1− τ
P (b(θ))ℓ(θ)(1− ℓ(θ))h′′(ℓ(θ))

]
ℓ̂(θ)dF (θ)

where T (z) ≡ z−R(z) and TB(b) ≡ b−P (b), and where the second equality uses the

expressions we have derived above for the incidence of the reform around a baseline

tax system where T ′(z(θ)) = T ′
B(b(θ)) = τ . Since the terms in square brackets are

positive, it follows that R̂ > 0 if ℓ̂(θ) > 0 for all θ.

Now, the incidence of tax reforms on labor effort is given by equation (41). Apply

this formula with R̂(z)
R′(z)

= −ℓ P̂ (b)
P ′(b)

to obtain

D
ℓ̂

ℓ
=

1

ℓh′′(ℓ)

P̂ (b)

P ′(b)
+

[
R(z)

P ′(b)
+ (1− ℓ)

P (b)

P ′(b)

]
P̂ ′(b)

P ′(b)
− R(z)

R′(z)

R̂′(z)

R′(z)
,

where D = − 1
h′′(ℓ)

∂2Π(θ)
∂ℓ2

≥ 0. It follows that, if the tax reform lowers the marginal

and total tax rate on bonuses, so that P̂ (b) > 0 and P̂ ′(b) > 0, labor effort unambigu-

ously increases (ℓ̂ > 0) if the reform also implies R̂′(z) < 0; that is, if the marginal

tax rate on base pay increases. Assuming that the tax schedule is initially linear on
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[0,∞) ensures that this is satisfied, since in that case ℓ(θ) and b(θ)/z(θ) are constant

(by Proposition 1); thus, for a linear downward perturbation of the bonus tax rate

P̂ (b) = b, we have R̂(z(θ)) = −ℓb(θ) ∝ −z(θ), i.e., the base pay tax rate is perturbed

upwards linearly.

Proof of Theorem 3. Suppose bonuses are taxed with a schedule Tb(b) that has a

tax rate τb in the top bracket [b∗,∞). Denote by θ∗ the type that earns the bonus

b∗. The base pay of top bonus earners is taxed at a fixed rate t. Denote the average

bonus tax rate at b∗ by tb ≡ Tb(b
∗)/b∗. The elasticities of aggregate variables with

respect to 1 − τb used below are constructed by keeping the set of top agents fixed,

as in the proof of Theorem 2).

Consider an increase in the top bonus tax rate by δτ̂b with δ → 0, i.e., a per-

turbation T̂b(b) = −τ̂b(b − b∗)I{b≥b∗} and T̂ ′
b(b) = −τ̂bI{b≥b∗}. At the optimum, the

first-order change in social welfare caused by the reform is equal to zero:∫ ∞

θ∗

[
τ̂b(b− b∗)ℓ(1− g̃(z̄ | θ)) + τz ẑ + τbℓb̂+ Tb(b)ℓ̂

] dF (θ)

1− F (θ∗)
= 0,

where, using the expression for Û derived in Lemma 9, we define the modified social

marginal welfare weights as

g̃(z̄ | θ) ≡ 1

λ

1
(1−τb)u′(R(z,b))

1− 1−t
1−τb

ℓ(θ)

(1−t)u′(R(z,0))
+ ℓ(θ)

(1−τb)u′(R(z,b))

α(θ)u′(R(z, b)).

Note that, if τb ≥ t, then g̃(z̄ | θ) > g(z̄ | θ). By continuity, there exists t < t such

that, as long as τb ≥ t, this inequality continues to hold.

Denote the average effort ℓ over top bonus earners by L =
∫∞
θ∗
ℓ dF (θ)
1−F (θ∗)

, the average

frequency-adjusted bonus ℓb by B =
∫∞
θ∗
ℓb dF (θ)

1−F (θ∗)
, and the average base pay by

Z =
∫∞
θ∗
z dF (θ)
1−F (θ∗)

. Additionally, denote the bonus-weighted average of the modified

marginal social welfare weights in the top bracket by G̃ =
∫∞
θ∗

ℓb−ℓb∗)
B−Lb∗

g̃(z̄ | θ) dF (θ)
1−F (θ∗)

.

We can now rewrite the previous equation as follows. The mechanical effect is

equal to τ̂b(B − Lb∗). The welfare effect is −τ̂b(B − Lb∗)G̃. The behavioural effects

84



due to bonus and effort changes are equal to∫ ∞

θ∗

[
τbℓb̂+ Tb(b)ℓ̂

] dF (θ)

1− F (θ∗)
=

∫ ∞

θ∗

[
τbℓ̂b+ (Tb(b)− τbb)ℓ̂

] dF (θ)

1− F (θ∗)

= −τ̂b
(

τb
1− τb

BeB − tb − τb
1− τb

Lb∗eL

)
,

where we used Tb(b)− τbb = τb(b− b∗)+ tbb∗− τbb = (tb− τb)b∗. The behavioural effect
due to base pay responses is equal to:∫ ∞

θ∗
τz ẑ

dF (θ)

1− F (θ∗)
= −τ̂b

τz
1− τb

ZeZ .

Combining the terms, we get

τb
1− τb

=
1− G̃ τz

1−τb

Z
B
ρbeZ − tb−τb

1−τb
(1− ρb)eL

ρbeB
,

where ρb =
B/L

B/L−b∗
is the empirical Pareto coefficient of top bonuses.

Structural expression for eZ . Using the incidence formulas for the case of separate

taxation (Lemma 9), we can write

ẑ = − τ̂b
1− τb

εoutℓ(b− b∗)− bεinℓ̂ = − τ̂b
1− τb

[εoutℓ(b− b∗)− ℓbεineℓ] .

Plugging this expression into the definition of eZ = −1−τb
τ̂b

1
Z

∫∞
θ∗
ẑ dF (θ)
1−F (θ∗)

, we get

eZ =
(B − Lb∗)

Z

∫ ∞

θ∗

ℓ(b− b∗)

B − Lb∗
εout

dF (θ)

1− F (θ∗)︸ ︷︷ ︸
=εout

−B
Z

∫ ∞

θ∗

ℓb

B
εineℓ

dF (θ)

1− F (θ∗)︸ ︷︷ ︸
=εineℓ

This expression easily leads to equation (31).

C Alternative Models of Performance Pay

C.1 Linear Contracts: Piece Rates and Commissions

Preferences are represented by the utility function U(c, ℓ) = − 1
γ
exp(−γ(c−h(ℓ))),

where h is convex. The income tax schedule is affine: c = T0 + (1 − τ)z. Providing
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effort ℓ yields output θ(ℓ + η), where η ∼ N (0, σ2
η). The firm observes the worker’s

output but not her effort nor performance shock. Following Holmstrom and Milgrom

(1987), we can restrict attention to linear contracts, i.e., pre-tax earnings are given

as a function of observed output by z = z0 + βθ(ℓ + η), for some (z0, β) ∈ R2. The

firm maximizes expected profits θℓ− Ez subject to the incentive constraint

ℓ = argmax
l≥0

E[U(c, l)] (43)

and the participation constraint E[U(c, ℓ] ≥ U(θ). The free-entry condition holds and

determines the equilibrium reservation values.

We show below that the incentive compatibility constraint (43) implies h′(ℓ) =

(1− τ)βθ. In other words, if the firm wants to elicit an effort level ℓ from the worker,

it must design a contract such that the sensitivity of pay to performance is equal to

β =
1

θ

h′(ℓ)

1− τ
.

This equation shows the worker’s exposure to output risk, measured by the slope

of the equilibrium contract, has a similar expression as in our baseline model, and

identical crowd-out and crowd-in elasticities εβ,1−p = −1 and εβ,ℓ = 1/εFℓ . In Section

D in the Appendix we derive expressions for the demogrant z0 and the equilibrium

expected utility U(θ).

The optimal effort level is chosen to maximize the firm’s profit. We find that ℓ

satisfies

h′(ℓ) =
(1− τ)θ

1 + γh′′(ℓ)σ2
η

. (44)

Suppose in particular that h(ℓ) = ℓ2

2
. We then get β = 1

θ
ℓ

1−τ
and ℓ = (1−τ)θ

1+γσ2
η
. Thus,

β = 1
1+γσ2

η
is independent of the tax rate. More generally, the net effect of the tax

rate on the pass-through is given by

d ln β

d ln(1− τ)
= −1 +

εℓ,1−τ

εFℓ
,

and the elasticity of labor effort with respect to the retention rate 1− τ is given by

εℓ,1−τ =
∂ ln ℓ

∂ ln(1− τ)
=

εFℓ

1 + (1− β)h
′(ℓ)h′′′(ℓ)
h′′(ℓ)2

,
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where εFℓ = h′(ℓ)
ℓh′′(ℓ)

is Frisch elasticity. These expressions imply that an increase in the

tax rate leads to an increase in the pass through β, so that the crowd-out dominates

the crowd-in, if and only if the labor effort elasticity εℓ,1−τ is smaller than the Frisch

elasticity εFℓ , or equivalently whenever h
′′′(ℓ) > 0. If the disutility of effort is isoelastic,

this is the case iff εFℓ < 1.

The framework of Holmstrom and Milgrom (1987) allows us to verify that our

main prediction—the offsetting of the crowd-out and crowd-in effects—is robust to

the degree of risk aversion of workers. Suppose that the Frisch elasticity is constant,

in which case the effort elasticity becomes

εℓ,1−τ =
εFℓ

1 + (1− β)(1− εFℓ )
.

This elasticity depends on β = 1
θ
h′(ℓ)
1−τ

, which is increasing in the level of effort.

Note further that by the first-order condition (44), effort is strictly decreasing in the

coefficient of absolute risk aversion γ. Intuitively, motivating effort requires exposing

workers to earnings risk, and more risk-averse workers require higher compensation

for this risk—a higher z0—which is costly to the firm. Thus, the firm optimally

chooses a lower level of effort when γ is higher. This comparative statics allows us to

sharply characterise how risk aversion affects both the labor effort elasticity and the

degree to which the crowd-in offsets the crowd-out.

Corollary 2 The effort elasticity εℓ,1−τ is a monotonic function of the coefficient of

absolute risk aversion γ, and takes values between εFℓ when γ = 0 and
εFℓ

2−εFℓ
when

γ → ∞. Thus, d lnβ
d ln(1−τ)

takes values between 0 when γ = 0 and −1−εFℓ
2−εFℓ

when γ → ∞.

Suppose that, in line with the existing evidence, Frisch elasticity is equal εFℓ = 0.5.

We know that, regardless of the degree of risk aversion, the crowd-in will offset at

least two-thirds of the crowd-out: d lnβ
d ln(1−τ)

> −1/3. Furthermore, the lower is coeff.

of absolute risk aversion γ, the higher is this offset rate, reaching 100 percent when

the risk aversion vanishes.

C.2 Convex Contracts: Stock-Options

We now build on the model of performance pay proposed by Edmans and Gabaix

(2011). This framework gives rise to convex optimal contracts and has been used to
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describe forms of executive compensation such as stock options. Here, we focus on a

simple version of the model, and we refer to our earlier Working Paper (Doligalski,

Ndiaye, and Werquin 2020) for a thorough analysis of taxation a general environment

that allows for arbitrary utility function, distribution of performance shocks, and tax

schedule.

The setup is similar to our baseline model of Section 1, except that agents can

now draw continuous performance shocks. A worker with ability θ who provides effort

ℓ produces output θ(ℓ + η), where η ∈ R is a random variable with mean 0. As in

Edmans and Gabaix (2011), we impose the following assumption.

Assumption 3 The agent chooses effort ℓ after observing the realization of her per-

formance shock η. The firm recommends the same effort level ℓ(θ) for all agents with

the same ability θ.

Importantly, we assume here that the worker is committed to stay with an em-

ployer regardless of the realisation of the performance shock. We relax this assumption

in section C.4. Since the design of the contract ensures that effort is incentive compat-

ible, the firm is able to infer the underlying type η from the worker’s output. We thus

denote the earnings schedule by z(θ, η). The firm’s problem is to maximize expected

profit (1) subject to the participation constraint (3) and the incentive compatibility

constraint, which reads:

ℓ(θ) ∈ argmax
ℓ̂
u(R(z(θ, η + ℓ̂− ℓ(θ))))− h(ℓ̂), ∀η. (45)

That is, when the worker exerts effort ℓ̂, the employer assumes that she has exerted

the recommend effort ℓ(θ) and deduces that η is η+ ℓ̂−ℓ(θ) and pays her according to

that calculation. Incentive compatibility then implies that ℓ̂ = ℓ(θ) is optimal. Notice

that, in contrast to our baseline framework of Section 1, the effort level ℓ(θ) must

maximize utility state-by-state (i.e., for each performance shock realization η) rather

than in expectation. This is a consequence of the timing Assumption 3. Finally, the

free-entry condition (4) holds.

Assumption 4 The utility of consumption is logarithmic, u(c) = log c. The Frisch

elasticity of labor supply εFℓ ≡ h′(ℓ)/ℓh′′(ℓ) is constant. The performance shocks

are normally distributed, η ∼ N (0, σ2
η). The tax schedule has a constant rate of

progressivity (CRP), T (z) = z − 1−τ
1−p

z1−p.
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We denote by β ≡ ∂ log z(θ, η)/∂η the pass-through of performance shocks to

log-earnings. The following proposition characterizes the equilibrium labor contract.

Proposition 5 The earnings schedule is log-linear and given by:

log z(θ, η) = log(θℓ) + βη − 1

2
β2σ2

η with β =
h′(ℓ)

1− p
. (46)

Effort ℓ is independent of θ and satisfies:

ℓ = [(1− p)(1− εβ,ℓβ
2σ2

η)]
εFℓ /(1+εFℓ ), (47)

where εβ,ℓ ≡ ∂ log β
∂ log ℓ

= 1/εFℓ . Expected utility is given by

U(θ) = log(R(θℓ))− h(ℓ)− 1

2
(1− p)β2σ2

η. (48)

Proposition 5 shows that earnings risk, measured by the pass-through parameter

β, is constant and has the exact same expression as in our discrete model (equation

(6)), namely β = h′(ℓ)/(1− p). As in Section 1, this property follows immediately by

taking the first-order condition in the incentive compatibility constraint (45). This

implies in turn that the crowd-out and crowd-in elasticities are given by εβ,1−p = −1

and εβ,ℓ = 1/εFℓ . Lemma 2 and the subsequent discussion on the relative magnitude

of these two forces thus applies identically to this framework. Only the expression for

the labor effort elasticity is different, namely,

εℓ,1−p =
εFℓ

1 + εFℓ
·

1 + εβ,ℓβ
2σ2

η

1 +
1−εFℓ
1+εFℓ

εβ,ℓ β2σ2
η

.

This expression shows that the labor effort elasticity is strictly larger in the presence of

moral hazard (εβ,ℓ > 0) than in the benchmark model with exogenous risk (εβ,ℓ = 0),

due to the marginal cost of incentives (MCI) in the first-order condition for effort.

We can now derive the optimal rate of progressivity in this framework. We obtain

the following result.

Theorem 4 Suppose that the social welfare objective is utilitarian. The optimal rate
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of progressivity satisfies

p

(1− p)2
=

σ2
θ + (1 + εβ,1−p)β

2σ2
η[

1 + g
(1−g)p

]
εℓ,1−p + (1− p)εβ,ℓεℓ,1−pβ2σ2

η

. (49)

Thus, the optimal rate of progressivity is strictly smaller in the model with endoge-

nous private insurance than in the benchmark environment with exogenous risk where

εβ,1−p = εβ,ℓ = 0.

Interestingly, the optimal tax progressivity in our baseline setting (equation (13))

coincides with formula (49) up to a second order as β → 0. We derive further

theoretical and quantitative results in Doligalski et al. (2020).

C.3 Dynamic Contracts: Career Incentives

We now extend our results to a dynamic model of the labor market based on the

model of Edmans et al. (2012).47 Workers are indexed by their constant productivity

θ. They live for S ≥ 2 periods and discount the future at rate r. Preferences

are separable, logarithmic in consumption and isoelastic in effort. Productivity θ

is lognormally distributed with mean µθ and variance σ2
θ . The government levies

a CRP income tax given by Rt(z) = 1−τt
1−p

z1−p. The rate of progressivity p is time-

independent while the intercept τt ensures that the budget is balanced in each period.

Private savings are ruled out, so that ct = Rt(zt).

We denote the history of a random variable x up to time t ≤ S by xt. Flow output

at time t is given by yt = θ(ℓt + ηt) where {ηt}1≤t≤S are i.i.d. random variables. We

assume that ηt are normally distributed with mean 0 and variance σ2
η. As in Section

C.2, we assume that the agent chooses period-t effort ℓt after observing the realization

of the history of performance shocks up to and including time t, ηt. Firms discount

future profits at rate r. In each period they observe the agent’s productivity and

history of output realizations. A labor contract specifies for each t a recommended

effort level ℓt(θ) and an earnings function zt(θ, η
t). The firm maximizes its expected

profit

Π(θ) = max
{ℓt(θ),zt(θ,ηt)}1≤t≤S

S∑
t=1

(
1

1 + r

)t−1 {
θℓt − E0

[
zt(θ, η

t)
]}

47Our results of Section 1 also extend to the dynamic framework of Sannikov (2008), in which the
one-shot deviation principle implies that the sensitivity of utility to output shocks is, again, given
by the marginal disutility of effort h′(ℓ) (see equation (4) on p. 962).
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subject to the incentive constraint:

E1

[
S∑

t=1

βt−1(u(Rt(zt(θ, η
t)))− h(ℓ̃t(η

t)))

]
(50)

≤ E1

[
S∑

t=1

βt−1(u(Rt(zt(θ, η
t)))− h(ℓt(θ)))

]
, ∀{ℓ̃t(ηt)}1≤t≤S

and the participation constraint:

E0

[
S∑

t=1

βt−1(u(R(zt(θ, η
t)))− h(ℓt(θ)))

]
≥ U(θ).

The free-entry condition (4) holds.

Proposition 6 Let
∑S−t

s=0

(
1

1+r

)s ≡ 1/δt, and denote the present value of effort by

L ≡
∑S

s=1

(
1

1+r

)s−1
ℓs. Define the sequence of pass-through parameters {βt}1≤t≤S by

βt = δt
h′(ℓt)

1− p
. (51)

The earnings schedule satisfies

log(zt(θ, η
t)) = log(zt−1(θ, η

t−1)) + βtηt −
1

2
β2
t σ

2
η, (52)

where initial earnings are given by z0 ≡ δ1θL. Period-t effort level ℓt is independent

of θ and satisfies

ℓt =

[
(1− p)

(
ℓt
δ1L

− 1

δt
εβt,ℓtβ

2
t σ

2
η

)]εFℓ /(1+εFℓ )

where εβt,ℓt = 1/εFℓ is the elasticity of the pass-through parameter βt with respect to

effort ℓt. Expected utility is given by

U(θ) =
S∑

t=1

(
1

1 + r

)t−1 [
u(R(δ1θL))− h(ℓt)−

1

2δt
β2
t σ

2
η

]
.

Equation (52) shows that, as in the static setting of Section C.2, earnings in each

period t are a log-linear function of the performance shock ηt in that period. Note
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that δS = 1 in the last period, so that βS is exactly the same as in the static model.

In earlier periods we have δt < 1 for all t ≤ S − 1, so that the pass-through of

output risk is smaller than in the static environment. This is because an increase in

output realization in a given period, either due to effort or to random shocks, boosts

log-earnings in the current and all future periods equally. Indeed, since the agent is

risk-averse it is efficient to spread the rewards over her entire horizon. In other words,

a given increase in lifetime utility necessary to elicit higher effort requires a higher

increase in flow utility if there are fewer remaining periods over which to smooth

these benefits. As a result, the sequence {δt}1≤t≤S is strictly increasing and the

degree of performance pay gets stronger over time. Nevertheless, the pass-through of

performance shocks to log-earnings βt keeps the same expression as in the static model.

Thus, our insight that tax progressivity affects the private contract via offsetting

crowd-out and crowd-in forces carries over to this dynamic environment.

Theorem 5 Suppose that the planner is utilitarian. The optimal rate of progressivity

is given by

p

(1− p)2
=

σ2
θ

εL,1−p + (1− p)
∑S

s=1

(
1

1+r

)s−1 δ1
δs
εβs,ℓsεℓs,1−pβ2

sσ
2
η

(53)

where εL,1−p is the elasticity of the present discounted value of effort with respect to

progressivity, and εβs,ℓs = 1/εFℓ .

Equation (53) is similar to its static counterpart (49). Assuming first that private

insurance is exogenous (εβs,ℓs = εβs,1−p = 0 for all s ≥ 1), note that the relevant labor

effort elasticity is that of the present-value of effort, εL,1−p. With endogenous earnings

risk, the optimal rate of progressivity accounts for the negative fiscal externality

due to the crowding-in of private insurance (second term in the denominator). The

only difference with the static expression is that the relevant discount factor is not

(1/(1+r))s−1 but (1/(1+r))s−1δ1/δs. Since δs is increasing over time, this implies that

the fiscal externalities caused by the future performance-pay effects are discounted at

a higher rate than the standard deadweight losses from distorting effort.
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C.4 No Commitment of Workers, Competitive Screening and

Adverse Selection

In this section, we consider a modified version of the Edmans and Gabaix (2011)

model in which workers cannot commit to stay with their employer once they privately

observe their idiosyncratic performance shock η. Effectively, the performance shock

becomes a hidden type, and the framework becomes one of adverse selection: workers

with heterogenous performance shocks are screened by competitive firms that offer a

menu of contracts for workers to select from.

Our results are as follows. First, the equilibrium in this model, taking the income

tax schedule as given, always exists and is unique. Second, the equilibrium is very

simple: labor effort satisfies the standard first-order condition with the tax rate as

the only distortion, workers’ earnings are equal to their realized output and there is

no private insurance within firms. Below we describe the setup of the model, derive

our results, and discuss them in the context of other models of adverse selection.

Setup. The setting is as in Edmans and Gabaix (2011), described in Section C.2.

Workers are characterized by a fixed ability θ and a performance shock η. They choose

labor effort ℓ ≥ 0 and produce output y = θ(ℓ + η). The utility over consumption c

and effort ℓ is given by u(c)−h(ℓ), where u is strictly increasing and concave, and h is

strictly increasing and strictly convex, both continuously differentiable. Competitive

firms observe workers’ ability θ. Thus, when describing the equilibrium we will focus

on a market for a particular realization of ability θ. Furthermore, firms observe the

individual’s output, but do not observe the performance shock nor labor effort. This

means that the performance shock realization is a hidden type. We define a labor

contract (y, z) as a pair of output y and earnings z. Firms are competitive: free entry

ensures that they cannot make positive profits in equilibrium. To be precise, we

use the equilibrium notion of Miyazaki (1977)-Wilson (1977)-Spence (1978), defined

formally below. Defining an equilibrium as in M. Rothschild and Stiglitz (1976) would

make no difference: the two equilibrium notions always coincide in this setting.

Definition 1 (Miyazaki-Wilson-Spence equilibrium) A set of contracts is an

equilibrium if (i) firms make zero profits on their overall portfolio of contracts offered,

and (ii) there is no other potential contract which would make positive profits, if of-

fered, after all contracts rendered unprofitable by its introduction have been withdrawn.
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We make a number of simplifying assumptions for ease of exposition. These

assumptions can be relaxed without affecting the main results.

1. The performance shock η takes two values: ηH with probability λ ∈ (0, 1) and

ηL with the remaining probability, where ηH > ηL ≥ 0.

2. The utility function is quasilinear: u(c) = c.

3. The income tax schedule is affine with tax rate t and lump-sum transfer T .

Since we consider a labor market with asymmetric information, the equilibrium

set of contracts needs to satisfy the incentive-compatibility (IC) constraints. Denote

the contract designed for type ηi, i ∈ {L,H}, by (yi, zi), with the associated effort

level ℓi =
yi
θ
− ηi. The IC constraints then ensure that both types of workers have

incentives to select the contract that is designed for them:

(1− t)zi − h(ℓi) ≥ (1− t)z−i − h(ℓ−i + η−i − ηi) ∀i ∈ {L,H}. (54)

Consider the following candidate for the equilibrium—it is the one we would expect

to see in the absence of information frictions. Namely, firms break even on each

type of worker and labor effort follows the standard first-order condition. Lemma

10 below shows that in such a candidate equilibrium, the IC constraints are always

slack. Proposition 7, which follows, demonstrates further that the candidate is the

unique equilibrium and always exists.

Lemma 10 Consider a candidate equilibrium in which a worker with performance

shock ηi, i ∈ {L,H}, exerts effort ℓ∗ which satisfies (1 − t)θ = h′(ℓ∗) and receives

pre-tax earnings zi = θ(ℓ∗ + ηi). The incentive-compatibility constraints are slack.

Proof. Rewrite the IC constraint of type L as h(ℓ∗+ηH −ηL)−h(ℓ∗) ≥ θ(1− t)(ηH −
ηL). We can bound the left-hand side from below:

h(ℓ∗ + ηH − ηL)− h(ℓ∗) =

∫ ηH−ηL

0

h′(ℓ∗ + x)dx

>

∫ ηH−ηL

0

h′(ℓ∗)dx = h′(ℓ∗)(ηH − ηL) = θ(1− t)(ηH − ηL), (55)
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where the inequality follows from the strict convexity of h(·) and the last equality

follows from the first-order condition for effort. Thus, the IC constraint of the L type

is always slack. It is straightforward to show the analogous result for type H.

Proposition 7 There exists a unique equilibrium, which is given by the candidate

equilibrium from Lemma 10.

Proof. First we will prove the properties of the equilibrium conditional on existence,

then we will prove the existence and uniqueness. The proposition effectively postu-

lates that in equilibrium (i) firms break even on each contract and (ii) labor effort

satisfies the standard first-order condition.

First, suppose that condition (i) is not satisfied. Without loss of generality, sup-

pose that the incumbent firm makes positive profits on worker type i by offering a

contract (yi, zi) with yi > zi and is incurring losses on the other type. A profitable

deviation for the competitor is to offer a single contract (ỹ, z̃) = (yi,
yi+zi

2
) to both

types. Type i is always better-off accepting the contract, while type −i may or may

not be better-off. The competitor makes positive profits on each worker who accepts

the contract regardless of their type, since output is higher than wage payments:

ỹ > z̃.

Second, suppose that condition (ii) is not satisfied for type i. The profitable

deviation is then to offer a contract (ỹ, z̃) = (θ(ℓ∗ + ηi)), θ(ℓ
∗ + ηi)− ϵ) for sufficiently

small ϵ > 0. It is straightforward to show that for sufficiently small ϵ > 0 such

contracts attract type i. Since the contracted output is strictly higher than the wage

payment, the competitor makes positive profits on any worker who accepts the new

contract. Hence, it does not matter whether type −i is attracted by the contract or

not.

The candidate equilibrium of Lemma 10 exists by construction. To prove that it

is indeed an equilibrium, we will show that there exists no profitable deviation start-

ing from it. At the candidate equilibrium each worker receives a utility-maximizing

contract subject to the employer making no losses on that worker. Consequently,

there exists no contract which yields higher utility to a worker and generates posi-

tive profits. Thus, there exists no profitable deviation. The uniqueness follows from

the strict concavity of h, implying a unique solution ℓ∗ to the first-order condition

θ(1− t) = h′(ℓ).
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We find that the equilibrium in the model without workers’ commitment and

asymmetric information about the performance shock coincides with the allocation

that we would expect to see in the absence of information frictions. Thus, the labor

market operates exactly as in the standard Mirrlees model with two-dimensional

heterogeneity (θ, η). In equilibrium workers are paid exactly what they produce,

which can be interpreted as workers having performance-based contracts, e.g., a 100

percent commission or piece rate. However, the exact slope of the contract is not

uniquely pinned down. The performance shock is fully passed through to earnings,

which means that there is no private insurance within the firm.

It is useful to compare these results to other settings with competitive labor market

screening. In particular, Miyazaki (1977) finds rat-race effects (upward effort distor-

tion of high types) and cross-subsidization from high to low types, while Stantcheva

(2014), who studies tax policy in Miyazaki’s environment, demonstrates that the

government can redistribute more than in the standard Mirrlees model. Using the

Nash equilibrium notion as in M. Rothschild and Stiglitz (1976) could even lead to a

non-existence of equilibrium.

Our model has none of these features. The fundamental difference is in the in-

formation available to the firms: in Miyazaki (1977) and Stantcheva (2014), firms

observe the worker’s effort (hours worked), while in our setting firms observe the

worker’s output. Screening workers via effort is costly (IC constraints are binding)

and complex: it involves additional effort distortions and cross-subsidization between

types. By contrast, screening workers via output is easy and costless—IC constraints

are slack. In equilibrium with observable output the firm can simply promise each

worker a pay equal to the realized output and let workers choose their effort level.

D Proofs of Section C

D.1 Proofs of Section C.1

The incentive constraint reads

ℓ = argmax
l

−1

γ
E
[
e−γ[T0+(1−τ)(z0+βθ(l+η))−h(l)]

]
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Taking the first-order condition implies

E
[
{(1− τ)βθ − h′(ℓ)}e−γ[T0+(1−τ)(z0+βθ(ℓ+η)−h(ℓ)]

]
= 0

and hence

(1− τ)βθ = h′(ℓ).

The slope of the optimal contract is thus given by β = 1
θ
h′(ℓ)
1−τ

. Expected utility is

given by

E[U(c, ℓ)] =E
[
−1

γ
e−γ[T0+(1−τ)z0+(1−τ)βθ(ℓ+η)−h(ℓ)]

]
=− 1

γ
e−γT0e−γ(1−τ)z0e−γ(ℓh′(ℓ)−h(ℓ))E

[
e−γh′(ℓ)η

]
=− 1

γ
e−γT0e−γ(1−τ)z0e−γ(ℓh′(ℓ)−h(ℓ))e

1
2
γ2(h′(ℓ))2σ2

η .

The participation constraint then implies

z0 = − log(−γU(θ))
γ(1− τ)

− T0
1− τ

− ℓh′(ℓ)− h(ℓ)

1− τ
+

1

2

γ

1− τ
(h′(ℓ))2σ2

η

Free entry implies 0 = (1− β)θℓ− z0, and hence

z0 = (1− β)θℓ.

Thus expected utility is equal to

U (θ) =− 1

γ
e−γT0e−γ(1−τ)z0e−γ(ℓh′(ℓ)−h(ℓ))e

1
2
γ2(h′(ℓ))2σ2

η

=− 1

γ
e−γ(1−τ)(1−β)θℓe−γT0e−γ(ℓh′(ℓ)−h(ℓ))e

1
2
γ2(h′(ℓ))2σ2

η

=− 1

γ
e−γ(1−τ)θℓeγℓh

′(ℓ)e−γT0e−γ(ℓh′(ℓ)−h(ℓ))e
1
2
γ2(h′(ℓ))2σ2

η

=− 1

γ
e−γ[T0+(1−τ)θℓ−h(ℓ)]e

1
2
γ2(h′(ℓ))2σ2

η = U(R(θℓ), ℓ)e
1
2
γ2(h′(ℓ))2σ2

η .
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Firm profits are given by

Π =(1− β)θℓ− z0

=

(
1− 1

θ

h′(ℓ)

1− τ

)
θℓ+

ℓh′(ℓ)− h(ℓ)

1− τ
− 1

2

γ

1− τ
(h′(ℓ))2σ2

η +
log(−γU(θ))
γ(1− τ)

+
T0

1− τ
.

The optimal choice of effort maximizes the firm’s profits:

0 = θ

(
1− 1

θ

h′(ℓ)

1− τ

)
− ℓh′′(ℓ)

1− τ
+
ℓh′′(ℓ)

1− τ
− γ

1− τ
h′(ℓ)h′′(ℓ)σ2

η

so that

h′(ℓ) =
(1− τ)θ

1 + γh′′(ℓ)σ2
η

.

This first-order condition implies that

∂ℓ

∂1− τ
=

θ

h′′(ℓ) + γσ2
η(h

′′(ℓ)2 + h′(ℓ)h′′′(ℓ))

which leads to the following effort elasticity

εℓ,1−τ =
∂ ln ℓ

∂ ln(1− τ)
=

εFℓ

1 + (1− β)h
′(ℓ)h′′′(ℓ)
h′′(ℓ)2

,

where εFℓ = h′(ℓ)
ℓh′′(ℓ)

is the Frisch elasticity. Assuming that the Frisch elasticity is

constant, the effort elasticity becomes εℓ,1−τ =
εFℓ

1+(1−β)(1−εFℓ )
.

D.2 Proofs of Section C.2

Proof of Proposition 5. Consider first the general case of a concave utility function

u and a nonlinear retention function R. Given the earnings contract {z(θ, η) : η ∈ R},
an agent with ability θ and performance shock η chooses effort ℓ(θ) to maximize utility

v(z(θ, η))−h(ℓ(θ)) with v = u◦R. Equation (45) implies that ∂z(θ,η)
∂η

= ∂z(θ,η)
∂ℓ

so that

the first-order condition reads

v′(z(θ, η))
∂z(θ, η)

∂η
= h′(ℓ(θ)). (56)
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This equation pins down the slope of the earnings schedule that the firm must im-

plement in order to induce the effort level ℓ(θ). Integrating this incentive constraint

over η given ℓ(θ) leads to

v(z(θ, η)) = h′(ℓ(θ))η + k, (57)

for some constant k ∈ R. Since in equilibrium the participation constraint (3) must

hold with equality, the agent’s expected utility must be equal to his reservation value

U(θ). Therefore, the value of k must be chosen by the firm such that the agent’s

participation constraint holds with equality. Imposing the participation constraint

with Eη = 0 implies

k = U(θ) + h(ℓ(θ)). (58)

The previous two equations fully characterize the wage contract given the desired

effort level ℓ(θ) and the reservation value U(θ). They imply that, for a given pair

(a (θ) , U (θ)), the wage given performance shock η satisfies:

v(z(θ, η)) = h′(ℓ(θ))η + [U(θ) + h(ℓ(θ))]. (59)

The first-order condition for effort is obtained by taking the first-order condition with

respect to ℓ(θ) in the firm’s problem, taking as given the earnings contract required

to satisfy the workers’ incentive and participation constraints.

Suppose now that the tax schedule is CRP, so that R(z) = 1−τ
1−p

z1−p. Equation

(57) then implies that in order to induce agents with ability θ to choose the same

effort ℓ regardless of their noise realization η, the earnings contract must satisfy:

log(z(θ, η)) =
ℓ

1
ε

1− p
η − 1

1− p
log

1− τ

1− p
+

k

1− p
, (60)

for some k ∈ R. Thus, log-earnings are linear in the performance shock η = z
θ
− ℓ

that the firm infers upon observing realized output z. Imposing that the agent’s

participation constraint holds with equality pins down the value of k as a function of

U(θ). Namely, equation (58) implies:

k = U(θ) +
1

1 + 1
εFℓ

ℓ
1+ 1

εF
ℓ
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and hence

log(z(θ, η)) =
ℓ

1

εF
ℓ

1− p
η +

1

1− p

1

1 + 1
εFℓ

ℓ
1+ 1

εF
ℓ − 1

1− p
log

1− τ

1− p
+
U(θ)

1− p
. (61)

Below we derive the equilibrium value of the reservation utility U(θ) and obtain the

equilibrium wage given (ℓ, η):

log(z(θ, η)) = log(θℓ) +
ℓ

1

εF
ℓ

1− p
η − 1

2

 ℓ
1

εF
ℓ

1− p

2

σ2
η. (62)

Define the sensitivity of the before-tax and after-tax wages to output in the optimal

contract by the semi-elasticities β(θ, η) ≡ 1
z(θ,η)

∂z(θ,η)
∂η

and βc(θ, η) ≡ 1
R(z(θ,η))

∂R(z(θ,η))
∂η

,

respectively. We have β(θ, η) = ℓ1/ε
F
ℓ

1−p
and βc(θ, η) = ℓ1/ε

F
ℓ . Both β(θ, η) and βc(θ, η)

depend on the tax schedule through its effect on optimal effort, and there is an

additional crowding-out effect on the before-tax sensitivity.

Next, since v′(z) = R′(z)
R(z)

= 1−p
z

the firm’s first-order condition reads

θ = E
[

h′(ℓ)

v′(z(θ, η))
+

h′′(ℓ)

v′(z(θ, η))
η

]

=
ℓ

1

εF
ℓ

1− p
E[z(θ, η)] +

1

εFℓ

ℓ
1

εF
ℓ

−1

1− p
E[z(θ, η)η].

We have

E[z(θ, η)] = E
[
e

ℓ
1/εFℓ
1−p

η
]
e

1
1−p

1

1+1/εF
ℓ

ℓ1+1/εFℓ − 1
1−p

log 1−τ
1−p

+
U(θ)
1−p

= e
1
2

ℓ
2/εFℓ

(1−p)2
σ2
ηe

1
1−p

1

1+1/εF
ℓ

ℓ1+1/εFℓ − 1
1−p

log 1−τ
1−p

+
U(θ)
1−p

.

where we used the fact that that η is normally distributed with mean 0 and variance

σ2
η so that E[exη] = e

1
2
x2σ2

η for any x. Moreover, we have E[ηexη] = xσ2e
1
2
x2σ2

η for

any x. Indeed, let φ the (normal) pdf of η. We have φ′(η) = − η
σ2
η
φ(η), so that

E[ηexη] =
∫
ηexηφ(η)dη = −σ2

η

∫
exηφ′(η)dη = xσ2

η

∫
exηφ(η)dη = xσ2

ηe
1
2
x2σ2

η , where
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the third equality follows from an integration by parts.

E[z(θ, η)η] = E
[
ηe

ℓ
1/εFℓ
1−p

η
]
e

1
1−p

1

1+1/εF
ℓ

ℓ1+1/εFℓ − 1
1−p

log 1−τ
1−p

+
U(θ)
1−p

=
ℓ1/ε

F
ℓ

1− p
σ2
ηe

1
2

ℓ
2/εFℓ

(1−p)2
σ2
ηe

1
1−p

1

1+1/εF
ℓ

ℓ1+1/εFℓ − 1
1−p

log 1−τ
1−p

+
U(θ)
1−p

.

Plugging these expressions into the firm’s first order condition leads to

θℓ =

[
ℓ1+1/εFℓ

1− p
+

1

εFℓ

ℓ2/ε
F
ℓ

(1− p)2
σ2
η

]
e

1
2

ℓ
2/εFℓ

(1−p)2
σ2
ηe

1
1−p

1

1+1/εF
ℓ

ℓ1+1/εFℓ − 1
1−p

log 1−τ
1−p

+
U(θ)
1−p

and hence

ℓ
1+ 1

εF
ℓ

1− p
+

1

εFℓ

ℓ2/ε
F
ℓ

(1− p)2
σ2
η = θℓe

− 1
1−p

1

1+1/εF
ℓ

ℓ1+1/εFℓ − 1
2

ℓ
2/εFℓ

(1−p)2
σ2
η+

1
1−p

log 1−τ
1−p

−U(θ)
1−p

.

Now use the free-entry condition and the expression derived above for E[z(θ, η)] to
get

e
1

1−p
1

1+1/εF
ℓ

ℓ1+1/εFℓ + 1
2

ℓ
2/εFℓ

(1−p)2
σ2
η− 1

1−p
log 1−τ

1−p
+

U(θ)
1−p

= θℓ. (63)

Combining this equation with the first-order condition for optimal effort therefore

leads to:

ℓ1+1/εFℓ +
1

εFℓ

ℓ2/ε
F
ℓ

1− p
σ2
η = 1− p. (64)

Using the definition β ≡ ℓ

1
εF
ℓ

1−p
for the pass-through easily leads to (47). Note that if

εFℓ = 1, we obtain optimal effort in closed form:

ℓ =

(
1

1− p
+

σ2
η

(1− p)2

)−1/2

. (65)

Taking logs in equation (63) easily leads to (48).

Differentiating equation (64) with respect to (1− p) leads to[(
1 +

1

εFℓ

)
ℓ1/ε

F
ℓ +

2σ2
η

(1− p)(εFℓ )
2
ℓ2/ε

F
ℓ −1

]
∂ℓ

∂(1− p)
−

σ2
η

(1− p)2εFℓ
ℓ2/ε

F
ℓ = 1,
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and hence[(
1 +

1

εFℓ

)
ℓ1/ε

F
ℓ +1 +

2σ2
η

(1− p)(εFℓ )
2
ℓ2/ε

F
ℓ

]
εℓ,1−p −

σ2
η

(1− p)εFℓ
ℓ2/ε

F
ℓ = 1− p.

Using the first-order condition again to substitute for 1− p leads to

εℓ,1−p =
ℓ1/ε

F
ℓ +1 +

2σ2
η

(1−p)εFℓ
ℓ2/ε

F
ℓ(

1 + 1
εFℓ

)
ℓ1/ε

F
ℓ +1 +

2σ2
η

(1−p)(εFℓ )2
ℓ2/ε

F
ℓ

.

We finally express this elasticity in terms of the pass-through elasticities. We have

β = ℓ1/ε
F
ℓ

1−p
and εβ,ℓ = 1/εFℓ . We can thus write

εℓ,1−p =
ℓ1/ε

F
ℓ +1 + 2(1− p)εβ,ℓβ

2σ2
η(

1 + 1
εFℓ

)
ℓ1/ε

F
ℓ +1 + 2

εFℓ
(1− p)εβ,ℓβ2σ2

η

.

But the first-order condition for labor effort reads

ℓ1+1/εFℓ = (1− p)(1− εβ,ℓβ
2σ2

η).

Substituting into the previous equation and rearranging terms leads to

εℓ,1−p =
1 + εβ,ℓβ

2σ2
η(

1 + 1
εFℓ

)
+
(

1
εFℓ

− 1
)
εβ,ℓβ2σ2

η

.

This easily yields the expression given in the text.

Proof of Theorem 4. Recall that the earnings schedule of agents with ability θ can

be written as

log(z(θ, η)) = log(θℓ) + βη − 1

2
(βση)

2

and their expected utility as

U(θ) = log
1− τ

1− p
+ (1− p) log(θℓ)− 1

2
(1− p)(βση)

2 − h(ℓ).
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Utilitarian social welfare is therefore equal to∫
Θ

U(θ)dF (θ) = (1− p)µθ + (1− p) log ℓ− (1− p)
β2σ2

η

2
− h(ℓ) + log

1− τ

1− p
.

The first-order condition for effort, taking taxes as given, reads

0 =
∂U(θ)

∂ℓ
= (1− p)

1

ℓ
− (1− p)βσ2

η

∂β

∂ℓ
− h′(ℓ).

Now recall that expected pre-tax and post-tax earnings are respectively given by

E[z(θ, η)] = θℓ and E[(z(θ, η))1−p] = (θℓ)1−pe−
pℓ

2/εFℓ σ2
η

2(1−p) , so that government revenue is

equal to

∫
Θ

E[R(z(θ, η))]f(θ)dθ = ℓeµθ+
σ2
θ
2 − 1− τ

1− p
e−

pℓ
2/εFℓ σ2

η
2(1−p) ℓ1−pe(1−p)µθ+(1−p)2

σ2
θ
2 .

Budget balance thus requires

1− τ

1− p
=

ℓeµθ+
σ2
θ
2 −G

e−
pℓ

2/εF
ℓ σ2

η
2(1−p) ℓ1−pe(1−p)µθ+(1−p)2

σ2
θ
2

=
(1− g)ℓeµθ+

σ2
θ
2

e−
pℓ

2/εF
ℓ σ2

η
2(1−p) ℓ1−pe(1−p)µθ+(1−p)2

σ2
θ
2

.

As a result, maximizing with respect to 1− p leads to:

0 = µθ + log ℓ+ (1− p)
1

ℓ

∂ℓ

∂(1− p)
− h′(ℓ)

∂ℓ

∂(1− p)
−
β2σ2

η

2

− (1− p)βσ2
η

[
∂β

∂(1− p)
+
∂β

∂ℓ

∂ℓ

∂(1− p)

]
+
∂ log 1−τ

1−p

∂(1− p)
,

with

∂ log 1−τ
1−p

∂(1− p)
=

g

1− g

∂ log ℓ

∂(1− p)
− µθ − (1− p)σ2

θ − log ℓ+ p
1

ℓ

∂ℓ

∂(1− p)

−
(
1

2
− p

)
β2σ2

η + p(1− p)βσ2
η

[
∂β

∂ (1− p)
+
∂β

∂ℓ

∂ℓ

∂(1− p)

]
.
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We therefore obtain

0 =

[
(1− p)

1

ℓ
− h′(ℓ)− (1− p)βσ2

η

∂β

∂ℓ

]
∂ℓ

∂(1− p)
+ p

1

ℓ

∂ℓ

∂(1− p)
+

g

1− g

∂ log ℓ

∂(1− p)

− (1− p)σ2
θ − (1− p)β2σ2

η − (1− p)2βσ2
η

∂β

∂(1− p)
+ p(1− p)βσ2

η

∂β

∂ℓ

∂ℓ

∂(1− p)
.

Using the first-order condition for effort leads to

0 =
1

1− p

[
p+

g

1− g

]
εℓ,1−p + pβ2σ2

ηεβ,ℓεℓ,1−p

− (1− p)[σ2
θ + ψ2σ2

η]− (1− p)β2σ2
ηεβ,1−p.

Rearranging this equation leads to the result.

D.3 Proofs of Section C.3

Lemma 11 The earnings process zt(θ, η
t) is a martingale. That is, expected period-t

earnings are equal to realized period-(t− 1) earnings,

Et−1[zt(θ, η
t−1, ηt)] = zt−1(θ, η

t−1).

Proof of Lemma 11. Starting from an incentive compatible allocation, consider

the following variations in retained earnings and utility:

ût−1 = v(zt−1(θ, η
t−1))− 1

1 + r
∆

and

ût = v(zt(θ, η
t−1, ηt)) + ∆

and ûs = v(zs(θ, η
s)) for all s /∈ {t − 1, t}. These perturbations preserve utility and

incentive compatibility since for all ℓt−1,

ût−1−h(ℓt−1)+
1

1 + r
Et−1[ût] = v(zt−1(θ, η

t−1))−h(ℓt−1)+
1

1 + r
Et−1[v(zt(θ, η

t−1, ηt))].
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The optimal allocation must be unaffected by such deviations, so that

0 = argmin
∆

E

[
S∑

s=1

(1 + r)−t(zs − v−1(ûs))

]
.

The associated first-order condition evaluated at ∆ = 0 reads

E
[

1

v′(zt(θ, ηt−1, ηt))
| zt−1

]
=

1

v′(zt−1(θ, ηt−1))
.

The inverse Euler equation (see Golosov et al. (2003)) holds in our setting. With log

utility and a CRP tax schedule, this equation can be rewritten as

(1− p)E[zt(θ, ηt−1, ηt) | zt−1] = (1− p)zt−1(θ, η
t−1),

which leads to the result.

Proof of Proposition 6. We provide a heuristic proof of this proposition; the formal

argument follows the same steps as in Edmans et al. (2012). Assume that a unique

level of effort is implemented at each time t, that this effort level is independent of past

output noise, and that local incentive constraints are sufficient conditions. Consider

a local deviation in effort ℓt after history (ηt−1, ηt). By incentive compatibility the

effect of such a deviation on the worker’s lifetime utility U should be zero,

Et−1

[
∂U

∂zt

∂zt
∂ℓt

+
∂U

∂ℓt

]
= 0.

Since ∂zt
∂ℓt

= θ, we obtain

Et−1

[
∂U

∂zt

]
= −1

θ

∂U

∂ℓt
(66)

Applying incentive compatibility for effort in the final period we obtain:

v′(zS(θ, η
S))

∂z(θ, ηS−1, ηS)

∂ηS
= h′(ℓS(θ)).

Fixing ηS−1 and integrating this incentive constraint over ηS leads to

v(zS(θ, η
S)) = h′(ℓS(θ))ηS + gS−1(ηS−1)
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for some function of past output gS−1(ηS−1). This implies in particular that

∂v(zS(θ, η
S))

∂ηS−1

=
∂gS−1(ηS−1)

∂ηS−1

.

Analogously, the incentive constraint for effort in the second to last period reads

v′(zS−1(θ, η
S−1))

∂zS−1(θ, η
S−1)

∂ηS−1

+
1

1 + r
v′(zS(θ, η

S))
∂zS(θ, η

S)

∂ηS−1

= h′(ℓS−1(θ)).

Integrating over ηS−1 and using the previous equation implies

v(zS−1(θ, η
S−1)) +

1

1 + r
gS−1(ηS−1) = h′(ℓS−1(θ))ηS−1 + gS−2(ηS−2).

We now want to show that gS−1(ηS−1) is a linear function of ηS−1. Since the utility

function is logarithmic and the tax schedule is CRP, we obtain

(1− p) log(zS(θ, η
S)) = h′(ℓS(θ))ηS + gS−1(ηS−1)− log

1− τS
1− p

and

(1− p) log(zS−1(θ, η
S−1))

= h′(ℓS−1(θ))ηS−1 −
1

1 + r
gS−1(ηS−1) + gS−2(ηS−2)− log

1− τS−1

1− p
.

Now recall that the inverse Euler equation reads

ES−1[zS(θ, η
S)] = zS−1(θ, η

S−1).

Using the previous expressions, this equality can be rewritten as

ES−1

[
e

1
1−p

h′(ℓS(θ))ηS
]
e

1
1−p

gS−1(ηS−1)

=

(
1− τS
1− τS−1

) 1
1−p

e
1

1−p
h′(ℓS−1(θ))ηS−1e−

1
1+r

1
1−p

gS−1(ηS−1)+ 1
1−p

gS−2(ηS−2).
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This in turn implies(
1 +

1

1 + r

)
gS−1(ηS−1)

= h′(ℓS−1(θ))ηS−1 + gS−2(ηS−2)− 1

2

(h′(ℓS(θ)))
2

1− p
σ2
η +

1

1− p
log

1− τS
1− τS−1

.

Therefore, gS−1(ηS−1), and in turn v(zS−1(θ, η
S−1)), is linear in ηS−1. Moreover, the

last-period utility is linear in both ηS and ηS−1. By induction, we can show that

the utility in each period is a linear function of the performance shock in every past

period. Now suppose for simplicity that S = 2, r = 0, θ = 1, so that δ1 = 1
2
and

δ2 = 1. From the arguments above we guess a log-linear specification for earnings:

log z1 = β1η1 + k1

log z2 = β21η1 + β2η2 + k1 + k2.

The martingale property derived above requires z1 = E1[z2], so that for all η1,

eβ1η1+k1 = eβ21η1+k1E[eβ2η2+k2 | η1]. This requires β1 = β21 and e−k2 = E[eβ2η2 | η1].
Now, the total utility of the agent is given by

U = (1− p)[2β1η1 + β2η2 + 2k1 + k2]

− h(ℓ1)− h(ℓ2) + log
1− τ1
1− p

+ log
1− τ2
1− p

.

The incentive constraint for effort (66) implies

β1 =
h′(ℓ1)

2(1− p)
, and β2 =

h′(ℓ2)

1− p

and therefore

k2 = −h
′(ℓ2)

1− p
−
σ2
η

2

(
h′(ℓ2)

1− p

)2

.

Replacing in the expression for log earnings leads to

log z1 = k′1 +
h′(ℓ1)

2(1− p)
η1 −

σ2
η

2

(
h′(ℓ1)

2(1− p)

)2
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and

log z2 = k′1 +
h′(ℓ1)

2(1− p)
η1 −

σ2
η

2

(
h′(ℓ1)

2(1− p)

)2

+

(
h′(ℓ2)

1− p

)
η2 −

σ2
η

2

(
h′(ℓ2)

1− p

)2

,

where k′1 ≡ k1+β1ℓ1−
σ2
η

2
β2
1 . This constant is pinned down by the zero profit condition

E[z1 + z2] = ℓ1 + ℓ2, that is, 2e
k′1 = ℓ1 + ℓ2. This implies

k′1 = log
ℓ1 + ℓ2

2
,

which concludes the proof of equation (52). The expressions for optimal effort and

utility are derived in the next proof.

Proof of Theorem 5. Recall that the earnings schedule is given by

log z1 = log(δ1θL) + β1η1 −
β2
1σ

2
η

2
,

log zt = log zt−1 + βtηt −
β2
t σ

2
η

2
.

The expected utility of workers with productivity θ is therefore equal to

U(θ) = (1− p)

[
1

δ1
log(δ1θL)−

S∑
s=1

(
1

1 + r

)s−1
1

δs

β2
sσ

2
η

2

]

−
S∑

s=1

(
1

1 + r

)s−1

h(ℓs) +
S∑

s=1

(
1

1 + r

)s−1

log
1− τs
1− p

,

from which the expression given in the text easily follows. Thus, utilitarian social

welfare is∫
Θ

U(θ)dF (θ) = (1− p)

[
1

δ1
log(δ1L) +

1

δ1
µθ −

S∑
s=1

(
1

1 + r

)s−1
1

δs

β2
sσ

2
η

2

]

−
S∑

s=1

(
1

1 + r

)s−1

h(ℓs) +
S∑

s=1

(
1

1 + r

)s−1

log
1− τs
1− p

.
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The first-order condition for optimal effort reads

0 =
∂U(θ)

∂ℓt
= (1− p)

[
1

δ1

1

L

∂L

∂ℓt
−
(

1

1 + r

)t−1
1

δt
βtσ

2
η

∂βt
∂ℓt

]
−
(

1

1 + r

)t−1

h′(ℓt)

= (1− p)

[
1

δ1

(
1

1+r

)t−1
ℓt

L
−
(

1

1 + r

)t−1
1

δt
β2
t σ

2
ηεβt,ℓt

]
1

ℓt
−
(

1

1 + r

)t−1

h′(ℓt),

which easily leads to the equation given in the text. Now, the expected present value

of pre-tax and post-tax earnings in period t are given by E[zt] = δ1θL and

E[z1−p
t ] = (δ1θL)

1−pE
[
e
∑t

s=1(1−p)βsηs
]
e−

∑t
s=1(1−p)

β2sσ
2
η

2 = (δ1θL)
1−pe−p(1−p)

∑t
s=1

β2sσ
2
η

2

respectively, so that expected government revenue in period t is equal to∫
Θ

E[T (zt)]dF (θ)

= δ1Le
µθ+

σ2
θ
2 − 1− τt

1− p
(δ1L)

1−pe−p(1−p)
∑t

s=1

β2sσ
2
η

2 e(1−p)µθ+(1−p)2
σ2
θ
2 .

Imposing period-by-period budget balance therefore requires

1− τt
1− p

=
(δ1L)

peµθ+
σ2
θ
2

e−p(1−p)(
∑t

s=1 β
2
s )

σ2
η
2 e(1−p)µθ+(1−p)2

σ2
θ
2

.

Substituting this expression into the social welfare function
∫
Θ
U(θ)dF (θ) implies that

social welfare is equal to

1

δ1

[
log(δ1L) + µθ + (1− (1− p)2)

σ2
θ

2

]
−

S∑
s=1

(
1

1 + r

)s−1

h(ℓs)

+ p(1− p)
S∑

s=1

(
1

1 + r

)s−1 s∑
i=1

β2
i σ

2
η

2
− (1− p)

S∑
s=1

(
1

1 + r

)s−1
1

δs

β2
sσ

2
η

2

=
1

δ1

[
log(δ1L) + µθ + (1− (1− p)2)

σ2
θ

2

]
−

S∑
s=1

(
1

1 + r

)s−1

h(ℓs)

− (1− p)2
S∑

s=1

(
1

1 + r

)s−1
1

δs

β2
sσ

2
η

2
.
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We can now maximize this expression with respect to 1− p to get

S∑
s=1

[
1

δ1

1

L

(
1

1 + r

)s−1

−
(

1

1 + r

)s−1

h′(ℓs)

]
∂ℓs

∂(1− p)

− (1− p)
S∑

s=1

(
1

1 + r

)s−1
1

δs
εβs,ℓsεℓs,1−pβ

2
sσ

2
η

= (1− p)

[
1

δ1
σ2
θ +

S∑
s=1

(
1

1 + r

)s−1
1

δs
β2
sσ

2
η

]
+ (1− p)

S∑
s=1

(
1

1 + r

)s−1
1

δs
εβs,1−pβ

2
sσ

2
η.

Using the first-order condition for effort derived above to simplify the left hand side

of this expression implies

p

1− p

1

δ1L

S∑
s=1

(
1

1 + r

)s−1

ℓsεℓs,1−p + p
S∑

s=1

(
1

1 + r

)s−1
1

δs
εβs,ℓsεℓs,1−pβ

2
sσ

2
η

= (1− p)

[
1

δ1
σ2
θ +

S∑
s=1

(
1

1 + r

)s−1
1

δs
(1 + εβs,1−p)β

2
sσ

2
η

]
.

But the elasticity of the present discounted value of effort is equal to

εL,1−p ≡
1− p

L

∂
∑S

s=1

(
1

1+r

)s−1
ℓs

∂(1− p)
=

S∑
s=1

(
1

1 + r

)s−1
ℓs
L
εℓs,1−p.

Moreover, we have 1+εβs,1−p = 0. Substituting these two expressions into the previous

equation and rearranging terms leads to

p

(1− p)2

[
1

δ1
εL,1−p + (1− p)

S∑
s=1

(
1

1 + r

)s−1
1

δs
εβs,ℓsεℓs,1−pβ

2
sσ

2
η

]
=

1

δ1
σ2
θ .

This concludes the proof.
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