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Abstract

Phelps’s (1961) Golden Rule states an unambiguous relationship be-
tween optimal capital intensity and fertility: a rise in fertility decreases
the optimal capital intensity, because a higher fertility increases the in-
vestment required to sustain a given capital to labour ratio (i.e., the cap-
ital dilution effect). Using a matrix population model embedded in a
two-period OLG setting, we examine the robustness of that relationship
to the partitioning of the population into 2 subpopulations having dis-
tinct fertility behaviors. We derive the optimal accumulation rule in that
framework, and we show that, unlike what prevails under a homogeneous
population, a rise in fertility does not necessarily reduce the Golden Rule
capital intensity, but increases it when the composition effect induced
by the fertility change outweighs the standard capital dilution effect pre-
vailing under a fixed partition of the population. We also explore the
robustness of these results to a finer description of heterogeneity, that is,
a partitioning of the population into a larger number of subpopulations.
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1 Introduction

According to Phelps’s (1961) Golden Rule of capital accumulation, consumption
per capita at the stationary equilibrium is maximized when the capital to labour
ratio is such that the marginal productivity of capital in intensive terms is equal
to the sum of the population growth rate and the depreciation rate of capital.
A rise in the strength of fertility reduces the optimal capital, because a higher
fertility increases the investment required to sustain a given capital intensity
(i.e., the capital dilution effect or Solow effect, following Solow 1956).
Phelps’s Golden Rule states an unambiguous relationship between the opti-

mal accumulation rule and fertility. Everything else being left constant, a rise
in fertility implies a lower optimal capital to labour ratio, whereas a decline in
fertility justifies a higher capital intensity. This result is most relevant when
considering optimal accumulation in Western economies, which have exhibited
a fertility transition towards low fertility levels since the 1870s. In the light of
Phelps’s Golden Rule, this declining trend in fertility, by lowering the capital
dilution effect, justifies, from a long-run perspective, a higher capital intensity.
Whereas the relationship between the optimal accumulation and fertility is

unambiguous in economies with a homogeneous population, one may wonder
whether this relationship still holds in economies composed of heterogeneous
subpopulations having distinct fertility behaviors. In that more general context,
does a decline in total fertility imply a higher optimal capital intensity?
Examining the robustness of the Golden Rule to introducing heterogeneity

in fertility is motivated by the increasing attention paid by growth theorists
and economic historians to fertility differentials across subpopulations, and to
the impact of the resulting dynamics of heterogeneity on long-run economic
outcomes. Galor and Moav (2002) and Galor (2011) studied, from a theoretical
perspective, the key role played by fertility differentials across subpopulations in
long-run economic dynamics. Moreover, economic historians showed evidence of
significant fertility differentials across subpopulations, as well as of their effects
on various economic outcomes (Clark 2007, Clark and Cummins, 2015, de la
Croix et al 2019, Cummins 2020). This motivates us to study the robustness of
Phelps’s Golden Rule to introducing heterogeneity in fertility.
Although Phelps’s (1961) Golden Rule has been reexamined in the con-

text of heterogeneous agents, the existing literature has mainly focused on two
dimensions of heterogeneity: (i) heterogeneity in labour endowments; (ii) het-
erogeneity in preferences. As underlined by Kuhle (2012), Phelps’s Golden Rule
continues to maximize the society’s consumption possibilities (i.e., consumption
per capita) under these sources of heterogeneity. The intuition underlying that
robustness result is that Phelps’s Golden Rule is obtained from maximizing con-
sumption per capita defined from the economy’s aggregate resource constraint,
which aggregates type-specific labour quantities in total output and type-specific
consumptions in total consumption, and, as such, is robust to introducing these
sources of heterogeneity. But the existing literature has not so far examined the
robustness of the Golden Rule to introducing heterogeneity in fertility.
The goal of this paper is to reexamine the relationship between optimal
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capital accumulation and fertility, by studying its robustness to the partitioning
of the population into subpopulations having distinct fertility behaviors. For
that purpose, we study a matrix population model embedded in a two-period
overlapping generations (OLG) setting. In that framework, the population is
composed of two subpopulations having their own fertility and mobility patterns,
and who act as distinct inputs in the production process. Hence, in that model,
fertility differentials across types affect the long-run production possibilities of
the economy, through their impact on the composition of the labour force.1

We derive the Golden Rule of capital accumulation - the level of capital
intensity that maximizes consumption per capita at the stationary equilibrium
- within that framework, and we show that this extended Golden Rule collapses
to Phelps’s Golden Rule in the special case where the two subpopulations exhibit
the same fertility and mobility patterns. We also show that, unlike what prevails
under a homogeneous population, a rise in fertility does not necessarily decrease
the optimal capital, but can increase it. The underlying intuition is that a
change in a type-specific fertility rate leads not only to the standard capital
dilution effect prevailing under a fixed partition of the population, but, also, to
a composition effect, that is, a change in the long-run partition of the population
into subpopulations. This composition effect takes two forms: first, a change in
the marginal productivity of capital due to a variation in the composition of the
labour force; second, a change in the level of the investment required to maintain
capital intensity constant, that is, a change in the capital dilution effect. If (i)
the composition effect takes a sign opposite to the one of the standard capital
dilution effect prevailing under a fixed partition of the population, and (ii) its
size is larger, in absolute value, than the standard capital dilution effect, the
relationship between optimal capital and fertility can be inverted in comparison
to Phelps’s original setting.
This paper is related to the literature extending Phelps’s Golden Rule of

capital accumulation in various directions (Phelps 1965, Davis 1969, Cass 1972,
Zilcha 1990, Galor and Ryder 1991, de la Croix and Ponthiere 2010, Kuhle 2012,
Mertens and Rubinchik 2015, Strulik 2021). With respect to that literature, the
contribution of this paper is to introduce heterogeneity in fertility patterns, and
to characterize an extended Golden Rule in that setting. By focusing on the
robustness of Phelps’s Golden Rule to introducing heterogeneity in fertility, the
present paper is particularly complementary to Kuhle (2012), who focused on
heterogeneity in other dimensions (labour endowments and preferences).
The paper is organized as follows. The model is presented in Section 2.

Section 3 derives the optimal accumulation policy. The relationship between
optimal capital and fertility is reexamined in Section 4. Section 5 studies the
robustness of our results to a finer description of heterogeneity, by extending
the framework to the partition of the population into 3 subpopulations. Section
6 concludes.

1As such, our framework allows for (potential) differences in productivity and/or in labour
supply across types of workers. The relation between the Golden Rule and heterogeneous
labour endowments being studied in details in Kuhle (2012), we will leave it aside here and
focus instead on heterogeneity in fertility differentials.
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2 The model

Let us consider a two-period OLG economy with physical capital accumulation,
where time is discrete, and goes from 0 to +∞. A human life is composed of
two periods of adulthood.2 The first period is young adulthood, during which
individuals consume and save for old days, while the second period is the old
age, which is here assumed to be reached with certainty.3 There is here no
labour during the old age.
While the present framework shares many features with OLG models with

physical capital (see de la Croix and Michel 2001), a key difference with respect
to the standard OLG model is that the population is here partitioned in two
subpopulations 1 and 2, who contribute to the production process as two distinct
labour inputs.

Population heterogeneity Let us denote by N i
t the number of young

adults of type i at time t. The young adult population at period t can be
represented by the vector:

Nt =

(
N1
t

N2
t

)
The partition of the young adult population into subpopulations varies over

time, depending on fertility behaviors and social mobility across subpopulations.
Let us denote by ni the average number of children born from a young adult
of type i. These children of type i may or may not keep their type i once they
become adults, depending on the strength of social mobility across types. Let
us denote by mi ∈ ]0, 1[ the probability for a child born from an individual of
type i to escape from subpopulation i at the adult age, and to join the other
subpopulation j 6= i. We denote by m̄i the probability that a child born from
an individual of type i remains in the subpopulation i at the adult age.4

Taken together, the parameters
{
n1, n2,m1,m2

}
determine the dynamics of

the structure of the population. To see this, let us define the matrix M as:

M =

(
n1m̄1 n2m2

n1m1 n2m̄2

)
The matrixM can be used to obtain the structure of the young adult population
at period t+ 1 from the structure of the adult population at period t:

MNt = Nt+1 (1)

This expression can be rewritten in detailed form as:(
n1m̄1 n2m2

n1m1 n2m̄2

)(
N1
t

N2
t

)
=

(
N1
t+1

N2
t+1

)
(2)

2As usual in OLG models, there is an implicit childhood period. See de la Croix and Michel
(2001).

3See de la Croix and Ponthiere (2010) on the Golden Rule under risky lifetime.
4We have m̄i = 1−mi.
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Let us write the number of young adults of type 1 at time t+ 1 as follows:

N1
t+1 = N1

t n
1m̄1 +N2

t n
2m2 (3)

The number of young adults of type 1 at time t + 1, N1
t+1, has two compo-

nents, which are the two terms of the right-hand side (RHS): on the one hand,
the number of children who were born from an individual of type 1 at t, who
remained in subpopulation 1 once adult (first term of the RHS), and, on the
other hand, the number of children who were born from an individual of type 2
at t, and joined subpopulation 1 once adult (second term of the RHS). Figure
1 presents the life cycle graph of our model.5

Figure 1: The life cycle graph.

Production The production of an output Yt involves capital Kt and two
types of labor L1

t and L
2
t , according to the function:

Yt = F (Kt, L
1
t , L

2
t ) (4)

We assume that all young adults supply one unit of labour of their type, so that
L1
t = N1

t and L
2
t = N2

t . The production function F (Kt, L
1
t , L

2
t ) is supposed to

be increasing in its three arguments and homogeneous of degree 1.
Dividing the output by N2

t , the production process can be rewritten in in-
tensive terms as:

yt = F (kt, xt, 1) ≡ f(kt, xt) (5)

5The life cycle graph deliberately omits the old age, since it is assumed that individuals,
once adults, keep their type during the remaining of their life. Our analysis of heterogeneity
can thus focus only on young adults.
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where yt ≡ Yt
N2
t
is output per worker of type 2, kt ≡ Kt

N2
t
is capital stock per

worker of type 2, and xt ≡ N1
t

N2
t
is the ratio of the number of workers of the two

types. The variable xt synthesizes the composition of the population of young
adults at time t.
The capital stock depreciates at a constant rate δ, with 0 < δ < 1.
The resource constraint of the economy is:

F (Kt, L
1
t , L

2
t ) = c1tL

1
t + d1

tL
1
t−1 + c2tL

2
t + d2

tL
2
t−1 +Kt+1 − (1− δ)Kt (6)

where c1t (resp. d
1
t ) denotes the consumption of young (resp. old) individuals

of type 1, and c2t (resp. d2
t ) denotes the consumption of young (resp. old)

individuals of type 2.
Dividing the LHS and RHS of the resource constraint by N2

t , and noting

that xt ≡ N1
t

N2
t
, the resource constraint can be rewritten as:

f(kt, xt) = c1txt + d1
t

N1
t−1

N2
t

+ c2t + d2
t

N2
t−1

N2
t

+
Kt+1

N2
t

− (1− δ)Kt

N2
t

(7)

Noting that N2
t = N2

t−1n
2m̄2 +N1

t−1n
1m1, we have:

N1
t−1

N2
t

=
N1
t−1

N2
t−1n

2m̄2 +N1
t−1n

1m1
=

1
n2m̄2

xt−1
+ n1m1

N2
t−1

N2
t

=
N2
t−1

N2
t−1n

2m̄2 +N1
t−1n

1m1
=

1

n2m̄2 + xt−1n1m1

Hence, since
N2
t+1

N2
t

=
N2
t n

2m̄2+N1
t n

1m1

N2
t

= n2m̄2 + xtn
1m1, the resource con-

straint can be written as:

yt = c1txt+
d1
t

n2m̄2

xt−1
+ n1m1

+c2t+
d2
t

n2m̄2 + xt−1n1m1
+kt+1

(
n2m̄2 + xtn

1m1
)
−(1−δ)kt

(8)

Stationary state Let us now characterize a stationary equilibrium in our
economy. Throughout this paper, we focus on stationary states with a constant
composition of the population, that is, with a constant ratio xt ≡ N1

t

N2
t

= xt+1.
The long-run partition of the population into subpopulations can be studied
by examining the properties of the matrix M. Let us first notice the following
property of matrix M.

Proposition 1 The matrix M is irreducible and primitive.

Proof. See the Appendix.
Proposition 1 allows us to use both the Perron-Frobenius Theorem and the

Strong Ergodic Theorem for the analysis of the long-run composition of the
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young adult population. The Perron-Frobenius Theorem states that, under con-
ditions of irreducibility and primitivity of a non-negative matrix, there exists in
general one eigenvalue, called the "dominant eigenvalue", that is larger than or
equal to any of the other eigenvalue of that matrix (Caswell 2001). According
to the Strong Ergodic Theorem, that dominant eigenvalue of the population
matrix determines the ergodic properties of population growth. The Strong Er-
godic Theorem states that if the population matrix is primitive, then, regardless
of initial conditions, the population will, in the long-run, grow at a rate given
by the dominant eigenvalue, with a stable population structure proportional to
the eigen vector associated to that eigenvalue (the influence of other eigenvalues
being negligible).6

Proposition 2 gives us the long-run partition of the young adult population,
as well as the associated ratio x.

Proposition 2 The structure of the young adult population converges asymp-
totically towards a stable structure. The long-run structure of the young adult
population is defined, up to a constant c > 0, by:

(
N1

N2

)
=

 c
n1m̄1−n2m̄2+ 2

√
(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)

2n1−(n1m̄1+n2m̄2)+ 2
√

(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)

c
2n1(1−m̄1)

2n1−(n1m̄1+n2m̄2)+ 2
√

(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)


while the associated long-run ratio x is

x =
N1

N2
=
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1 (1− m̄1)

Proof. See the Appendix.
Proposition 2 provides a closed-form solution for the long-run partition of

the young adult population into subpopulations. The long-run partition of the
young adult population does not depend on the level of initial conditions. What-
ever the economy involves initially a small or a large fraction of the population
belonging to, let us say, subpopulation 1, this has no effect on the long-run
partition of the population. The long-run ratio x depends only on the parame-
ters

{
n1, n2,m1,m2

}
describing type-specific fertility and social mobility. The

fact that the long-run level of x does not depend on initial conditions follows
from the application of the Strong Ergodic Theorem to the particular context
under study. The Strong Ergodic Theorem provides conditions on a population
process under which the structure of the population stabilizes asymptotically
independently of the initial structure of the population.
As a consequence of the stationarity of xt, the resource constraint of the

economy can, at the stationary equilibrium, be written as:

f(k, x) = c1x+
d1x

n2m̄2 + xn1m1
+c2+

d2

n2m̄2 + xn1m1
+k
(
n2m̄2 + xn1m1

)
−(1−δ)k

(9)
6See Caswell (2001), p. 84-85.
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where n2m̄2 +xn1m1 is the growth factor of the number of young adults of type
2 across two successive periods.7 That growth factor depends on the ratio of
the two types of individuals, on type-specific fertility rates and on type-specific
probabilities of having (or not) children of the same type as the type of parents.

3 Optimal accumulation policy

From the economy’s resource constraint, total consumption is:

Ct = F (Kt, L
1
t , L

2
t )−Kt+1 + (1− δ)Kt (10)

Consumption per capita at time t is defined as total consumption divided
by the total population size at t:8

ct ≡
Ct

N1
t +N2

t +N1
t−1 +N2

t−1

This can be rewritten as:

ct =

Ct
N2
t

xt + 1 +
N1
t−1

N2
t

+
N2
t−1

N2
t

=

Ct
N2
t

xt + 1 + xt−1
1

n2m̄2+xt−1n1m1 + 1
n2m̄2+xt−1n1m1

Note that consumption per young individual of type 2 is:

Ct
N2
t

= f (kt, xt)−
(
n2m̄2 + xtn

1m1
)
kt+1 + (1− δ)kt

Thus, consumption per capita can be written as follows:

ct =
f (kt, xt)−

(
n2m̄2 + xtn

1m1
)
kt+1 + (1− δ)kt

xt + 1 + xt−1
1

n2m̄2+xt−1n1m1 + 1
n2m̄2+xt−1n1m1

(11)

Consumption per capita is a fraction 1
xt+1+xt−1

1
n2m̄2+xt−1n

1m1 + 1
n2m̄2+xt−1n

1m1
of

consumption per young individual of type 2. That fraction depends on the
composition of the population among the young (i.e. xt) and among the old
(i.e. xt−1).
At the steady-state, the composition of the population is a constant x, so

that consumption per capita c can defined as the function φ (k) :

c = φ (k) ≡
f (k, x)−

(
n2m̄2 + xn1m1

)
k + (1− δ)k

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n1m1

(12)

7To see this, note that n2m̄2 + xn1m1 can be rewritten as: N2
t n

2m̄2+N1
t n

1m1

N2
t

.
8Here again, we deliberately ignore consumption during childhood, so that consumption

per capita is equal to consumption per adult.
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where

x =
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1 (1− m̄1)

is the equilibrium composition of the young adult population.
In order to discuss the conditions necessary and suffi cient for the existence

of a Golden Rule capital level, let us first differentiate consumption per capita
φ (k) with respect to capital:

φ′ (k) =
fk (k, x)−

(
n2m̄2 + xn1m1

)
+ (1− δ)

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n1m1

(13)

The expression φ′(k) = 0 defines an interior Golden Rule capital level only if
φ (k) is neither always decreasing in k (implying that the capital level maximiz-
ing φ (k) is 0), nor always increasing in k (implying that the level of k maximizing
φ (k) is infinite). The interiority of the solution requires the following condition,
which guarantees that φ′ (k) is positive when k tends to 0, but negative when
it tends to +∞.

Proposition 3 Assume that:

lim
k→0+

fk

k, n1m̄1 − n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1


>

n1m̄1 + n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
− 1 + δ

and

lim
k→+∞

fk

k, n1m̄1 − n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1


<

n1m̄1 + n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
− 1 + δ

Then there exists a level of kGR that maximizes steady-state consumption per
capita. That level kGR satisfies:

fk

kGR, n1m̄1 − n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1


=

n1m̄1 + n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
− 1 + δ

9



Proof. See the Appendix.
Proposition 3 characterizes an extended version of Phelps’s Golden Rule of

capital accumulation for OLG economies having a population partitioned in two
subpopulations with distinct fertility and mobility patterns. Like the standard
Golden Rule, it states that the capital stock in intensive terms maximizing
consumption possibilities at the stationary equilibrium equalizes the marginal
productivity of capital in intensive terms (here, per young individual of type 2)
(LHS of the condition) with a sum of two terms (RHS): on the one hand, the
growth rate of the subpopulation of young individuals of type 2, which is:

n1m̄1 + n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
− 1

and, on the other hand, the depreciation rate of capital δ.
In order to see how the accumulation rule stated in Proposition 3 generalizes

Phelps’s Golden Rule, it is useful to examine a special case of our economy where
the two subpopulations 1 and 2 exhibit the same structural parameters.

Proposition 4 Consider an economy where the two subpopulations 1 and 2
exhibit the same structural parameters (i.e., n1 = n2 = n and m1 = m2 = m).
The rule for optimal capital accumulation stated in Proposition 3 becomes:

f ′k(kGR, 1) = n− 1 + δ

that is, Phelps’s Golden Rule.

Proof. Under n1 = n2 = n and m1 = m2 = m, the stationary composition of
the young adult population x is:

x =
nm̄− nm̄+

2

√
(nm̄+ nm̄)

2 − 4nn (1−m−m)

2nm
= 1

Moreover, under n1 = n2 = n and m1 = m2 = m, we have also:

nm̄+ nm̄+
2

√
(nm̄+ nm̄)

2 − 4nn (1−m−m)

2
= n

Substituting for these terms in the accumulation rule of Proposition 3, one
obtains:

f ′k(k, 1) = n− 1 + δ

that is, Phelps’s Golden Rule.
In the special case where the two subpopulations 1 and 2 have the same fer-

tility and mobility patterns, the extended Golden Rule collapses to the equaliza-
tion of the marginal productivity of capital to the population growth rate plus
the depreciation rate of capital. But this special case - homogeneous subpopula-
tions - constitutes a kind of exception from the perspective of long-run analysis.
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The case of heterogeneous subpopulations is the general case. In that general
context, a key determinant of long-run dynamics concerns how the partition of
the population into subpopulations evolves over time.
Proposition 3 tells us how the dynamics of heterogeneity affects the optimal

accumulation policy. The extended Golden Rule states that the optimal capital
kGR depends on type-specific fertility rates (n1 and n2) and on type-specific mo-
bility rates (m1 and m2), which determine the long-run partition of the young
adult population into subpopulations. The reason why the long-run partition x
matters for optimal capital accumulation lies in the fact that the two subpopu-
lations 1 and 2 enter the production process as two distinct production factors,
and affect also the capital dilution effect in distinct ways. As a consequence, the
long-run consumption possibilities of the economy depend, for a given capital
intensity, on the exact proportions of the two subpopulations 1 and 2 in the long
run. The level of k maximizing long-run consumption possibilities depends also
on the long-run partition of the population into subpopulations 1 and 2. The
precise influence of the long-run composition of the population on kGR varies
with the specific form taken by the production process, that is, the form of
f (kt, xt). The next section will examine that influence by studying the effect
of a change in type-specific fertility on the optimal capital accumulation.

4 Fertility and optimal accumulation

Let us now examine how fertility affects the optimal accumulation policy.
Within Phelps’s Golden Rule, the relationship between the optimal capital

intensity and fertility is straightforward. Given the classical Golden Rule:

f ′k(kGR, 1) = n− 1 + δ

it follows that, the higher the fertility rate n is, the lower the optimal capital
kGR is. The reason why a rise in fertility reduces the optimal capital kGR lies
in the fact that a higher fertility raises the hypothetical investment required to
maintain a given capital intensity constant (i.e. the capital dilution effect or
Solow effect), which makes accumulation less desirable at the margin.
To see why a higher fertility decreases the optimal capital, remind that

consumption per capita at the stationary equilibrium is, in the absence of het-
erogeneity (i.e., n1 = n2 = n, m1 = m2 = m and x = 1):

c =
f (k, 1)− (nm̄+ nm) k + (1− δ)k

2 + 1
nm̄+nm + 1

nm̄+nm

=
n

2 (1 + n)
[f (k, 1)− nk + (1− δ)k]

Differentiating c with respect to k and equalizing this to 0 yields:

∂c

∂k
=

n

2 (1 + n)

[
fk
(
kGR, 1

)
− n+ 1− δ

]
= 0

from which one can see that, in order to have the condition for optimal accumu-
lation satisfied, a rise in fertility n requires a reduction of the capital intensity.
Thus, ceteris paribus, a higher fertility reduces the optimal capital kGR.

11



But that result is no longer necessarily true once one considers a more general
setting where the population is composed of heterogeneous subpopulations. In
the context of a heterogeneous population, an increase in a type-specific fertility
rate n1 or n2 does not necessarily reduce the optimal capital kGR.
To see why a rise in a type-specific fertility rate may increase the optimal

capital in that general setting, remind that consumption per capita at the sta-
tionary equilibrium is:

c =
f (k, x)−

(
n2m̄2 + xn1m1

)
k + (1− δ)k

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xn1m1

=
n2m̄2 + xn1m1

(1 + x) (1 + n2m̄2 + xn1m1)

[
f (k, x)−

(
n2m̄2 + xn1m1

)
k + (1− δ)k

]
where the stationary composition of the young adult population x is:

x =
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1

Differentiating consumption per capita with respect to k and equalizing to
0 yields, after simplifications:

fk
(
kGR, x

)
= n2m̄2 + xn1m1 − 1 + δ

When considering the impact of a change in the fertility rate n1 or n2 on kGR,
two effects must be taken into account. On the one hand, the effect of a change
in fertility on the investment required to maintain capital intensity constant for
a given composition x of the labour force (as in the special case studied above),
and, on the other hand, the effect of a change in fertility on the steady-state
composition of the young adult population x.
That second effect - that can be called the "composition effect" - was absent

in the case of a homogeneous population, but plays a key role in an economy
with a heterogeneous population. The composition effect takes a double form:
first, a change in the composition x affects the marginal productivity of cap-
ital intensity (LHS of the Golden Rule equation), and, also, it modifies the
investment required to maintain capital intensity constant (second term of the
RHS of the Golden Rule equation). These two new effects may outweigh the
standard capital dilution effect prevailing under a fixed partition x that was al-
ready present in Phelps’s Golden Rule, and, hence, modify the relation between
optimal capital and fertility.
In order to examine the effect of changing a type-specific fertility rate ni

on the optimal capital kGR, a first, preliminary step, consists of studying the
sign of the effect of a change in a type-specific fertility rate ni on the stationary
composition of the population x. This is the task of Proposition 5.

Proposition 5 Consider a marginal change in a type-specific fertility rate ni

12



on the stationary composition of the young adult population x. We have:

∂x

∂n1
≷ 0 ⇐⇒ x

1 + x
≷ m2

∂x

∂n2
≷ 0 ⇐⇒ x

1 + x
≶ m2

Proof. See the Appendix.
Proposition 5 states a necessary and suffi cient condition under which a rise

in a type-specific fertility rate ni increases the long-run proportion of type 1 in
the young adult population. Intuitively, one would expect that, ceteris paribus,
an increase in the fertility rate of, let us say, type 1, increases the prevalence
of the subpopulation of type 1 in the long run. However, this result does not
necessarily hold. Actually, this result holds if and only if the proportion of type-
1 individuals in the young adult population is suffi ciently large in comparison
to the mobility of type-2 individuals towards type 1. When the mobility of type
2 to type 1 is high, this result may not prevail. In a similar vein, a rise of n2

does not necessarily reduce the proportion of type-1 individuals in the long run.
The conditions stated in Proposition 5 can be interpreted by means of mar-

ginalist reasoning. For that purpose, let us focus on the second condition, and
let us rewrite it as: ∂x

∂n2 ≷ 0 ⇐⇒ 1
1+x ≷ m̄2.9 The term 1

1+x is the probability,

at the equilibrium, of being a young individual of type 2, that is, N2

N1+N2 . A
marginal rise in n2 can be understood as an infinitely small increase in the num-
ber of individuals born from type-2 individuals. Moreover, the parameter m̄2 is
the probability, for a child born from an individual of type 2, to remain of type
2 at adulthood. The infinitely small rise in the number of children born from
individuals of type 2 leaves the equilibrium proportion of type 2 individuals in
the young adult population unchanged if and only if the probability that these
added children remain of type 2 at adulthood, i.e., m̄2, is exactly equal to the
proportion of type-2 individuals in the young adult population 1

1+x , that is, if
and only if m̄2 = 1

1+x . However, if the probability that these added children
remain of type 2 at adulthood, i.e., m̄2, is higher than the proportion of type 2
individuals in the young adult population, that is, if m̄2 > 1

1+x , the addition of
a number of children born from type-2 parents increases the proportion of type
2, implying a decline in x, that is, ∂x

∂n2 < 0.10

In the light of Proposition 5, it appears that a variation in a type-specific
fertility rate has ambiguous effects on the long-run partition of the population
into subpopulations, depending on the strength of social mobility across types.
A rise in a type-specific fertility rate does not necessarily increase the long-run
proportion of individuals of that type within the population. The sign of the
composition effect induced by a change in a type-specific fertility rate being

9The first condition of Proposition 5 can also be interpreted in a similar, marginalist,
fashion.
10On the contrary, when m̄2 < 1

1+x
, the addition of children born from type-2 parents

decreases the equilibrium proportion of type 2 in the young adult population, leading to a rise
in x, that is, ∂x

∂n2 > 0.
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ambiguous, the total effect of a variation of a type-specific fertility rate on the
Golden Rule capital level is even more complicated to study.
In order to study analytically the effect of a variation in a type-specific

fertility rate ni on the Golden Rule capital level kGR, we will, throughout the
remaining of this section, assume a Cobb-Douglas production function:

F (Kt, L
1
t , L

2
t ) = AKα

t

(
L1
t

)β (
L2
t

)1−α−β
=⇒ f(kt, xt) = Akαt x

β
t (14)

where A > 0, 0 < α < 1 is the elasticity of output with respect to capital, and
0 < β < 1 is the elasticity of output with respect to labour of workers of type
1. Without loss of generality, we assume α+β < 1 (so as to allow for a positive
productivity of type-2 workers).
Under that production technology, the Golden Rule becomes:

Aαkα−1xβ =
(
n2m̄2 + xn1m1

)
− 1 + δ (15)

implying that the Golden Rule capital level kGR is:

kGR =

[
Aαxβ

(n2m̄2 + xn1m1)− 1 + δ

] 1
1−α

(16)

If the long-run composition of the young adult population x were independent
from type-specific fertility rates, a rise in a type-specific fertility rate would
necessarily reduce the Golden Rule capital. However, things are less clear once
one allows for adjustments in the composition of the population induced by a
variation in type-specific fertility.
Proposition 6 states that the impact of a rise in a type-specific fertility rate

on the Golden Rule capital is ambiguous. Thus, unlike in the basic setting with
a homogeneous population, a rise in fertility does not necessarily reduce kGR.

Proposition 6 Consider an economy with a Cobb-Douglas technology: f(kt, xt) =

Akαt x
β
t . We have:

∂kGR

∂n1
≷ 0 ⇐⇒ ∂x

∂n1

[
β
(
n2m̄2 + δ − 1

)
− (1− β)n1m1x

]
≷ (x)

2
m1

∂kGR

∂n2
≷ 0 ⇐⇒ ∂x

∂n2

[
β
(
n2m̄2 + δ − 1

)
− (1− β)n1m1x

]
≷ xm̄2

where ∂x
∂n1 ≷ 0 ⇐⇒ x

1+x ≷ m2 and where ∂x
∂n2 ≷ 0 ⇐⇒ x

1+x ≶ m2.

Proof. See the Appendix.
Proposition 6 points to a major departure in comparison to what prevails

in an economy with a homogeneous population. In the latter, a rise in fertil-
ity reduces the Golden Rule capital kGR, because of the capital dilution effect.
However, in a model with a heterogeneous population, a rise in a type-specific
fertility rate (leading to a rise in total fertility) may either decrease or increase

14



kGR. This result is due to the fact that, once heterogeneity in labour is intro-
duced, a variation of a type-specific fertility rate modifies the long-run compo-
sition of the young adult population, which affects also long-run consumption
possibilities through two distinct channels: first, modifying the marginal pro-
ductivity of capital, and second, modifying also the capital dilution effect. This
composition effect can, in some cases, have a sign opposite to the one of the stan-
dard capital dilution effect prevailing under a given composition of the labour
force, so that the relation between the optimal capital and fertility is inverted.
In Proposition 6, the LHS of the conditions captures the composition effect

caused by a change in fertility, whereas the RHS corresponds to the standard
capital dilution effect caused by a variation in fertility (when the composition of
the labour force is left unchanged). If the composition effect were absent (that
is, if ∂x

∂n1 = ∂x
∂n2 = 0, which requires that the equality x

1+x = m2 is satisfied), the
conditions of Proposition 6 would imply that only the standard capital dilution
effect would be at work, so that a rise in a type specific fertility rate would
necessarily reduce the Golden Rule capital, that is, ∂k

GR

∂n1 < 0 and ∂kGR

∂n2 < 0.
But in the general case where there is a non-zero composition effect, a variation
of a type-specific fertility rate may either increase or decrease the Golden Rule
capital.
Two main forces drive the sign of ∂k

GR

∂n1 (resp. ∂kGR

∂n2 ). First, the sign and
extent of the derivative ∂x

∂n1 (resp. ∂x∂n2 ), which was studied in Proposition 5.
Assuming that m2 < x

1+x , we have
∂x
∂n1 > 0 (resp. ∂x

∂n2 < 0). But it is
only if the composition effect is suffi ciently large that a rise in a type-specific
fertility rate can increase the Golden Rule capital level, not otherwise. Sec-
ond, the sign of ∂kGR

∂n1 (resp. ∂kGR

∂n2 ) depends also on the sign of the factor[
β
(
n2m̄2 + δ − 1

)
− (1− β)n1m1x

]
, which is ambiguous. The sign of that fac-

tor depends on the level of β, the elasticity of output with respect to the labour
of type 1. The higher the elasticity β is, the larger that factor is, which, under
∂x
∂n1 > 0 (resp. ∂x

∂n2 < 0) supports ∂kGR

∂n1 > 0 (resp. ∂kGR

∂n2 < 0). The factor[
β
(
n2m̄2 + δ − 1

)
− (1− β)n1m1x

]
is also increasing in the depreciation rate

of capital δ, which pushes towards a positive effect of fertility on kGR.
In order to illustrate the relation between fertility and optimal capital accu-

mulation, let us conclude this section by some numerical simulations. For that
purpose, we assume that the production function is f (kt, xt) = 10k

1/3
t x

1/3
t , as

well as full depreciation of capital from one period to the next (δ = 1). We
assume that n2 = 1, m1 = 0.1 and m2 = 0.1 (low mobility across types). We
consider the impact of a marginal variation in the fertility rate n1 on the Golden
Rule capital kGR, everything else being left unchanged. Figure 2 shows the ef-
fect of a change of n1 from n1 = 0.5 to n1 = 0.6. In that case, the rise of n1

increases the Golden Rule capital from kGR = 3.26 to kGR = 3.58. Figure 3
shows the effect of a change of n1 from n1 = 1.5 to n1 = 1.6. In that case, the
rise of n1 decreases the Golden Rule capital from kGR = 6.71 to kGR = 6.44.
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Figure 2. A rise of fertility causes a
rise of kGR.

Figure 3. A rise of fertility causes a
decline of kGR.

These numerical examples illustrate that an increase in a type-specific fer-
tility rate ni (leading to a rise of total fertility) can have opposite effects on
the Golden Rule capital kGR. In some cases, illustrated by Figure 2, the rise of
fertility increases the Golden Rule capital, whereas, in other cases, illustrated
by Figure 3, the opposite takes place, and a rise of fertility reduces kGR.

5 Extension: the 3-type case

Let us now consider how heterogeneity in fertility affects optimal capital accu-
mulation under a finer description of heterogeneity, that is, a finer decomposition
of the population. For that purpose, this section reexamines our results in the
case where the population is partitioned into three subpopulations.

The extended model The structure of the young adult population is
given by the vector:

Nt =

 N1
t

N2
t

N3
t


The population matrix M becomes:

M =

 n1m1,1 n2m2,1 n3m3,1

n1m1,2 n2m2,2 n3m3,2

n1m1,3 n2m2,3 n3m3,3


where ni is the type-specific fertility rate, while mi,j ∈ ]0, 1[ is the probability,
for a child born from an individual of type i, to take type j once adult.
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We have:
MNt = Nt+1 (17)

The production of an output Yt involves capital Kt and three types of labor
L1
t , L

2
t and L

3
t , according to the function:

Yt = F (Kt, L
1
t , L

2
t , L

3
t ) (18)

We assume that all young adults supply one unit of labour of their type, so that
L1
t = N1

t , L
2
t = N2

t and L
3
t = N3

t . The production function F (Kt, L
1
t , L

2
t , L

3
t ) is

supposed to be increasing in its four arguments and homogeneous of degree 1.
Dividing the output by N3

t , the production process can be rewritten in in-
tensive terms as:

yt = F (kt, xt, zt, 1) ≡ f(kt, xt, zt) (19)

where yt ≡ Yt
N3
t
is output per worker of type 3, kt ≡ Kt

N3
t
is capital stock per

worker of type 3, xt ≡ N1
t

N3
t
and zt ≡ N2

t

N3
t
.

As above, the capital stock depreciates at a constant rate δ, with 0 < δ < 1.

Long-run population composition Since the matrix M is irreducible
and primitive, one can, as in the baseline model, use the Perron-Frobenius
Theorem and the Strong Ergodic Theorem to study the long-run partition of
the young adult population. Proposition 7 summarizes our results.

Proposition 7 Denote

B ≡ n1n2
[
m2,1m1,2 −m1,1m2,2

]
+ n1n3

[
m3,1m1,3 −m1,1m3,3

]
+n2n3

[
m3,2m2,3 −m2,2m3,3

]
D ≡ n1n2n3

(
m3,3m1,1m2,2 −m3,1m1,3m2,2 −m2,1m1,2m3,3

+m2,1m3,2m1,3 +m3,1m1,2m2,3 −m1,1m2,3m3,2

)
p ≡

[
n1m1,1 + n2m2,2 + n3m3,3

]2
3

−B

q ≡ −
2
[
n1m1,1 + n2m2,2 + n3m3,3

]3
27

−
[
n1m1,1 + n2m2,2 + n3m3,3

]
B

3
−D

Assume that B < 0. The structure of the young adult population converges
asymptotically toward a stable structure. The long-run structure of the young
adult population is defined, up to a constant c > 0, by:

 N1

N2

N3

 =


c

n3m3,2n2m2,1−n3m3,1[n2m2,2−λ]
[n2m2,2−n3m3,2−λ](n1m1,1−n3m3,1−λ)−(n3m3,2−n1m1,2)(n3m3,1−n2m2,1)

c
n1m1,2n3m3,1−n3m3,2[n1m1,1−λ]

[n2m2,2−n3m3,2−λ](n1m1,1−n3m3,1−λ)−(n3m3,2−n1m1,2)(n3m3,1−n2m2,1)

c
(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1]

[n2m2,2−n3m3,2−λ](n1m1,1−n3m3,1−λ)−(n3m3,2−n1m1,2)(n3m3,1−n2m2,1)


where

λ =
3

√√√√−q + 2

√
q2 + 4

27p
3

2
+

3

√√√√−q − 2

√
q2 + 4

27p
3

2
+

[
n1m1,1 + n2m2,2 + n3m3,3

]
3
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The associated long-run ratios x and z are:

x =
N1

N3
=

n3m3,2n2m2,1 − n3m3,1
[
n2m2,2 − λ

]
(n2m2,2 − λ) (n1m1,1 − λ)− [n1m1,2n2m2,1]

z =
N2

N3
=

n1m1,2n3m3,1 − n3m3,2
[
n1m1,1 − λ

]
(n2m2,2 − λ) (n1m1,1 − λ)− [n1m1,2n2m2,1]

Proof. See the Appendix.
Proposition 7 states that the partition of the young adult population into

subpopulations converges asymptotically towards a partition that does not de-
pend on initial conditions, but depends only on type-specific fertility and mobil-
ity parameters. The unique difference with respect to the 2-type case (Proposi-
tion 2) concerns the structure of heterogeneity, in particular, the larger number
of demographic parameters determining the long-run partition of the popula-
tion.

Optimal accumulation policy The resource constraint of the economy
is:

F (Kt, L
1
t , L

2
t , L

3
t ) = c1tL

1
t+d

1
tL

1
t−1+c2tL

2
t+d

2
tL

2
t−1+c3tL

3
t+d

3
tL

3
t−1+Kt+1−(1−δ)Kt

(20)
Dividing the LHS and the RHS of that constraint by N3

t , one obtains:

yt = xtc
1
t +

N1
t−1

N3
t

d1
t + ztc

2
t +

N2
t−1

N3
t

d2
t + c3t +

N3
t−1

N3
t

d3
t +

Kt+1

N3
t

− (1− δ)kt

Notice that:

N3
t−1

N3
t

=
N3
t−1

n1N1
t−1m

1,3 + n2N2
t−1m

2,3 + n3N3
t−1m

3,3
=

1

n1m1,3xt−1 + n2m2,3zt−1 + n3m3,3

N1
t−1

N3
t

=
N1
t−1

N3
t

N3
t−1

N3
t−1

= xt−1
N3
t−1

N3
t

= xt−1
1

n1m1,3xt−1 + n2m2,3zt−1 + n3m3,3

N2
t−1

N3
t

=
N2
t−1

N3
t

N3
t−1

N3
t−1

= zt−1
N3
t−1

N3
t

= zt−1
1

n1m1,3xt−1 + n2m2,3zt−1 + n3m3,3

We can rewrite the economy’s resource constraint as:

yt = xtc
1
t + xt−1

1

n1m1,3xt−1 + n2m2,3zt−1 + n3m3,3
d1
t + ztc

2
t

+zt−1
1

n1m1,3xt−1 + n2m2,3zt−1 + n3m3,3
d2
t + c3t +

1

n1m1,3xt−1 + n2m2,3zt−1 + n3m3,3
d3
t

+kt+1

[
n1m1,3xt + n2m2,3zt + n3m3,3

]
− (1− δ)kt

Hence, at the stationary equilibrium with constant population structure (i.e.,
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xt = xt−1 = x and zt = zt−1 = z), the resource constraint is:

y = xc1 + x
1

n1m1,3x+ n2m2,3z + n3m3,3
d1 + zc2

+z
1

n1m1,3x+ n2m2,3z + n3m3,3
d2 + c3 +

1

n1m1,3x+ n2m2,3z + n3m3,3
d3

+k
[
n1m1,3x+ n2m2,3z + n3m3,3

]
− (1− δ)k (21)

Consumption per capita at time t is defined as total consumption divided
by the total population size at t:

ct ≡
F (Kt, L

1
t , L

2
t , L

3
t )−Kt+1 + (1− δ)Kt

N1
t +N2

t +N3
t +N1

t−1 +N2
t−1 +N3

t−1

(22)

Dividing the numerator and the denominator by N3
t and using the resource

constraint, consumption per capita can be rewritten as:

ct =

Ct
N3
t[

xt + zt + 1 + xt−1
1

n1m1,3xt−1+n2m2,3zt−1+n3m3,3

+zt−1
1

n1m1,3xt−1+n2m2,3zt−1+n3m3,3 + 1
n1m1,3xt−1+n2m2,3zt−1+n3m3,3

]

Note that

Ct
N3
t

= f(kt, xt, zt)− kt+1

[
n1m1,3xt + n2m2,3zt + n3m3,3

]
+ (1− δ)kt

Hence, given that, at the stationary equilibrium, demographic ratios x and
z are constants, the steady-state consumption per capita can be rewritten as
the function ϕ(k):

c =
f(k, x, z)− k

[
n1m1,3x+ n2m2,3z + n3m3,3

]
+ (1− δ)k[

x+ z + 1 + x
n1m1,3x+n2m2,3z+n3m3,3

+ z
n1m1,3x+n2m2,3z+n3m3,3 + 1

n1m1,3x+n2m2,3z+n3m3,3

] ≡ ϕ(k) (23)

As in the 2-type case, the expression ϕ′(k) = 0 defines an interior Golden
Rule capital level only if ϕ (k) is neither always decreasing in k (implying that
the capital level maximizing ϕ (k) is 0), nor always increasing in k (implying
that the level of k maximizing ϕ (k) is infinite). The interiority of the solution
requires the following condition, which guarantees that ϕ′ (k) is positive when
k tends to 0, but negative when it tends to +∞.

Proposition 8 Assume that:

lim
k→0+

fk (k, x, z) > n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

and
lim

k→+∞
fk (k, x, z) < n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ
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where x =
n3m3,2n2m2,1−n3m3,1[n2m2,2−λ]

(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1] and z =
n1m1,2n3m3,1−n3m3,2[n1m1,1−λ]

(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1] .

Then there exists a level of kGR that maximizes steady-state consumption
per capita. That level kGR satisfies:

fk (k, x, z) = n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

Proof. See the Appendix.
Proposition 8 presents the extended Golden Rule of capital accumulation

when the population is partitioned in three subpopulations with distinct fertil-
ity patterns. In comparison to the Golden Rule derived in the two-type case
(Proposition 3), we can see that adopting a finer decomposition of the popula-
tion into subpopulations modifies the form of the Golden Rule in a non-trivial
manner. In particular, composition effects here concern the impact of fertility
on not one, but on two demographic ratios x and z. Shifting towards a finer
decomposition of the population into subpopulations modifies also the form of
the relation between optimal capital and fertility, as we will now see.

Fertility and the Golden Rule capital In order to reexamine the rela-
tion between the Golden Rule capital and fertility in this extended setting, let
us, as above, assume a Cobb-Douglas production technology:

f (kt, xt, zt) = Akαt x
β
t z
γ
t (24)

where A > 0, 0 < α < 1, 0 < β < 1 and 0 < γ < 1. We also assume α+β+γ < 1.
Hence, the Golden Rule capital kGR is here:

kGR =

[
Aαxβzγ

n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

] 1
1−α

(25)

where x =
n3m3,2n2m2,1−n3m3,1[n2m2,2−λ]

(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1] and z =
n1m1,2n3m3,1−n3m3,2[n1m1,1−λ]

(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1] .
Proposition 9 summarizes our results concerning the impact of a marginal

change of a type-specific fertility rate on the Golden Rule capital kGR.

Proposition 9 Consider an economy with a Cobb-Douglas technology: f(kt, xt, zt) =

Akαt x
β
t z
γ
t . We have:

∂kGR

∂n1
≷ 0 ⇐⇒

[
∂x
∂n1

[
βz
[
n2m2,3z + n3m3,3 − 1 + δ

]
− (1− β)zxn1m1,3

]
+ ∂z
∂n1

[
γx
[
n1m1,3x+ n3m3,3 − 1 + δ

]
− (1− γ)xzn2m2,3

] ] ≷ xzm1,3x

∂kGR

∂n2
≷ 0 ⇐⇒

[
∂x
∂n2

[
βz
[
n2m2,3z + n3m3,3 − 1 + δ

]
− (1− β)xzn1m1,3

]
+ ∂z
∂n2

[
xγ
[
n1m1,3x+ n3m3,3 − 1 + δ

]
− (1− γ)xzn2m2,3

] ] ≷ xzm2,3z

∂kGR

∂n3
≷ 0 ⇐⇒

[
∂x
∂n3

[
βz
[
n2m2,3z + n3m3,3 − 1 + δ

]
− (1− β)xzn1m1,3

]
+ ∂z
∂n3

[
xγ
[
n1m1,3x+ n3m3,3 − 1 + δ

]
− (1− γ)xzn2m2,3

] ] ≷ xzm3,3

where x =
n3m3,2n2m2,1−n3m3,1[n2m2,2−λ]

(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1] and z =
n1m1,2n3m3,1−n3m3,2[n1m1,1−λ]

(n2m2,2−λ)(n1m1,1−λ)−[n1m1,2n2m2,1] .
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Proof. See the Appendix.
The main result obtained in the 2-type model still holds under a finer par-

tition of the population into subpopulations: a marginal rise in a type-specific
fertility rate - and, hence, in the total fertility rate - does not necessarily reduce
the Golden Rule capital kGR, unlike what prevails under a homogenous popu-
lation. The reason is that a variation of fertility implies here not only a capital
dilution effect, but, also, a composition effect. In a 3-type economy, this com-
position effect is more complex, since it goes through the impact of fertility on
demographic ratios x and z. Variations in ratios x and z affect not only the in-
vestment required to maintain capital intensity constant, but, also, the marginal
productivity of capital, with an ambiguous net effect on kGR. But despite the
increased complexity of the composition effect, the overall result is qualitatively
the same as in the 2-type framework: when the composition effect outweighs
the standard capital dilution effect prevailing under a fixed composition of the
population, a rise in fertility leads to a higher Golden Rule capital.

6 Concluding remarks

This paper reexamined the relationship between the Golden Rule capital and
fertility in economies where the population is partitioned into subpopulations
having distinct fertility patterns. We showed that the relation between the
Golden Rule capital and fertility is not robust to partitioning the population
into subpopulations with different fertility. Whereas a rise in fertility must
necessarily reduce the Golden Rule capital under a homogeneous population,
the same is not true under a heterogeneous population. In that general case, an
increase in fertility can either decrease or increase the Golden Rule capital.
The intuition underlying that result is that, once the population is parti-

tioned into subpopulations with distinct fertility behaviors, a change in a type-
specific fertility rate modifies the long-run composition of the population (i.e.,
the composition effect). The resulting variation in the composition of the popu-
lation modifies not only the marginal productivity of capital (through a change
in the composition of the labour force), but, also, the level of the investment
required to maintain capital intensity constant. Depending on its sign and
strength, the composition effect can, in some cases, outweigh the standard capi-
tal dilution effect prevailing under a fixed partition of the population, leading to
an increasing relation between the Golden Rule capital and the level of fertility.
The lack of robustness of the Golden Rule to the introduction of heterogene-

ity in fertility behaviors should be contrasted with its robustness to the intro-
duction of heterogeneity in labour endowments and in preferences (Kuhle 2012).
Given that the Golden Rule focuses on the capital that maximizes steady-state
average consumption, heterogeneity along these two dimensions was shown to
have no effect on the Golden Rule capital. But the present paper highlights that
the same robustness does not prevail as soon as one considers heterogeneity in
fertility. Heterogeneity in fertility patterns modifies the Golden Rule and, also,
the form of the relation between fertility and the Golden Rule capital.
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This result may have important implications when considering the conse-
quences of Western economies’s fertility transition on optimal capital accumu-
lation. Using Phelps’s Golden Rule, the decline of fertility supports a rise in
the Golden Rule capital, on the ground of the negative capital dilution effect
induced by the fall of fertility. However, from the perspective of the extended
Golden Rule studied here, the decline in overall fertility does not necessarily
justify a rise in optimal capital. If the variation in the composition of the pop-
ulation induced by the fertility decline is suffi ciently large, it could be the case,
under some conditions, that the (negative) capital dilution effect is outweighed
by the composition effect, justifying not a rise, but a decrease of the Golden
Rule capital. Before concluding that a variation in total fertility justifies more
or less accumulation, one must consider the composition effects induced by the
fertility variation.
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8 Appendix

8.1 Proof of Proposition 1

Irreducibility prevails when the life cycle graph associated to the matrix admits
at least one path from each node and towards each node. This is the case for
matrix M. As shown in Figure 1, the life cycle graph associated to our model
includes two distinct populations, i.e., type 1 and type 2, which contribute to
each other through the social mobility process. Thus each population makes
contributions to the other population, implying irreducibility of M.
Primitivity arises when there exists a power p such that raising the matrix

to that power makes it positive. This is clearly the case for matrixM, which is
a positive matrix.

8.2 Proof of Proposition 2

Let us characterize eigenvalues of the matrix M. We look for solutions for the
equation:

Mw =λw

where λ is the eigenvalue (a scalar) while w is the associated eigen vector, a
vector that makes matrix multiplication and scalar multiplication equivalents.
From the definition of the eigen vectors, it follows that:

Mw−λw = 0

(M−λI)w = 0

Non-zero solutions require (M−λI) to be a singular matrix, that is, that it has
a zero determinant.
Hence eigenvalues are solutions to:

det

(
n1m̄1 − λ n2m2

n1m1 n2m̄2 − λ

)
= 0
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Therefore we have:(
n1m̄1 − λ

) (
n2m̄2 − λ

)
− n2m2n1m1 = 0

Hence, after some simplifications:

λ2 − λ
(
n1m̄1 + n2m̄2

)
+ n1n2

(
1−m2 −m1

)
= 0

Eigenvalues can be found as the roots of this polynomial. We have:

∆ =
(
n1m̄1 + n2m̄2

)2 − 4n1n2
(
1−m2 −m1

)
Note that ∆ can be rewritten as:

∆ =
(
n1(1−m1)

)2
+
(
n2(1−m2)

)2
+ 2n1(1−m1)n2(1−m2)

−4n1n2
(
1−m2 −m1

)
=

(
n1(1−m1)

)2
+
(
n2(1−m2)

)2 − 2n1n2(1−m1 −m2) + 2n1n2m1m2

=
(
n1(1−m1)

)2
+
(
n2(1−m2)

)2 − 2n1n2(1−m1 −m2 −m1m2)

Hence the two eigenvalues are:

λ1 =
n1m̄1 + n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2

λ2 =
n1m̄1 + n2m̄2 − 2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2

We have λ1 > λ2, so that the dominant eigenvalue is λ1.
We can then derive the long-run young adult population structure by cal-

culating the eigenvector w1 associated to the dominant eigenvalue λ1. The
associated eigenvector is such that:

(
n1m̄1 n2m2

n1m1 n2m̄2

)(
N1

N2

)
=


n1m̄1 + n2m̄2 + 2

√ (
n1m̄1 + n2m̄2

)2
−4n1n2

(
1−mn −m1

)
2


(
N1

N2

)

Hence we have

n1m̄1N1 + n2m2N2 =
n1m̄1 + n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
N1

n1m1N1 + n2m̄2N2 =
n1m̄1 + n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
N2

Two equations and two unknowns. Normalizing to N1 + N2 = 1, the second
equation can be rewritten as:

n1m1N1+n2m̄2
(
1−N1

)
=
n1m̄1 + n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
(1−N1)
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From which it follows that

N1 =
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1 − (n1m̄1 + n2m̄2) +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

Hence the eigen vector associated to λ1 is

w1 =

(
N1

N2

)
=

(
N1

1−N1

)
=

 n1m̄1−n2m̄2+ 2
√

(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)

2n1−(n1m̄1+n2m̄2)+ 2
√

(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)

2n1(1−m̄1)
2n1−(n1m̄1+n2m̄2)+ 2

√
(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)


From the Strong Ergodic Theorem, we know that the asymptotic young adult

population structure is given by the eigen vector w1, while the precise size of
the different subpopulations can always be scaled as desired, since eigenvectors
are defined up to a multiplicative constant. Hence the long-run young adult
population composition x is given by:

x =
N1

N2
=
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1

8.3 Proof of Proposition 3

The conditions limk→0+ φ
′(k) > 0 and limk→+∞ φ′(k) < 0 are suffi cient to have

an interior maximum.
The first limit can be written as:

lim
k→0+

φ′ (k) = lim
k→0+

[
fk (k, x)−

(
n2m̄2 + xn1m1

)
+ (1− δ)

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n1m1

]

=
1

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n1m1

lim
k→0+

[
fk (k, x)−

(
n2m̄2 + xn1m1

)
+ (1− δ)

]
Given that the first factor is strictly positive, the conditions limk→0+ φ

′(k) >
0 is always true when:

lim
k→0+

[
fk (k, x)−

(
n2m̄2 + xn1m1

)
+ (1− δ)

]
> 0

that is, when

lim
k→0+

fk
k, n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1


>

n1m̄1 + n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
− 1 + δ

which is the condition of the proposition.
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Regarding the second condition, it can be written as:

lim
k→+∞

φ′(k) = lim
k→+∞

[
fk (k, x)−

(
n2m̄2 + xn1m1

)
+ (1− δ)

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n1m1

]

=
1

x+ 1 + x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n1m1

lim
k→+∞

[
fk (k, x)−

(
n2m̄2 + xn1m1

)
+ (1− δ)

]
Given that 1

x+1+x 1
n2m̄2+xn1m1 + 1

n2m̄2+xt−1n
1m1

> 0, the condition limk→+∞ φ′(k) <

0 is necessarily true when:

lim
k→+∞

fk (k, x) < n2m̄2 + xn1m1 + 1− δ

that is, when

lim
k→+∞

fk

k, n1m̄1 − n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1


<

n1m̄1 + n2m̄2 +
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2
− 1 + δ

as stated in the proposition.

8.4 Proof of Proposition 5

We have:

x =
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

2n1m1

∂x

∂n1
=

[
m̄1 + 1

2

[2(n1m̄1+n2m̄2)m̄1−4n2(1−m2−m1)]
2
√

(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)

]
2n1m1

−
[
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

]
2m1

(2n1m1)
2

=

[
m̄1 + 1

2

[2(n1m̄1+n2m̄2)m̄1−4n2(1−m2−m1)]

[(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)]
1
2

]
n1

−
[
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

]
2m1 (n1)

2
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We have thus:

∂x

∂n1
≷ 0

⇐⇒

m̄1 +

[(
n1m̄1 + n2m̄2

)
m̄1 − 2n2

(
1−m2 −m1

)]
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

n1

≷
[
n1m̄1 − n2m̄2 +

2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

]
⇐⇒

[(
n1m̄1 + n2m̄2

)
n1m̄1 − 2n1n2

(
1−m2 −m1

)]
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

≷
−n2m̄2 2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1) +
(
n1m̄1 + n2m̄2

)2 − 4n1n2
(
1−m2 −m1

)
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)

⇐⇒
[(
n1m̄1 + n2m̄2

)
n1m̄1 − 2n1n2

(
1−m2 −m1

)]
≷ −n2m̄2 2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1) +
(
n1m̄1 + n2m̄2

)2 − 4n1n2
(
1−m2 −m1

)
⇐⇒ n1n2

(
1−m2 −m1

)
+ n1n2

(
1−m2 −m1

)
− n1n2(1−m1) + n1n2(1−m1)m2

≷ −n2m̄2 2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1) +
(
n2m̄2

)2
⇐⇒ n1n2

(
1−m1 −m2 −m1m2

)
+ n2m̄2 2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1) ≷
(
n2m̄2

)2
⇐⇒ n1n2

(
1−m1 −m2 −m1m2

)
+ n2m̄2

[
x2n1m1 − n1m̄1 + n2m̄2

]
≷
(
n2m̄2

)2
⇐⇒ n1n2

(
m̄1 −m2 −m1m2

)
+ n1n2m̄2

[
x2m1 − m̄1

]
≷ 0

⇐⇒ n1n2m̄1(m2)− n1n2m2(1 + 1− m̄1) + n1n2m̄2x2m1 ≷ 0

⇐⇒ 2n1n2m̄1(m2)− 2n1n2m2 + n1n2m̄2x2m1 ≷ 0

⇐⇒ (−m1)(m2) + (1−m2)xm1 ≷ 0

⇐⇒ −m2 + (1−m2)x ≷ 0

⇐⇒ x

1 + x
≷ m2

We also have:

∂x

∂n2
=
−m̄2 + 1

2

[2(n1m̄1+n2m̄2)m̄2−4n1(1−m2−m1)]
2
√

(n1m̄1+n2m̄2)2−4n1n2(1−m2−m1)

2n1m1
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Hence we have:

∂x

∂n2
≷ 0

⇐⇒ −m̄2 +

[(
n1m̄1 + n2m̄2

)
m̄2 − 2n1

(
1−m2 −m1

)]
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)
≷ 0

⇐⇒
(
n1m̄1 + n2m̄2

)
m̄2 − 2n1

(
1−m2 −m1

)
2

√
(n1m̄1 + n2m̄2)

2 − 4n1n2 (1−m2 −m1)
≷ m̄2

⇐⇒
(
n1m̄1 + n2m̄2

)
m̄2 − 2n1

(
1−m2 −m1

)
x2n1m1 − n1m̄1 + n2m̄2

≷ m̄2

⇐⇒ n1(1−m2)(1−m1) + n2m̄2m̄2 − 2n1m̄2 + 2n1m1

x2n1m1 − n1m̄1 + n2m̄2
≷ m̄2

⇐⇒ n1m̄2 − n1m̄2m1 + n2m̄2m̄2 − 2n1m̄2 + 2n1m1

x2n1m1 − n1m̄1 + n2m̄2
≷ m̄2

⇐⇒ n1m1m2 + n2m̄2m̄2 − n1m̄2 + n1m1

x2n1m1 − n1(1−m1) + n2m̄2
≷ m̄2

⇐⇒ n1m1m2 + n2m̄2m̄2 − n1m̄2 + n1m1 ≷ m̄2
[
n1
(
m1 (2x+ 1)− 1

)
+ n2m̄2

]
⇐⇒ m2 + 1 ≷ 2xm̄2 + 1−m2

⇐⇒ m2 ≷ x(1−m2)

⇐⇒ m2 ≷ x

1 + x

8.5 Proof of Proposition 6

The Golden Rule capital is:

kGR =

[
Aαxβ

(n2m̄2 + xn1m1)− 1 + δ

] 1
1−α

Differentiating kGR with respect to n1 yields:

∂kGR

∂n1
=

1

1− α

[
Aαxβ

(n2m̄2 + xn1m1)− 1 + δ

] 1
1−α−1

[
Aαβxβ−1 ∂x

∂n1

[(
n2m̄2 + xn1m1

)
− 1 + δ

]
−Aαxβ

[
∂x
∂n1n

1m1 + xm1
]

[(n2m̄2 + xn1m1)− 1 + δ]
2

]
Hence

∂kGR

∂n1
=

1

1− α

[
Aαxβ

(n2m̄2 + xn1m1)− 1 + δ

] 1
1−α−1

[
Aαβxβ−1 ∂x

∂n1

(
n2m̄2 + δ − 1

)
+Aαxβ

[
∂x
∂n1n

1m1 (β − 1)− xm1
]

[(n2m̄2 + xn1m1)− 1 + δ]
2

]
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The first two factors are strictly positive. Hence,

∂kGR

∂n1
≷ 0

⇐⇒ Aαβxβ−1 ∂x

∂n1

(
n2m̄2 + δ − 1

)
+Aαxβ

[
∂x

∂n1
n1m1 (β − 1)− xm1

]
≷ 0

⇐⇒ ∂x

∂n1

[
β
(
n2m̄2 + δ − 1

)
− (1− β)n1m1x

]
≷ (x)

2
m1

Consider now the effect of a variation of the type-specific fertility rate n2.
Differentiating kGR with respect to n2 yields:

∂kGR

∂n2
=

1

1− α

[
Aαxβ

(n2m̄2 + xn1m1)− 1 + δ

] 1
1−α−1

[
Aαβxβ−1 ∂x

∂n2

[(
n2m̄2 + xn1m1

)
− 1 + δ

]
−Aαxβ

[
m̄2 + ∂x

∂n2n
1m1

]
[(n2m̄2 + xn1m1)− 1 + δ]

2

]
Hence

∂kGR

∂n2
≷ 0 ⇐⇒ ∂x

∂n2

[
β
(
n2m̄2 − 1 + δ

)
− (1− β)xn1m1

]
≷ xm̄2

8.6 Proof of Proposition 7

Let us characterize eigenvalues of the matrix M. We look for solutions for the
equation:

Mw =λw

where λ is the eigenvalue (a scalar) while w is the associated eigen vector, a
vector that makes matrix multiplication and scalar multiplication equivalents.
From the definition of the eigen vectors, it follows that:

(M−λI)w = 0

Non-zero solutions require (M−λI) to be a singular matrix, that is, that it has
a zero determinant.
Hence eigenvalues are solutions to:

det

 n1m1,1 − λ n2m2,1 n3m3,1

n1m1,2 n2m2,2 − λ n3m3,2

n1m1,3 n2m2,3 n3m3,3 − λ

 = 0

Therefore we have:(
n1m1,1 − λ

) (
n2m2,2 − λ

) (
n3m3,3 − λ

)
+
(
n2m2,1

) (
n3m3,2

) (
n1m1,3

)
+
(
n3m3,1

) (
n1m1,2

) (
n2m2,3

)
−
(
n3m3,1

) (
n2m2,2 − λ

) (
n1m1,3

)
−
(
n2m2,1

) (
n1m1,2

) (
n3m3,3 − λ

)
−
(
n1m1,1 − λ

) (
n3m3,2

) (
n2m2,3

)
= 0
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Hence, after some simplifications, the condition is:

−λ3 + λ2
[
n1m1,1 + n2m2,2 + n3m3,3

]
+λ

[
−n1m1,1n2m2,2 − n1m1,1n3m3,3 − n2m2,2n3m3,3

+n3m3,1n1m1,3 + n2m2,1n1m1,2 + n3m3,2n2m2,3

]
+n1n2n3

(
m3,3m1,1m2,2 −m3,1m1,3m2,2 −m2,1m1,2m3,3

+m2,1m3,2m1,3 +m3,1m1,2m2,3 −m1,1m2,3m3,2

)
= 0

Let us denote:

B ≡ −n1m1,1n2m2,2 − n1m1,1n3m3,3 − n2m2,2n3m3,3

+n3m3,1n1m1,3 + n2m2,1n1m1,2 + n3m3,2n2m2,3

D ≡ n1n2n3

(
m3,3m1,1m2,2 −m3,1m1,3m2,2 −m2,1m1,2m3,3

+m2,1m3,2m1,3 +m3,1m1,2m2,3 −m1,1m2,3m3,2

)
Note that

B = n1n2
[
m2,1m1,2 −m1,1m2,2

]
+n1n3

[
m3,1m1,3 −m1,1m3,3

]
+n2n3

[
m3,2m2,3 −m2,2m3,3

]
If there is, in general, limited mobility across types (relative to non-mobility),
we have B < 0.
Eigenvalues can be found as the roots of the polynomial:

−λ3 + λ2
[
n1m1,1 + n2m2,2 + n3m3,3

]
+ λB +D = 0

This polynomial can be rewritten as:

λ3 − λ2
[
n1m1,1 + n2m2,2 + n3m3,3

]
− λB −D = 0

Let us introduce the variable:

u ≡ λ−
[
n1m1,1 + n2m2,2 + n3m3,3

]
3

=⇒ λ = u+

[
n1m1,1 + n2m2,2 + n3m3,3

]
3

We then have:(
u+

[
n1m1,1 + n2m2,2 + n3m3,3

]
3

)3

−
(
u+

[
n1m1,1 + n2m2,2 + n3m3,3

]
3

)2 [
n1m1,1 + n2m2,2 + n3m3,3

]
−
(
u+

[
n1m1,1 + n2m2,2 + n3m3,3

]
3

)
B −D

= 0
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Hence

u3 + u

([
n1m1,1 + n2m2,2 + n3m3,3

]2
3

−B
)
−

2
[
n1m1,1 + n2m2,2 + n3m3,3

]3
27

−
[
n1m1,1 + n2m2,2 + n3m3,3

]
B

3
−D

= 0

Let us denote p ≡ [n1m1,1+n2m2,2+n3m3,3]
2

3 −B and q ≡ − 2[n1m1,1+n2m2,2+n3m3,3]
3

27 −
[n1m1,1+n2m2,2+n3m3,3]B

3 −D.
We then obtain the depressed cubic equation:

u3 + pu+ q = 0

Note that, when there is little mobility across types, so that the condition:

B = n1n2
[
m2,1m1,2 −m1,1m2,2

]
+n1n3

[
m3,1m1,3 −m1,1m3,3

]
+n2n3

[
m3,2m2,3 −m2,2m3,3

]
< 0

is satisfied, it is also the case that p =
[n1m1,1+n2m2,2+n3m3,3]

2

3 −B > 0.
As a consequence, under that assumption, the discriminant of depressed

cubic is negative, since:
−(4p3 + 27q2) < 0

Thus our depressed cubic has one real root and two complex conjugates.
In order to find the real root of the depressed cubic, we follow Cardano

(1545), we now introduce two new variables whose sum equals u = s + t. We
substitute for these variables in the depressed cubic equation, and we obtain:

(s+ t)
3

+ p(s+ t) + q = 0

s3 + t3 + (p+ 3st) (s+ t) + q = 0

Then, imposing the constraint p+ 3st = 0, we obtain:

s3 + t3 = −q

st =
−p
3

=⇒ s3t3 =
−p3

27

Thus s3 and t3 are the roots of the equation:

h2 + hq − p3

27
= 0.

We have that:

∆ = q2 + 4
p3

27
≷ 0

Note that, under the condition:

B = n1n2
[
m2,1m1,2 −m1,1m2,2

]
+n1n3

[
m3,1m1,3 −m1,1m3,3

]
+n2n3

[
m3,2m2,3 −m2,2m3,3

]
< 0
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it is also the case that p =
[n1m1,1+n2m2,2+n3m3,3]

2

3 −B > 0. As a consequence,
we have also ∆ > 0.

In the case where ∆ > 0, we have two roots: h1 = s3 =
−q+ 2
√
q2+ 4

27p
3

2 and

h2 = t3 =
−q− 2
√
q2+ 4

27p
3

2 .
Hence:

u = s+ t =
3

√√√√−q + 2

√
q2 + 4

27p
3

2
+

3

√√√√−q − 2

√
q2 + 4

27p
3

2

Moreover, since λ = u+
[n1m1,1+n2m2,2+n3m3,3]

3 , we then obtain:

λ =
3

√√√√−q + 2

√
q2 + 4

27p
3

2
+

3

√√√√−q − 2

√
q2 + 4

27p
3

2
+

[
n1m1,1 + n2m2,2 + n3m3,3

]
3

where p ≡ [n1m1,1+n2m2,2+n3m3,3]
2

3 − B and q ≡ −2[n1m1,1+n2m2,2+n3m3,3]
3

27 −
[n1m1,1+n2m2,2+n3m3,3]B

3 −D.
Taking λ as the dominant eigen value, we can derive the long-run young adult

population structure by calculating the eigenvector associated to the dominant
eigenvalue λ. The associated eigenvector is such that: n1m1,1 n2m2,1 n3m3,1

n1m1,2 n2m2,2 n3m3,2

n1m1,3 n2m2,3 n3m3,3

 N1

N2

N3

 = λ

 N1

N2

N3


Assuming N3 = 1−N1 −N2, we have:

n1m1,1N1 + n2m2,1N2 + n3m3,1(1−N1 −N2) = λN1

n1m1,2N1 + n2m2,2N2 + n3m3,2(1−N1 −N2) = λN2

n1m1,3N1 + n2m2,3N2 + n3m3,3(1−N1 −N2) = λ(1−N1 −N2)

Isolating N2 in the second equation yields:

N2 =

(
n3m3,2 − n1m1,2

)
[n2m2,2 − n3m3,2 − λ]

N1 − n3m3,2

[n2m2,2 − n3m3,2 − λ]

Substituting for this in the first equation yields:

N1 = N2

(
n3m3,1 − n2m2,1

)
(n1m1,1 − n3m3,1 − λ)

− n3m3,1

(n1m1,1 − n3m3,1 − λ)

Substituting for N2, one has:

N1 =

[ (
n3m3,2 − n1m1,2

)
[n2m2,2 − n3m3,2 − λ]

N1 − n3m3,2

[n2m2,2 − n3m3,2 − λ]

] (
n3m3,1 − n2m2,1

)
(n1m1,1 − n3m3,1 − λ)

− n3m3,1

(n1m1,1 − n3m3,1 − λ)
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Hence

N1

[
1−

(
n3m3,2 − n1m1,2

)
[n2m2,2 − n3m3,2 − λ]

(
n3m3,1 − n2m2,1

)
(n1m1,1 − n3m3,1 − λ)

]

=
−n3m3,2

(
n3m3,1 − n2m2,1

)
(n1m1,1 − n3m3,1 − λ) [n2m2,2 − n3m3,2 − λ]

− n3m3,1

(n1m1,1 − n3m3,1 − λ)

Hence:

N1 =

−n3m3,2(n3m3,1−n2m2,1)−n3m3,1[n2m2,2−n3m3,2−λ]
(n1m1,1−n3m3,1−λ)[n2m2,2−n3m3,2−λ]

[n2m2,2−n3m3,2−λ](n1m1,1−n3m3,1−λ)−(n3m3,2−n1m1,2)(n3m3,1−n2m2,1)
[n2m2,2−n3m3,2−λ](n1m1,1−n3m3,1−λ)

=
n3m3,2n2m2,1 − n3m3,1

[
n2m2,2 − λ

]
[n2m2,2 − n3m3,2 − λ] (n1m1,1 − n3m3,1 − λ)− (n3m3,2 − n1m1,2) (n3m3,1 − n2m2,1)

Then, substituting for this in N2, we have:

N2 =

(
n3m3,2 − n1m1,2

) [ n3m3,2n2m2,1−n3m3,1[n2m2,2−λ]
[[n2m2,2−n3m3,2−λ](n1m1,1−n3m3,1−λ)−(n3m3,2−n1m1,2)(n3m3,1−n2m2,1)]

]
[n2m2,2 − n3m3,2 − λ]

−

[
n3m3,2

[ [
n2m2,2 − n3m3,2 − λ

] (
n1m1,1 − n3m3,1 − λ

)
−
(
n3m3,2 − n1m1,2

) (
n3m3,1 − n2m2,1

) ]]
[n2m2,2 − n3m3,2 − λ]

[ [
n2m2,2 − n3m3,2 − λ

] (
n1m1,1 − n3m3,1 − λ

)
−
(
n3m3,2 − n1m1,2

) (
n3m3,1 − n2m2,1

) ]
Hence

N2 =



 (n3m3,2 − n1m1,2
) [
n3m3,2n2m2,1 − n3m3,1

[
n2m2,2 − λ

]]
−n3m3,2

[ [
n2m2,2 − n3m3,2 − λ

] (
n1m1,1 − n3m3,1 − λ

)
−
(
n3m3,2 − n1m1,2

) (
n3m3,1 − n2m2,1

) ] 
[n2m2,2 − n3m3,2 − λ]

[ [
n2m2,2 − n3m3,2 − λ

] (
n1m1,1 − n3m3,1 − λ

)
−
(
n3m3,2 − n1m1,2

) (
n3m3,1 − n2m2,1

) ]


=

[ [
n1m1,2n3m3,1 − n3m3,2

[(
n1m1,1 − λ

)]]
[[n2m2,2 − n3m3,2 − λ] (n1m1,1 − n3m3,1 − λ)− (n3m3,2 − n1m1,2) (n3m3,1 − n2m2,1)]

]

Then, given N3 = 1−N1 −N2,

N3 = 1−
n3m3,2n2m2,1 − n3m3,1

[
n2m2,2 − λ

]
[n2m2,2 − n3m3,2 − λ] (n1m1,1 − n3m3,1 − λ)− (n3m3,2 − n1m1,2) (n3m3,1 − n2m2,1)

−
n1m1,2n3m3,1 − n3m3,2

[(
n1m1,1 − λ

)]
[[n2m2,2 − n3m3,2 − λ] (n1m1,1 − n3m3,1 − λ)− (n3m3,2 − n1m1,2) (n3m3,1 − n2m2,1)]
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Hence

N3 =

[ [
n2m2,2 − n3m3,2 − λ

] (
n1m1,1 − n3m3,1 − λ

)
−
(
n3m3,2 − n1m1,2

) (
n3m3,1 − n2m2,1

)
−
[
n3m3,2n2m2,1 − n3m3,1

[
n2m2,2 − λ

]]
−
[
n1m1,2n3m3,1 − n3m3,2

[(
n1m1,1 − λ

)]] ]
[n2m2,2 − n3m3,2 − λ] (n1m1,1 − n3m3,1 − λ)− (n3m3,2 − n1m1,2) (n3m3,1 − n2m2,1)

=

(
n2m2,2 − λ

) (
n1m1,1 − λ

)
−
[
n1m1,2n2m2,1

]
[n2m2,2 − n3m3,2 − λ] (n1m1,1 − n3m3,1 − λ)− (n3m3,2 − n1m1,2) (n3m3,1 − n2m2,1)

Hence the ratios x and z are:

x =
n3m3,2n2m2,1 − n3m3,1

[
n2m2,2 − λ

]
(n2m2,2 − λ) (n1m1,1 − λ)− [n1m1,2n2m2,1]

z =
n1m1,2n3m3,1 − n3m3,2

[
n1m1,1 − λ

]
(n2m2,2 − λ) (n1m1,1 − λ)− [n1m1,2n2m2,1]

8.7 Proof of Proposition 9

The Golden Rule capital kGR is here:

kGR =

[
Aαxβzγ

n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

] 1
1−α

Differentiating kGR with respect to n1 yields:

∂kGR

∂n1
=

1

1− α

[
Aαxβzγ

n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

] 1
1−α−1


[
Aα
(
βxβ−1 ∂x

∂n1 z
γ + xβγzγ−1 ∂z

∂n1

)] [
n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

]
−
[
Aαxβzγ

] [
m1,3x+ n1m1,3 ∂x

∂n1 + n2m2,3 ∂z
∂n1

]
[n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ]

2


This simplifies to:

∂kGR

∂n1
=

1

1− α

[
Aαxβzγ

n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

] 1
1−α−1


[
Aα
(
βxβ−1 ∂x

∂n1 z
γ + xβγzγ−1 ∂z

∂n1

)] [
n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

]
−
[
Aαxβzγ

] [
m1,3x+ n1m1,3 ∂x

∂n1 + n2m2,3 ∂z
∂n1

]
[n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ]

2


The first factor is strictly positive, so that:

∂kGR

∂n1
≷ 0

⇐⇒
(

∂x
∂n1

[
βz
[
n2m2,3z + n3m3,3 − 1 + δ

]
− (1− β)zxn1m1,3

]
+ ∂z
∂n1

[
γx
[
n1m1,3x+ n3m3,3 − 1 + δ

]
− (1− γ)xzn2m2,3

] ) ≷ xzm1,3x
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Differentiating kGR with respect to n2 yields:

∂kGR

∂n2
=

1

1− α

[
Aαxβzγ

n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

] 1
1−α−1


[
Aα
(
βxβ−1 ∂x

∂n2 z
γ + xβγzγ−1 ∂z

∂n2

)] [
n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

]
−
[
Aαxβzγ

] [
n1m1,3 ∂x

∂n2 +m2,3z + n2m2,3 ∂z
∂n2

]
[n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ]

2


Hence:

∂kGR

∂n2
≷ 0

⇐⇒
[ [(

β ∂x
∂n2 z + xγ ∂z

∂n2

)] [
n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

]
−xz

[
n1m1,3 ∂x

∂n2 +m2,3z + n2m2,3 ∂z
∂n2

] ]
≷ 0

⇐⇒
[

∂x
∂n2

[
βz
[
n2m2,3z + n3m3,3 − 1 + δ

]
− (1− β)xzn1m1,3

]
+ ∂z
∂n2

[
xγ
[
n1m1,3x+ n3m3,3 − 1 + δ

]
− (1− γ)xzn2m2,3

] ] ≷ xzm2,3z

Differentiating kGR with respect to n3 yields:

∂kGR

∂n3
=

1

1− α

[
Aαxβzγ

n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

] 1
1−α−1


[
Aα
(
βxβ−1 ∂x

∂n3 z
γ + xβγzγ−1 ∂z

∂n3

)] [
n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

]
−
[
Aαxβzγ

] [
n1m1,3 ∂x

∂n3 + n2m2,3 ∂z
∂n3 +m3,3

]
[n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ]

2


Hence

∂kGR

∂n3
≷ 0

⇐⇒
[ [(

β ∂x
∂n3 z + xγ ∂z

∂n3

)] [
n1m1,3x+ n2m2,3z + n3m3,3 − 1 + δ

]
−xz

[
n1m1,3 ∂x

∂n3 + n2m2,3 ∂z
∂n3

] ]
≷ xzm3,3

⇐⇒
[

∂x
∂n3

[
βz
[
n2m2,3z + n3m3,3 − 1 + δ

]
− (1− β)xzn1m1,3

]
+ ∂z
∂n3

[
xγ
[
n1m1,3x+ n3m3,3 − 1 + δ

]
− (1− γ)xzn2m2,3

] ] ≷ xzm3,3
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