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Abstract 
 
We observe that daily highs and lows of stock prices do not diverge over time and, hence, 
adopt the cointegration concept and the related vector error correction model (VECM) to 
model the daily high, the daily low, and the associated daily range data. The in-sample results 
attest the importance of incorporating high-low interactions in modeling the range variable. In 
evaluating the out-of-sample forecast performance using both mean-squared forecast error 
and direction of change criteria, it is found that the VECM-based low and high forecasts offer 
some advantages over some alternative forecasts. The VECM-based range forecasts, on the 
other hand, do not always dominate – the forecast rankings depend on the choice of 
evaluation criterion and the variables being forecasted. 
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1. Introduction 

Data on daily ranges of various financial prices are quite widely available. It is conceived 

that volatility is high (low) when the daily range is wide (narrow). Parkinson (1980) shows that, 

under certain assumptions, the price range is a more efficient volatility estimator than, say, the 

commonly used return-based estimator. Modifications and variations of the original Parkinson 

result are provided by, for example, Beckers (1983), Garman and Klass, (1980), Kunitomo 

(1992), Rogers and Satchell (1991), and Yang and Zhang (2000). Recently, there are a few 

studies investigating the stochastic properties of financial price ranges and using the price range 

as an input in various GARCH and stochastic volatility models to exploit its information content 

(Alizadeh et. al., 2002; Brandt and Diebold, 2003; Brunetti and Lildholdt 2005; Chou, 2005; 

Engle and Gallo, 2003; Fernandes et. al., 2005; Gallant et. al., 1999). Usually, the price range is 

touted as an efficient proxy for volatility, which is a crucial element in the modern financial 

literature. An early example of using the price range in options pricing is provided by Parkinson 

(1977).  

The price range also occupies a unique role in technical analysis, which is quite widely 

used by traders in financial markets (Cheung and Wong, 2000; Cheung and Chinn, 2001; Taylor 

and Allen, 1992; Pring, 2002). For instance, the price range is a key ingredient of the well-known 

technical indicator candlestick, which has been used by Japanese rice traders for a very long 

time. The stochastic oscillator is another technical indicator that is related to the price range. The 

“Notis %V” method separates price volatility into upward and downward components and 

compares them with the total volatility (Edwards and Magee 1997, Murphy, 1986, Pring, 2002). 

Most studies on range assert its role of being an efficient proxy for the underlying return 

volatility. The focus on daily range, nonetheless, may neglect the value of its two components, 

namely the daily high and the daily low, which contain some useful information about the price 

dynamics. The daily range is constructed from the highest and lowest price of the day. It is, 

however, not easy to re-construct the high and the low from the range itself. For instance, the 

pricing of some exotic options such as the knock-out and knock-in options depends on, in 

addition to the underlying volatility, the high and the low.1 The interpretation of candlestick 

charts and the computation of stochastic oscillators also require the knowledge of the values of 

                                                 
1  These options are also known as barrier options. A knock-out option will expire and become worthless 
when the price reaches a pre-specified level. 
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highs and lows. The high and the low are also the key components of trading strategies based on 

the notion of support and resistance levels and the price channel indicator.2  

In essence, the price range gives the width of the band within which the price fluctuates, 

and the high and the low identify the exact coverage of the price band. If the interest is only the 

volatility, then the price range is a good summary statistics. On the other hand, if the extreme 

levels are also relevant, then we have to consider the high and the low. Thus, it is of interest to 

study both the range and its two components (the high and the low) simultaneously. Moreover, 

the range is given by the difference of the high and the low – knowing the high and low should 

potentially enhance the modeling of the range variable. 

The current study exploits the following observation: for most active stock markets, daily 

highs and lows do not drift apart too far over time. An analogy is that stock return volatility does 

not trend upward all the time. The boundedness hints at the potential gain of incorporating the 

interaction of highs and lows in modeling the range variable. Specifically, using jargon in time 

series analysis, we anticipate daily highs and lows to be cointegrated such that they do not 

diverge over time and the range is the corresponding error correction term. If this is the case, we 

can exploit the interactions between the range and its two components and use the information to 

build an efficient model to describe the behavior and evolution of these variables. 

To explore the idea, we first examine eight daily stock indexes and formally test whether 

a) their highs and lows are cointegrated, and b) their ranges can be interpreted as a stationary 

error correction term. To anticipate the results, we find that the high and the low are cointegrated 

and the range is the error correction term. Then, we assess the potential gains of jointly analyzing 

the three price variables by comparing the range forecasts generated from the cointegration 

framework and from autoregressive-moving-average models of ranges, highs, and lows. The 

mean-squared forecast error and direction of change criteria are used to compare these forecasts. 

We also break down the forecast errors and the forecast error variances of these range forecasts 

to gain further insight on their performance. As an illustration, we use these range forecasts to 

generate predictions of implied volatility for a few selected index options contracts. Both range 

and implied volatility forecasting exercises attest to the value of modeling highs, lows, and 

ranges simultaneously. 

                                                 
2  Support and resistance levels are price levels at which there are a possible reverse of the trend. The price 
channel initiates a buy (sell) when the price closes above (below) the upper (lower) channel constructed from daily 
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2. Preliminary Analyses 

In this study we consider the following daily stock indexes: the British FTSE 100 

(FTSE), French CAC 40 (FCHI), the German DAX 30 (GDAX), the Japanese Nikkei 225 

(N225), the Korean KOSPI (KS11), US Dow Jones Industrial Average (DJI), the US Nasdaq 

Composite (IXIC), and the Taiwanese TSEC Weighted index (TWII). The data are expressed in 

log scale. Daily ranges are constructed from the corresponding daily highs and lows for the 

period January 3, 1991 to June 1, 2004. The first twelve years of data (from January 3, 1991 to 

January 15, 2003) are used to generate the estimation results reported in this and the next section. 

The remaining data are reserved for the forecasting exercise discussed in section 4. The data 

were downloaded from the DataStream database. 

Figure 1 gives the plots of the high and low series and their corresponding ranges. For 

these stock indexes, the highs and lows display different variation patterns during the sample 

period. However, for each stock index, it is quite transparent that highs and lows move in tandem. 

The gap between the high and low curves is quite stable. The range variable appears quite 

stationary, with some occasional spikes, in all these graphs. 

To formally assess the dynamic properties of these series, we use the augmented Dickey-

Fuller (ADF) test to determine their order of integration property. The ADF test is based on the 

regression equation,  

1 1
p

t t j j t j tY t Y Yδ β γ β ε− = −Δ = + + + Σ Δ + ,      (1) 

where tY  is a generic notation of a stock index daily high ( tH ), or daily low ( tL ) series, in 

logarithms. Δ  is the first-difference operator, δ  and t  are, respectively, an intercept and time 

trend, and tε  is the error term. Under the unit-root hypothesis, 0γ = . The Schwarz-Bayesian 

information criterion (SBC) is used to determine p, the lag parameter.

                                                                                                                                                             
highs and lows. 
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Figure 1. Highs (H), Lows (L), and Ranges (R). 
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The test results are given in Table 1. The Q-statistics indicate that the lag specifications 

used to conduct these tests adequately capture the intertemporal dynamics. All the daily high and 

daily low series do not reject the unit-root null hypothesis. The test results from first-differences 

of these data series tell a different story. In this case, only a constant term was included in the 

ADF regression equation. The ADF test indicates that all the first-differenced daily high and 

daily low series reject the unit root null hypothesis; that is, the first-differenced data are I(0) . 

Hence, in the following analyses, we assume individual daily high and daily low series are I(1) 

processes. 

Table 1 also gives the unit root test results for individual range series. The range variable 

is given by tR  = tH  - tL . In contrast to the daily high and daily low series, all the range series 

reject the unit root hypothesis and, hence, are stationary. The stationarity result indicates that, 

even though the daily high and daily low are nonstationary, their I(1) behavior offsets each other 

over time, and the range (which is the difference of these two variables) is stationary. A formal 

analysis of the cointegrating property of high and low data is presented in the next section. 

Some descriptive statistics of the ranges and their components in first differences are 

presented in Table 2. The first differences of tH  and tL  are considered because tH  and tL  

themselves are I(1). For all the stock indexes under consideration, the intra-day variation given 

by the sample mean of daily ranges is 30 times (DJI) to over 1000 times (KS11) larger than the 

day-to-day change measured by the sample average of either changes in daily highs or daily 

lows. The dispersion of daily ranges, on the other hand, is much smaller than that of changes in 

the highs and lows – the coefficients of variation computed from daily range data are at least 30 

times less than those from daily highs and daily lows. The range and its two components in first 

differences appear to have different skewness properties. The stock index range series are 

skewed to the right while their two components are all skewed to the left. On the peakedness or 

the so-called fat-tail property, all the series are leptokurtic and have an excess kurtosis 

coefficient larger than that of a normal. In general, the range series has a larger kurtosis 

coefficient and is more leptokurtic than its two components. 

These descriptive statistics suggest that the behavior of the range tR  and Δ tH , and Δ tL  

can be quite different. In fact, the properties of Δ tH  are different from those of  Δ tL  even  
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Table 1. Unit Root Test Results for Daily Highs, Daily Lows, and Daily Ranges 

 
 Levels  First Differences 
 ADF (p) Q-Stat(6) Q-Stat(12)  ADF (p) Q-Stat(6) Q-Stat(12) 

FTSE: High -0.12 (2) 9.66 
(0.1396) 

14.73 
(0.2567) 

 -40.26 (1) 9.74 
(0.1362) 

14.76 
(0.2549) 

           Low -0.26 (8) 0.09 
(1.0000) 

13.02 
(0.3677) 

 -19.67 (7) 0.09 
(1.0000) 

13.06 
(0.3647) 

           Range -8.05 (7) 0.93 
(0.9880) 

18.00 
(0.1156) 

    

FCHI: High -0.71 (2) 10.62 
(0.1007) 

13.40 
(0.3406) 

 -32.66 (2) 6.84 
(0.3356) 

9.80 
(0.6333) 

           Low -0.61 (6) 0.03 
(1.0000) 

14.09 
(0.2949) 

 -24.67 (5) 0.03 
(1.0000) 

14.05 
(0.2973) 

           Range -8.97 (7) 2.67 
(0.8487) 

14.97 
(0.2433) 

    

GDAX: High 0.20 (4) 5.68 
(0.4604) 

17.35 
(0.1369) 

 -26.52 (3) 5.60 
(0.4698) 

17.29 
(0.1390) 

             Low 0.06 (9) 0.05 
(1.0000) 

18.24 
(0.1086) 

 -18.06 (8) 0.05 
(1.0000) 

18.23 
(0.1090) 

             Range -6.17 (8) 0.18 
(0.9999) 

11.33 
(0.5008) 

    

N225: High -1.74 (2) 6.54 
(0.3656) 

11.30 
(0.5034) 

 -39.02 (1) 6.33 
(0.3872) 

10.63 
(0.5610) 

          Low -1.99 (2) 5.10 
(0.5313) 

9.43 
(0.6654) 

 -38.00 (1) 5.70 
(0.4571) 

9.34 
(0.6734) 

          Range -10.48 (6) 3.02 
(0.8065) 

6.96 
(0.8605) 

    

KS11: High -2.15 (2) 8.37 
(0.2124) 

12.22 
(0.4279) 

 -37.39 (1) 8.77 
(0.1871) 

12.27 
(0.4244) 

           Low -2.11 (4) 4.77 
(0.5736) 

11.11 
(0.5199) 

 -28.27 (3) 5.01 
(0.5426) 

10.85 
(0.5418) 

           Range -8.57 (7) 2.69 
(0.8468) 

12.78 
(0.3849) 

    

DJI: High -0.74 (1) 3.00 
(0.8083) 

7.09 
(0.8516) 

 -48.42 (0) 3.25 
(0.7763) 

7.22 
(0.8426) 

        Low -1.00 (2) 7.96 
(0.2413) 

14.43 
(0.2738) 

 -38.91 (1) 8.40 
(0.2104) 

14.80 
(0.2524) 

        Range -9.85 (7) 1.22 
(0.9761) 

4.10 
(0.9815) 

    

IXIC: High -0.58 (7) 0.01 
(1.0000) 

16.91 
(0.1529) 

 -20.19 (6) 0.01 
(1.0000) 

16.79 
(0.1577) 

          Low -0.60 (6) 0.11 
(1.0000) 

15.15 
(0.2334) 

 -24.55 (5) 0.11 
(1.0000) 

14.92 
(0.2458) 

          Range -10.03 (7) 4.16 
(0.6549) 

16.12 
(0.1857) 

    

TWII: High -2.03 (9) 1.40 
(0.9656) 

14.65 
(0.2609) 

 -19.18 (8) 1.43 
(0.9640) 

13.87 
(0.3089) 

           Low -2.09 (1) 6.63 
(0.3565) 

17.62 
(0.1278) 

 -45.70 (0) 7.27 
(0.2967) 

17.74 
(0.1238) 

           Range     -10.06 (10) 1.00 
(0.9857) 

11.12 
(0.5182) 
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Note: The results of applying augmented Dickey-Fuller tests to individual daily high, low, and range 
series are reported. The stock indexes considered are the British FTSE 100 (FTSE), French CAC 40 
(FCHI), the German DAX 30 (GDAX), the Japanese Nikkei 225 (N225), the Korean KOSPI (KS11), US 
Dow Jones Industrial Average (DJI), the US Nasdaq Composite (IXIC), and the Taiwanese TSEC 
Weighted index (TWII). The Box-Ljung statistics based on the first six and first twelve serial correlations 
of the estimated residuals are given under the heading “Q-Stat” and their p-values are given in 
parentheses underneath. For all the daily high and daily low series, the unit root null hypothesis is not 
rejected by the data themselves but is rejected by their first differences. All the range series reject the unit 
root null hypothesis. Critical values are from Cheung and Lai (1995). 
 
Table 2. Descriptive Statistics 
 

 Mean Variance Coefficient of 
V i ti

Skewness Kurtosis 
FTSE: ΔHigh 0.0205 0.0090 46.3001 -0.0955 2.9911 
           ΔLow 0.0201 0.0114 53.0264 -0.4021 7.6419 

           Range 1.2693 0.0074 0.6784 2.4296 11.3541 
FCHI: ΔHigh 0.0244 0.0155 51.1345 -0.3266 2.7638 

           ΔLow 0.0243 0.0200 58.1231 -0.1914 4.2217 

           Range 1.6247 0.0086 0.5705 2.3404 9.1265 

GDAX: ΔHigh 0.0274 0.0164 46.6936 -0.4003 4.7836 
              ΔLow 0.0265 0.0204 53.9929 -0.6592 5.5948 

              Range 1.3916 0.0161 0.9112 2.4801 10.2045 

N225: ΔHigh -0.0347 0.0154 -35.6901 0.5631 2.5137 

           ΔLow -0.0348 0.0181 -38.5950 -0.0785 3.0672 
           Range 1.7307 0.0088 0.5430 1.9087 6.0185 

KS11: ΔHigh -0.0017 0.0355 -1080.1908 0.1095 3.4777 

            ΔLow -0.0018 0.0375 -1068.1495 -0.0658 3.9044 

            Range 2.0925 0.0160 0.6049 1.4384 2.5557 
DJI: ΔHigh 0.0402 0.0074 21.3094 -0.0374 3.7671 

        ΔLow  0.0402 0.0099 24.7507 -0.4818 6.0939 

        Range 1.3292 0.0063 0.5991 2.4591 10.9923 

IXIC: ΔHigh 0.0451 0.0223 33.1070 -0.3748 12.5609 

           ΔLow 0.0449 0.0318 39.7227 -0.1099 6.4246 

           Range 1.7482 0.0215 0.8390 2.7642 14.8014 

TWII: ΔHigh 0.0036 0.0282 463.8801 -0.1514 2.8460 

            ΔLow 0.0053 0.0302 329.3805 -0.0755 3.7417 

            Range 1.9247 0.0129 0.5898 1.8788 5.8040 

 
Note: The mean and variance are scaled by a factor of 100. Kurtosis is normalized so that the normal 
distribution has a value of 0. Also, see Note to Table 1. 
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though their differences are less striking than those between them and the range. Thus, despite 

the  three series tR , Δ tH , and Δ tL  are derived from the same underlying stock index, their 

information contents are not identical. A joint analysis of these variables may offer incremental 

information about the behavior of these variables. 

 

3. A Joint Analysis of Highs and Lows 

3.1 Cointegration Test 

The unit root test results in the previous section are suggestive of the cointegration 

between daily highs and daily lows. In this subsection, the Johansen procedure is used to 

formally test for cointegration. Let Xt be a 2x1 vector containing a national stock daily high and 

low series (that is, Xt  ≡ ( tH , tL )’) and has a (p+1)-th order autoregressive representation: 

1
1

p
t j j t j tμ γ ε+

= −= + Σ +X X ,        (2) 

where μ is an intercept term, jγ  is a coefficient matrix, and εt is an innovation vector. To test 

whether the elements in Xt are cointegrated, the Johansen procedure tests for significant 

canonical correlations between ΔXt and Xt-p-1, after adjusting for all intervening lags. Johansen 

(1991) and Johansen and Juselius (1990), for example, give a detailed description of the test.  

The cointegration test results are reported in Table 3. Again, the SBC is used to provide the 

initial estimate of the lag parameter (p), and if necessary, p is then increased to eradicate serial 

correlation in residuals. Both the maximum eigenvalue and trace statistics reject the null 

hypothesis of no cointegration in favor of the presence of one cointegrating vector. Further, there 

is no evidence that there exists more than one cointegrating vector. These results suggest that, for 

a given stock index, its daily high and daily low series are cointegrated. That is, the high and low 

series have the same stochastic trend that drives them individually to wander randomly over 

time, and an appropriate linear combination of highs and lows can eliminate the effects of the 

common stochastic trend. 

The estimated cointegrating vectors with the coefficient of the daily high series tH  

normalized to one are also reported in Table 3. The estimated vectors, which capture the 

empirical long-run relationship, suggest the daily high and the daily low tend to move almost on 

a one-to- one basis. Recall that the range is defined by tR  = tH  - tL . When we impose the 

restriction that the cointegrating vector is (1, -1), the cointegrating relationship is given by  



 10

Table 3. Cointegration Test Results 

 
 EIGENV TRACE C. Vector LAG 

FTSE   (1, -1.00899) 8 
r = 1 4.28 4.28   
r = 0 63.09* 67.38*   

FCHI (1, -1.00607) 7 

r =1 2.11 2.11  

r = 0 90.68* 92.79*  

GDAX (1, -1.01124) 11 
r =1 2.45 2.45  

r = 0 48.11* 50.56*  

N225   (1, -0.99195) 4 

r =1 0.22 0.22  
r = 0 227.34* 227.56*  

KS11   (1, -0.98571) 6 

r =1 4.00 4.00  

r = 0 83.23* 87.23*  
DJI   (1, -1.00630) 8 

r =1 3.53 3.53  

r = 0 100.97* 104.50*  

IXIC   (1, -1.01276) 8 
r =1 4.63 4.63   

r = 0 118.72* 123.35*   

TWII   (1, -0.99721) 13 

r =1 4.80 4.80   
r = 0 76.37* 81.16*   

 

Note: The results of testing for cointegration between highs and lows of individual stock series are 
reported. Eigenvalue and trace statistics are given under the columns “EIGENV” and “TRACE.” 
“r=0” corresponds to the null hypothesis of no cointegration and “r=1” corresponds to the hypothesis 
of one cointegration vector. All the Q-statistics (reported in Table 4) are insignificant. The rows 
labeled “C. Vector” give cointegrating vectors with the coefficient of the high normalized to one.  
“LAG” gives the lag parameters used to conduct the test. “*” indicates significance at the 5% level. 
 

tH  - tL , and thus, the range tR  is the stationary error correction term. Indeed, the unit root test 

results in Table 1 already showed that tR  is stationary. Thus, in the balance of this paper, we 



 11

impose the (1, -1) restriction and treat tR  is the stationary error correction term. It is noted that 

imposing the (1, -1) restriction reduces the computing burden in conducting the forecasting 

exercise reported in Section 4. For brevity, we do not report in the text the results pertaining to 

the case in which the (1, -1) restriction is not imposed.3 

 

3.2  Vector Error Correction Model 

Given the daily high and daily low series are cointegrated, a vector error correction model 

(VECM) is used to examine their long-run and short-run interactions. Imposing the (1, -1) 

cointegrating vector restriction, the VECM can be written as 

1 1
p
it i t i t tRμ α ε= − −Δ = + Γ Δ + +∑X X .       (3) 

The VECM results are presented in Table 4.4 The Q-statistics are not significant and, thus, affirm 

that the selected VECM models adequately capture the data dynamics, and the resulting 

disturbance terms display no statistically significant serial correlation. Since we do not have a 

theoretical model underpinning the VECM (3), we do not want to over-interpret the estimation 

results. Nonetheless, there are a few interesting observations. 

First, for each stock index series, the range variable is significant in either the daily high or the 

daily low equation. The result is consistent with the cointegration result and indicates that the 

range variable is not an unreasonable proxy for the error correct term. Indeed, in most cases, the 

range variable is significant. When the range variable is significant, it has a negative coefficient 

in the daily high equation and a positive coefficient in the daily low equation. An increase in the 

daily range tends to bring down the next daily high and push up the next daily low and, hence, 

reduces the next daily range. Thus, the estimated dynamics implies the range variable is 

regressive and is in accordance with its stationary property.5 For the five insignificant cases, four 

of them involve the daily high equation. For some reason, daily lows are more likely to respond 

to the range. 

                                                 
3  The results pertaining to models without the (1, -1) restriction are available upon request. See also Cheung 
(2007). These results are very similar to those reported in the text. Moreover, the forecast performance of models 
with the (1, -1) restriction is, in general, better than those without the restriction. 
4  One technical issue specific to the current application is the non-negativity of the range variable. We 
checked and confirmed that all the estimated ranges and range forecasts reported in the rest of the paper are positive. 
Thus, it is not necessary to impose the non-negativity constraint on, say, the VECM specification. 
5  Note that the regressive property is not inconsistent with the volatility clustering phenomenon. A stationary 
ARCH model, for example, has regressive behavior and, at the same time, can capture volatility clustering. 
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Table 4. Vector Error Correction Models 

 
 FTSE FCHI GDAX N225 
 ΔHigh ΔLow ΔHigh ΔLow ΔHigh ΔLow ΔHigh ΔLow 
Constant 0.0010** -0.0005 0.0014** -0.0012* 0.0012** 0.0003 0.0005 -0.0043** 
 (2.86) (-1.17) (2.53) (-1.89) (3.32) (0.80) (0.90) (-6.80) 
Z1 -0.0597** 0.0499* -0.0721** 0.0870** -0.0649** -0.0073 -0.0480 0.2318** 
 (-2.52) (1.84) (-2.27) (2.42) (-3.17) (-0.31) (-1.50) (6.88) 
ΔHigh(-1) -0.2649** 0.4957** -0.2135** 0.4776** -0.3833** 0.4489** -0.0855** 0.4565** 
 (-7.30) (11.88) (-4.92) (9.71) (-9.57) (9.68) (-2.24) (11.37) 
ΔLow(-1) 0.4565** -0.2261** 0.3442** -0.2650** 0.4884** -0.2532** 0.3653** -0.1293** 
 (13.64) (-5.88) (8.52) (-5.78) (13.50) (-6.04) (9.97) (-3.36) 
ΔHigh(-2) -0.3424** 0.2209** -0.1720** 0.4125** -0.3363** 0.3511** -0.2756** 0.1274** 
 (-8.31) (4.67) (-3.64) (7.69) (-6.94) (6.25) (-7.06) (3.11) 
ΔLow(-2) 0.1996** -0.3329** 0.1079** -0.4339** 0.2772** -0.3698** 0.0965** -0.2389** 
 (5.24) (-7.61) (2.47) (-8.77) (6.28) (-7.24) (2.61) (-6.16) 
ΔHigh(-3) -0.1196** 0.3085** -0.0856* 0.3341** -0.1897** 0.3465** -0.0399 0.1694** 
 (-2.78) (6.23) (-1.76) (6.06) (-3.56) (5.61) (-1.10) (4.43) 
ΔLow(-3) 0.1066** -0.3036** 0.0246 -0.3678** 0.1441** -0.3645** 0.0797** -0.1162** 
 (2.69) (-6.68) (0.55) (-7.22) (2.95) (-6.45) (2.33) (-3.23) 
ΔHigh(-4) -0.0616 0.2938** -0.0430 0.2752** -0.2059** 0.1994** -0.0839** 0.0350 
 (-1.43) (5.93) (-0.91) (5.11) (-3.70) (3.10) (-2.81) (1.12) 
ΔLow(-4) 0.0556 -0.2675** 0.0791* -0.2101** 0.2423** -0.1486** 0.0654** -0.0271 
 (1.41) (-5.88) (1.82) (-4.26) (4.75) (-2.51) (2.40) (-0.95) 
ΔHigh(-5) -0.1108** 0.1734** -0.0109 0.1778** -0.2062** 0.0988   
 (-2.65) (3.61) (-0.25) (3.65) (-3.66) (1.51)   
ΔLow(-5) 0.0732* -0.1974** -0.0122 -0.2063** 0.1778** -0.1489**   
 (1.91) (-4.48) (-0.31) (-4.65) (3.43) (-2.48)   
ΔHigh(-6) -0.1402** 0.0369 -0.0473 0.0476 -0.2265** -0.0076   
 (-3.67) (0.84) (-1.39) (1.23) (-4.06) (-0.12)   
ΔLow(-6) 0.0816** -0.0933** 0.0160 -0.1042** 0.1782** -0.0444   
 (2.32) (-2.31) (0.51) (-2.90) (3.46) (-0.75)   
ΔHigh(-7) -0.0678** 0.0672**   -0.2369** -0.0969   
 (-2.28) (1.96)   (-4.40) (-1.55)   
ΔLow(-7) 0.1024** -0.0385   0.2526** 0.0925   
 (3.66) (-1.20)   (5.05) (1.60)   
ΔHigh(-8)     -0.2650** -0.1863**   
     (-5.20) (-3.16)   
ΔLow(-8)     0.2530** 0.1741**   
     (5.38) (3.20)   
ΔHigh(-9)     -0.1613** -0.1283**   
     (-3.57) (-2.45)   
ΔLow(-9)     0.1295** 0.1237**   
     (3.08) (2.54)   
ΔHigh(-10)     0.0296 0.0449   
     (0.85) (1.12)   
ΔLow(-10)     -0.0257 -0.0474   
     (-0.77) (-1.23)   

Adj R-2 0.1374 0.0962 0.0766 0.0776 0.1182 0.0597 0.1092 0.1626 
Q-stat(6) 0.40 0.24 0.37 0.16 0.15 0.11 0.42 1.51 
Q-stat(12) 7.20 14.54 5.83 11.27 10.97 10.60 5.25 12.52 
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 KS11 DJI IXIC TWII 
 ΔHigh ΔLow ΔHigh ΔLow ΔHigh ΔLow ΔHigh ΔLow 
Constant 0.0007 -0.0021** 0.0009** -0.0015** 0.0017** -0.0007 0.0002 -0.0035** 
 (1.00) (-2.73) (2.38) (-3.50) (3.42) (-1.18) (0.30) (-4.13) 
Z1 -0.0350 0.1002** -0.0366 0.1314** -0.0712** 0.0601** -0.0119 0.1880** 
 (-1.10) (3.03) (-1.44) (4.49) (-2.98) (2.09) (-0.30) (4.52) 
ΔHigh(-1) -0.2610** 0.3120** -0.2502** 0.5825** -0.2748** 0.5015** -0.3578** 0.2683** 
 (-5.67) (6.53) (-7.25) (14.61) (-7.88) (11.94) (-7.40) (5.28) 
ΔLow(-1) 0.5142** -0.0222 0.4989** -0.1411** 0.3629** -0.2764** 0.5461** -0.0309 
 (11.49) (-0.48) (15.76) (-3.86) (11.54) (-7.30) (11.68) (-0.63) 
ΔHigh(-2) -0.1953** 0.2159** -0.3647** 0.2330** -0.2885** 0.3077** -0.2306** 0.2205** 
 (-3.94) (4.19) (-9.42) (5.21) (-7.42) (6.57) (-4.46) (4.07) 
ΔLow(-2) 0.0570 -0.3262** 0.1888** -0.3553** 0.2077** -0.3493** 0.1974** -0.2170** 
 (1.19) (-6.56) (5.45) (-8.87) (6.03) (-8.42) (3.96) (-4.15) 
ΔHigh(-3) -0.0901* 0.1564** -0.2115** 0.2584** -0.1876** 0.3243** -0.2409** 0.0917* 
 (-1.82) (3.05) (-5.30) (5.60) (-4.69) (6.74) (-4.54) (1.65) 
ΔLow(-3) 0.1348** -0.1349** 0.2340** -0.2129** 0.1739** -0.2794** 0.2432** -0.0724 
 (2.81) (-2.71) (6.56) (-5.17) (4.89) (-6.53) (4.77) (-1.35) 
ΔHigh(-4) 0.0497 0.2141** -0.1993** 0.2056** -0.1006** 0.3282** -0.2040** 0.0621 
 (1.07) (4.45) (-5.08) (4.53) (-2.54) (6.88) (-3.81) (1.10) 
ΔLow(-4) -0.0684 -0.2332** 0.1879** -0.1874** 0.1198** -0.2680** 0.2083** -0.0861 
 (-1.53) (-5.02) (5.32) (-4.59) (3.40) (-6.32) (4.05) (-1.59) 
ΔHigh(-5) -0.0583 0.0177 -0.1138** 0.1878** -0.0672* 0.2250** -0.1455** 0.0753 
 (-1.52) (0.44) (-3.04) (4.34) (-1.77) (4.91) (-2.71) (1.34) 
ΔLow(-5) 0.0220 -0.0792** 0.0970** -0.1962** 0.0562* -0.2627** 0.1537** -0.0649 
 (0.58) (-2.00) (2.87) (-5.03) (1.66) (-6.45) (2.98) (-1.20) 
ΔHigh(-6)   -0.0534 0.1799** 0.0265 0.2250** -0.1817** 0.0215 
   (-1.57) (4.58) (0.77) (5.42) (-3.43) (0.39) 
ΔLow(-6)   0.0377 -0.1779** -0.0226 -0.2467** 0.1454** -0.0582 
   (1.25) (-5.10) (-0.74) (-6.69) (2.84) (-1.08) 
ΔHigh(-7)   -0.0232 0.0864** 0.0491* 0.1359** -0.1492** -0.0028 
   (-0.89) (2.86) (1.80) (4.13) (-2.87) (-0.05) 
ΔLow(-7)   0.0385 -0.0841** -0.0034 -0.1287** 0.1606** 0.0112 
   (1.61) (-3.03) (-0.14) (-4.29) (3.20) (0.21) 
ΔHigh(-8)       -0.0221 0.0711 
       (-0.43) (1.33) 
ΔLow(-8)       0.0615 -0.0461 
       (1.26) (-0.90) 
ΔHigh(-9)       -0.0712 0.0106 
       (-1.47) (0.21) 
ΔLow(-9)       0.0185 -0.0552 
       (0.39) (-1.12) 
ΔHigh(-10)       0.0253 0.0873* 
       (0.55) (1.81) 
ΔLow(-10)       0.0189 -0.0379 
       (0.43) (-0.82) 
ΔHigh(-11)       -0.0395 0.0179 
       (-0.94) (0.41) 
ΔLow(-11)       0.0549 -0.0210 
       (1.38) (-0.50) 
ΔHigh(-12)       -0.0135 -0.0125 
       (-0.41) (-0.36) 
ΔLow(-12)       0.0711** 0.0464 
       (2.19) (1.36) 

Adj R-2 0.1114 0.0937 0.1683 0.1748 0.1012 0.0858 0.1161 0.0811 
Q-stat(6) 1.44  0.78  0.14 0.03  0.35  0.45  0.33  0.41  
Q-stat(12) 4.09  4.42  4.96  2.14  11.97  15.13  1.16  1.38  
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Note: The estimates of the vector error correction model are reported. Results pertaining to the 
high and the low equations are reported under the headings “ΔHigh” and “ΔLow.” Robust t-
statistics are given in parentheses underneath the parameter estimates. The error correction term 
Z1 is given by the difference of high and low (that is, range). “**” and “*” indicate significance 
at the 5% and 10% level, respectively. The adjusted R-squared statistics are reported in the row 
labeled “Adj R-2.”  Q-stat(6) and Q-stat(12) give the Q-statistics calculated from the first 6 and 
12 sample autocorrelations, respectively. All the Q-statistics are insignificant.  
 

 Second, for all the stock indexes under consideration, the coefficient estimates are mostly 

negative for lagged dependent variables and positive for other lagged variables. For instance, 

consider the daily high equation, where the coefficient estimates of the lagged daily high 

differences are mostly negative and those of the lagged daily low differences are mostly positive. 

The negative coefficients are indicative of the presence of regressive behavior. Higher daily 

highs tend to regress to a lower level, and lower daily highs tend to regress back to a higher 

level. On the other hand, the positive coefficients of the lagged daily low differences suggest 

certain spillover effects. Higher (lower) daily lows lead to higher (lower) daily highs. 

 Third, the explanatory power of the VECM specification is quite reasonable. The GDAX 

daily low equation gives the smallest adjusted R-squares statistic of 6.0% and the DJI daily low 

equation has the largest of 17.5%. The others are mostly in the neighborhood of 10%. These 

adjusted R-squares statistics are not small for a typical equation explaining changes in financial 

prices. The evidence that the daily high equation has a higher adjusted R-squares statistic than 

the daily low equation is not very strong – in five out of eight cases, the model explains changes 

in highs better than it explains changes in lows. 

 

4. Forecast Performance 

The preceding results are in accordance with the intuition that daily highs and lows do 

not drift apart over time and, hence, the range is a stationary variable. The cointegration 

framework and the associated VECM are the empirical constructs to exploit the interaction 

between daily highs, daily lows, and daily ranges. In the current section, we assess the 

performance of the VECM in generating range forecasts. For comparison purposes, we consider 

range forecasts generated from a) forecasts of daily high and low from their respective 

autoregressive-moving-average (ARMA) specifications, and b) an ARMA specification of the 

range. A naïve forecast based on a random walk specification was also considered but not 
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reported for brevity. The performance of the naive forecast was consistently worse than those 

considered in the text. These results are available upon request. 

 

4.1 Forecasting Models and Evaluation Criteria 

Out-of-sample forecasts are used to assess the forecast performance. The forecasting 

period is from January 16, 2003 to June 1, 2004. Let ˆ
t hR +  be the generic notation of a h-days 

ahead range forecast available at time t. The forecast horizons considered are h = 1, 2, and 4.6 

Using the VECM specification, the forecasts ˆ
t hH +  and ˆ

t hL +  derived from ˆ
t h+ΔX  are used to 

compute the range forecast ˆ
t hR + , where ˆ

t h+ΔX  is given by  

1 1
ˆ ˆ ˆp

it h i t h i t hRμ α=+ + − + −Δ = + Γ Δ +∑X X .       (4) 

The right-hand-side variable ˆ
t h i+ −ΔX  is replaced by t h i+ −ΔX  if h-i ≤ 0 and 1

ˆ
t hR + −  is replaced by 

1t hR + −  if h-1 ≤ 0. Two types of VECM ˆ
t hR +  forecast are considered. The first range forecast is 

based only on parameter estimates reported in Section 3 and these estimates were not updated 

during the forecast exercise. We label this range forecast the simple VECM forecast ,
ˆ

t h SVR + . The 

second VECM range forecast is generated with coefficients in (4) updated recursively every day 

and is called recursive VECM forecast ,
ˆ

t h RVR + . 

 The performance of ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  is compared against two other range forecasts. 

The first alternative range forecast is based on ARMA specifications of the Δ tH  and Δ tL  

series. Specifically, for a given stock index series, we determine the ARMA models for Δ tH  

and Δ tL  using SBC, generate forecasts from the selected Δ tH  and Δ tL  models, and construct 

the range forecast from the Δ tH  and Δ tL  forecasts. The selected ARMA models were updated 

daily. We denote this forecast , 1
ˆ

t h AR + . Since Δ tH  and Δ tL  are modeled separately, the resulting 

range forecast does not exploit the dynamic linkage between daily highs and daily lows. The 

inclusion of , 1
ˆ

t h AR +  in the comparison offers some evidence on the advantage and usefulness of 

incorporating daily high and daily low interactions in generating range forecasts. 

                                                 
6  Christoffersen and Diebold (1998) show that, when using the conventional mean-squared forecast error 
measure, imposing cointegration relationship is likely to improve near-horizon rather than long-horizon forecast 
performance. Also, most financial market participants are interested in short-term forecasting. 
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The second alternative range forecast is based on ARMA specifications of ranges. The 

ARMA specifications were updated daily. We label it , 2
ˆ

t h AR + . The forecast , 2
ˆ

t h AR +  focuses only 

on the dynamics of the error correction term in the VECM specification, which represents the 

long-term relationship between the components of the range. The choice of , 2
ˆ

t h AR +  is motivated 

by some extant forecasting studies using the cointegration equation. Mark (1995) and Chinn and 

Meese (1995), for instance, are concerned with the stability and complexity of short-run 

dynamics and use only the error correction term instead of the entire error correction model to 

generate exchange rate forecasts. Thus, the , 2
ˆ

t h AR + is used to assess the potential loss/benefit in 

stripping short-term dynamics from forecasting the range. However, it should be noted that, 

unlike the other three range forecasts, , 2
ˆ

t h AR +  does not give information about highs and lows, 

which can be useful for some applications. 

Two criteria are used to evaluate the four range forecasts. One criterion is based on the 

ubiquitous mean-squared forecast error measure. The usual rule-of-the thumb is that a better 

forecast gives a smaller mean-squared forecast error. In the current exercise, a modified Diebold-

Mariano statistic, which is appropriate for one-step and multi-steps ahead forecasts, is used to 

compare mean-squared forecast errors of these range forecasts (Diebold and Mariano, 1995; 

Harvey et al., 1997). The test statistic is based on the difference between the squared forecast 

errors of the two forecasts under comparison. The other evaluation criterion is based on the 

direction of change statistic, which is given by the percentage of forecasts that correctly predict 

the direction of change. A value above (below) 50 percent indicates a better (worse) forecast 

performance than a naive model that predicts the range has an equal chance to go up or down. 

Not only does the direction of change statistic constitute an alternative metric, Leitch and Tanner 

(1991), for instance, argue that a direction of change criterion may be more relevant for 

profitability and economic concerns, and hence a more appropriate metric than others based on 

purely statistical motivations. Again, we construct modified Diebold-Mariano statistics to test a) 

whether the observed percentage of correct predictions is different from 50 percent and b) 

whether two forecast procedures display similar performance. A technical discussion of the two 

evaluation techniques is given in the Appendix.  

Since the two evaluation criteria have different foci, it is difficult to say one is better than 

the other. Both criteria offer some useful information about forecasts and alternative perspective 



 17

to evaluate their performance. While someone may prefer one criterion to the other depending on 

the purpose of the forecasting exercise, we view the two criteria as complementary in this 

exercise. 7 

 

4.2 Forecast Comparison 

 

Table 5. Modified Diebold Mariano Statistics: Mean-Squared Forecast Errors  
 

 , 1
ˆ

t h AR + / , 2
ˆ

t h AR +  , 1
ˆ

t h AR + / ,
ˆ

t h SVR + , 1
ˆ

t h AR + / ,
ˆ

t h RVR + , 2
ˆ

t h AR + / ,
ˆ

t h SVR +  , 2
ˆ

t h AR + / ,
ˆ

t h RVR + ,
ˆ

t h SVR + / ,
ˆ

t h RVR +

FTSE:h=1 3.4977** 3.4683** 3.4817** 0.9187 0.8560 -0.9197 
h=2 4.1230** 3.9984** 4.0066** 1.6249 1.5156 -0.0179 
h=4 3.4272** 3.3673** 3.3490** 1.5863 1.4928 0.7530 

FCHI:h=1 3.4396** 2.7238** 2.7761** -1.4393 -1.3726 1.6054 
h=2 2.2571** 2.0965** 2.1130** -1.3198 -1.3052 0.7059 
h=4 3.2906** 3.3136** 3.2988** -0.9941 -1.0863 -0.5713 

GDAX:h=1 6.9791** 6.4182** 6.5098** -0.6535 -0.2770 2.6765** 
h=2 3.9817** 3.6727** 3.7640** -2.2541** -1.8886* 1.8913* 
h=4 5.9353** 5.7752** 5.7800** -2.1844** -1.7200* 1.8951* 

N225: h=1 5.5244** 5.1941** 5.2182** -2.2768** -2.2327** 2.1868** 
h=2 5.0599** 4.9498** 4.9647** -2.5999** -2.5860** 2.1933** 
h=4 5.1786** 5.0305** 5.0371** -2.5854** -2.5741** 2.0297** 

KS11: h=1 4.0559** 4.2214** 4.2150** -0.2120 -0.2004 0.3545 
h=2 3.6009** 3.7115** 3.7123** -0.2687 -0.2556 0.3467 
h=4 4.9158** 4.5233** 4.5362** -0.4792 -0.4675 0.3808 

DJI: h=1 7.5330** 6.9994** 7.0111** -0.1244 -0.0758 1.2970 
h=2 4.3960** 4.0566** 4.0601** -1.2122 -1.1905 0.4513 
h=4 4.5721** 4.5656** 4.5643** -0.4856 -0.5205 -0.4485 

IXIC: h=1 8.2042** 7.2709** 7.3001** -0.6863 -0.5734 2.8570** 
h=2 3.9922** 3.3087** 3.3446** -2.1005** -2.0216** 2.4670** 
h=4 4.2748** 4.0626** 4.0743** -2.1259** -2.0923** 1.7989* 

TWII: h=1 6.0946** 6.2100** 6.1919** 0.8348 0.7227 -1.2039 
h=2 4.3654** 4.5115** 4.5031** 0.5424 0.4703 -0.9132 
h=4 5.7969** 5.6604** 5.6746** 1.1277 1.0978 -0.4376 

 
Note: The modified Diebold Mariano statistics that compare the performance of two forecasts 
based on the mean-squared forecast error criterion are presented. A positive test statistic 
indicates that the first one of the forecast pair has a mean-squared forecast error larger than the 
second one. “**” and “*” indicate significance at the 5% and 10% level respectively. 

                                                 
7  Recently, a utility-based evaluation metric based on a portfolio allocation problem is proposed by 
Abhyankar et al. (2005). 
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A comparison of the mean-squared forecast errors generated by , 1
ˆ

t h AR + , , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  

and ,
ˆ

t h RVR +  is presented in Table 5. The modified Diebold and Mariano statistics are computed 

for each pair of forecast series. 8,9 A clear picture emerges from these statistics. The , 1
ˆ

t h AR + , 

which ignores the interaction between highs and lows, always yields a mean-squared forecast 

error that is significantly larger than those of the other three range forecasts. The result attests to 

the importance of incorporating the high-low link in forecasting ranges. 

The , 2
ˆ

t h AR + , on the other hand, performs quite well. For the British and Taiwanese stock 

indexes, the mean-squared forecast error of , 2
ˆ

t h AR +  is higher than those of ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  but 

the performance deterioration is not statistically significant. On the other hand, , 2
ˆ

t h AR +  has a 

mean-squared forecast error better than the other two forecasts in the remaining six cases and the 

improvement is significant in almost half of these cases.10  

The modified Diebold and Mariano statistics reported in the last column of Table 5 

compare the forecast performance of the two range forecasts generated from VECM models. In 

three out of eight cases, the recursive VECM forecast ,
ˆ

t h RVR +  yields a significantly smaller 

mean-squared forecast error than the simple VECM forecast ,
ˆ

t h SVR + . In the remaining cases, the 

performance of ,
ˆ

t h RVR + relative to ,
ˆ

t h SVR +  can be better or worse, though the differences are not 

significant. The results offer a qualified support for revising the VECM model to obtain range 

forecasts. 

The results in Table 5 can be summarized as follows. The information about short-term 

and long-term interactions between highs and lows helps predict daily ranges. Echoing the 

concern about the stability and complexity of short-run dynamics (Mark, 1995; Chinn and 

                                                 
8  In the forecast comparison exercise, the inferences are based on the asymptotic behavior of the modified 
Diebold-Mariano test. The forecasting period is quite long and has over 300 observations. It is also noted that the 
generation of finite sample critical values for the large number of cases we deal with would be computationally 
infeasible. The most likely outcome of such an exercise would be the performance ranking of , 1

ˆ
t h AR +  is unchanged, 

and it makes the detection of the performance difference between , 2
ˆ

t h AR + , ,
ˆ

t h SVR + , and ,
ˆ

t h RVR +  more rare, and, 
thus,  leaving our basic interpretation intact. 
9  The results pertaining to the original Diebold and Mariano statistics are qualitatively similar to the modified 
statistics reported in the text. These results are available upon request 
10  Strictly speaking, the results do not necessarily imply that the short-run dynamics are not useful. An 
alternative interpretation is that, in this case, the model with coefficient restrictions implying short-run dynamics are 
captured by the first differences of the high and low past values is, on average, forecasts better. 
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Meese, 1995), the VECM does not forecast better than the ARMA range model, which is a 

stripped version of the VECM, and periodic updating the VECM estimates can lead to better 

forecasts.11  

 
Table 6. Direction of Change Statistics 
 

 
Note: The direction of change statistics for testing the hypothesis of the proportion of correct 
directional forecasts is 50% are reported. “**” and “*” indicate significance at the 5% and 10% 
level respectively. The observed proportions of correct directional forecasts are presented in 
columns labeled (correct %). 
 

                                                 
11  Indeed, we found that, for stock index series, all the coefficient estimates of the error correction term in the 
forecasting period are all within one-standard error bands of their respective estimates reported in Table 3. The 
short-run dynamics, on the other hand, display much larger variations. 

 , 1
ˆ

t h AR +  (Correct 
%) , 2

ˆ
t h AR +  (Correct 

%) ,
ˆ

t h SVR +  (Correct 
%) ,

ˆ
t h RVR +  (Correct 

%) 

FTSE: h=1 -3.0019** (41.95) 8.8985** (73.85) 7.9336** (71.26) 7.9336** (71.26) 
h=2 -2.4157** (43.52) 8.9650** (74.06) 9.7166** (76.08) 9.8240** (76.37) 
h=4 -0.5922 (48.41) 7.6989** (70.72) 7.2682** (69.57) 7.3758** (69.86) 

FCHI: h=1 -2.7222** (42.74) 9.0206** (74.07) 8.5935** (72.93) 8.9138** (73.79) 
h=2 -0.9621 (47.43) 6.4143** (67.14) 5.9867** (66.00) 5.7728** (65.43) 
h=4 -0.6433 (48.28) 7.2904** (69.54) 7.7192** (70.69) 7.6120** (70.40) 

GDAX:h=1 -3.8005** (39.83) 9.7958** (76.22) 10.2240** (77.36) 10.4381** (77.94) 
h=2 -0.8577 (47.70) 7.1832** (69.25) 6.5399** (67.53) 6.3255** (66.95) 
h=4 -1.1827 (46.82) 7.5264** (70.23) 7.9565** (71.39) 7.8490** (71.10) 

N225: h=1 -3.8562** (39.53) 7.8753** (71.39) 8.2012** (72.27) 8.5271** (73.16) 
h=2 -3.9163** (39.35) 6.0920** (66.57) 5.8744** (65.98) 5.9832** (66.27) 
h=4 -3.1642** (41.37) 7.5285** (70.54) 7.5285** (70.54) 7.5285** (70.54) 

KS11: h=1 -3.7587** (39.76) 8.2255** (72.40) 8.1165** (72.11) 8.1165** (72.11) 
h=2 -3.4915** (40.48) 8.2923** (72.62) 7.3103** (69.94) 7.4194** (70.24) 
h=4 -1.9698** (44.61) 7.1133** (69.46) 7.2227** (69.76) 7.1133** (69.46) 

DJI: h=1 -8.0641** (28.32) 11.8273** (81.79) 11.7198** (81.50) 11.6122** (81.21) 
h=2 -5.1146** (36.23) 7.2682** (69.57) 7.9142** (71.30) 8.0219** (71.59) 
h=4 -5.9934** (33.82) 9.1251** (74.64) 9.0172** (74.34) 9.0172** (74.34) 

IXIC: h=1 -3.9783** (39.31) 10.2145** (77.46) 9.7844** (76.30) 9.7844** (76.30) 
h=2 0.4845 (51.30) 7.4835** (70.14) 6.4067** (67.25) 6.2991** (66.96) 
h=4 0.9179 (52.48) 7.6133** (70.55) 7.7213** (70.85) 7.7213** (70.85) 

TWII: h=1 -5.0362** (36.36) 8.0688** (71.85) 8.5020** (73.02) 8.6103** (73.31) 
h=2 -6.1825** (33.24) 7.8095** (71.18) 7.1587** (69.41) 7.1587** (69.41) 
h=4 -5.5481** (34.91) 8.5941** (73.37) 8.3765** (72.78) 8.4853** (73.08) 
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Table 6 presents the direction of change statistics and the percentages of correct 

directional prediction. Similar to the mean-squared forecast error results, the forecast , 1
ˆ

t h AR +  

offers the worst performance. In all cases under consideration, , 1
ˆ

t h AR +  has less than 50% chance 

predicting  the correct directional variation. The other three forecasts , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and ,
ˆ

t h RVR + , 

on the other hand, correctly predict the movement of the range over 50 percent of the time and 

the improvement over the 50 percent mark is quite significant. In fact, in most cases, the 

percentage of correct prediction scored by these three forecasts is between 70% to 80%. Thus, 

with the exception of , 1
ˆ

t h AR + , these range forecasts contain useful information about the 

movement in the range variable. 
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Table 7. Modified Diebold Mariano Statistics: Direction of Change 

 

 
Note: The modified Diebold Mariano statistics that compare the performance of two forecasts 
based on the direction of change criterion are presented. A positive test statistic indicates that the 
second one of the forecast pair has a proportion of correct directional predictions larger than the 
first one. “**” and “*” indicate significance at the 5% and 10% level respectively. 
 

A natural question to ask is: “Is there a forecast that predicts the direction of change 

better than the others?” The answer is provided in Table 7, which reports the modified Diebold 

and Mariano statistics for performance comparison. Among the four forecasts, the range forecast 

, 1
ˆ

t h AR +  derived from individual high and low forecasts has the weakest performance. The abilities 

of the other three forecasts are quite comparable. While the actual percentages of correct 

forecasts are quite similar, , 2
ˆ

t h AR +  is marginally better than the other two VECM-based forecasts. 

 , 1
ˆ

t h AR + / , 2
ˆ

t h AR +  , 1
ˆ

t h AR + / ,
ˆ

t h SVR + , 1
ˆ

t h AR + / ,
ˆ

t h RVR + , 2
ˆ

t h AR + / ,
ˆ

t h SVR + , 2
ˆ

t h AR + / ,
ˆ

t h RVR + ,
ˆ

t h SVR + / ,
ˆ

t h RVR +

FTSE: h=1 8.1803** 7.2003** 7.2365** -2.0745** -2.0745** 0.0000 
h=2 8.6786** 9.0169** 9.1247** 1.6171 1.7200* 0.5757 
h=4 5.8171** 5.1650** 5.1567** -1.1588 -0.8295 0.5734 

FCHI: h=1 8.5377** 7.9789** 8.3689** -0.7066 -0.1922 1.0000 
h=2 5.6076** 5.0429** 4.8554** -0.8518 -1.2828 -1.4204 
h=4 6.0072** 6.2506** 5.9761** 1.0001 0.7242 -0.5735 

GDAX:h=1 9.5380** 9.9217** 10.1174** 0.8161 1.1773 0.8161 
h=2 5.4694** 4.7881** 4.6231** -1.3464 -1.8063* -1.4204 
h=4 5.7625** 6.2011** 5.9924** 1.0707 0.6509 -0.4436 

N225: h=1 7.9159** 8.2463** 8.5401** 0.5994 1.2804 1.7372* 
h=2 6.5061** 6.4759** 6.5931** -0.4067 -0.2173 0.5756 
h=4 6.2451** 6.5548** 6.5548** 0.0000 0.0000 . 

KS11: h=1 7.8839** 7.8193** 7.7792** -0.1997 -0.2082 0.0000 
h=2 8.9089** 8.0656** 8.1684** -1.7479* -1.5794 0.4456 
h=4 6.6755** 6.7119** 6.6208** 0.1674 0.0000 -1.0001 

DJI: h=1 14.5102** 14.4288** 14.2601** -0.1642 -0.3329 -1.0000 
h=2 8.3409** 8.5009** 8.5948** 1.1346 1.3510 1.0000 
h=4 10.5001** 9.7571** 9.8568** -0.2402 -0.2402 0.0000 

IXIC: h=1 10.5653** 9.3059** 9.3059** -0.6319 -0.6319 0.0000 
h=2 5.1073** 4.2897** 4.2385** -1.9116* -2.0718** -1.0000 
h=4 4.7110** 4.7300** 4.7300** 0.1906 0.1906 0.0000 

TWII: h=1 8.1079** 8.5487** 8.6118** 0.9427 1.2135 1.0000 
2=2 9.2236** 8.9016** 8.9972** -1.2829 -1.3465 0.0000 
h=4 8.4904** 8.0721** 8.2072** -0.5734 -0.3303 1.0001 
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The recursively generated ,
ˆ

t h RVR +  usually has a percentage of correct predictions better than 

,
ˆ

t h SVR +  even though their differences are mostly not statistically significant. Thus, if the objective 

is to predict the direction of change, the more complicated VECM forecasts do not deliver results 

that are significantly better than the range forecast , 2
ˆ

t h AR + , which requires only the univariate 

ARMA technique and incurs a low computing cost. 

 

4.3 Decomposition of Forecast Error Variance  

Three of the four range forecasts , 1
ˆ

t h AR + , , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and ,
ˆ

t h RVR +  are derived from 

their corresponding high and low forecasts. This allows us to evaluate the performance of these 

three range forecasts in terms of their components. Since tR  = tH  - tL , the range forecast error 

and its variance can be written as 

ˆ
t hR + - t hR +  = ( ˆ

t hH + - t hH + ) - ( ˆ
t hL + - t hL + )      (5) 

and 

V( ˆ
t hR + - t hR + )  

= V( ˆ
t hH + - t hH + ) + V( ˆ

t hL + - t hL + ) – 2COV( ˆ
t hH + - t hH + , ˆ

t hL + - t hL + ).   (6) 

Equation (5) breaks down the error in forecasting the range into errors in forecasting the 

high and the low.  The variance decomposition of V( ˆ
t hR + - t hR + ), on the other hand, gives the 

sources of range forecast uncertainty.  

 Because , 2
ˆ

t h AR +  does not directly involve forecasts of the high and the low, the 

decomposition results are only reported for the remaining three range forecasts. The results are 

summarized in Tables 8 to 10. 

 The errors displayed by the three forecasts are quite small and, in most cases, are not 

statistically different from zero. The magnitude of forecast errors is, in general, increasing with 

the forecasting horizon. Even though these forecast errors are not statistically significant, the 

three forecasts tend to under-predict highs and lows such that the averages of ( ˆ
t hH + - t hH + ) and 

( ˆ
t hL + - t hL + ) are all negative. For , 1

ˆ
t h AR + , the under-prediction of lows is more substantial than 

that of highs and, thus, the resulting range forecast errors are positive. Indeed, in six of the eight 
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stock indexes, the averages of ˆ
t hR + - t hR +  computed for , 1

ˆ
t h AR +  are positive. In the cases of ,

ˆ
t h SVR +  

and ,
ˆ

t h RVR + , the averages of ˆ
t hR + - t hR +  are positive in five out of eight cases.  

The sample forecast error variances reported in these tables are in accordance with the 

results that the range forecast , 1
ˆ

t h AR +  yields a more variable forecast error than ,
ˆ

t h SVR +  and 

,
ˆ

t h RVR + . That is, the inclusion of high and low dynamics in formulating range forecasts reduces 

forecast uncertainty. Further, the forecast error variance of ,
ˆ

t h RVR +  is slightly better than that of 

,
ˆ

t h SVR + ; indicating some marginal value in updating the short-term dynamics in generating range 

forecasts. Comparing V( ˆ
t hH + - t hH + ) and V( ˆ

t hL + - t hL + ) across the three tables, it is observed that 

the use of the VECM specification also enhances the quality of high and low forecasts by 

reducing their forecast error variations. The French CAC 40 and German DAX indexes (FCHI 

and GDAX) are the only two exceptional cases in which the forecast error variance of highs 

associated with , 1
ˆ

t h AR +  is slightly smaller than those associated with the two VECM-based 

forecasts. Another observation is that, for the three range forecasts, V( ˆ
t hH + - t hH + ) tends to be 

smaller than V( ˆ
t hL + - t hL + ); there are only seven out of 72 cases in which V( ˆ

t hH + - t hH + ) is larger 

than V( ˆ
t hL + - t hL + ). We do not have a good reason to explain the relative size of the two 

variances. However, we speculate the variance differential is related to the observation that stock 

prices are more volatile in a down market than in an up one. 
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Table 8. Forecast Error Decomposition for , 1
ˆ

t h AR +  

Note: (.)A , (.)V , and cov(.)  give the average, variance, and covariance of the variables inside parentheses and 
are scaled by a factor of 104 . The robust t-statistics for the hypothesis of (.)A  = 0 are given underneath the 
associated (.)A  estimates. “**” and “*” indicate significance at the 5% and 10% level.

 ˆ( )A r r−  ˆ( )A h h−  
ˆ( )A l l−  )ˆ( rrV −  )ˆ( hhV −  )ˆ( llV −  

ˆ ˆ2cov( , )h h l l− −  
FTSE: h=1 0.9095 -3.0897 -3.9992 0.5855 0.6740 0.8716 0.9601 

 (0.22) (-0.70) (-0.80)     
h=2 1.3176 -7.2928 -8.6105 0.5705 1.6573 2.0308 3.1176 

 (0.32) (-1.06) (-1.13)     
h=4 2.5824 -15.7615 -18.3439 0.7293 3.5706 4.3851 7.2265 

 (0.56) (-1.55) (-1.63)     
FCHI: h=1 0.9731 -3.3355 -4.3086 0.7677 1.4622 1.8578 2.5522 

 (0.21) (-0.52) (-0.59)     
h=2 1.7589 -7.5882 -9.3472 0.7745 3.4636 3.8710 6.5601 

 (0.37) (-0.76) (-0.89)     
h=4 2.6599 -17.7059 -20.3658 1.0327 7.3897 7.7018 14.0588 

 (0.49) (-1.22) (-1.37)     
GDAX: h=1 0.7396 -5.7683 -6.5079 1.3863 1.7605 2.4613 2.8355 

 (0.12) (-0.81) (-0.77)     
h=2 1.4017 -12.7598 -14.1616 1.0127 4.2172 5.2447 8.4492 

 (0.26) (-1.16) (-1.15)     
h=4 2.7183 -28.3923* -31.1106* 1.2900 10.0933 11.4298 20.2332 

 (0.45) (-1.66) (-1.71)     
N225: h=1 -0.1553 -7.3324 -7.1770 0.9000 1.3841 1.6982 2.1823 

 (-0.03) (-1.15) (-1.01)     
h=2 -0.9638 -15.8702 -14.9064 0.9267 3.4422 3.9232 6.4388 

 (-0.18) (-1.57) (-1.38)     
h=4 -0.2788 -31.4777** -31.1989** 1.0001 7.7543 8.4517 15.2060 

 (-0.05) (-2.07) (-1.97)     
KS11: h=1 0.5093 -5.4459 -5.9552 1.1216 2.0155 2.5357 3.4295 

 (0.09) (-0.70) (-0.69)     
h=2 0.8902 -12.0567 -12.9469 1.1695 4.4161 5.5597 8.8063 

 (0.15) (-1.05) (-1.01)     
h=4 1.1116 -26.4722 -27.5837 1.2830 9.7038 12.2432 20.6640 

 (0.18) (-1.55) (-1.44)     
DJI: h=1 0.2356 -0.1192 -0.3548 0.6559 0.6389 0.6920 0.6750 

 (0.05) (-0.03) (-0.08)     
h=2 0.5659 -0.4341 -1.0000 0.4792 1.3170 1.4338 2.2715 

 (0.15) (-0.07) (-0.16)     
h=4 1.1643 -1.9222 -3.0865 0.5301 2.9040 3.2190 5.5929 

 (0.30) (-0.21) (-0.32)     
IXIC: h=1 1.0236 -8.3923 -9.4159 0.8130 1.3757 1.2658 1.8286 

 (0.21) (-1.33) (-1.56)     
h=2 1.8977 -17.6201* -19.5178** 0.5777 2.8864 2.9036 5.2123 

 (0.46) (-1.93) (-2.13)     
h=4 2.2108 -38.3213** -40.5321** 0.6575 5.9760 6.3535 11.6721 

 (0.50) (-2.90) (-2.98)     
TWII: h=1 -0.3063 -4.5170 -4.2107 1.6008 1.6475 1.7408 1.7875 

 (-0.04) (-0.65) (-0.59)     
h=2 -0.4091 -10.0144 -9.6053 1.6336 3.7887 4.4175 6.5726 

 (-0.06) (-0.95) (-0.84)     
h=4 -0.2645 -22.2882 -22.0238 1.7670 8.3639 9.5243 16.1212 

 (-0.04) (-1.42) (-1.31)     
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Table 9. Forecast Error Decomposition for ,
ˆ

t h SVR +  
 

 ˆ( )A r r−  ˆ( )A h h−  ˆ( )A l l−  )ˆ( rrV −  )ˆ( hhV −  )ˆ( llV −  ˆ ˆ2cov( , )h h l l− −  
FTSE: h=1 -0.3860 -1.6362 -1.2502 0.3168 0.6185 0.7294 1.0310 

 (-0.13) (-0.39) (-0.27)     
h=2 -0.6158 -3.9995 -3.3837 0.3308 1.6100 1.7996 3.0787 

 (-0.20) (-0.59) (-0.47)     
h=4 -0.6229 -9.0348 -8.4119 0.3775 3.5326 4.0070 7.1621 

 (-0.19) (-0.89) (-0.78)     
FCHI: h=1 -0.2798 -1.6527 -1.3730 0.4811 1.4890 1.6333 2.6411 

 (-0.08) (-0.25) (-0.20)     
h=2 -0.3126 -3.9318 -3.6192 0.4957 3.4958 3.4251 6.4252 

 (-0.08) (-0.39) (-0.37)     
h=4 -0.1383 -9.8918 -9.7535 0.5456 7.2417 7.1433 13.8394 

 (-0.03) (-0.69) (-0.68)     
GDAX: h=1 -3.3516 -8.4101 -5.0586 0.6786 1.7655 2.1718 3.2587 

 (-0.76) (-1.18) (-0.64)     
h=2 -3.5449 -16.6925 -13.1476 0.6737 4.3208 5.0020 8.6491 

 (-0.81) (-1.50) (-1.10)     
h=4 -3.6877 -35.1977** -31.5100* 0.7517 10.0979 11.2931 20.6392 

 (-0.79) (-2.06) (-1.74)     
N225: h=1 3.1128 -9.2531 -12.3659* 0.4619 1.2702 1.5892 2.3975 

 (0.84) (-1.51) (-1.81)     
h=2 4.0741 -22.0845** -26.1586** 0.4816 3.2957 3.8456 6.6597 

 (1.08) (-2.24) (-2.45)     
h=4 7.2458* -45.4804** -52.7263** 0.4880 7.6270 8.3320 15.4710 

 (1.90) (-3.02) (-3.35)     
KS11: h=1 4.7382 -4.4851 -9.2234 0.5825 1.8881 2.4797 3.7853 

 (1.14) (-0.60) (-1.08)     
h=2 6.3402 -12.7467 -19.0869 0.6348 4.2969 5.4547 9.1168 

 (1.46) (-1.13) (-1.50)     
h=4 8.6184* -28.7195* -37.3379** 0.7074 9.6246 11.9962 20.9134 

 (1.87) (-1.69) (-1.97)     
DJI: h=1 1.3614 0.4153 -0.9461 0.2491 0.5684 0.5845 0.9038 

 (0.51) (0.10) (-0.23)     
h=2 1.5332 -0.0360 -1.5692 0.2411 1.2715 1.3800 2.4103 

 (0.58) (-0.01) (-0.25)     
h=4 2.1568 -1.5486 -3.7054 0.2413 2.8530 3.0618 5.6735 

 (0.81) (-0.17) (-0.39)     
IXIC: h=1 2.3422 -2.6272 -4.9694 0.3858 1.2185 1.1706 2.0032 

 (0.70) (-0.44) (-0.85)     
h=2 3.2522 -6.8614 -10.1135 0.3725 2.7717 2.8859 5.2850 

 (0.99) (-0.77) (-1.11)     
h=4 4.4012 -17.4055 -21.8067 0.3897 5.9297 6.2339 11.7739 

 (1.31) (-1.32) (-1.62)     
TWII: h=1 1.0549 -3.6091 -4.6639 0.8059 1.2634 1.6302 2.0877 

 (0.22) (-0.59) (-0.67)     
h=2 1.7541 -8.6197 -10.3738 0.8295 3.5049 4.2909 6.9662 

 (0.36) (-0.85) (-0.92)     
h=4 2.4209 -20.7162 -23.1371 0.8730 8.1324 9.5921 16.8515 

 (0.48) (-1.34) (-1.37)     
 
Note: See the Note to Table 8. 
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 Table 10. Forecast Error Decomposition for ,
ˆ

t h RVR +  
 

 ˆ( )A r r−  ˆ( )A h h−  ˆ( )A l l−  )ˆ( rrV −  )ˆ( hhV −  )ˆ( llV −  ˆ ˆ2cov( , )h h l l− −  
FTSE: h=1 -0.2685 -1.6806 -1.4121 0.3177 0.6191 0.7316 1.0330 

 (-0.09) (-0.40) (-0.31)     
h=2 -0.4859 -4.1829 -3.6970 0.3309 1.6181 1.8036 3.0909 

 (-0.16) (-0.61) (-0.51)     
h=4 -0.3896 -9.4081 -9.0185 0.3764 3.5539 4.0248 7.2023 

 (-0.12) (-0.93) (-0.83)     
FCHI: h=1 0.0171 -1.7175 -1.7346 0.4771 1.4875 1.6394 2.6499 

 (0.00) (-0.26) (-0.25)     
h=2 -0.0142 -4.2090 -4.1948 0.4946 3.4997 3.4393 6.4444 

 (-0.00) (-0.42) (-0.42)     
h=4 0.2639 -10.4906 -10.7545 0.5464 7.2626 7.1669 13.8831 

 (0.07) (-0.73) (-0.75)     
GDAX: h=1 -3.3809 -8.0996 -4.7187 0.6693 1.7617 2.1630 3.2554 

 (-0.77) (-1.14) (-0.60)     
h=2 -3.6604 -16.2622 -12.6018 0.6681 4.3255 5.0261 8.6835 

 (-0.84) (-1.46) (-1.05)     
h=4 -3.9472 -34.9288** -30.9816* 0.7465 10.2060 11.3883 20.8479 

 (-0.85) (-2.03) (-1.71)     
N225: h=1 3.2215 -8.5359 -11.7575* 0.4597 1.2701 1.5924 2.4028 

 (0.87) (-1.39) (-1.72)     
h=2 4.1575 -20.5103** -24.6679** 0.4786 3.2964 3.8522 6.6699 

 (1.10) (-2.08) (-2.31)     
h=4 7.1822* -42.5050** -49.6872** 0.4856 7.6392 8.3527 15.5062 

 (1.89) (-2.82) (-3.15)     
KS11: h=1 4.5069 -4.3297 -8.8366 0.5825 1.8874 2.4806 3.7855 

 (1.08) (-0.58) (-1.03)     
h=2 6.0083 -12.2117 -18.2200 0.6348 4.3042 5.4602 9.1296 

 (1.38) (-1.08) (-1.43)     
h=4 8.2113* -27.5904 -35.8017* 0.7076 9.6462 12.0192 20.9579 

 (1.78) (-1.62) (-1.89)     
DJI: h=1 1.4408 0.4259 -1.0149 0.2484 0.5677 0.5830 0.9023 

 (0.54) (0.11) (-0.25)     
h=2 1.5788 -0.0641 -1.6428 0.2409 1.2709 1.3770 2.4070 

 (0.60) (-0.01) (-0.26)     
h=4 2.1974 -1.6305 -3.8279 0.2415 2.8565 3.0653 5.6804 

 (0.83) (-0.18) (-0.40)     
IXIC: h=1 2.3028 -2.3546 -4.6574 0.3842 1.2148 1.1702 2.0009 

 (0.69) (-0.40) (-0.80)     
h=2 3.1429 -6.3071 -9.4500 0.3712 2.7674 2.8824 5.2786 

 (0.96) (-0.70) (-1.03)     
h=4 4.2222 -16.3015 -20.5237 0.3891 5.9260 6.2296 11.7665 

 (1.25) (-1.24) (-1.52)     
TWII: h=1 1.0080 -3.3765 -4.3845 0.8078 1.2635 1.6367 2.0924 

 (0.21) (-0.55) (-0.63)     
h=2 1.6888 -8.1182 -9.8071 0.8308 3.5153 4.3106 6.9951 

 (0.34) (-0.80) (-0.87)     
h=4 2.3018 -19.6353 -21.9370 0.8735 8.1621 9.6308 16.9193 

 (0.45) (-1.26) (-1.30)     
 
Note: See the Note to Table 8.
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For all the three range forecasts, COV( ˆ
t hH + - t hH + , ˆ

t hL + - t hL + ) is positive. That is, the 

forecast errors of highs and lows tend to move in the same direction – an over-prediction (under-

prediction) of the high is likely to be accompanied by an over-prediction (under-prediction) of 

the low, and vice versa. The comovement of high and low forecast errors helps bring the 

variance of range forecast errors down to a level lower than those of ˆ
t hH + - t hH +  and ˆ

t hL + - t hL + . 

The comovement of ˆ
t hH + - t hH +  and ˆ

t hL + - t hL +  from the VECM, which explicitly links the high 

and the low together, is in general stronger than that from estimating the high and the low 

separately. It is only in the cases of the British and French indexes that the COV( ˆ
t hH + - t hH + , 

ˆ
t hL + - t hL + ) associated with , 1

ˆ
t h AR +  is slightly less than those associated with the other two range 

forecasts. Further, the comovement of ˆ
t hH + - t hH +  and ˆ

t hL + - t hL +  that derived from ,
ˆ

t h RVR +  is, on 

average, stronger than that from ,
ˆ

t h SVR + .  

 The decomposition results corroborate the notion that, comparing with , 1
ˆ

t h AR + , the  joint 

estimation of the high and the low offers incremental information for range forecasting. The 

information gain ameliorates range forecasts by reducing the variability of errors in forecasting 

highs and lows and increasing the comovement of these two forecast errors. The improvement in 

forecasting highs and lows is relevant for exercises that require information on extreme values of 

the underlying financial price – for example, for pricing of knock-out options and implementing 

trading rules such as the Channel rule, the resistant and support levels, and the Candlestick chart. 

 
5. An Illustration 

 As mentioned in the introduction, range is an efficient estimator of volatility. In this 

section, we assess the ability of range forecasts examined in the previous section to predict 

volatility. Volatility forecasting is an active research area and has significant implications for 

financial market practitioners. Andersen et al. (2005) and Poon and Granger (2003) are two 

recent extensive surveys on the subject.12 Strictly speaking, the volatility of a stock index is an 

unobservable parameter that determines the index’s observed variations. In this exercise, we 

consider implied volatility, which is commonly regarded as a market expectation of the 

unobservable volatility as the forecast object.  

                                                 
12  Poon and Granger (2005) review some practical issues in forecasting volatilities. 
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For a given options contract, implied volatility is a volatility estimate recovered from an 

options pricing equation with information on the premium and other pricing variables including 

the strike, price of the underlying asset, interest rate, and time to maturity. The reported implied 

volatility value is typically compiled from the average of a few nearest-the-money calls and 

nearest-the-money puts, which are used as a proxy for at-the-money contracts.13 It is a common 

denominator of option prices that practitioners use to compare options of different types. 

The implied volatilities under consideration are those of the European FTSE and DJI 

options contracts. The one-month and three-months calls and puts are included. The FTSE 

contract is traded on the Euronext.liffe London exchange and the DJI one is on the Chicago 

Board Options Exchange. Contract specifications are available on the exchanges’ official 

websites.  The implied volatility data were downloaded from the database Datastream.14 The 

forecasting period is from January 16, 2003 to June 1, 2004 - the same as the one examined in 

Section 4. The volatility forecast derived from the range forecast is given by 
2 1/ 2

,
ˆ[ /(4 2)]t h jR ln+ ,         (7) 

where j = A1, A2, SV, and RV. Since the implied volatility is annualized, we scale (7) accordingly 

and consider the scaled forecast15 

,t̂ h jV +  = 2 1/ 2
,

ˆ[365 /(4 2)]t h jR ln+ .        (8) 

The comparison of the performance of the scaled forecasts based on the mean-squared 

forecast error criterion is presented in Table 11. The modified Diebold-Mariano statistic clearly 

indicates that, among the four scaled forecasts, , 1t̂ h AV +  is the worst predictor of implied volatility. 

For the two puts and two calls of the FTSE and DJI options, the mean-squared forecast errors of  

, 1t̂ h AV +  are significantly larger than those of the other three scaled forecasts. The results reiterate 

those reported in the previous section – the forecast , 1t̂ h AV +  that ignores the interaction between  

                                                 
13  The number of individual nearest-the-money calls and nearest-the-money puts used in the industry to 
construct implied volatility varies from two to four. The use of at-the-money contracts is to alleviate issues related to 
volatility smile – which refers to the observation that at-the-money options have implied volatilities lower than other 
(out-of-money and in-the-money) options. 
14  We were informed that DataStream uses a variant of the Black and Scholes model to construct implied 
volatility. 
15  Usually, a n  factor is used to get an n-days ahead forecast from an implied volatility estimate. According 
to the specification of implied volatility, the day-adjustment factor to obtain the annualized volatility is 365, which 
is different from the 250 or 252 factor used in, say, historical volatility calculation. We also conducted the forecast 
exercise using the factors 250 and 360. The relative performance of these forecasts is qualitatively similar to those 
reported in the text and is available upon request. 
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Table 11. Predicting Implied Volatility: Mean-Squared Forecast Errors 
 

 , 1t̂ h AV + / , 2t̂ h AV + , 1t̂ h AV + / ,t̂ h SVV + , 1t̂ h AV + / ,t̂ h RVV + , 2t̂ h AV + / ,t̂ h SVV + , 2t̂ h AV + / ,t̂ h RVV +  ,t̂ h SVV + / ,t̂ h RVV +

FTSEP3:       
h=1 4.8186** 4.7184** 4.7273** 0.5523 0.4195 -1.4077 
h=2 4.2703** 4.0965** 4.0992** 0.0190 -0.0084 -0.2737 
h=4 2.9861** 2.8921** 2.8869** -0.4286 -0.2224 1.3858 

FTSEP6:       
h=1 4.7154** 4.6019** 4.6138** 0.4926 0.3741 -1.1501 
h=2 4.2386** 4.0619** 4.0660** 0.1311 0.1056 -0.1788 
h=4 2.9083** 2.8172** 2.8126** -0.3390 -0.1265 1.3518 

FTSEC3:       
h=1 4.3422** 4.2324** 4.2595** 1.1484 1.1318 -0.3968 
h=2 4.0608** 3.8179** 3.8316** 0.3700 0.4047 0.4258 
h=4 2.5977** 2.4800** 2.4762** -0.1410 0.0646 1.5065 

FTSEC6:       
h=1 4.1818** 4.0552** 4.0866** 0.9430 0.9376 -0.2651 
h=2 3.9579** 3.6551** 3.6724** 0.2177 0.2649 0.4316 
h=4 2.5282** 2.4091** 2.4053** 0.0063 0.2110 1.4574 

DJIP3:       
h=1 8.2075** 7.9874** 8.0209** -1.1143 -0.9547 3.9752** 
h=2 7.8096** 8.1987** 8.2150** -0.6593 -0.5309 3.2355** 
h=4 6.9058** 7.3453** 7.3443** 0.0086 0.0643 1.2953 

DJIP6:       
h=1 8.3260** 7.9700** 8.0071** -1.7472* -1.5646 4.2421** 
h=2 8.1255** 8.4366** 8.4571** -0.9293 -0.7980 3.2367** 
h=4 7.0019** 7.3448** 7.3444** 0.1651 0.1997 0.7237 

DJIC3:       
h=1 8.8118** 8.5227** 8.5643** -1.4942 -1.2862 5.2420** 
h=2 7.9323** 8.2438** 8.2643** -0.7965 -0.6479 4.0445** 
h=4 6.7896** 6.9931** 6.9905** -0.1955 -0.1535 0.9790 

DJIC6:       
h=1 8.4690** 8.0698** 8.1122** -1.8464* -1.6153 5.1834** 
h=2 7.7821** 7.9092** 7.9345** -1.0226 -0.8728 3.8064** 
h=4 6.7773** 6.9368** 6.9348** 0.0293 0.0602 0.6002 

 
Note: The results of using range forecasts to predict implied volatility are reported. P3, P6, C3, 
and C6 give after the index labels FTSE and DJI denote puts and calls with maturities of 3 and 6 
months. The modified Diebold Mariano statistics that compare the performance of two forecasts 
based on the mean-squared forecast error criterion are presented. A positive test statistic 
indicates that the first on of the forecast pair has a mean-squared forecast error larger than the 
second one. “**” and “*” indicate significance at the 5% and 10% level respectively. 
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highs and lows do not perform well in the forecast competition. 

Compared with the VECM-based scaled forecasts, the scaled forecast , 2t̂ h AV +  based on the 

ARMA structure of range performs slightly worse for the FTSE contracts but slightly better for 

the DJI ones. With the exception of two cases (DJIP6 and DJIC6 at h =1), the differences 

between , 2t̂ h AV +  and two VECM-based forecasts are not statistically significant. Again, the results 

are suggestive of the VECM short-run dynamics may not be stable over time and the forecast 

, 2t̂ h AV +  which incorporates only the empirical long-run relationship between highs and lows is not 

totally dominated by the VECM-based ,t̂ h RVV +  and ,t̂ h SVV + . Nonetheless, the relative performance 

of , 2t̂ h AV +  is not as good as the relative performance of , 2
ˆ

t h AR +  reported in Table 5. There are 

differences in forecasting ranges and forecasting implied volatilities such that these forecasts 

perform differently in these two cases. 

Between the two VECM-based forecasts, the recursive ,t̂ h RVV +  forecast dominates the 

simple ,t̂ h SVV +  one for the DJI options and has a significantly smaller mean-squared forecast error 

for both one-period and two-period ahead forecasts. However, the abilities of these two VECM-

based predictors are quite similar and their mean-squared forecast errors are not significantly 

different from each other for the FTSE options.  

The ability of the scaled forecasts to predict the change in the direction of implied volatility is 

reported in Table 12. The statistics show that, in general, the four scaled forecasts can predict the 

change in the direction of implied volatility. The proportion of cases in which the forecasts can 

make a correct directional prediction with more than a 50% chance is between two thirds 

( , 1t̂ h AV + ) and five sixths ( ,t̂ h SVV + ). Comparing the results in Table 6, , 1t̂ h AV +  gives a higher 

percentage of correct directional forecasts than , 1
ˆ

t h AR + . Indeed, , 1t̂ h AV +  is significantly better than 

the 50% mark in two thirds of the cases and , 1
ˆ

t h AR +  is worse than the 50% mark in more than two 

thirds of the cases. On the other hand, the correct directional forecast percentages of , 2t̂ h AV + , 

,t̂ h SVV + , and ,t̂ h RVV +  are much lower than those of , 2
ˆ

t h AR + , ,
ˆ

t h SVR +  and ,
ˆ

t h RVR + . The percentages of 

these scaled forecasts to predict changes in the direction of implied volatility are no higher than 

60% while those of the corresponding range forecasts are usually no lower than 70%. Thus, the 
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range forecast performance cannot be directly used to infer the performance of forecasting 

implied volatility. 

 

 

Table 12. Predicting Implied Volatility: Direction of Change Statistics  
 

 
Note: The direction of change statistics for testing the hypothesis of the proportion of forecasts 
that correctly predict the implied volatility directional change is 50% are reported. P3, P6, C3, 
and C6 give after the index labels FTSE and DJI denote puts and calls with maturities of 3 and 6 
months. “**” and “*” indicate significance at the 5% and 10% level respectively. The observed 
proportions of correct directional forecasts are presented in columns labeled (correct %). 

 , 1t̂ h AV +  (Correct 
%) , 2t̂ h AV +  (Correct 

%) ,t̂ h SVV +  (Correct 
%) ,t̂ h RVV +  (Correct 

%) 
FTSEP3:         

h=1 1.1793 53.16% 2.3586** 56.32% 3.0019** 58.05% 2.3586** 56.32% 
h=2 2.6305** 57.06% 2.2010** 55.91% 3.1673** 58.50% 2.9526** 57.93% 
h=4 1.1306 53.04% 2.5304** 56.81% 3.1765** 58.55% 2.7457** 57.39% 

FTSEP6:         
h=1 2.3586** 56.32% 2.1442** 55.75% 3.2163** 58.62% 2.7875** 57.47% 
h=2 1.6642** 54.47% 1.7715** 54.76% 2.2010** 55.91% 1.7715** 54.76% 
h=4 1.0229 52.75% 1.9920** 55.36% 2.7457** 57.39% 2.5304** 56.81% 

FTSEC3:         
h=1 1.7154** 54.60% 1.8226** 54.89% 3.0019** 58.05% 2.0370** 55.46% 
h=2 2.5231** 56.77% 2.8452** 57.64% 3.5967** 59.65% 3.3820** 59.08% 
h=4 1.5613* 54.20% 2.9611** 57.97% 3.1765** 58.55% 3.2841** 58.84% 

FTSEC6:         
h=1 1.5010* 54.02% 1.8226** 54.89% 2.8947** 57.76% 2.4659** 56.61% 
h=2 1.9863** 55.33% 1.9863** 55.33% 2.5231** 56.77% 2.4157** 56.48% 
h=4 0.4845 51.30% 2.3150** 56.23% 2.9611** 57.97% 2.7457** 57.39% 

DJIP3:         
h=1 1.0752 52.89% -0.4301 48.84% 0.2150 50.58% -0.3226 49.13% 
h=2 2.4227** 56.52% 1.5613* 54.20% 1.8843** 55.07% 1.6690** 54.49% 
h=4 1.8898** 55.10% 2.6458** 57.14% 2.7537** 57.43% 2.7537** 57.43% 

DJIP6:         
h=1 1.3978* 53.76% 0.4301 51.16% 0.7526 52.02% 0.2150 50.58% 
h=2 2.5304** 56.81% 1.5613* 54.20% 1.7767** 54.78% 1.6690** 54.49% 
h=4 1.4579* 53.94% 2.3218** 56.27% 2.9697** 58.02% 2.8617** 57.73% 

DJIC3:         
h=1 0.2150 50.58% 0.6451 51.73% 0.8602 52.31% 0.6451 51.73% 
h=2 3.0688** 58.26% 2.4227** 56.52% 2.6381** 57.10% 2.6381** 57.10% 
h=4 1.9978** 55.39% 2.4298** 56.56% 2.5378** 56.85% 2.5378** 56.85% 

DJIC6:         
h=1 -0.1075 49.71% -0.2150 49.42% 1.2902* 53.47% 0.7526 52.02% 
h=2 2.3150** 56.23% 0.8076 52.17% 1.2383 53.33% 1.1306 53.04% 
h=4 0.8099 52.19% 1.4579* 53.94% 2.2138** 55.98% 1.8898** 55.10% 
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A statistical comparison of the scaled forecasts’ abilities to predict the change in the 

direction of implied volatility is presented in Table 13. In this case, the performance of , 1
ˆ

t h AR +  is 

not substantially worse than that of other scaled forecasts. The result is in contrast to its relative 

performance reported in the cases considered so far. Only in a few instances – two cases against 

, 2t̂ h AV + , five against ,t̂ h SVV + , and two against ,t̂ h RVV + , that the implied volatility forecast derived 

from individual high and low forecasts has a significant deterioration in the chance to make a 

correct directional prediction. In this round of comparison, ,t̂ h SVV + fares the best. It performs  

 

 
Table 13. Predicting Implied Volatility: Comparing Direction of Change Statistics 
 

 , 1t̂ h AV + / , 2t̂ h AV + , 1t̂ h AV + / ,t̂ h SVV + , 1t̂ h AV + / ,t̂ h RVV + , 2t̂ h AV + / ,t̂ h SVV + , 2t̂ h AV + / ,t̂ h RVV +  ,t̂ h SVV + / ,t̂ h RVV +

FTSEP3:       
h=1 1.2385 1.8287* 1.2385 1.2256 0.0000 -2.1321** 
h=2 -0.4514 0.5681 0.3498 2.3698** 1.7119* -1.0000 
h=4 1.4249 1.8298* 1.4817 1.0622 0.3619 -2.0657**

FTSEP6:       
h=1 -0.2459 0.9298 0.4845 2.2491** 1.5027 -1.6369 
h=2 0.1216 0.6185 0.1296 0.9424 0.0000 -1.4205 
h=4 1.1020 1.7201* 1.5493 1.7322* 1.5281 -1.4293

FTSEC3:       
h=1 0.1169 1.3432 0.3507 2.6917** 0.6319 -3.0352** 
h=2 0.3451 1.1805 0.9558 2.3800** 1.6798* -1.0000 
h=4 1.4804 1.5791 1.7407* 0.5734 1.0001 1.0001

FTSEC6:       
h=1 0.3661 1.5683 1.1167 2.6966** 1.9045* -2.0087** 
h=2 0.0000 0.6493 0.5236 1.2152 0.9424 -0.5757 
h=4 2.1183** 2.5743** 2.3535** 2.2033** 1.6622* -1.4293

DJIP3:       
h=1 -1.5887 -0.9056 -1.5038 1.5027 0.3011 -2.2491** 
h=2 -0.8717 -0.5608 -0.8069 0.9038 0.3320 -1.0000 
h=4 0.7076 0.7819 0.7819 0.5734 0.5734 .

DJIP6:       
h=1 -1.0837 -0.6877 -1.3068 0.7271 -0.5768 -2.2491** 
h=2 -1.1006 -0.8673 -1.0162 0.5329 0.3003 -1.0000 
h=4 0.9034 1.4923 1.3895 2.5890** 2.3363** -1.0001

DJIC3:       
h=1 0.4583 0.6541 0.4467 0.3775 0.0000 -0.8161 
h=2 -0.6776 -0.4697 -0.4633 0.5757 0.5757 0.0000 
h=4 0.4383 0.5324 0.5324 0.3747 0.3747 .

DJIC6:       
h=1 -0.1153 1.4291 0.9056 2.7720** 1.9721** -2.2491** 
h=2 -1.5753 -1.1975 -1.3287 0.8937 0.6867 -1.0000 
h=4 0.6220 1.4449 1.1371 1.6333 1.0708 -1.7697* 
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Note: The modified Diebold Mariano statistics that compare the directional forecast 
performance of two scaled forecasts of implied volatility are presented. A positive test statistic 
indicates that the second one of the forecast pair has a proportion of correct directional 
predictions larger than the first one. “**” and “*” indicate significance at the 5% and 10% level 
respectively. 
 
better than , 2t̂ h AV +  and ,t̂ h RVV +  in a good numbers of cases. The other VECM-based forecast 

,t̂ h RVV +  also delivers a stronger performance than , 2t̂ h AV + . In contract to the mean-squared forecast 

error results, the VECM-based forecasts of implied volatility are better than , 2t̂ h AV + , which does 

not incorporate short-run high and low dynamics. Thus, in predicting the change in the direction 

of implied volatility, it pays to consider the short-run dynamics in VECM, though recursively 

updating the dynamics does not improve the forecast performance.  

 

6. Concluding Remarks 

In this exercise we observe that daily highs and lows of stock prices do not diverge over 

time and, hence, adopt the cointegration framework to model the daily high, the daily low, and 

the associated daily range data. Most of the existing studies focus on the price range variable 

itself and its capacity to extract the unobservable return volatility. By examining the variables 

simultaneously, the current study yields information on not just the range itself but also 

information about its components – the daily high and the daily low. Thus, our results are 

relevant to a wide class of applications that require information beyond the range variable. 

Our empirical results attest to the importance of incorporating high-low interactions in 

modeling the range variable. The in-sample performance of the high-low VECM is quite good.  

The out-of-sample forecast performance, however, deserves some discussion. The decomposition 

exercise indicates that the joint estimation improves the performance of the high and low 

forecasts. Thus, the VECM is a good candidate to consider if the application requires information 

on highs and lows.   

However, the VECM-based range forecast does not always dominate other alternative 

forecasts. Indeed, there are instances in which forecasts from simple ARMA range models 

perform better. One observation is that forecast rankings depend on evaluation criteria and the 

variables being forecasted. For instance, even if a forecast is a good predictor of range, it may 
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not be automatically a good predictor of implied volatility. Putting all these together, the in-

sample results are more supportive of the VECM specification than the out-of-sample results. 

How should we interpret the disparate in-sample and out-of-sample performance? One 

possibility is that the high-low model is not stable over time and the instability makes it difficult 

to translate good in-sample performance to good out-of-sample results. A more relevant question 

is how much weight one has to put on out-of-sample evidence. Recently, Inoue and Kilian 

(2004) assess the relative usefulness of out-of-sample versus in-sample tests. These authors 

observe a widely known result that significant in-sample evidence does not guarantee significant 

out-of-sample predictability. They argue that in-sample tests have higher power and show that 

in-sample results are typically more credible than out-of-sample results. Another difficulty in 

interpreting forecast performance is pointed out by Clements and Hendry (2001) – they show 

that an incorrect but simple model may outperform a correct model in forecasting. 

We do not mean to overplay the relevance of the high-low VECM and, hence, downplay 

the out-of-sample results. Indeed, the VECM delivers reasonable out-of-sample range forecasts 

and it offers even better high and low forecasts. In this respect, further work on interactions 

between highs, lows, and ranges is warranted. Further, we consider neither structural models nor 

nonlinear specifications. These alternative modeling strategies may offer additional information 

on the dynamics of highs, lows, and ranges.  

While we used range forecasts to predict implied volatility, we neither examine the link 

between range and return volatility in detail nor the practical relevancy of using high and low 

forecasts in the context of, say, exotic options pricing and technical trading. Conceivably, 

additional insights can be gained from extending the current exercise to analyze return volatility, 

options pricing, and technical trading. 
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Appendix: Evaluating Forecast Accuracy 

The original Diebold-Mariano statistic (Diebold and Mariano, 1995) is constructed as 

follows. Let ite  and jte  be the forecast errors of the forecasts generated from models i and j, 

respectively. The squared forecast error is defined as 

(A1)  2( )it it   L e  e= , and 2( )jt jt   L e  e=  

Let  

(A2)  )()( ttt zLyLd −=  

be the loss differential series. Testing whether the performance of the forecast series from model 

i is different from that of model j, it is equivalent to testing whether the population mean of the 

loss differential series td  is zero; that is E 0td = .  

Under the assumptions of covariance stationarity and short-memory for td , the null 

hypothesis of equal forecast performance can be evaluated using the statistic  

(A3)  1/ 2ˆ/ ( ) d V d , 

where ˆ( )V d  = 
( 1)

( 1) 1
2 ( / ( )) ( )( )

T T

t t
T t

l S T d d d dτ
τ τ

π τ
−

−
=− − = +

− −∑ ∑ , ))(/( TSl τ  is the lag window, )(TS  is 

the truncation lag, and T is the number of observations. Different lag-window specifications can 

be applied, such as the Barlett or the quadratic spectral kernels, in combination with a data-

dependent lag-selection procedure (Andrews, 1991). It can be shown that the statistic has an 

asymptotic standard normal distribution. 

 For comparing multiple-step ahead forecasts, Harvey et. al. (1997) propose a modified 

Dieold-Mariano statistic  

(A4)  
1/ 211 2 ( 1)T h T h h

T

−⎡ ⎤+ − + −
⎢ ⎥
⎣ ⎦

1/ 2ˆ/ ( )hd V d , 

where ˆ( )hV d = 
1

1

1
2

h

o k
k

T γ γ
−

−

=

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∑ , kγ is the kth autocovariance of ,td  and h is the forecast 

horizon. The modified statistic has an asymptotic 1Tt −  distribution.  

For the direction of change statistic, the loss differential series is defined as follows: td  

takes a value of one if the forecast series correctly predicts the direction of change, otherwise it 

will take a value of zero. Hence, a value of d  significantly larger than 0.5 indicates that the 
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forecast has the ability to predict the direction of change; on the other hand, if the statistic is 

significantly less than 0.5, the forecast tends to give the wrong direction of change. In large 

samples, the studentized version of the test statistic, 

(A5)  Td   /25.0/)5.0( − , 

is distributed as a standard normal. Further, the statistics (A3) and (A4) can be modified to 

compare the abilities of different procedures to predict the direction of change. 
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