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To limit global warming to 1.5°C, vast amounts of CO2 will have to be removed from the atmos‐
phere via Carbon Dioxide Removal (CDR). Enhancing the CO2 sequestration of ecosystems will 
require not just one approach but a portfolio of CDR options, including so‐called nature‐based 
approaches alongside CDR options that are perceived as more technical. Creating a CDR “supply 
curve” would however imply that all carbon removals are considered to be perfect substitutes. 
The various co‐benefits of nature‐based CDR approaches militate against this. We discuss this 
aspect of nature‐based solutions in connection with the enhancement of blue carbon ecosys‐
tems (BCE) such as mangrove or seagrass habitats. Enhancing BCEs can indeed contribute to 
CO2 sequestration, but the value of their carbon storage is low compared to the overall contri‐
bution of their ecosystem services to wealth. Furthermore, their property rights are often un‐
clear,  i.e. not comprehensively defined or not enforced. Hence, payment schemes that only 
compensate  BCE  carbon  sequestration  could  create  tradeoffs  at  the  expense  of  other  im‐
portant, often local, ecosystem services and might not result in socially optimal outcomes. Ac‐
cordingly, one chance for preserving and restoring BCEs lies in the consideration of all services 
in potential compensation schemes for local communities. Also, local contexts, management 
structures, and benefit‐sharing rules are crucial factors to be considered when setting up inter‐
national payment schemes to support the use of BCEs and other nature‐ or ecosystem‐based 
CDR. However, regarding these options as the only hope of achieving more CDR will very prob‐
ably not bring about the desired outcome, either for climate mitigation or for ecosystem preser‐
vation. Unhalted degradation,  in turn, will make matters worse due to the large amounts of 
stored carbon that would be released. Hence, countries committed to climate mitigation in line 
with the Paris targets should not hide behind vague pledges to enhance natural sinks for re‐
moving atmospheric CO2 but commit to scaling up engineered CDR.  
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1 Introduction 
The Intergovernmental Panel on Climate Change (IPCC) estimates that as of 2020 the limit for 
the emission of CO2 in net terms is 400 Gt if the increase in global surface air temperature is to 
be limited to 1.5°C with a probability of 67% (IPCC, 2021). This means that emission scenarios 
in line with this remaining carbon budget entail a median of 730 Gt atmospheric carbon dioxide 
removal (CDR) by the end of the century in addition to globally coordinated deep emission cuts 
(Rogelj et al., 2018). Insufficient greenhouse gas and (especially) non-CO2 mitigation would 
require larger amounts of CDR, as would the reduction of net uptake by natural carbon sinks. 
A distinction has been proposed between engineered, more technical, and nature-based 
solutions for CDR (Seddon et al., 2020a, 2020b), with current policies favoring atmospheric 
carbon removal via nature-based solutions (Seddon et al., 2019; Buylov et al., 2021). However, 
the distinction between engineered and nature-based solutions is by no means clear-cut but 
subject to societal construction (Bellamy and Osaka, 2020; Bertram and Merk, 2020).  

Recent assessments of nature-based and engineered CDR approaches focus primarily on their 
technological availability and the potential scale of CO2 removal (Royal Society, 2018; 
National Academies of Sciences, Engineering, and Medicine, 2019), neglecting the different 
governance challenges associated with these approaches. On the one hand, engineered solutions 
such as Direct Air Carbon Capture and Storage with verification of removal, permanent storage, 
and clear property rights, would seem to be candidates for a decentralized, market-based 
integration into climate policies by including them, for example, in emissions and offset trading 
(Rickels et al., 2021). On the other hand, the commons that provide the natural carbon sinks 
often lack such property rights and are threatened by local, regional and global pressures at the 
same time, imposing a particular governance challenge on these local commons.  

We discuss potential governance challenges arising for nature-based CDR in a local-commons 
context. While land-based carbon removal approaches, especially forests, have received a lot 
of attention in the past in this regard (see e.g. Hatcher, 2009), the local commons governance 
challenges of ocean-based carbon removal approaches have received less attention. We thus 
focus on different blue carbon ecosystems (BCEs). The first challenge is to avoid emissions by 
preserving these ecosystems and their carbon stocks. The second challenge is to increase the 
carbon uptake while not compromising on or neglecting other, more valuable ecosystem 
services BCEs provide. The third challenge is to incentivize the provision of ecosystem services 
and govern BCEs in a way that preserves or improves local livelihoods, respects cultural 
contexts, and reconciles the local, regional, and global demands for the multiple ecosystem 
services BCEs provide. We argue, that a structured evaluation of local governance schemes 
similar to the work done by the International Forestry Resources and Institutions (IFRI) 
research network on common-pool forest management is needed to identify best practices for 
BCE management.   

 

2 Conservation, restoration and creation of blue carbon ecosystems   
Coastal ecosystems include mangroves, salt marshes, and seagrass meadows. They provide 
various services, including carbon uptake and storage. This is reflected in the introduction of 
the term “blue carbon” to heighten public awareness of the importance of the carbon 
sequestration potential of marine and coastal ecosystems (Nellemann et al., 2009; Macreadie et 
al., 2019; Lovelock and Duarte, 2019). However, the term blue carbon is neither restricted to 
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the ecosystems listed above nor to only naturally occurring carbon sequestration. Macroalgae 
ecosystems are also covered by the term and these “may be supporting higher global C burial 
rates than seagrass, tidal marshes, and mangroves combined” (Macreadie et al., 2019, p. 4). 
Blue carbon sequestration can also be achieved by utilization of marine biomass. Carbon fixed 
in marine micro- and macroalgae could be turned into fuels or used for electricity generation 
and could provide CDR when combined with carbon capture and storage (Krause-Jensen and 
Duarte, 2016; Williamson et al., 2022).The aggregate annual carbon sequestration of blue 
carbon ecosystems is rather low, even though mangroves, salt marshes, and seagrass meadows 
sequester carbon per unit area at significantly higher rates than forests (cf. e.g. Duarte et al., 
2010; Mcleod et al., 2011). According to Bertram et al. (2021) mangroves, salt marshes, and 
seagrass meadows have an annual carbon sequestration of 24.0 [Standard Error of the Mean, 
(SEM) 3.2] MtC y-1, 13.4 [SEM 1.4] Mt C y–1, and 43.9 [SEM 12.1] MtC y-1, respectively, 
totaling 81.2 MtC y-1 across all these BCEs. This is less than one percent of the annual fossil 
fuel and industrial CO2 emissions in 2020 (10.9 GtC, Friedlingstein et al., 2020). Furthermore, 
the prospects of achieving “extra” CDR via restoration are fairly low even though their marginal 
carbon removal per area is high since suitable areas are limited. Assuming that 40 percent of 
historical BCEs were restored, the estimated additional annual removal would be about 50 MtC 
y-1 by the year 2050 (Williamson, 2022). Accordingly, the National Academies of Sciences, 
Engineering, and Medicine (2019) estimate that in US coastal wetlands an additional 
cumulative removal of 1,500 MtC by 2100 could be achieved via various approaches to 
restoration. In comparison, achieving blue carbon sequestration via magroalgae plantations and 
utilization of marine biomass, feasible annual carbon removal is estimated to range between 0.8 
and 1.1 GtC y-1 (National Academies of Sciences, Engineering, and Medicine, 2019, 
Williamson et al., 2022). 

The advantage of BCEs over, for example, terrestrial forests is their capability to sequester 
carbon continuously as “sediments accrete vertically in response to rising sea level” (Mcleod et 
al., 2011, p. 554). Carbon density is highest for mangroves (502 tC ha-1), followed by marshes 
(265 tC ha-1) and seagrasses (111 tC ha-1), resulting in estimated global carbon stocks of 7.3 
GtC for mangroves, 5.6 GtC for marshes, and 5 GtC for seagrass meadows (Goldstein et al., 
2020). In comparison with terrestrial ecosystems, only peatlands (~500 tC ha-1) can match the 
carbon density of mangrove ecosystems. The share of BCEs’ soil carbon in total carbon 
(biomass + soil carbon) is significantly larger than the respective share for most types of 
terrestrial forest. Consequently, the percentage of initial soil-organic carbon typically lost in 
conversion or ecosystem loss is substantially larger for BCEs (81% for mangroves) than for 
terrestrial forests (< 30%). For mangroves, for instance, nearly two-thirds of the carbon initially 
stored in the biomass or the soil is considered irrecoverable (Goldstein et al., 2020). Depending 
on assumed carbon density and annual hectares lost, emissions from the decline of mangroves 
alone could lie between 40 and 186 MtC y-1 (Howard et al., 2017), the latter being slightly 
below fossil and industrial CO2 emissions in Germany in 2019 (192 MtC, Friedlingstein et al., 
2020). It is therefore essential to protect existing blue carbon ecosystems to avoid additional 
emissions.   
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3 Blue carbon ecosystems: ecosystem services and pressures  
While blue carbon sequestration recently received a lot of attention, coastal ecosystems actually 
provide many further benefits and services on different geographical scales (see Table 1) which 
are more valuable than their carbon storage. They contribute to all the main categories of 
ecosystem services established in the Millennium Ecosystem Assessment (2005): 
(1) supporting services by sediment formation, nutrient cycling, and as a habitat for aquatic 
species; (2) provisioning of food and materials, like timber or fish stocks; (3) regulating 
services, as BCEs purify the water through their absorption of pollutants and excess nutrients, 
reduce coastal erosion, offer protection against floods, and sequester significant amounts of 
carbon; (4) cultural services in the form of spiritual or recreational value to residents and 
tourists (Vegh et al., 2019). The regulating services in particular can play an important role in 
mitigating and adapting to climate change (Duarte et al., 2013), especially since BCEs are able 
to self-maintain and even repair after major storms (Gedan et al., 2011) and even hold out 
prospects for adaptation to future sea-level rise (Williamson et al., 2022).  

Costanza et al. (2014) estimate the global value of coastal ecosystems, including all coastal 
ecosystem services, to be US$ 31.6 tr yr –1. In comparison, Bertram et al. (2021) estimate the 
value of global BCE carbon storage to be one order of magnitude lower, at around US$190.7 
bn yr –1 (± 29.5 bn). Thus, the value of natural, non-enhanced carbon storage is quite low 
compared to BCEs’ overall contribution to wealth. Also accounting for associated non-CO2 

emissions, in particular CH₄, BCE restoration targeted at carbon sequestration only is estimated 
to cost between 491 USD/tCO2 and 560 USD/tCO2 for coastal wetlands and mangrove 
restoration, respectively (Taillardat et al., 2020). By contrast, considering carbon removal as 
one of various gains from BCE restoration projects would result in “additional” carbon-removal 
monitoring costs between only 0.75 and 4 USD/tCO2 for tidal wetlands and seagrass meadows, 
respectively (National Academies of Sciences, Engineering, and Medicine, 2019).  

Consequently, integrating BCEs into (international) climate policy regimes that operate with 
carbon-only price signals may actually not only fail to bring about socially optimal outcomes 
but might even push the whole system into a less desirable state than it was in before (e.g. 
Atchison, 2019; Song et al., 2021). This means that services ranging from enhancing the local 
population’s livelihood and sustaining biodiversity to providing intangible values enhancing 
the cultural heritage (Smith et al., 2019) could be underprovided if BCEs are only conserved 
and restored based on the costs and benefits of carbon sequestration and storage.  

Simply creating a CDR “supply curve”1 where all carbon removals are considered to be perfect 
substitutes would imply that relatively cheap, technical carbon removal without co-benefits 
would be preferred over more expensive blue carbon management with very high local, 
regional, and even global co-benefits. Looking at nature-based solutions maximizing only 
carbon removal will almost certainly not be an appropriate way of realizing or even maintaining 
the various other ecosystem services. This applies in particular to their in-situ value and the 
necessity to avoid their destruction.  A reduction in the size of one BCE has non-linear effects: 
on the one hand, it is likely to induce a reduction in other ecosystem services. In a large-scale 
restoration project on the other hand, Orth et al. (2020) observe a massive spillover from 

                                                            
1 A CDR supply curve is created by plotting the different CDR options sorted by abatement costs against their 
potential to remove carbon from the atmosphere. 
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restoring seagrass meadows, finding that the seeded area of 213 ha resulted in a total revegetated 
area of 3612 ha.  

The health and existence of BCEs and terrestrial ecosystems are threatened by various pressures 
that originate from local, regional, and global levels (see Table 1). Examples include 
deforestation, land-use change, boating or dredging, and climate change (Ahmed & Glaser 
2016; Turschwell et al. 2020). In particular, BCEs are impacted by eutrophication caused by 
agricultural runoff (De los Santos et al., 2019; Lovelock et al., 2019). The sources of pressure 
can often be characterized as diffuse, especially in connection with agricultural runoff, and it is 
often difficult to attribute such non-point source pollution to a specific actor. In addition, coastal 
ecosystems are at the boundary between land an ocean where the management systems of land-
use and marine resources meet and potentially clash (O’Hagan et al. 2020). To manage BCEs 
effectively and to achieve a socially optimal outcome, pressures on, and co-benefits provided 
by BCEs have to be understood and considered, actors responsible for pressures and ecosystem 
services should be held accountable and benefit from the conservation and restoration of 
ecosystems.  

 

4 Governance of blue carbon ecosystems 
In a stylized management approach, the various services and disservices, plus pressures on the 
BCEs, would be quantified to derive optimal payments and compensations between the various 
stakeholders to achieve socially optimal BCE conditions.2 Figure 1 illustrates this approach, 
considering the internalization of further services like water purification and depicting an 
idealized payment scheme with the local community as property-rights holder. The 
management approaches related to CDR that are currently under discussion are often based on 
the idea that regional and global stakeholders should compensate a local community providing 
access to a BCE for services like carbon storage by way of some international payment scheme 
(e.g. similar to REDD+) through international institutions (Ahmed & Glaser 2016; Herr et al. 
2012; ICUN 2021). Figure 1 illustrates this situation by showing CO2-based monetary payments 
in a different color. If compensation for CDR alone were paid, other ecosystem (dis)services 
and pressures on BCEs would be ignored, thus leading to a non-optimal outcome. 

 

 

                                                            
2 One could argue that “pressures” and “services” are two sides of the same coin, as the services of the 
ecosystem may be to absorb pressure, i.e. eutrophication as a “pressure” may be counterbalanced by 
the purification “service” of the ecosystem. However, a pressure (negative externality) may be so 
strong as to actually destroy the ecosystem. Accordingly, we explicitly include both “pressures” and 
“services”.  



 
 

6 
 

 

Figure 1: Idealized payment scheme for internalizing externalities (pressures and (dis)services) on 
different scales, assuming that the local community – consisting of users and other stakeholders - is 
the holder of the property rights.3  

This approach, however, hinges on the central assumptions that all services and disservices can 
be measured and that the property rights can be clearly defined and enforced. On the local level, 
where most nature-based solutions would be realized, this is often not the case. Clearly defined 
and measurable management targets are often absent (Domínguez-Tejo & Metternicht 2018) 
and more importantly, BCEs can often be categorized as commons that are affected by the 
actions of a broad variety of user groups since they provide various ecosystem services for 
coastal communities. Without any (formal) assignment of property rights, an open access 
situation prevails, usually resulting in overuse of the resource and its respective services. The 
current situation related to coastal ecosystem services is far from ideal, e.g. as their direct and 
indirect benefits are rarely considered in decision-making (European Commission 2022), 
suggesting that property rights assignment or enforcement is mostly lacking. Even if property 
rights are assigned, this might only be the case for some but not all services. Furthermore, 
enforcement is often difficult, leading to de-facto open access regimes (Miteva et al. 2015). Just 
as for the other services, property rights frameworks for carbon removal are missing. In theory, 
for example a country or the developer of a project could own the carbon removal, but in 
practice, a related legal framework has been defined by only very few countries (IUCN 2021).  

Coastal communities in developing countries often lack these resources and the capacities 
(Turschwell et al. 2020; Williams et al. 2020). While formal property rights might be missing 
in such contexts, there are implicit systems of de-facto-use rights of marine resources (Bennett 
2016). But these customary tenure schemes do not automatically lead to sustainable outcomes 
(Ferse et al. 2010). For example, in the case of marine protected areas the environmental 
outcomes, such as an increase in the abundance of fish biomass and species or mangrove 
densities, do not only depend on the size, age, geographical isolation, and degree of 

                                                            
3 We note that the division into ‘services and ‘disservices’ can be a matter of subjectivity. While 
beach wrack is often seen as disservice polluting beaches, the wrack could also be used and would 
then count as ‘service’.  
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fragmentation of an area, but also on the rules for access to it and the enforcement of protection 
(Edgar et al., 2014; Miteva et al. 2015; Turschwell et al. 2020). When the rules are forced upon 
communities this can lead to a boycott (Ferse et al. 2010). They will oppose the total closure of 
the area especially when the local population depends on extractive uses like timber or fodder 
from mangrove forests to sustain their livelihoods, (e.g. Badola et al., 2012; Roy, 2016). At the 
same time, the provision of other services like storm protection or nursery habitats can increase 
local support for mangrove conservation and restoration (Stone et al., 2008; López-Medellín et 
al., 2011; Badola et al., 2012). Even though it has long been recognized that community 
involvement is a crucial factor in the successful management of mangrove forests or marine 
protected areas (for an overview on mangroves see Arumugam et al. 2020), most marine 
protected areas are still implemented top-down (Ferse et al. 2010).  

However, the mere inclusion of local stakeholders is not sufficient in itself. Trust in local 
management and clear benefit-sharing schemes are equally important (Arumugam et al., 2020; 
Ha et al., 2012; Wever et al. 2012). The rise of blue carbon and the growing attention to the 
ecosystems’ carbon sequestration and storage service puts a spotlight on a before neglected 
service and raises interest among international actors. These new, external actors whose goal it 
is to create offsets for international carbon markets may be perceived as intruders by local 
communities (Gannon and Hulme, 2018). Furthermore, the focus on payments for CDR-only 
may lead to local governance geared to international money flows, thus leading to a relative 
neglect of local co-benefits and moving further away from the social optimum. If the local 
benefit-sharing rules are not well established, this can exacerbate inequalities in the local 
community and lead to continued exploitation of BCEs as poorer households continue to 
depend on it. This has similarly been observed for aquaculture, where the benefits accrue only 
for a few managers, while the pressures on the coastal ecosystems affect the entire community 
(van Oudenhoven et al. 2015).  

Ferse et al. (2010) concluded in their review of studies evaluating the implementation of marine 
protected areas that a systematic survey and evaluation of local management practices was still 
absent. A more recent cross-country evaluation of the impact of anthropogenic pressures and 
regulatory strength on mangrove loss revealed no systematic patterns but highlighted the 
importance of national contexts (Turschwell et al. 2020). While in the meantime there are 
studies analyzing the local governance of mangrove forests in countries like Brazil and 
Indonesia (e.g. Miteva et al. 2015; van Oudenhoven et al. 2015; Wever et al. 2012), there is to 
the best of our knowledge no comparative study of best-practices on a community level looking 
at schemes to govern various BCEs especially when the global perspective of carbon storage is 
added. We, therefore, take a look at the experiences with forests as common-pool resources, 
the empirical evaluation of community forest management (CFM) and the role of the 
international REDD and REDD+ frameworks.  

 

5 Property-rights regimes and lessons to be learned from the literature 
on common-pool resources  
The net emissions from forestry and other land-uses including deforestation accounted for 11% 
on average of annual GHG emissions between 2007 and 2016 (IPCC 2019). This being so, 
international schemes have been discussed to compensate for (local) income losses resulting 
from refraining from deforestation (Hatcher, 2009). The idea is to internalize global benefits 



 
 

8 
 

via payment schemes so that incentives to avoid deforestation are in place. Reducing emissions 
from deforestation and forest degradation (REDD) in combination with conservation of forest 
carbon stocks, sustainable management of forests, and enhancement of forest carbon stocks 
(REDD+) are frameworks developed under the UNFCCC to provide such incentives. However, 
REDD or REDD+ have been criticized for their failure to reduce deforestation and the fact that 
so far their contribution to climate change mitigation has been overestimated (West et al., 2020). 
One reason brought forward for the poor performance of this framework is that local 
communities and stakeholders have not been properly involved.  

Several empirical studies investigating the performance of common-pool resource governance 
focus on forest management and thus provide potential insights for the management of nature-
based CDR in general. Drawing upon data from the International Forestry Resources and 
Institutions (IFRI) research network, Hayes (2006) finds no statistically significant difference 
in forest conditions between legally protected areas (e.g., national parks or wilderness areas) 
and areas governed by local communities, suggesting that the outcomes of installing protected 
areas are not necessarily superior to the outcomes of management regimes with appropriate 
rules and the involvement of locals in common-pool forests.  

Also referring to the IFRI project database, Chhatre and Agrawal (2008) demonstrate that local 
enforcement is strongly associated with forest regeneration. Furthermore, Chhatre and Agrwal 
(2009) find that local rule-making autonomy facilitates “win-win outcomes,” i.e., 
improvements in livelihoods and carbon storage. From the same data, Coleman (2009) 
concludes that local sanctioning and monitoring seems to be a more decisive factor than the 
form of ownership. Investigating the determinants of local monitoring and sanctioning, 
Coleman and Steed (2009) find that the right to extract resources from the common-pool 
resource increases users’ willingness to engage in monitoring and sanctioning. In a meta-
analysis, Porter-Bolland et al. (2012) show that in their sample of 73 case studies the annual 
deforestation rates under CFM are lower and less variable than in protected areas, although 
deforestation occurs in both categories.  

Brooks et al. (2012) use four dimensions (attitudinal, behavioral, ecological, economic) to 
analyze community-based conservation efforts regarding forests, grasslands, fisheries, and 
wildlife. Their main finding indicates that local capacity building, i.e., investments in human 
capital, is generally associated with positive outcomes. Oldekop et al. (2019) examine the effect 
of CFM in more than 3800 municipalities in Nepal, finding that CFM reduces both deforestation 
and poverty, although the initial poverty level moderates this effect. In a more recent meta-
analysis, Hajjar et al. (2021) provide more nuanced insights into the effects of CFM on 
environmental outcomes, income, and resource access rights. In the majority of up to 524 cases, 
environmental indicators and livelihoods are positively affected by CFM; however, the 
commercial or subsistence access rights decreased in more than 50% of the 249 studies 
providing information on this category.  This led to serious trade-offs between income and 
access rights, especially when elites benefited from formalized CFM while poor or 
marginalized groups lost their subsistence access.  This shows that the design of benefit-sharing 
rules is important and should be included in any analysis, as only half of the observed sharing 
schemes resulted in more equitable outcomes. The conclusion is that the distribution of rights 
within local communities is an important success factor for CFM. Overall, the empirical 
findings described above are not conclusive in identifying the one perfect approach to managing 
forests or common-pool resources; however, they are conclusive in the sense that while there 
is no panacea, the inclusion of the local community and particular attention to local property 
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rights are likely to favor positive environmental outcomes. As Ostrom (2010), the initiator of 
the IFRI research program, notes: 

“Our research shows that forests under different property regimes—government, private, 
communal—sometimes meet enhanced social goals such as biodiversity protection, carbon 
storage, or improved livelihoods. At other times, these property regimes fail to provide 
such goals. […] Thus, it is not the general type of forest governance that is crucial in 
explaining forest conditions; rather, it is how a particular governance arrangement fits the 
local ecology, how specific rules are developed and adapted over time, and whether users 
consider the system to be legitimate and equitable” (Ostrom, 2010, p. 658). 

For the management of BCEs, one can conclude from the empirical studies that they can indeed, 
under the right circumstances and governance framework, contribute to positive ecological and 
socio-economic outcomes. The quote from Ostrom above also indicates the need for further 
research on the governance of BCEs, as the regime needs to fit the local ecology. Unlike in 
forest systems, where research has shown that extractive use increases the willingness to engage 
in monitoring efforts, extractive use may be less relevant for many BCEs as typical services 
include coastal protection and nutrient and pollution uptake (see Table 1). However, the range 
of regional and global pressures that affect BCEs directly or indirectly by changing their 
environment (see Table 1) demonstrates that even if local institutions prevent overuse of 
resources and foster sustainable outcomes, achievement of such outcomes cannot be taken for 
granted. For instance, a seagrass meadow may be protected locally, but nutrient spillovers into 
the sea could threaten its preservation. These aspects show that insights from the literature on 
the communal management of terrestrial forests can only be drawn upon in part for the 
governance of BCEs.  

 

6 Discussion and conclusion 
To limit global warming to 1.5°C, natural carbon sinks will have to be preserved, enhanced, 
and extended.  Blue carbon ecosystems (BCE) can contribute to the achievement of this goal. 
However, it is still unclear how the pressures on these ecosystems from local, regional, and 
global actions can be reduced and their contribution to global carbon storage governed at the 
local level.  We identify three main challenges pertaining to the conservation, restoration, and 
enhancement of BCEs for carbon storage.  

The first challenge is that the potential for extending BCEs is low because the area available is 
limited. Thus, while prospects for achieving “extra” CDR via restoration of mangroves, 
saltmarshes, and seagrass meadows are unpromising, the destruction of BCEs would release a 
relatively large amount of carbon. New incentive schemes are needed that take this feature into 
account, and restorative measures should rather be assessed in connection with the aim of 
protecting existing meadows, i.e. keeping blue carbon stocks intact instead of considering them 
primarily as methods for carbon removal.  

The second challenge relates to the fact that the wealth BCEs generate through carbon storage 
is small compared to their contribution via other provisioning, regulating, supporting, and 
cultural ecosystem services. A carbon-only price signal might not result in a socially optimal 
outcome as a “CDR” supply curve would imply that all units of carbon removed are perfect 
substitutes neglecting differences in co-benefits and in the case of ecosystem-based solutions 
underproviding other ecosystem services. Still, not all natural sink enhancement methods are 



 
 

10 
 

equal. Accounting for CO2 storage only could, for example, favor fast-growing monoculture 
reforestation over mangrove preservation despite the differences in additional services. 
Accordingly, there is a chance of preserving and restoring BCEs by considering all services in 
potential compensation schemes for local communities. However, instead of defining CDR 
targets, policies should first adopt precautionary management strategies for these ecosystems 
that take the various ecosystem services and their climate adaptation potential into account. The 
second step would be to look at carbon sequestration and storage in these ecosystems mainly 
as a co-benefit, not their main benefit.  

The third challenge is how to govern natural sink enhancement. Since the services these 
ecosystems provide often display characteristics typical of common-pool resources or public 
goods, this poses a special management challenge. This is true in particular of marine 
ecosystems because high monitoring and enforcement costs for ocean environments imply that 
many BCEs are de facto open-access. Furthermore, ecosystem services accrue at different 
geographical levels. The major (ecosystem) services like coastal protection are provided at the 
local and regional level, while co-benefits like carbon sequestration are relevant at the global 
level. Similarly, a range of regional to global pressures affect BCEs directly or indirectly. Even 
if local institutions prevent overuse of resources and foster sustainable management – and 
strengthening local institutions seems necessary for the bid to achieve CDR and enhance co-
benefits –, there is still no guarantee that the outcome will be good in environmental terms. In 
many cases, pressures are diffuse and difficult to attribute to a particular firm or person, e.g. in 
the case of non-point source pollution. 

As an advance in the attempt to set up adequate governance systems for CDR by BCEs and to 
reverse the trend of destroying BCEs, we suggest taking detailed stock of current property rights 
allocations and local governance structures, focusing on the methods they use to incorporate 
BCEs’ ecosystem services and hence how they interact with regional or international 
institutions. Local structures are particularly important here, as good management can lead to a 
trend reversal of destroying BCEs (De los Santos, 2019; O’Connor et al., 2020; Orth et al., 
2020), but the other levels must not be left out of account. A modified IFRI-like questionnaire 
for BCEs should be devised to identify the factors that at various levels constitute successful 
governance regimes for BCEs. The current IFRI questionnaire collects information on a wide 
range of social predictor variables and ecological outcome variables, the latter including forest 
vegetation density and species diversity. Although there are several biophysical predictors such 
as elevation or temperature, most predictors relate to potential local user groups and 
associations and the activities and institutions related to forest use (Huntington et al., 2016). 
Only a few questions investigate the extent to which higher-level authorities supervise or 
interact with forest user groups. Given the variety of ecosystem (dis)services provided by BCEs 
to users at various geographical levels and the range of non-local pressures and benefits 
affecting BCEs (see Table 1), a suitable questionnaire would inquire into the ecosystem-specific 
circumstances in this connection and gather information concerning the property rights holders 
involved (Sikor et al., 2017). Also of interest are the regulatory, institutional, or organizational 
changes in the past that may have affected the BCE’s ecological outcomes, e.g., regulations on 
the agricultural use of fertilizers or integration into an international offset regime. Based on 
results from such a survey, barriers to sustainable ecosystem management and best-practices 
could be identified, which would lay the base to improve governance.  

Thus, the focus for supporting the use of BCEs and other nature- or ecosystem-based 
approaches for CDR may not be on international payment schemes like REDD+ but rather on 
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international support for setting up suitable local management structures and on a better 
understanding of the governance of natural commons across different levels. However, focusing 
on setting up suitable local management structures also requires that countries committed to 
climate mitigation in line with the Paris targets do not hide the required amounts of CDR behind 
ill-defined approaches to the enhancement of natural sinks, but commit themselves to scaling 
up engineered CDR. Pinning excessive hopes on ecosystems to provide extra CDR will most 
likely not result in the desired outcome—neither for climate mitigation nor for ecosystem 
preservation. But ignoring their role in storing carbon is not an option either.   
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