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Abstract

Accurate and reliable precipitation data with high spatial and temporal

resolution are essential in studying climate variability, water resources man-

agement, and hydrological forecasting. A range of global precipitation data are

available to this end, but how well these capture actual precipitation remains

unknown, particularly for mountain regions where ground stations are sparse.

We examined the performance of three global high-resolution precipitation

products for capturing precipitation over Central Asia, a hotspot of climate

change, where reliable precipitation data are particularly scarce. Specifically,

we evaluated MSWEP, CHIRPS, and GSMAP against independent gauging sta-

tions for the period 1985–2015. Our results show that MSWEP and CHIRPS

outperformed GSMAP for wetter periods (i.e., winter and spring) and wetter

locations (150–600 mm�year−1), lowlands, and mid-altitudes (0–3,000 m), and

regions dominated by winter and spring precipitation. MSWEP performed best

in representing temporal precipitation dynamics and CHIRPS excelled in cap-

turing the volume and distribution of precipitation. All precipitation products

poorly estimated precipitation at higher elevations (>3,000 m), in drier areas

(<150 mm), and in regions characterized by summer precipitation. All prod-

ucts accurately detected dry spells, but their performance decreased for wet

spells with increasing precipitation intensity. In sum, we find that CHIRPS

and MSWEP provide the most reliable high-resolution precipitation estimates

for Central Asia. However, the high spatial and temporal heterogeneity of the

performance call for a careful selection of a suitable product for local applica-

tions considering the prevailing precipitation dynamics, climatic, and topo-

graphic conditions.
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1 | INTRODUCTION

The spatial and temporal variability of precipitation
shape hydrological cycles (Michaelides et al., 2009).
Climate change alters these cycles through changes in
precipitation frequency, intensity, and amount and by
affecting evapotranspiration patterns (Trenberth, 2011;
Tan et al., 2020). These changes in turn impact freshwa-
ter availability for agriculture, hydropower, and socioeco-
nomic development (Tan et al., 2020). Most regions with
rainfed or irrigated crops depend on precipitation totals
during the peak months of plant growth to meet water
demand (Funk et al., 2015). Accurate and reliable precipi-
tation records with high spatial and temporal resolutions
are therefore essential to study climate variability, the
management of water resources, and hydrological fore-
casting (Sun et al., 2018).

Satellite precipitation sensors are currently the only
instruments that can provide near real-time global cover-
age of precipitation with estimates from geosynchronous
infrared sensors on geostationary satellites, which have a
high sampling frequency, and polar-orbiting microwave
sensors on low Earth-orbiting satellites with lower tem-
poral resolution (Huffman et al., 2007). Satellite-based
estimates of precipitation are increasingly used to com-
plement ground station observations, which are limited
in areal coverage and density, particularly in inaccessible
regions (e.g., mountainous areas), sparsely populated
areas, and especially in developing countries (Zambrano-
Bigiarini et al., 2017; Rivera et al., 2018; Sun et al., 2018).
The lack of station data in mountainous regions is worri-
some because precipitation patterns in the mountains are
crucial to assess changes in regional climate and in the
cryosphere, which directly affect water availability in
downstream regions (Unger-Shayesteh et al., 2013;
Immerzeel et al., 2020; Viviroli et al., 2020).

Merging satellite data with gauge measurements from
ground stations and reanalysis estimations can improve
the accuracy of global precipitation datasets (Tan
et al., 2020). Reanalysis-based estimates merge atmo-
spheric measurements and climatic models
encompassing physical and dynamical processes to pro-
duce consistent, accurate, and continuous meteorological
data (Sun et al., 2018; Tan et al., 2020). However, varying
availability of ground observations for calibrating the sat-
ellite algorithms and reanalysis estimates can compro-
mise the quality of the merged global precipitation
datasets (Hu et al., 2018; Sun et al., 2018; Zandler
et al., 2019). Therefore, quantitative validation of these
global precipitation datasets against independent ground
observations is critical to determine the accuracy and
uncertainty of the global products at local and regional
scales because misestimations can arise from sampling,

instrumental (e.g., sensor observations), and algorithmic
errors (Nijssen, 2004; Ebert, 2007; Hu et al., 2018). Vali-
dation of global precipitation data is hence a keystone for
better understanding the impact of climate changes on
regional hydrological cycles.

Station data for Central Asia are very scarce, especially
in higher elevations and particularly since the dilapidation
of much of the meteorological infrastructure following the
collapse of the Soviet Union in 1991 and the independence
of the Central Asian republics (Schiemann et al., 2008;
Unger-Shayesteh et al., 2013). This is unfortunate because
precipitation, glaciers, and snowmelt dominate the hydro-
logical budget in the semiarid continental climate of Cen-
tral Asia, where water fluxes in the mountainous areas
play a crucial role in downstream hydrology and water
availability (Schär et al., 2004; Mannig et al., 2013;
Maussion et al., 2013). The region's economy and ecology
heavily rely on water from the two main endorheic rivers,
the Amu Darya and Syr Darya, which originate in the
headwater catchments of the Pamir and Tien Shan moun-
tains, respectively (Schär et al., 2004; Unger-Shayesteh
et al., 2013). In addition, the region is a hotspot of climate
change with warming rates of up to 0.3�C per decade dur-
ing the past half century (Teixeira et al., 2013; Reyer
et al., 2017; Peng et al., 2019).

Precipitation data sourced from global precipitation
products are paramount for data-scarce or ungauged
regions, such as Central Asia. Previous studies have eval-
uated precipitation products for the region with varied
and sometimes contrasting results (Table S1, Supporting
Information). Several studies have suggested that the
gauge-based products from the Global Precipitation Cli-
matology Centre (GPCC), with spatial resolutions rang-
ing from 0.25� to 1�, were the most reliable precipitation
data for the region but underestimated precipitation in
the mountains (Malsy et al., 2014; Hu et al., 2018). In the
Amu Darya basin, however, the gauge-based Climate
Prediction Center (CPC) (0.5�) dataset performed best
(Salehie et al., 2021). In the Pamir mountains, the
reanalysis product Modern-Era Retrospective analysis for
Research Application (MERRA, 0.5�) stood out, although
its performance deteriorated strongly for the period
1998–2012 due to the decline of station data availability
(Zandler et al., 2019).

The resolution of the abovementioned gauge-based
and reanalysis products is not suitable for studies at
regional and catchment scales in Central Asia because
their spatial resolution is too coarse to capture precipita-
tion gradients in the complex topography of the region
(Hellwig et al., 2018; Henn et al., 2018). Here we evaluate
global or near-global precipitation products with a spatial
resolution higher than 12 × 12 km and for the period
1981–2015 for the Pamir and Tien Shan mountains and
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adjacent lowlands of Central Asia. We only selected
gauge-corrected products with proven reliability at local
and regional scales with a sufficiently long time series
available to support analysing climatic trends and vari-
ability (see Table S1 and references therein). Finally, we
only consider products that are still operational. These
criteria resulted in the selection of the Climate Hazard
Group InfraRed Precipitation with Station Data (CHIRPS
version 2, 0.05�) (Funk et al., 2015), the Multi-Source
Weighted-Ensemble Precipitation (MSWEP, 0.1�) (Beck
et al., 2017a), and the Global Satellite Mapping of Precipi-
tation (GSMAP, 0.1�) (Ushio et al., 2009).

The gauge-corrected versions of GSMAP and MSWEP
products were previously considered the best-performing
high-resolution precipitation data for the region (Guo
et al., 2015; Guo et al., 2017; Lu et al., 2021) and globally

(Beck et al., 2017b). The gauge-calibrated CHIRPS prod-
uct was ranked third in Central Asia when compared to
six coarser precipitation products (Salehie et al., 2021).
However, the accuracy of MSWEP and CHIRPS has to
date not been assessed for Central Asia with data from
meteorological stations that were not used for gauge cor-
rection of the investigated products.

Here we aim to (a) identify the strengths and limita-
tions of the three global precipitation products at daily,
monthly, seasonal, and annual timescales, (b) determine
the effect of topography and climate regimes on the per-
formance of the precipitation products, (c) quantify the
accuracy of the products for different precipitation inten-
sities, and (d) based on these evaluations, propose which
precipitation product is most appropriate for subsequent
studies. Our analysis hence facilitates informed decisions

FIGURE 1 Study area and location of the 30 precipitation stations used for validation. Bar plots represent the annual precipitation

regimes (section 4.4) of the clusters shown in the map: cluster 1 (yellow) is characterized by winter and spring precipitation and long, dry

summers and autumns; cluster 2 (blue) has winter and spring precipitation and a short, dry summer period; and summer precipitation

dominates in cluster 3 (red) [Colour figure can be viewed at wileyonlinelibrary.com]
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for assessing climate variability, hydrological and agricul-
tural studies, and water management in this heteroge-
neous and data-scarce region.

2 | STUDY AREA

The study area covers the Tien Shan and Pamir moun-
tains, including the adjacent semi-arid lowlands of
Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and
Uzbekistan (Figure 1). In the western and northern Tien
Shan and Pamir mountains, most precipitation occurs
during the winter and spring seasons (November–March)
and falls primarily as snow (Barlow and Tippett, 2008;
Sorg et al., 2012). In contrast, parts of central and eastern
Tien Shan and eastern Pamir receive most precipitation
during summer months (Apel et al., 2018). Precipitation
amounts in the region range from 50 to 1,000 mm annu-
ally, primarily determined by orographic uplift and mid-
latitude westerly cyclones (Mariotti, 2007; Barlow and
Tippett, 2008).

Large-scale variation of extratropical westerlies,
which transport moisture from the Atlantic Ocean, the
Mediterranean and Caspian Sea, and the Persian Gulf,
are the major moisture sources throughout the year in
Central Asia; the central and eastern Tien Shan and
southeastern Pamir are also affected by the Indian Mon-
soon in summer (Böhner, 2006; Meier et al., 2013). Mois-
ture fluxes from the Arabian Sea and tropical Africa
during warm El Niño–Southern Oscillation events cause
higher precipitation in autumn and spring in southwest-
ern Central Asia (Mariotti, 2007).

3 | DATA

3.1 | Precipitation products

3.1.1 | CHIRPS

CHIRPS provides daily blended gauge-satellite precipita-
tion estimates covering most global land regions (50�N–
50�S) with a resolution of 0.05� (about 5 km at the equa-
tor) from 1981 until present and with a low latency
(updated roughly every 2 days, with a stable product
released every 3 weeks) (Funk et al., 2015). CHIRPS com-
bines precipitation estimates based on observations of
infrared cold cloud duration in which cold and bright
clouds are related to convection and therefore rain (Sun
et al., 2018). CHIRPS incorporates station data from pub-
lic data streams and private archives and uses reanalysis-
based estimates of the Coupled Forecast System (CFS) to
temporally disaggregate from 5-day to daily estimates

and when thermal infrared observations are missing
(Shukla et al., 2014; Funk et al., 2015). Calibration of
CHIRPS involves three main components: (a) the Cli-
mate Hazards group Precipitation climatology
(CHPclim); (b) the satellite-only Climate Hazards group
Infrared Precipitation (CHIRP); and (c) the station-
blending procedure (Funk et al., 2015). We downloaded
the CHIRPS data from https://data.chc.ucsb.edu/
products/CHIRPS-2.0/.

3.1.2 | GSMAP

The GSMAP is a multisatellite algorithm developed by
the Japan Science and Technology Agency (Okamoto
et al., 2005; Kubota et al., 2007). The algorithm follows
three main steps: (a) retrieval of precipitation rate from
passive microwave data (precipitation-sized particles
such as ice content are detected through clouds), pro-
vided by the CPC using a Kalman filter approach (Ushio
et al., 2009; Shige et al., 2013; Yamamoto et al., 2017);
(b) propagation of the estimated precipitation rates using
a backward- and forward-morphing technique (Joyce
et al., 2004); and (c) refinement of precipitation data
based on the relationship between the infrared brightness
temperature and surface precipitation rates. GSMAP has
a spatial resolution of 0.1� (about 11 km at the equator)
and near-global coverage (60�N–60�S). It provides hourly
averaged rainfall (mm�hr−1). We used daily precipitation
values (mm�day−1) of the GSMAP_Gauge_NRT (near
real-time with gauge-calibration using the NOAA CPC
Unified Gauge-Based Analysis of Global Precipitation
dataset, 0.5�) that has the longest record, starting in 2000
up to present day. We downloaded the GSMAP data from
https://sharaku.eorc.jaxa.jp/GSMaP/.

3.1.3 | MSWEP

The MSWEP precipitation dataset provides 3-hourly and
daily temporal resolution at 0.1�–0.25� spatial resolutions
from 1979 to near present on a global scale (Beck
et al., 2017a; 2017b; Beck et al., 2019). It merges gauge
observations, satellite, and reanalysis estimates based on
timescale and location (Beck et al., 2019). The weight
assigned to the gauge-based estimates is calculated from
the gauge network density, and the weights assigned to
the satellite- and reanalysis-based estimates are calcu-
lated from their comparative performance at surrounding
gauges (Sun et al., 2018). We used the latest version of
MSWEP with a spatial resolution of 0.1� (about 11 km at
the equator). This dataset relies on the reanalysis ERA5,
the Multi-Satellite Retrievals from the Global (IMERG)
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satellite constellation, and the Gridded Satellite (GridSat)
thermal infrared imagery, with GridSat only used prior to
2000. Unlike previous versions of MSWEP, this version
does not correct underestimation over mountainous and
snow-dominated regions in order to match rain gauge
observations as closely as possible (Beck et al., 2021). We
downloaded the MSWEP data from http://www.gloh2o.
org/.

3.2 | Precipitation gauge data

We collected data for 30 stations within the five central
Asian countries for the period 1981–2015 (Figure 1),
which were not used to correct the global precipitation
products. The selection of these stations was based on the
list of station names and locations used for the CHIRPS
product, the main public gauge sources of MSWEP (Funk
et al., 2015). We directly requested and collected the sta-
tion data from the local research and governmental insti-
tutions for validation, and they are not available on open
public archiving domains that are used for gauge correc-
tion of the global datasets. For some stations, the calibra-
tion of the global precipitation made only used a share of
the available time series (see Table S2); in these cases, we
used only the remaining data for the validation. For
GSMAP, we used only the data from those 27 stations,
which are available for the period April 2000 through
December 2015.

4 | METHODS

4.1 | Evaluation of precipitation
products at different timescales

We evaluated all products at daily, monthly, seasonal,
and annual timescales to understand their value for
applications that require precipitation data of various
temporal resolutions (e.g., hydrological forecasting, water
resource management, and agricultural drought monitor-
ing) (Tobin and Bennett, 2014; Funk et al., 2015). For the
seasonal timescale, we used calendar seasons: December,
January, February (DJF); March, April, May (MAM);
June, July, August (JJA); and September, October,
November (SON). We grouped stations by elevation
bands, precipitation amount, and precipitation regime to
evaluate the reliability of precipitation products in
diverse environmental conditions and to determine the
effect of topography and climate regimes on the perfor-
mance of the products. Since different precipitation
intensities challenge the accuracy of the precipitation
estimates, we classified daily precipitation time series

into dry spells (<1 mm�day−1) and wet spells of various
intensities (1–5, 5–20, 20–40, and >40 mm�day−1) (World
Meteorological Organization, 2008; Zambrano-Bigiarini
et al., 2017).

4.2 | Evaluation of precipitation
products at different spatial scales

We performed a point-to-pixel analysis to compare the
time series of precipitation gauge data to the
corresponding pixel of each product (Thiemig et al., 2012;
Zambrano-Bigiarini et al., 2017; Baez-Villanueva
et al., 2018). To ensure a consistent comparison among
the products, we upscaled CHIRPS to the coarser spatial
resolution of MSWEP and GSMAP (i.e., 0.1�) using bilin-
ear interpolation. To determine the effect of the
upscaling, we performed the evaluation for both original
and upscaled versions (hereafter termed CHIRPS
upscaled).

4.3 | Evaluation metrics

We evaluated the performance of the products for contin-
uous precipitation time series and for discrete precipita-
tion events. For precipitation time series, we used the
modified Kling–Gupta efficiency (KGE0) (Gupta
et al., 2009; Kling et al., 2012) (Equation S1), a dimen-
sionless metric that measures the ability of the precipita-
tion products to reproduce temporal dynamics
(correlation coefficient r) while preserving the volume
(bias ratio β) and the distribution of precipitation (vari-
ability ratio γ). KGE0, r, β, and γ values of 1 indicate a
perfect agreement between the precipitation estimates
from the product and the ground observations. KGE0

values range from −∞ to 1. To determine the product
accuracy, we used the mean absolute error (MAE)
(Equation S2), which measures the average magnitude of
the difference between the estimated and observed values
(Ebert, 2007).

We evaluated the ability of tested precipitation prod-
ucts measuring the correspondence between estimated
and observed dry and wet spells of various intensity
groups (section 4.1) using a standard contingency table
(Ebert, 2007) that summarizes the frequency of correct
and false predictions. We used three categorical
measures—that is, the probability of detection (POD), the
false alarm ratio (FAR), and frequency bias (fBias)
(Equation S3)—that quantify various aspects of perfor-
mance: POD measures the fraction of correctly identified
observed events (“hit rate”), FAR gives the fraction of
diagnosed events that were dry spells, and fBias
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calculates the ratio of the estimated events to the
observed precipitation (Ebert, 2007; Guo et al., 2017;
Baez-Villanueva et al., 2018). Perfect values are fBias
(no bias), POD (detection of all events) is 1, and FAR
(no events are incorrectly identified) is 0.

4.4 | Dominant precipitation regimes

To capture the heterogeneity of climatic conditions and
precipitation seasonality, we determined the precipitation
regimes of each gauge and its corresponding grid loca-
tions with a monthly sequence of the Pardé coefficients
(Pardé, 1933) (Equation S4), which are dimensionless
and can be used for interregional comparisons of precipi-
tation regimes. We used the k-means clustering algorithm
(Lloyd, 1982), which minimizes the sum of squares of dis-
tances between the gauging stations' values and the clus-
ter with the nearest mean. In that way, we grouped the
“shapes” of the seasonal precipitation regime according
to membership in a cluster of precipitation with a similar
shape (Weingartner et al., 2013). We selected the optimal
number of clusters (k) using the elbow method, a trade-
off between the cluster sum of squared errors, and a

larger number of clusters (graphically) (Thorndike, 1953;
Zhang et al., 2016).

5 | RESULTS

5.1 | Performance at different timescales

At the seasonal scale, all products performed worst in
summer (Figure 2). The overall performance of GSMAP
was lower compared to the other products at all time-
scales, except summer, and especially in winter
(KGE0 < 0). MSWEP, CHIRPS, and its upscaled version
showed the best performance in winter. The second-best
seasonal performance was spring for MSWEP and
autumn for CHIRPS products. All products showed posi-
tive correlation coefficients (r) for all timescales
(Figure S1). MSWEP best captures the temporal dynam-
ics of precipitation in winter, followed by the two
CHIRPS products. Moreover, MSWEP and both versions
of CHIRPS performed similarly well in autumn and
spring. In terms of bias values (β), CHIRPS and CHIRPS
upscaled showed the best performance at all timescales,
except for the summer season, when it slightly

FIGURE 2 KGE0 between the precipitation products and precipitation gauge data for six different timescales. The vertical blue line

indicates the optimum value for KGE0. From left to right and up to bottom: monthly, winter (December, January, February), spring (March,

April, May), summer (June, July, August), and autumn (September, October, November) [Colour figure can be viewed at

wileyonlinelibrary.com]
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underestimated precipitation (Figure S2). GSMAP rev-
ealed higher overestimation in winter and underestima-
tion in summer, whereas MSWEP overestimates
precipitation in autumn and summer. Among all prod-
ucts, only GSMAP overestimated the variability (γ) of the
observed precipitation, especially in winter (Figure S3),
whereas the other products underestimated it at all time-
scales but particularly during the summer season.

CHIRPS and its upscaled version performed best at
monthly timescales and performed similar to MSWEP at
the annual timescale. MSWEP showed the highest corre-
lations but also the highest overestimation of precipita-
tion at both scales. CHIRPS upscaled, followed by
CHIRPS, performed best in terms of bias as well as in
capturing the precipitation variability at monthly time-
scales, whereas MSWEP had a better performance in esti-
mating the precipitation variability at the annual
timescale.

Our results reveal distinct variations in MAE for dif-
ferent timescales (Figure 3). Regarding the lowest median
MAE, both CHIRPS datasets showed it in autumn,
GSMAP demonstrated it in summer, and MSWEP
showed it in spring and winter. MSWEP in summer and
GSMAP in spring, winter, and autumn exhibited the larg-
est errors. CHIRPS products presented the lowest MAE at
annual and monthly timescales.

5.2 | Spatial evaluation of the products'
performance

The highest correlations for all products were found in
the western part of the study area, where most of the pre-
cipitation occurs in winter and spring (Figure 4). GSMAP
overestimated the variability of precipitation (γ) in the
southern Pamir and western Tien Shan, while the other
products, especially MSWEP, underestimated the vari-
ability in this area. All of the datasets overestimated pre-
cipitation (β) in the same region, with CHIRPS and its
upscaled version performing slightly better. In the south-
eastern Pamir and western Tien Shan, the overall perfor-
mance (measured with KGE0) was poor for all products,
but especially that of GSMAP. The precipitation products
performed best in the stations located in the western
Pamir and northern Tien Shan, with KGE0 values of 0.92
for MSWEP, 0.87 for both CHIRPS products, and 0.83 for
GSMAP. Overall, the MAE was lowest in the western
region where MSWEP performed best, followed by
GSMAP, CHIRPS upscaled, and CHIRPS. We found the
highest MAE in the southwestern Tien Shan for all prod-
ucts, followed by the southern Pamir, especially for
GSMAP and MSWEP.

To determine how topography and climate regime
affected the products' performance, we grouped all

FIGURE 3 Mean absolute error (MAE) in mm of various global precipitation datasets and precipitation gauge data for six different

temporal scales. The vertical blue line indicates the optimum value for MAE [Colour figure can be viewed at wileyonlinelibrary.com]
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stations by elevation bands, precipitation amount, and
precipitation regime (Figure 5). All of the products, but
especially GSMAP, had lower performance at high eleva-
tions (>3,000 m). MSWEP performed best in the low-
lands (<1,000 m), while CHIRPS excelled at mid-
altitudes (2,000–3,000 m). The MSWEP and CHIRPS
products had similar performance between 1,000 m and
2,000 m elevation.

Considering annual precipitation, MSWEP per-
formed best for wetter locations (>300 mm�year−1),
while both CHIRPS performed best for moderately wet
locations (150–300 mm�year−1) (Figure 5b). For drier
locations (<150 mm�year−1), all of the products failed
to capture the precipitation dynamics. With respect to
precipitation regimes, all of the products performed
best in cluster 1, where most of the precipitation falls

CHIRPS CHIRPS upscaledGSMAPMSWEP
K

G
E'

r
M

A
E

β
 

γ 

FIGURE 4 KGE0, its components (r, β, γ), and MAE derived from a monthly timescale. The colours for KGE0, r, and MAE range from

light yellow (very poor performance) to dark red (best performance). For β and γ, white colours represent their best performance, while
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FIGURE 5 KGE0 at a monthly timescale between the precipitation products and precipitation gauge data for different (a) elevation

bands: 0–1,000 m, 1,000–2,000 m, 2,000–3,000 m, and 3,000–4,000 m; (b) mean annual precipitation (2000–2015); (c) precipitation regimes

with corresponding clusters (cluster 1 has winter–spring precipitation, long dry summers; cluster 2 has winter–spring precipitation, short dry
summers, and cluster 3 is characterized by summer precipitation). The vertical blue line indicates the optimum value for KGE0. N indicates

the number of stations in each group [Colour figure can be viewed at wileyonlinelibrary.com]
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in winter and spring, with long dry summers and
autumns (Figures 1 and 5c). MSWEP showed the
highest median values, followed by CHIRPS. In cluster
2, with precipitation in winter and spring but short,
dry summers, CHIRPS products performed better than
the other products did. However, in cluster 3 (summer
precipitation), all of the products performed poorly,
and only MSWEP had positive median KGE0 values.
CHIRPS and its upscaled version were unable to cap-
ture the summer precipitation regime of most of the
stations (Figure 6e,f), and MSWEP performed better in
representing the region's climatology but overestimated
the precipitation amounts.

5.3 | Evaluation of dry and wet spells

All of the precipitation products were able to accurately
detect dry spells with POD >0.6 (Figure 7). However, the
ability to detect wet spells decreased proportionally with
increasing precipitation intensity. MSWEP showed
slightly better performance in terms of POD, except for
the most intense precipitation class, for which CHIRPS
upscaled performed better. The FAR values are consistent
with the POD, and all of the products identified dry spells
very well, with MSWEP having slightly better perfor-
mance, which decreased with precipitation intensity, and
GSMAP having better performance for moderate precipi-
tation events. CHIRPS showed the closest agreement for
all precipitation intensities in terms of fBias, with a slight
overestimation (fBias >1) of light events and an underes-
timation (fBias <1) of heavy precipitation.

6 | DISCUSSION

We evaluated the performance of three precipitation prod-
ucts (CHIRPS, GSMAP, and MSWEP) with a spatial reso-
lution higher than 12 km to capture local precipitation
patterns over the heterogeneous topography and climate
of Central Asia. To do so, we collected precipitation data
from 30 independent gauging stations across the region.
We accounted for elevation, precipitation regime, precipi-
tation amount, intensity of wet spells, temporal dynamics,
and different timescales. Overall, the products all per-
formed best in (a) altitudes below 3,000 m; (b) regions
dominated by winter and spring precipitation; and
(c) wetter periods (i.e., winter and spring) and locations
with between 150 and 600 mm of precipitation per year,
and the products accurately detected dry spells. We found
key differences between the products. MSWEP was best at
capturing precipitation dynamics, CHIRPS was best at rep-
resenting the volume and distribution of precipitation over

different timescales and locations, and GSMAP generally
showed poorer performance. We also evaluated MSWEP
v2.8 for the first time and found that, as compared to pre-
vious versions (the results of an earlier evaluation are pres-
ented in Figures S4 and S5), v2.8 improved the overall
performance in the study region, especially for spring and
winter, and did not overestimate precipitation as much.

MSWEP and CHIRPS also captured precipitation
dynamics well for the Tibetan Plateau (MSWEP v2) (Liu
et al., 2019), Chile (MSWEP v1.1) (Zambrano-Bigiarini
et al., 2017), western Africa (MSWEPv2.2) (Satgé
et al., 2020), India (MSWEP v2.1) (Prakash, 2019), and
the Bolivian Altiplano (MSWEP v2.1) (Satgé et al., 2019).
Because CHIRPS is intended to support agricultural
drought monitoring, its best performance was expected at
around the wettest months for each location (Funk
et al., 2015). This is supported by our results for Central
Asia, where CHIRPS performed best for wetter periods
and locations. Similar to our results, GSMAP also had the
comparatively poor performance for the mountainous
endorheic system of the Bolivian Altiplano (Satgé
et al., 2019) and for western Africa (Satgé et al., 2020).
The accuracy of GSMAP estimates may be affected by the
lower number of stations in the source data CPC com-
pared to MSWEP and CHIRPS (Satgé et al., 2020).

Despite MSWEP and CHIRPS having the best overall
performance, we found some limitations. Both products
performed worst in summer (overestimation of precipita-
tion), during the driest period in areas where winter and
spring precipitation dominate (clusters 1 and 2; Figure 1),
and for stations in areas with precipitation below
150 mm�year−1. Similar findings have been reported for
CHIRPS in other drylands, such as northeast Brazil
(Paredes-Trejo et al., 2017), Sub-Saharan Africa (Harrison
et al., 2019), and Mainland China (Bai et al., 2018), as
well as for MSWEP (v2.1) in northeast India
(Prakash, 2019). The low performance in these areas
arguably is due to the very low precipitation, in that a
single incorrectly identified rainfall event could lead to
100% overestimation or underestimation (Zambrano-
Bigiarini et al., 2017). Satellite-based precipitation esti-
mates may be more suited to estimating convectional
tropical rainfall patterns than the isolated, highly local-
ized, and short-lived convective rainfall typical in semi-
arid to arid areas (Dinku et al., 2010; Thiemig et al., 2012;
Beck et al., 2017b). Our findings support this claim. In
dry regions, detecting precipitation is difficult because
space-born sensors (e.g., microwave and infrared sensors)
can miss the subcloud evaporation of raindrops or rain-
fall suppression by desert aerosols (e.g., mineral dust)
and be affected by the land's surface properties, such as a
hot background (e.g., upwelling microwave radiation)
(Dinku et al., 2011; Beck et al., 2017b).
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We found that the products overestimated precipita-
tion at higher elevations (>3,000 m), possibly because the
gauge network density in such areas is low (Harrison
et al., 2019). In complex mountainous terrains, precipita-
tion can be falsely detected due to long-lasting orographic
clouds or by the contrast between the temperature and
the emissivity of rough land surfaces of water and snow-
covered areas, which satellite sensors can misinterpret as
precipitation (Gebregiorgis and Hossain, 2013; Guo
et al., 2015; Satgé et al., 2019). In addition, in global eval-
uations, the reanalyses exhibited lower accuracy than the
microwave- and infrared-based satellite datasets in the
tropics did (Beck et al., 2017b). In contrast, these products
perform well in extratropical regions, probably linked to
deficiencies in the subgrid convection parameterization
schemes along with issues in the land surface parameteri-
zation (Beck et al., 2017b). The coverage of the raw data
sources, orographic correction, and interpolation tech-
niques may compromise the accuracy of the precipitation
products (Sun et al., 2018). Considering the high depen-
dency of the global precipitation products on local gauge
calibration, more efforts are needed to increase the acces-
sibility of local observations in order to improve the prod-
ucts' quality and reliability for hydrological, agricultural,
and climate studies.

All of the products performed worse in southeastern
Pamir and Tien Shan, where precipitation peaks in sum-
mer. Generally, such poor performance among all of the
products for summer precipitation can be related to chal-
lenges in capturing the orographic uplift of warm clouds,
false detection of very cold high clouds as precipitating
by infrared products, and microwave products missing
warm precipitation from shallow clouds (Gebregiorgis

and Hossain, 2013; Behrangi et al., 2014; Satgé
et al., 2019). Moreover, for the reanalysis-based products
(i.e., CHIRPS and MSWEP), poor summer performance
might additionally have resulted from an unrealistic
northward displacement of the monsoon cycle
(Di Giuseppe et al., 2013) and from the fact that atmo-
spheric models in mid-latitudes can more reliably predict
winter precipitation associated with synoptic systems
such as fronts than it can summer precipitation, which is
more often associated with convective systems such as
thunderstorms (Haiden et al., 2012; Zhu et al., 2014).

Although the examined precipitation products were
able to detect dry spells accurately, their performance
decreased for wet spells as precipitation intensity
increased. This lower performance for higher intensities
can be associated with local storm events with a spatial
extent smaller than the satellites' spatial resolution
(Thiemig et al., 2012). The weaker detection ability of
CHIRPS might be related to its fixed threshold for
detecting precipitation from cloud temperatures that
might not be appropriate for this region as well as its
dependency on the 0.25� TRMM training data, which
contributes to the false detection of rainfall events when
averaged over larger areas (Dinku et al., 2010; Toté
et al., 2015; Paredes-Trejo et al., 2017; Dinku et al., 2018).
The reported duplication and inconsistency in the gauge
sources used to calibrate CHIRPS could be additional
sources of uncertainty (Rivera et al., 2018).

Finally, our results suggest that the precipitation
product's selection depends on the specific user needs or
application and the regional characteristics. For example,
CHIRPS and MSWEP perform best during winter and
spring, which makes them suitable to assess terrestrial
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FIGURE 7 Median values of probability of detection (POD), false alarm ratio (FAR), and frequency of bias (fBias) performance for dry

spells (<1 mm�day−1) and wet spells of different intensities (1–5, 5–20, 20–40, and >40 mm�day−1). The horizontal dashed line indicates the

optimum POD, FAR, and fBIAS values [Colour figure can be viewed at wileyonlinelibrary.com]
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water storage prior to the irrigation season. While
CHIRPS provides daily precipitation amounts, MSWEP
has a higher temporal resolution (3-hr resolution), mak-
ing it more appropriate for subseasonal hydrological
monitoring and forecasting (Beck et al., 2017b). Both
products have had a long temporal record, from 1979
(MSWEP) and 1981 (CHIRPS) to near the present, with a
delay of several days (CHIRPS) or several hours
(MSWEP). CHIRPS has a higher spatial resolution (0.05�)
as compared to MSWEP (0.1�) and more suitable for
smaller catchments in elevations below 3,000 m. The
products' best performance was achieved in the western,
central, and northern Tien Shan and Pamir mountains
and in adjacent regions. Although we did not find consid-
erable differences between the original and upscaled ver-
sion of CHIRPS, a lower performance of the upscaled
version can arise from the resampling method used for
upscaling; hence, we advise the use of CHIRPS in its
native resolution.

7 | CONCLUSION

We presented the first evaluation of three global high-
resolution precipitation products over the heteroge-
neous topography and climate of Central Asia using
independent station data. We quantified the products'
ability to reproduce temporal dynamics while preserving
the volume and distribution of precipitation, evaluated
the products' accuracy, and assessed the products' ability
to detect dry and wet spells of different intensities
accurately.

We found that CHIRPS and MSWEP were the most
reliable global products for obtaining high-resolution pre-
cipitation estimates in Central Asia, especially for wet
seasons. Nevertheless, our results highlight high spatial
and temporal heterogeneity of the performance, which
indicates that the final product for a local application
must be selected with care, based on the guidelines pro-
vided above. This is particularly relevant for regions with
low precipitation levels and in complex terrain where
ground station data are sparse.
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