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Weather Forecasts and their Relation to Ski Demand
*

Pascal Troxler�

March 1, 2022

Abstract

In the wake of stagnating demand across Alpine ski areas, new pricing regimes and

recent advances in the availability of precise local weather forecasts, the relation of

weather forecasts to ski demand gains new relevance. By matching demand data of

three Swiss ski areas to local forecast and weather data, I investigate how forecast er-

rors a�ect ski demand above the implied weather e�ect. As demand patterns hinge on

individual conditional weather expectations, I set up an activity choice framework that

incorporates weather preferences and decision timing. I suggest that potential skiers

trade o� the risk of forecast errors against transaction costs. Therefore, skiers facing

relatively low transaction costs, such as season-pass owners, decide on average later

than those facing high transaction cost, such as one-day visitors. Using variation in

weather and forecasts, I estimate the share of late deciders being larger than that of

early deciders in two out of three areas. However, this estimate is likely biased towards

the late deciders as stable weather situations decrease the risk of failures in optimization

and allow guests to decide early without variation in forecast errors. On the contrary,

the variation in forecast errors induces large e�ect sizes: A one standard deviation in

forecast errors a�ects demand up to 20% while keeping the weather constant.

*First draft of a forthcoming working paper.
�University of Bern, Center for Regional Economic Development, Tourism Research Unit (CRED-T)



1 Introduction

It is well established in the literature that weather and snow conditions have a signi�cant

impact on the ski demand (Malasevska et al., 2017a; Shih et al., 2009; Malasevska & Hau-

gom, 2018). However, most people are likely to base their decision on weather forecasts

rather than the actual weather. Weather forecast provide information about possible skiing

conditions and as such shape the expectation of potential skiers. This allows a potential

skier to make an early decision to engage in the activity. As actual conditions in an un-

stable weather environment only become truly visible at the site itself, a decision is only

reconsidered after bearing the transaction costs of packing and driving to the area entrance.

Therefore, the ability to judge the conditions at the site and decide close to the entrance

in time and space is more bearable for those facing low transaction costs. In consequence,

weather forecasts might explain demand �uctuations better than the weather itself and more

so, when the forecasts deviate from the actual weather and when average transaction costs

are high. Moreover, neglecting forecast errors confounds estimates of the impact of the

weather itself. In the light of climate change that endangers snow-reliability in ski area oper-

ations (Koenig & Abegg, 1997; Elsasser & Bürki, 2002; Gössling et al., 2012; Gonseth, 2013;

Steiger & Abegg, 2017, 2018) and is considered a key-factor in stagnating skiing demand

within the Alps (Plaz & Schmid, 2015), operators react by implementing disruptive price

strategies while making costly mitigation investments (Falk, 2015; Malasevska et al., 2020;

Lütolf et al., 2020). Thus, accurate predictions of demand serve ski area operators in at least

two aspects: It helps to plan sta� and other short-term improvements on the operation that

reduce daily operation cost1. And it increases pricing e�ciency for those areas implementing

dynamic pricing2.

Potential skiers might react to bad weather (forecasts) in three ways: First, they choose

another activity, which decreases the overall level of skier days. Secondly, they can postpone

their activity to a day with a better weather forecast and lastly they can switch to a di�erent

area. Exploiting daily ski demand data from three large ski areas paired with local weather

and weather forecast data allows me to investigate upon the decision patterns of ski pass

owners. Up to my knowledge, there is no published study3 that empirically incorporates

1For example, what lifts to open and which slopes to groom.
2Operators increasingly base ticket prices on expected demand to extract as much as possible of the

willingness to pay of skiers conditional on the season day and/or the weather (Malasevska et al., 2020; Lütolf
et al., 2020). Often these pricing systems o�er early bookers a large discount to essentially shift the weather
risk from the area to the skier.

3I received the results of a paper by Scaglione and Doctor, 2008 that has a similar focus. The forecast
data they used is outdated (based on TV forecasts) as advances in information technology make weather
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the e�ect of local weather forecasts on skiing demand. Hence, I seek to close this gap in

the literature by (i) setting up an activity choice model, (ii) identify weather and forecast

preferences using machine learning techniques, (iii) recover causal estimates of optimistic

and pessimistic weather forecasts on the level of skiers and (iv) adapting the framework to

a dynamic context for one-week pass owners.

Surprisingly, in two out of three areas weather data is superior in predicting demand to

weather forecast data. This result persists across di�erent prediction models and validation

techniques. As weather data is generated throughout the activity and not ex ante this result

seems at �rst counter-intuitive. With the help of an activity choice framework, I suggest that

this unexpected result has two causes. First, in the areas observed a large share of potential

skiers has the possibility to decide spontaneously whether to ski or not. Moreover, potential

skiers with low transaction costs (i.e. locals or overnight guests) are even incentivized to

decide as late as possible due to the risk of having to ski in worse than expected conditions.

The weather forecast on the eve of the day in question might deviate already by much more

from the measured weather data than what the spontaneous skier observes in the morning.

Consequently, weather data explains demand more accurately in this case. Secondly, it is

inherently riskier to decide early in unstable large scale weather situations compared to stable

situations. For instance, in a typical west-wind situation, rapid weather changes exacerbate

weather forecasting relative to other situations (MeteoSchweiz, 2012). This incentivizes late

decisions exactly in those instances when forecasts likely deviate from the actual weather.

On the contrary, in a typical high-pressure situation clouds are suppressed and the fortunate

weather persists for some days. Then, potential skiers can make risk-free early decisions

but, at the same time, weather data is going to re�ect these early decisions in equal measure

to forecast data because of the ease to forecast precisely. In these situations the early

decisions are disguised by variation in weather data only and, through that, underestimated.

Aggregating these relations over unstable and stable large-scale situations, the weather data

turns out to match demand in total better than the forecast data.

Yet, forecasts alter demand on top of what the weather measurements predicts. With the

help of a panel data speci�cation including individual season day �xed e�ects to account for

the seasonality and a forecast error variable that proxies mistakes by the weather forecaster,

I show empirically how these mistakes translate to a skier outcome above or below to what

the conditions itself would predict. This can be explained by the supposedly smaller share

of potential skiers with high transaction costs (e.g. one-day trippers). They face a trade-o�

forecasts in recent years broader available in time (via the mobile phone) and space (tailored to municipalities
or mountains).
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between increasing transaction costs (e.g. late deciders might sleep in, arrive later in the

area and are generally more exposed to tra�c jams or �nding a suitable parking spot) and

decreasing weather risk over time. With large enough transaction costs, it becomes optimal

to decide early based on weather forecasts. This trade-o� can be partially disrupted by

the availability of alternative outdoor activities that involve much lower transaction costs

(e.g. biking, running, hiking etc.). In such a situation the loss invoked by a potential

pessimistic forecast - that hinders the potential skier to drive to the area even though the

actual weather would make this choice optimal - can be almost completely mitigated by

following the alternative activity. Whereas in a situation with an optimistic forecast in

which the individual bears the transaction cost by driving to the area before realizing that

the weather turns out unfortunate, the loss invoked by skiing is then irreversible. In that

case, the sunk cost for the individual will turn out to be too large to follow the optimal

choice and stay o� the mountain. The empirical analysis supports the existence of this

channel by indicating this asymmetry in pessimistic and optimistic forecasts by lower e�ect

sizes of the latter. This channel is particularly a concern for ski area operators in the wake of

climate change where mild winter weather and fewer fog-days in the �atlands enhances the

attractiveness of alternative outdoor activities relatively to skiing (Plaz & Schmid, 2015).

Using week-pass owners only, I analyse their weather and forecast related dynamic be-

haviour during their vacation. Due to their validity to ski every day, one could presume

that the weather and weather forecasts have no e�ect on demand at all. But as week-passes

have lower per-day prices, many buy them out of simple convenience and by that overtake

the weather risk from the area. As the data reveals, weather and weather forecasts alter

demand even when the entrance has already been paid for. Furthermore, the estimation of

panel models indicate lower weather dependence to the end of week-pass owners' vacation.

This could be fuelled by regret for the already paid passes (i.e. sunk cost) or due to risk

polarization regarding the weather. Some skiers learn fast and raise their engagement in the

activity to the end of the week or, conversely, some get tired from the required endurance and

decrease their engagement. Both groups' utility of skiing changes relatively to the alternative

and become less weather sensitive as consequence. Including forecast errors into the model

reveals that their e�ect is largest mid-week, suggesting that many week-pass owners use the

mid-week days to take a break when forecasts are unfortunate, or, on the other hand, want

to make use of the better predicted weather after postponing from unfavourable weather at

the start of the week.

Section 2 covers the activity choice model and the hypotheses that follow from it. Sec-

tion 3 delves into the data, its predictive performance and the identi�cation of weather

preferences. Section 4 derives the empirical strategy to evaluate the stated hypotheses and
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Section 5 covers the results before concluding in Section 6.

2 Theoretical Model

2.1 Framework

The leisure consumption choice decision is closely related to the location choice in Diamond

et al., 2017, land use choice in Scott, 2014. Suppose individual i can choose activity X =

{x = skiing, x′ = other} on any day (and thus omitting the subscript t) and can choose at

most one activity at a time. The ex-post utility is a function of choice, decision horizon h and

measured weather w. Individuals optimally choose to ski when the utility of skiing surpasses

the utility of the weather independent alternative, that is u(x,w, h) > u(x′). I assume that

individuals favour good weather and are risk averse, ∂u(x,w,h)
∂w

> 0 and ∂2u(x,w,h)
∂2w

< 0.

For modelling the weather and forecast errors I use a Bayesian framework originally

proposed by Katz et al., 1982. The observed weather can be viewed as a random variable

W with probability density function fW (w). Likewise, a weather forecast can be viewed

as a random variable F with pdf fF (f). Potential skiers evaluate not only the chances of

a speci�c weather outcome, namely the prior fW (w), but rather the chances of such an

outcome given a certain forecast - the posterior probability distribution fW |F (w|f). I allow

the prior to vary across days within a season because the weather is systematically di�erent

in early season compared to late season. But, the posterior is not allowed to vary (i.e. the

accuracy of the forecast does not hinge on the day of the season, I test for this assumption

in XX). In order to estimate these densities, I assume the joint distribution of W and F is

bivariate normal with parameters µW = E[W ], µF = E[F ], σ2
W = V ar[W ], σ2

F = V ar[F ]

and ρ = Corr(W,F ). Then under bivariate normality the posterior fW |F (w|f) is a normal

pdf with parameters

E[W |F = f ] = µW + ρ
σW
σF

(f − µF ) (1)

and

V ar[W |F = f ] = σ2
W (1− ρ2). (2)

The conditional expected value in (1) is linear in f . To simplify matters I assume ρσW
σF

= 1.

Under this assumption, Equations (1) and (2) become

E[W |F = f ] = µW − µF + f (3)

and

V ar[W |F = f ] = σ2
W − σ2

F . (4)
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I further assume that an update on F with a shorter time horizon h changes the variance

of the posterior but not the expectation (such that E[Fh] = µF ). Thus, I let the random

variable Fh vary with forecast horizon h. Each update is then assumed to lower the variance

by a function δ(h) that deprecates from one to zero (i.e. 1 ≥ δ(h) ≥ 0) the smaller the

horizon. The posterior hinges on these continuous updates and the parameters become

E[W |Fh = f ] = µW − µFh
+ f (5)

and

V ar[W |Fh = f ] = δ(h)(σ2
W − σ2

F ). (6)

Note as the forecast horizon diminishes to zero that the conditional variance also converges

to zero. The intuition is simple: The closer the forecast horizon to the actual measurement,

the more exact it is supposed to become. Once the horizon is zero the forecast is no longer

a forecast but the actual measurement and as such deviates no longer. Having modelled the

weather and its forecast, I turn back to the utility of a potential skier. Now, suppose that

the utility contains a cost function that is decreasing in forecast horizon. Meaning that a

later choice involves higher transaction costs. Then, utility is characterised as

u(x,w, h) = u(x,w, h)− c(h) (7)

with ∂c
∂h
< 0. The expectation at h of the ex ante utility is then evaluated against the utility

of the alternative activity and the individual chooses to ski when

Eh[u(x,w, h)− c(h)|Fh = f ] ≥ Eh[u(x′)|Fh = f ]. (8)

In a �rst step I simplify this inequality by assuming that the alternative is constant across

choice horizon and weather (e.g. the individual simply rests at home and has no speci�c

alternative in mind, then neither the weather nor the horizon at which she decides for or

against skiing matters). The choice simpli�es to

Eh[u(x,w, h)|Fh = f ]− c(h) ≥ K, (9)

where K = E[u(x′)|Fh = f ]. Because individuals are risk averse, they face a trade-o�

between increasing transaction cost and decreasing risk over time. Thus c(h) is decreas-

ing in forecast horizon h (as stated above ∂c(h)
∂h

< 0), whereas the negative of the con-

ditional expectation for a given forecast (i.e. the risk) is increasing in forecast horizon
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(∂−Eh[u(x,w,h)|Fh=f ]
∂h

> 0)4). The trade-o� is depicted in Figure 1. Note that I assume one util-

ity function across all individuals but heterogeneous cost functions - in the �gure denoted as

c1(h), c2(h) and c3(h). The situation is depicted for a given mean weather forecast that does

not change over time. When the forecast horizon is still large, the variance of the forecast

is still high and hinders all three individuals to decide in favour of skiing due to the risk of

a bad weather outcome. The �rst individual to make the decision is individual 1 with the

highest transaction cost. She decides at the intersection of c1(h) and the risk curve to ski.

The risk is still manageable and the transaction costs are not too high yet. It becomes clear

that individuals with lower transaction cost are inclined to reduce the risk and postpone the

decision to the smallest forecast horizon possible. Furthermore, note that heterogeneity in

u(x′) and in f are both equivalent as to shift the transaction cost curve up- or downwards.

Figure 1: Decision trade-o� over forecast horizon h

h = 0
h

u(x, w, h)

risk = −Eh[u(x, w, h)|Fh = f]
c3(h)

c2(h)

c1(h)

Figure Notes: The vertical axis indicates utility levels for a given weather forecast Fh = f and the
horizontal axis the forecast horizon h with its end at h = 0. Risk (= −Eh[u(x,w, h)|Fh = f ]) is decreasing
over h and depicted in black, transaction cost is heterogeneous across individuals and depicted in di�erent
shades of purple. The individual chooses to ski at the intersection of increasing individual transaction cost
and decreasing risk. The lower the intercept of the transaction cost the more it is optimal to postpone the
decision to a later forecast horizon.

On top of this, consider the case of risk neutral individuals: The risk curve in Figure 1

4Proof: Risk aversion implies that u(x,Eh[w|Fh = f ], h) > Eh[u(x,w, h)|Fh = f ]. Taking partial
derivatives on both sides with respect to h and plugging in (5) yields ∂u(x, µW − µFh

+ f, h)/∂h >
∂Eh[u(x,w, h)|Fh = f ]/∂h. As the utility of skiing is independent of the decision timing itself, the left
hand side is equal to 0. Therefore, 0 > ∂Eh[u(x,w, h)|Fh = f ]/∂h.�
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is completely �at which inclines those individuals to decide as early as possible.

2.2 Three Activities

In a next step I analyse the introduction of a third activity choice. Consider a situation

where next to skiing and the weather independent alternative there is a second weather

dependent activity but with much lower transaction cost than skiing. One can think of

cycling, running, wandering through the woods or any other low-cost outdoor activity. Now,

the reason someone decides early in favour of skiing is due to its relatively high transaction

cost: Having to organise all the gear, pack, get up early in the morning and drive to the

mountain. If these individuals have a back-up plan that allows them to do other nice weather

activities on much shorter notice, enables them to avoid losses to utility due to pessimistic

forecasts. To see this, consider Figure 2. Both panels indicate risk-neutral individuals (that

decide as early as possible) that fail to optimize due to wrong weather forecasts f that deviate

substantially from the measured weather w and the activity indi�erence cut-o� at w∗. In the

left panel, the loss induced through the pessimistic forecast (f < w) is almost completely

o�set by engaging spontaneously in the low-cost, also weather dependent outdoor activity x′′.

The regret (red plus light-red surface) of not being able to ski on an actually nice day is o�set

by the gain (light-red surface) of engaging in the alternative weather dependent activity and

leaves a small loss in the size of the red surface. On the other hand, as depicted in the right

panel, the loss induced through an optimistic forecast is irreversible because the individual

has born the transaction cost already before learning about the true weather outcome. This

person woke up early, packed all her gear and drove to the mountain before realizing that

the weather is unfortunate. In that case sunk costs might be too high and the individual

regretfully engages in the activity anyway. Ultimately, the possibility of mitigating losses

from pessimistic forecasts and avoiding irreversible losses from optimistic forecasts increase

the attractiveness of remaining home and deciding spontaneously about the activity. From

this perspective, it might follow that in the aggregate the increasing availability of outdoor

activities coupled with more mild temperature and less foggy winter days could partially

explain the stagnation in alpine skiing demand.

2.3 Risk Reducing Factors

Notice that the weather risk is not static: Shorter forecast horizons and the con�dence of

the forecaster to predict the weather accurately can reduce these risks substantially. The

actual risk reduction over forecast horizons is, surprisingly, quite small. Figure 13 in the

Appendix depicts that. Although the forecast vary only slightly less over shorter horizons,
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Figure 2: Sketch of linear utility function of skiing versus weather independent alternative

(a) Avoiding losses in pessimistic forecasts (b) Full losses in optimistic forecasts

Figure Notes: On the horizontal axis is the weather index where w∗ indicates the indi�erence cut-o�

between x = skiing, x′ = not skiing and x′′ = other outdoor activity. In the left panel is the weather
forecast below the cut-o� such that the risk neutral-type decides not to ski. The weather turns out to be
nicer than the forecast (w > f) such that skiing would be optimal. The light-red and dark-red surface
combined indicate the loss in the two activity choice situation which corresponds to the avoided gain by
choosing not to ski. As the potential skier can switch spontaneously to the low cost outdoor activity, almost
all of this loss can be mitigated (light red surface). What remains is the red surface that indicates the
actual loss between the alternative outdoor activity and skiing. In the right panel is the weather forecast
above the cut-o� such that the risk neutral-type decides to ski. Unfortunately, the weather turns out to
be much worse at w < f and imposes an irreversible loss on the individual as transaction costs are borne
already. Note that a risk-averse individual with high transaction costs faces a similar situation bar the
linearity of the utility functions.

most individuals might still perceive shorter horizons to be substantially more accurate. This

might be one reason why predicting demand works better with smaller forecast horizons (see

Figure 5 in Section 3.4).

The more prevalent risk-reducing factor is the con�dence of a weather forecast. To

see this, consider two common large-scale weather conditions: A high pressure zone and a

typical west-wind situation. In a high pressure zone the weather is sunny, stable and often

persists for a couple of days. Consequently, forecasts during such conditions are typically

more accurate compared to other large-scale weather conditions like a west-wind situation.

In such conditions, the weather can completely reverse within hours in the northern Alps

(MeteoSchweiz, 2015). The forecaster, knowing this, is less con�dent in her own forecast and

communicates this in one way or the other.5 In consequence, large-scale weather conditions

might lead to di�erent con�dence-levels that a potential skier attributes to the forecast and

5In a TV-show the host uses terms like unstable or changing weather or in a local online-forecast it might
be visible by varying forecasts for the same day within hours. Later on, I use the di�erence between two
forecasts for the same day as a proxy of con�dence in a given forecast.
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this, in turn, relates directly to the risk behaviour of that individual. Small con�dence bands

reduce the ex ante risk to the individual and incentivize earlier decisions compared to large

con�dence bands.

The ability of the forecaster in stable versus unstable large-scale weather situations is

depicted in Figure 3. Stable weather situations are high pressure or �Bise�6 situations.

Unstable weather situations are de�ned as west-wind situations, south- and north-�Foehn�7

and in-between situations as well as unclear situations. Comparing the root-mean-squared

error for both situations shows that in the key-variables of precipitation and sunshine weather

risks are reduced by a lot. The precipitation RMSE in area 1 is roughly 25 times higher in

unstable large-scale situations. For the sunshine variable forecasts are more than 2.5 times

less accurate in unstable situations. However, the minimum temperature is actually less

predictable in stable situations which diminishes the risk reduction in the overall weather

index. In area 2 the risk enhancing temperature predictability translates to an equal weather

risk for stable and unstable situations.

The risk reduction in deciding early through stable weather situations is exactly what

we observe in the aggregate in Section 3.4. In unstable situations the risk of deciding early

is high. Which means that individuals are incentiviced to decide spontaneously upon the

observed weather instead of the forecast. Hence, predicting aggregate demand in such situ-

ations should should be more accurate using weather instead of forecast variables. On the

contrary, the risk of deciding early is low in stable situations. Thus, individuals are incen-

tiviced to decide early to reduce transaction costs as much as possible. In such situations, it

would be naturally to assume that forecasts predict demand better than the actual weather.

However, as forecasting is much easier in stable weather situations forecasts deviate much

less from the weather. And, thereby, demand predictions using forecast or weather data turn

out to be equally precise even though people should, at least in theory, decide early in sta-

ble situations. It is not surprising then, that predicting demand over all weather situations

leads to superior results using weather variables instead of forecast variables. Exactly what

I observed in Section 3.4.

2.4 Dynamic Case

I model the dynamic activity choice in close relation to the static case in Section 2.1. Owing

to the aggregate data, following a one-day or season pass owner on a dynamic path is

6east or nord-east winds that are channelled through the �at lands and are often accompanied by a fog
cover in the lower altitudes

7strong warm winds in either northern or southern alpine valleys that are accompanied by a cloud cover
on either the northern or southern Alps. In those situations the cloud cover in inner-alpine regions is hardly
predictable
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Figure 3: RMSE of forecast horizons split by large-scale weather situation, areas and
weather variables
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Figure Notes: On the horizontal axes is an indicator of stable weather situations depicted and the vertical
axes indicate the root-mean-squared errors (RMSE) of di�erent weather variables. Stable weather situations
are high pressure systems and �Bise� situations (with an inversion at the fog cover and east to north-east
wind system (MeteoSchweiz, 2015)). The RMSE are depicted for all three forecast horizons h = 1, 2 or 3.
In each row is an area displayed starting from weather indices in the �rst column and in columns 2 to 4 the
three key-weather variables identi�ed in Section 3.5.

infeasible. Hence, the dynamic choice is best analysed by the behaviour of one-week pass

owners. Albeit being less weather dependent, their sensitivity to the weather (see Figure 7)

implies that some one-week pass owners do not fully use up all valid area entrances. This

is clearly visible in the two gray highlighted Tuesdays in Figure 4. Noticeable is also the

seasonality of these individuals that use their passes much less on the arriving or departing

weekends.

For simplicity, suppose individual i has very low transaction cost (which is plausible for

weekly overnight guests) and chooses activity X = {x = skiing, x′ = other} by consulting

the actual weather w (and not forecasts) and the quantity of previous consumption qx and

qx′ . Next to favouring good weather ∂u(x,w,qx
∂w

> 0, individual utilities are increasing in qx and
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qx′ . I make no prior assumption about a potential skiers marginal utility to the quantity of

consumption. As the individuals bought their ski passes already, the individuals evaluate

each day in their pass validity spell whether u(x,w, qx) > u(x′, qx′)− r(qx′). The last term is

a regret function that is increasing in qx′ (i.e.
∂r(qx′ )
∂qx′

> 0). It models the regret of not using

the pass which increases by the number of unused days.

2.5 Hypotheses

From the Sections 2.1 to 2.3 I derive three hypotheses that are empirically investigated:

(i) Wrong weather forecasts alter demand above or below the counterfactual situation

with an accurate forecast.

(ii) Groups that are expected to have relatively higher transaction costs have a higher

share of early deciders (e.g. one-day trippers and/or families).

(iii) Optimistic forecasts have lower e�ect sizes than pessimistic forecasts.

Hypothesis (i) relates directly to the decision timing of individuals. If the hypothesis is

con�rmed, then it follows that some individuals decide early due to increasing transaction

costs or risk-neutrality and thus fail to optimize in wrong forecast situations. In hypothesis

(ii), I check whether individuals in areas with a large share of one-day trippers and/or families

- with arguably higher individual transaction costs - fail more often to optimize due their

incentive to decide earlier. Hypothesis (iii) follows from the static case with three activities.

As the individual's loss is irreversible in uncertain weather situations when forecasts predict

good weather (and as consequence might be optimistic) whereas individuals can mitigate

losses from pessimistic forecasts by switching to a third weather dependent activity, the risk

of engaging in skiing in potential optimistic situations is higher than the risk of not skiing in a

potential pessimistic situation. Therefore, I conjecture that individuals incorporate this and

decide later in potential optimistic situations than in potential pessimistic situations. From

this follows directly hypothesis (iii). However, one has to be cautious that a con�rmation

in hypothesis (iii) does not su�ce to prove the above behaviour on an individual level. It

serves simply as descriptive evidence that such a behaviour might be at the bottom of the

observed relationship.

In a dynamic setting with two choices, I test the following hypotheses empirically:

(I) There is satiation in individual utilities when skiing is consumed repeatedly.

(II) Skiers become less weather dependent to the end of their stay.
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(III) Forecast errors a�ect skiers less at the end of their stay.

Hypothesis (I) simply states that the individual's marginal utility with respect to repeated

skiing is decreasing. The idea is that guests have a preference to experience other activities

than skiing alone and, thus, the marginal utility of skiing is decreasing in the quantity

of its consumption (i.e. ∂2u(x,w,qx)
∂2qx

< 0). Hypothesis (II) is directly related to the regret

function r(qx′). At the end of the week the regret for those leaving out some days becomes

large enough that they ski under worse weather conditions than one would expect. Lastly,

Hypothesis (III) is similar to (II) and simply tries to con�rm or reject patterns from (II).

3 Data

3.1 Demand Data

Demand data consists of either bookings or �rst-entries8 of three ski areas during winter

season (end of November until the end of April). Data is available for di�erent age groups

and numerous pass validity durations. It is provided by mountain railway operators located

in the western Alps of Switzerland. In total the data consists of 3302 days split into 910,

1137 and 1255 days from area 1, 2 and 3, respectively, covering all seasons between 2010

and 2020. Unfortunately, demand in area 1 is restricted to transactions, not the actual

consumption of skiing. To be more certain that a transaction leads to consumption, I only

use bookings of one-day passes that are valid on the same day as the transaction.9 The

validity and age groups provide insights about the heterogeneity in behaviour to weather

and weather forecasts. To make use of these heterogeneities, data has to be aligned in a

comparable fashion between the areas. Therefore, data is aggregated to three age-groups:

Adults, juveniles and children, and �ve pass validity types: One-day passes, weekend passes

(2-4 days), one-week passes (5-7 days), two-week passes (8-14 days) and season passes (more

than 15 days).

3.2 Weather Data

Weather data is available from the Swiss government meteorological service MeteoSwiss.

The data can be drawn from any of the approximately 2700 weather stations in Switzerland.

The prior weather variables that are of main interest, according to the following literature,

are:

8First-entries are daily counts of guests entering a ski area.
9It is likely that buying a seven-day pass does not necessarily resolve in seven days of actual consumption.

On the contrary, it is very unlikely that buying a one-day pass leads to no consumption.
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Sunshine: This variable is the percentage share of sunshine-hours on a given

day of the maximum possible sunshine-hours. Thus, it allows to

compare sunny days independent of their timing within the year.

An increase in sunshine duration is associated to counteract cold

temperatures, having clear vision of the slope and the surround-

ings and facilitate consumption of lunch and other beverages on

the mountain. Therefore, I expect a positive relation to skiing

demand. (Gonseth, 2013; Malasevska et al., 2020; Lütolf et al.,

2020; Scaglione & Doctor, 2008; Rutty & Andrey, 2014; Haugom

& Malasevska, 2019).

Precipitation: The overall sum of precipitation during a day in millimetre. How

it translates into snow is mostly dependent on temperature and

wind which is not relevant for this purpose. See the fresh snow

variable for a further discussion. During snowfall or rain, the

light is often �at which exacerbates skiing and other activities

on the mountain. Often it is accompanied by cold temperatures

and stormy winds. That is why I expect a negative relation to

skiing demand. (Falk, 2015; Malasevska et al., 2020; Scaglione

& Doctor, 2008; Rutty & Andrey, 2014; Haugom & Malasevska,

2019).

Wind Chill Temperature: A combination of wind and temperature gives the Wind Chill

Temperature (WCT). This variable indicates the perceived tem-

perature and as such adds wind to the equation which decreases

the WCT as it gets stronger. Temperatures that are too warm

wets the snow that is perceived negatively by many skiers but,

on the contrary, too cold temperatures might become unbear-

able for a large share of skiers. (Osczevski & Bluestein, 2005;

Malasevska et al., 2017b)10.

Fresh Snow: Snowfall is already measured in the precipitation variable. Thus,

the precipitation of snow is shifted one day into the future to rep-

resent the fresh snow fallen within the last 24 hours. Thus, the

precipitation variable depicts immediate snowfall or rain. Fresh

10A larger body of literature uses direct temperature measures, e.g. Shih et al., 2009; Gonseth, 2013;
Falk, 2015; Scaglione and Doctor, 2008; Holmgren and McCracken, 2014
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snow can have a di�erent e�ect on demand than actual precipi-

tation. The former is sought by freeride-enthusiasts whereas the

latter is generally considered as being bad for skiing - clouds dim

the light and the falling snow or rain enhances the bad sight fur-

ther. (Shih et al., 2009; Gonseth, 2013; Falk, 2015; Holmgren &

McCracken, 2014)

Before using the above weather variables in the analysis, I evaluate empirically whether

these are the core variables that explain skier demand in my data. More speci�cally, I draw

upon a broad set of additional weather variables and run statistical learning procedures, like

random forests (RF), to predict skier demand and evaluate the variables that are key to

the prediction outcome. This procedure is described in Section 3.5. The weather variables

additionally included are: Daytime minimum, maximum and mean Temperature [°C], daily

average wind speed [m/s], daily maximum wind speed (from hourly averages) [m/s], daily

maximum in gusts [m/s], wind direction [°], relative humidity (daily minimum, mean and

maximum) [%] and daily average air pressure [hPa]. As the weather data is not measured

exactly at the same coordinates as the weather forecast model outputs, the data requires an

interpolation from several weather stations. I apply inverse distance weighting on weather

stations within 30km of the corresponding highest and lowest lift stations in the areas.

These are exactly the same coordinates whereof weather forecast outputs from MeteoSwiss

are available. For detailed information on the spatial join of the weather stations to the lift

coordinates read Appendix 8.1.

3.3 Weather Forecast Data

The weather forecast data are midnight model output of COSMO-7 (MeteoSchweiz, 2012)

and are provided by MeteoSwiss. Forecast data are available for three time-horizons, 2 days

(f t−2
t ), 1 day (f t−1

t ) and 0 day (f t−0
t ) in advance. Additionally, the data cover daily relative

sunshine duration [%], daytime temperature (minimum, maximum, mean and wind chill)

[°C], daily wind speed (mean, hourly minimum and maximum) [m/s], daytime precipitation

[mm] and daily fresh snow [cm]. The variables are geographically referenced to the point of

the lowest lying lift within all three areas such that they match the weather data in space

(see Appendix 8.1 for details). One limitation of these data are that they are computed

outputs that must not necessarily represent actual published forecasts perfectly. But, as

the data are available on a very local scale, these are exactly the inputs forecaster use for

publishing local forecasts in their mobile phone application or online. The variation in these

data is likely representing actual variation in forecasts above the publication of MeteoSwiss.
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Several other weather service providers draw upon the same computer model outputs to

publish their forecasts. A second limitation is that the available snowpack data is of poor

quality. Especially in the early season the natural height of snow might be a decisive factor of

the intention to ski. To account for this without reliable snow data, I dropped observations

before mid-December. At days prior to this cut-o�, demand data varies much more across

seasons than in later days and might potentially confound the results. (actually included in

the analysis)

3.4 Demand Prediction

The following analysis has the purpose to reveal what share of the variation in demand can

be predicted using weather and forecast variables. For this purpose we estimate the following

speci�cation:

yds = w′dsβ + αd + edsγ + εds, (10)

where y is demand at day d in season s, w is a vector of the respective weather or forecast vari-

ables, αd is the season day �xed e�ect, e is a dummy indicating Easter holidays and ε is the er-

ror term. The vector of weather (forecast) variables is: w′ = {freshsnow, sunshine, precipitation, precipitation2, precipitation3, wct, wct2},
where wct stands for Wind Chill Temperature. This measure represents the temperature

that a person actually feels after incorporating the wind11. Exploiting the same weather

and forecast variables allows a comparison of the within sample predictive performance of

both variable types directly. The season day �xed e�ect is included to capture the entire

seasonality of demand, to control for the confounding e�ect on the weather12 and to remove

any serial correlation between successive days. Controlling for this, it is reasonable to as-

sume that the weather and forecasts are exogenous to demand. In practice, the �xed e�ect

is computed relative to the same Saturday of each season opening. This means that the

opening day and all following days are synchronized across seasons, independent of their

actual date13. Note that this speci�cation hinges on the assumption that weather-related

e�ects of season days on demand remain constant over time.14 The weather and forecast

variables included are derived from the literature (see Section 3.2) and availability of forecast

variables. I estimate (10) in levels by two estimators that yield equivalent weather coe�-

cients using one-day passes only. Surprisingly, applying the least-squares dummy variable

11The Wind Chill Temperature (WCT) is de�ned as wct[C] = 13.12+0.6215T−11.37V 0.16+0.3965TV 0.16

with temperature T in C and wind speed V in km/h.
12For instance temperatures are systematically higher in March than in January.
13The season openings are often in mid-December, but rarely ever at the exact same date.
14E.g. Arti�cial snowmaking facilities or new lifts that reach a higher elevation could lower dependence

on natural snow. In Appendix 8.2 I include season �xed e�ects ςs to check upon its confounding e�ect of
di�erent weather variables.

15



(LSDV) and the within (WT) estimator to the same model does not necessarily imply equal

prediction accuracy. The reason for this lies in the bias variance trade-o� in predictions

(Hastie et al., 2008). The WT estimator demeans all regressors by season days and results

in exactly the same β̂ as in the LSDV estimator.15 In contrast to the LSDV estimator,

the demeaning purges the between season day variation before estimating (10). Predicting

demand using the WT estimator requires therefore only the demeaned weather variables as

regressors compared to the additional requirement of 155 dummy variables by the LSDV.

The higher degrees of freedom of the WT estimator produce mechanically a worse �t. This

results in a much lower variance at the expense of some bias in the mean squared error

(MSE) of the prediction (see e.g. Hastie et al. (2008)). A more detailed explanation of this

is in Appendix 8.3.

Table 1 indicates two measures of prediction performance, the R2 recovered from the

linear regression in (10) (with level demand as outcome) and the measure 1 − RMSE
SD

that

proxies out-of-sample prediction performance and is recovered from 10-fold cross-validation

of the same models. In the last two columns of Table 1 and in Figure 5 the consequence of the

variance-bias trade-o� is clearly visible. The LSDV estimator has a much higher in-sample

�t, visible by the R2 around 0.7 in area 1 and 3. It �ts the data very tight due to its 164

regressors, whereas the WT has quite a low in-sample �t (R2 ≈ 0.18 in area 1 and 3) with

its 9 regressors. On the contrary, the WT estimator leads to much preciser out-of-sample

predictions, seen by the measure 1− RMSE
SD

. The WT estimator predicts, as seen in Table 1,

up to 46% of the variation in demand correctly while the LSDV estimator achieves only up to

37%. In the �rst two columns of Table 1 it is additionally visible that the season days explain

a larger part of the variation of ski demand than the weather itself. Regressing demand on

season days or the weather alone and comparing the training set �t of the two reveals a

much larger R2 for the season day �xed e�ects alone. Again, this is unsurprising because of

the larger amount of regressors. Yet, the prediction accuracy using only season day e�ects

remains above the weather e�ects alone and is roughly twice as accurate. Therefore, the

seasonality plays a larger role in demand �uctuations as the weather. The weather alone

is estimated to explain demand �uctuations up to 25% which is close to what the previous

literature on the topic says (see e.g. Plaz and Schmid, 2015 that estimate around 15%).
Table Notes: The table depicts the in-sample �t as R2 and a proxy for the out-of-sample �t as 1−RMSE

SD

(one minus the root-mean-squared error divided by the standard deviation of demand) recovered from 10-fold

cross validation across the four models indicated by the columns and across the three areas indicated by

the rows. The sample consists of one-day passes only. Column 1 represents a model using season day �xed

e�ects and the Easter dummy only, column 2 using the 7 weather variables in (10) only and columns three

and four represent the whole model but di�erent estimators. The third column depicts the model �t of the

15By the FWL-theorem, see e.g. Lovell (2008).
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Table 1: Training and test model �t

s. day FE only weather only LSDV full WT full

area 1
in-sample �t (R2) 0.521 0.225 0.690 0.179

out-of-sample �t (1− RMSE
SD

) 0.189 0.096 0.322 0.437

area 2
in-sample �t (R2) 0.475 0.195 0.579 0.115

out-of-sample �t (1− RMSE
SD

) 0.182 0.099 0.253 0.345

area 3
in-sample �t (R2) 0.527 0.252 0.711 0.188

out-of-sample �t (1− RMSE
SD

) 0.213 0.137 0.367 0.459

least-squares-dummy variable estimator and the fourth column the model �t of the within estimator.

Figure 5 shows - on top of the better prediction accuracy of the WT estimator compared to

the LSDV estimator - that the shorter the forecast horizon, the better the demand predictions

in area 1 and area 3. Only in area 2 the 0-day and 1-day forecast exceed the weather data

in prediction accuracy across both estimators. An explanation for this is that the average

individual among the weather sensitive one-day pass owners decides earlier upon the activity

in area 2 than in areas 1 and 3. Note that I estimate overall fewer weather sensitive types

in area 2 as the prediction accuracy of weather and forecasts are generally lower compared

to the other areas. This explanation is further discussed in the static activity choice model

and its empirical implementation in Section ??.

3.5 Identi�cation of Key Variables

In this section random forests (RF) are applied to improve upon variable selection. The idea

is to �nd the key variables explaining skiing demand to create a weather and forecast index

that proxy actual and expected skiing conditions in a single variable. Because there is no

built in structure in RF to account for heterogeneity, the prediction accuracies result in the

range of the LSDV. But the performance of the RF is not of interest here.

First, I grow a RF on (10) including the full set of available weather variables w listed

in Section 3.2 in addition to all season day dummy variables. Then, the out-of-bag (OOB)

root-mean-squared error (RMSE) rate for the RF is computed. This validation technique

uses part of the data as training set and the remaining data as test set to validate the

prediction accuracy of the RF. The RF grows random trees and uses for each tree around

two-thirds of the bootstrapped observations. On top of that, it tests the accuracy with the

remaining third of observations that were not used in growing the tree. If the number of

trees grown is su�ciently large, the OOB can be shown to be equivalent to the leave-one-out
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cross validation (LOOCV) (Hastie et al., 2008).

The OOB is also used to estimate variable importance. By randomly permute a variable

in the OOB sample, comparing the MSE to the one obtained by the original variable and

average this over all trees, the decrease in the prediction accuracy of each variable is measured

(Hastie et al., 2008). Another option would be to use the Lasso estimator and evaluate

which parameters of weather variables are shrunk to zero at latest (while increasing the

shrinking parameter λ). Because the dataset includes many potential predictors that are

highly collinear (as e.g. maximum and minimum temperature) OLS and likewise Lasso

might struggle in separating the e�ects of the collinear variables. The variable importance

measure computed by RF does not su�er from this limitation. Hence, I refrain from other

methods to compute variable importance.

Even though the prediction performance of this RF is very inaccurate (it predicts only

around 0.2 of the variation in demand accurately), it delivers valuable estimates of variable

importance. Figure 6 indicates undoubtedly the three variables that contribute the most

to the reduction in the MSE: The relative sunshine, the minimum temperature through the

day and precipitation. After these, there is no clear ordering of variables apparent when

comparing the areas. Some measure of wind and humidity have predictive power too but at

a much lower magnitude than the �rst three.

In line with the results from the variable importance measure, I construct two indices

that proxy skiing conditions by the use of weather and forecast variables of relative sunshine,

minimum temperature and precipitation. First I de�ne partial indices

sunInd = sun

precInd =

100− (prec ∗ 10), if prec ≤ 10

0, otherwise

tempInd =

100− (| − 10− temp|) · 5, if |temp| ≤ 20

0, otherwise

that range for each variable from 0 (worst condition) to 100 (best condition). For example

a relative sunshine forecast of 0% is the worst possible weather forecast concerning sunshine

duration. Whereas a sunshine forecast of 100% provides the best conditions. The worst

conditions for precipitation and temperature forecasts are at least 10mm precipitations and

a deviation from -10°C by at least 20°C (i.e. -30°C or +10°C). In between those values, the

conditions increase linearly to the best case of 100. In a next step I weight each partial index
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in accordance with the variable importance measures16 to construct the overall weather and

forecast indices

w = 1/3 · sunInd+ 1/3 · precInd+ 1/3 · tempInd

that can equally take values from 0 to 100. It is important to note that all results presented

in the following sections are robust to di�erent weightings and boundaries of these three

variables.

4 Empirical Strategy

4.1 Static Case

The �rst empirical model to test hypotheses (i) and (ii) is derived from the individual ex

ante utilities in Equation (??). I estimate

log(yds) = wdsβ + ∆dsδ + αd + edsγ + εds, (11)

where wds is the weather index, ∆d−h
ds = fd−hds − wds is the forecast error, αd is the season

day �xed e�ect that is common across seasons but �xed across season days, e is a dummy

indicating Easter holidays and ε is the error term.

Let us derive the identi�cation strategy of (11) from the average of all individual ex ante

utilities in (??). On a given day d∗ NA engage in skiing independently from the weather,

NL individuals decide late using wt in ex ante utility u(wt) and N
E decide early using f t−ht

at a given h (and thus neglecting the superscript). Then the average of all individual ex ante

utilities is

ud∗ =
1

N

NA∑
i=1

(ηid∗ + λid∗) +
NL∑
i=1

(γiwd∗ + ηid∗ + λid∗) +
NE∑
i=1

(γifd∗ + ηid∗ + λid∗)

 . (12)

Substituting all elements for their sample averages and the forecast fd∗ for the di�erence of

16Not exactly by their share of MSE increase but rather simply by one third
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the weather and the forecasts deviation fd∗ = wd∗ + ∆d∗ yields

ud∗ =
NA

N

(
ηd∗ + λd∗

)
+
NL

N

(
γwd∗ + ηd∗ + λd∗

)
+
NE

N

(
γwd∗ + ηd∗ + λd∗

)
+
NE

N
γ∆d∗ (13)

= ηd∗ + λd∗︸ ︷︷ ︸
=αd∗

+
NL +NE

N
γ︸ ︷︷ ︸

=β

wd∗ +
NE

N
γ︸ ︷︷ ︸

=δ

∆d∗ . (14)

By comparing (11) and (14) the underlying assumptions in (11) become straight-forward.

The outcome is a proxy of the average ex ante utility across individuals: The more skiers visit

an area the more individuals choose to ski due to their expected gain from utility. The average

individual taste parameter λd∗ and the average individual �xed e�ect ηd∗ are subsumed under

the season day �xed e�ect αd∗ . The β in the aggregate speci�cation captures the average

e�ect of the weather weighted down by the weather and forecast dependent groups E and

L. Whereas the coe�cient on the forecast error δ captures the average e�ect of a forecast

error weighted down by the fraction of the E-type group. The smaller these groups' sizes

are the lower are the e�ect sizes of the weather and forecast errors in the aggregate. This

is exactly why in hypothesis (i) the e�ect sizes should be larger for areas more abundant

in L-types and in hypothesis (ii) the e�ect sizes on the forecast error should be higher for

areas more abundant in E-types. Suppose all skiers are of type E, i.e. NE = N : A forecast

error reverses the impact of the weather completely. For instance, when the actual weather

is perfect, implying wd = 100, but the forecaster predicted the worst possible weather with

a ∆d = −100, then only those engage in skiing that prefer skiing over the alternative even in

the worst conditions. It leads to the same outcome as if the weather was actually at its worst

possible value wd = 0 but accurately predicted. On the other hand, suppose all skiers are

of type L: The last term of (14) drops out and the δ-coe�cient in the estimation of (11) is

indistinguishable from zero. Hence, in the case of everyone deciding late the weather forecast

becomes redundant in explaining skier outcome. A convenient property of estimating (11) is

that the estimates β̂ and δ̂ allow to recover the fraction of E-types from the weather sensitive

types. Using (14) it becomes clear that NE

NE+NL = δ̂/β̂. Additionally, note that di�erences in

β̂ across areas, ticket- or age-groups can stem from either the fraction of weather sensitive

types (i.e. NL+NE

N
) or from the individuals' average elasticity with respect to the weather

(i.e. γ). Unfortunately, these two e�ects cannot be disentangled from the data.

4.2 Dynamic Case

The answer to these hypotheses is best analysed by looking at one-week pass owners. Due

to the fact that most people go on their vacation weekend to weekend, also most bookings
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of one-week passes start at some point during the weekend.17

To evaluate the dynamic activity choice, the decision timing (late versus early decision)

is, as explained above, neglected �rst. I simply di�erentiate between weather independent

deciders (NA) and weather sensitive deciders (NW = NE + NL). Using (??), neglecting

(�rst) that γ might change over consumption and taking averages over week-day d∗ yields

ud∗ =
NA

N

(
φd∗qx

)
+
NW

N

(
γwd∗ + φd∗qx

)
(15)

= φd∗qx︸︷︷︸
=δ′d

+
NW

N
γ︸ ︷︷ ︸

=β

wd∗ . (16)

The underbraces in (16) indicate the identi�cation using aggregate data. The model to be

estimated is

log(yd̃ks) = βwd̃ks + δ′d̃+ αk + ed̃ks + εd̃ks, (17)

where d̃ indices the week-day 0 − 6 for Sunday to Saturday, respectively, k the weeks that

are lined up parallel to the season days d and s indicate, as above, seasons. αk is the week

�xed e�ect that serves the same purpose as the season days in the baseline model18, β is the

coe�cient on the weather elasticity, δd is the vector of coe�cients of the week-day e�ects,

ed̃ks is again the Easter-holiday dummy. The parameters of interest are the week-day e�ects

that translate one-by-one to the parameter φdqx as shown in (16).

17Separating booking and demand data by starting weekdays reveals that validity spells of 7-day passes
start mostly on Saturdays, of 6-day passes on Sundays and of 5-day passes on Mondays. The See Figure 15
and 14 in Appendix 8.7

18The week �xed e�ects account for the seasonality of the di�erent weeks and correct for the fact that
the weather in late season might systematically di�er from the early season.
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5 Results

I estimate (11) by a least-squares dummy variable estimator (LSDV). The results are pre-

sented in Table 2. In all areas and over all forecast horizons the weather index has a larger

impact on demand than the forecast error. Nevertheless, all coe�cients are statistically

signi�cant. This suggests that E- and L-types appear to ski in all areas and con�rming

hypothesis (i). A change in the weather index by one standard deviation is associated with

a 56%19, 51% and 83% change in skier demand in areas 1 to 3 holding all else equal, respec-

tively. This indicates that in area 3 either more skiers base their decision upon the weather

and/or forecast (higher NE+NE

N
) or that their elasticity with respect to the weather is higher

(higher γ). The latter might be the case because of di�erences in guest structure. As men-

tioned in Section 3.1 the skiers buying one-day passes are quite heterogeneous regarding

age and, potentially, regarding unobservable characteristics. The heterogeneity across age-

and ticket-groups is evaluated later in this section. Table 2 indicates further the e�ects of

forecast errors. I estimate that a change of a 0-day forecast error by one standard deviation

changes demand, all else equal, signi�cantly by 11.8%, 19.1% and 9.9% in area 1,2 and 3,

respectively. Using the 0-day forecast I estimate the share of early deciders (NE) over the

weather sensitive types (NL +NE) in one-day passes being 38%, 70% and 28% for the three

areas, respectively. Note that the large di�erences in coe�cients between forecast errors and

the weather stem not from fewer early deciders, but from fewer unstable days where the early

deciders actually have an impact on the aggregate. Again, early deciders in stable weather

situations (where the forecast error is null) are not visible as their decision is captured by

the weather e�ect only.

19The taylor approximation to interpret semi-elasticities in log-linear models as percentage changes is not
feasible for large coe�cients. Exact values are used here, where %∆y = exp(∆β)− 1
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Figure 4: Demand of 5-day pass and 6-day pass owners and weather in area 3, season 16/17.
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Figure Notes: On the horizontal axis are the weeks between mid-January and mid-March in season 16/17
depicted. The vertical axis indicates daily demand for 5-day (top-panel) and 6-day passes (mid-panel) and the
weather index scaled between 0 and 1000 (bottom-panel) all in area 3. The weather index incorporates the
revealed preference variables of precipitation, sunshine duration and minimum temperature (see Section 3.5).
Note that demand in 5-day passes is much higher from Mondays to Fridays whereas demand in 6-day passes is
high from Sundays to Fridays as most owners of such passes spend their vacation from weekend to weekend.
Two Tuesdays with relatively bad weather are highlighted in gray indicating that demand might take a
weather-related drop even when most individuals have valid passes that day.

23



Figure 5: Two measures of model �t across areas and forecast horizons.
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Figure Notes: The three panels indicate the model �t (vertical axis) for di�erent forecast horizons (f−2,
f−1, f0) and the weather w across two estimators using one-day passes in area 1, 2 and 3, respectively. The
purple line is the in-sample �t R2 of (10) using level demand and the black line the out-of-sample �t proxy
1− RMSE

SD (one minus the root-mean-squared error divided by the standard deviation of demand) recovered
from 10-fold cross validation.

Figure 6: Variable importance measure of RF including all available predictors

Figure Notes: Variable importance estimated by RF for each area. The measure on the x-axis indicates
by how much the MSE would increase leaving the variable on the y-axis out of the random forest.
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Table 2: E�ect of weather and forecast error on log demand

area 1 area 2 area 3

variables 0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast

weather (w) 0.025∗∗∗ 0.025∗∗∗ 0.026∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.030∗∗∗ 0.030∗∗∗ 0.030∗∗∗

(0.0012) (0.0012) (0.0013) (0.0015) (0.0015) (0.0015) (0.0011) (0.0011) (0.0011)

forecast error (∆) 0.0093∗∗∗ 0.0063∗∗∗ 0.0043∗∗ 0.014∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.0083∗∗∗ 0.0089∗∗∗ 0.0068∗∗∗

(0.0017) (0.0017) (0.0015) (0.0019) (0.0018) (0.0017) (0.0019) (0.0018) (0.0016)

easter (e) 1.01∗∗∗ 0.97∗∗∗ 0.97∗∗∗ 1.46∗∗∗ 1.41∗∗∗ 1.43∗∗∗ 0.89∗∗∗ 0.84∗∗∗ 0.87∗∗∗

(0.19) (0.19) (0.20) (0.20) (0.19) (0.20) (0.24) (0.23) (0.24)

season day FE Y es Y es Y es Y es Y es Y es Y es Y es Y es

N 910 910 910 1099 1099 1099 1154 1154 1154

R2 0.787 0.783 0.780 0.674 0.671 0.667 0.789 0.791 0.788

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of model (11) for three areas and three forecast horizons. Standard errors are clustered on the

season day to account for intra-day correlations across seasons (seasonality). To allow a comparison between the areas only one-day passes are used.

The weather (w) and forecast (f−h) indices are continuous variables scaled between 0 and 100. The forecast error variable ∆−h = f−h − w is the

di�erence between weather and forecast. Easter (e) is a dummy indicating the four Easter holidays (Good Friday to Easter Monday). All models are

estimated using season day �xed e�ects to account for the seasonality.
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In order to further investigate upon possible heterogeneities in guest structure and to

elaborate on hypothesis (ii), I estimate (11) in area 2 and 3 (data in area 1 is only for

one-day passes plausible) for three age groups (adults, juveniles, kids) and �ve pass-validity

groups (one-day pass, weekend pass, one-week pass, two-week pass and season pass). Note

that the latter four groups are aggregates for two- to four-day passes, �ve- to seven-day

passes, eight- to fourteen-day passes and all else above fourteen-day passes. The results

are depicted in Figure 7. Both areas have in common that the weather e�ect estimates in

one-day and season pass groups are the largest. Indicating that in these groups there is a

high average weather elasticity γ or there are relatively more weather and forecast dependent

skiers in these groups. This comes at no surprise: One-day pass owners consist of day-trippers

with rather high transaction costs or weather sensitive overnight guests that decided against

overtaking the weather risk from the area by buying multiple-day passes. Season pass owners,

conversely, have low transaction cost but due to their proximity simply choose among the

days with the best skiing conditions. In between these two extremes are two- to fourteen-day

passes: Owners of such passes have rather high sunk costs. They overtake the weather risk

from the ski area and try to make as much as possible out of their expenses. On top of that,

parents might send their children and juveniles to a local ski school that teaches lessons in

all conditions. This could also be the reason why the point estimates in weather e�ects for

children and juveniles within all pass-validity groups are lower compared to adults. Apart

from ski schools and ski clubs, most children and juveniles are constraint by the decision of

their parents and would, by that, lead to the same estimates as for the adults.

The estimates of the forecast errors are in line with hypothesis (ii). Let us focus on

one-day pass and season-pass owners only20 in area 3. Although the same conclusions can

be drawn from both areas, the di�erences in forecast error estimates are more pronounced

in area 3. First, the share of early deciders among the weather sensitive is for the adults

with one-day passes around 30% (The share δ̂/β̂ is visible in Figure 7 by dividing the point

estimate of the forecast error by the point estimate of the weather). This stands in contrast

to the season pass owners where the forecast error estimates are indistinguishable from zero

and, consequently, consist of late deciders almost exclusively. Because one-day pass owners

have arguably much higher transaction costs than season pass owners, the data supports

hypothesis (II). Secondly, among one-day pass owners the juveniles and children have clearly

the highest estimated share of early deciders. This observation also supports hypothesis (II)

because within the one-day pass owners families have clearly the highest transaction costs.

20Note that all passes between two- to fourteen days indicate rather con�icting results. As the weather
and forecast dependence is generally low and con�dence intervals often surpass zero in these groups, it allows
no meaningful interpretation of forecast error estimates and early deciders share at this aggregation level.
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21

Hypothesis (iii) is tested by including a slope dummy in (11) for optimistic forecasts. I

estimate

log(yds) = wdsβ + ∆dsδ + ∆ds ·Do
dsν + αd + edsγ + εds, (18)

where Do
ds = 1[(fd−hds −wds) > 0]22 is a dummy indicating an optimistic forecast and the other

variables are the same as in (11). With this speci�cation I test whether an optimistic forecast

a�ects demand di�erent than a pessimistic forecast. The LSDV estimates are depicted

in Table 3. The semi-elasticities for pessimistic and optimistic forecasts are recovered by
∂log(yds)
∂∆ds

= δ + Do · ν with Do = 0 and Do = 1 , respectively. Pessimistic forecast errors are

statistically signi�cant over almost all areas and forecast horizons. For example, I estimate

that a pessimistic 0-day forecast error of one standard deviation reduces demand in area

1 c.p. by 21% compared to a day with an accurate forecast. On the contrary, optimistic

forecast errors seem to a�ect skier demand only in area 2 and slightly but less clear in area

3. An optimistic 0-day forecast error of one standard deviation increases demand by 16%

compared to an accurate weather forecast in area 2. Area 2 has also the highest share of early

deciders among one-day pass owners and strong impacts of errors in both directions. These

might be consequences of its famous family friendliness and their high transaction costs.

But more noticeable, throughout all models the e�ect of optimistic forecasts are smaller

than those of pessimistic forecasts and, by that, supporting hypothesis (iii).

21Anyone that went on a day trip with her family as a child or as adult remembers the struggle of getting
up early in the morning, dressing the children, packing all the gear into the car and walking from the parking
spot to the area entrance. Moving a whole family to a ski area for a day-trip requires much more e�ort than
a single person. Sticking to a clear plan and preparing the gear on the eve before the day simpli�es matters
a lot. Therefore, it would not be surprising if most families decided early on.

22The forecast error ∆ds is here demeaned in each area to be centred around zero. As the spatial matching
of weather and forecast data is an approximation (see Section 3.2), the forecast indices are slightly lower
than the weather indices and render forecasts more pessimistic than they actually are.
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Figure 7: E�ects of weather and forecast errors on log demand separated by age and
pass-validity groups
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Figure Notes: The �gure indicates the point estimates of (11) for weather and forecast errors on log demand
in area 2 (upper panel) and area 3 (lower panel). Along the x-axis for each of the �ve pass-validity groups
are three age groups. The pass-validity groups are from left to right aggregates for one-day passes, two-
to three-day passes, four- to seven-day passes, eight- to fourteen-day passes and all else above fourteen-day
passes. The age-groups are denoted as �adul� for adults, �juve� for juveniles and �kids� for children. Points
indicate point estimates and the bandwidths 95% con�dence intervals of the point estimates. Standard errors
are clustered on the season day to account for intra-day correlations across seasons (seasonality).
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Table 3: E�ect of weather and forecast error with slope dummy on log demand

area 1 area 2 area 3

variables 0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast

weather (w) 0.023∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.030∗∗∗

(0.0013) (0.0014) (0.0015) (0.0015) (0.0015) (0.0015) (0.0012) (0.0012) (0.0012)

fc.e. pessimistic 0.016∗∗∗ 0.0078∗ 0.0050 0.017∗∗∗ 0.013∗∗ 0.0099∗ 0.0098∗∗ 0.011∗∗ 0.0063∗

(∆|Do = 0) (0.0033) (0.0036) (0.0029) (0.0040) (0.0043) (0.0039) (0.0036) (0.0033) (0.0030)

fc.e. optimistic 0.000 0.004 0.003 0.012∗∗∗ 0.013∗∗ 0.012∗∗∗ 0.007∗ 0.007∗ 0.007∗∗

(∆|Do = 1) (0.004) (0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003)

easter (e) 1.02∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 1.46∗∗∗ 1.41∗∗∗ 1.43∗∗∗ 0.90∗∗∗ 0.85∗∗∗ 0.87∗∗∗

(0.18) (0.19) (0.20) (0.20) (0.19) (0.20) (0.24) (0.24) (0.24)

season day FE Y es Y es Y es Y es Y es Y es Y es Y es Y es

N 910 910 910 1099 1099 1099 1154 1154 1154

R2 0.790 0.783 0.780 0.674 0.671 0.667 0.789 0.791 0.788

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of model (18) for three areas and three forecast horizons. Standard errors are clustered on the

season day to account for intra-day correlations across seasons (seasonality). To allow a comparison between the areas only one-day passes are used.

The weather (w) and forecast (f−h) indices are continuous variables scaled between 0 and 100. The forecast error variable ∆−h = f−h − w is the

di�erence between weather and forecast. The dummy variable Do = 1[(f−h−w) > 0] is interacted with the forecast error variable ∆−h to allow for a

slope change in optimistic forecasts. Hence, the semi-elasticities in the forecast errors are recovered by ∂log(yds)
∂∆ds

= δ+Do · ν with Do = 0 and Do = 1

, respectively. Easter (e) is a dummy indicating the four Easter holidays (Good Friday to Easter Monday). All models are estimated using season

day �xed e�ects to account for the seasonality.
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The results of estimating (17) by an LSDV estimator are depicted in Figure 8. Apart

from the obvious demand drops on the weekends in 5-day and 6-day pass owners, there is no

pattern visible. Demand of adult 5-day pass owners in area 2 is estimated to be twice as high

on Mondays compared to Sundays in a comparable week controlling for weather. A slightly

smaller coe�cient results on Fridays (0.77 versus 0.97). Therefore skiers marginal utility is

on average not decreasing in repeated consumption and, by that, Hypothesis (I) cannot be

con�rmed. Note that this only holds on average. It might still be true that individuals have

either decreasing or increasing marginal utilities regarding repeated consumption. There is

just no way to recover these from my data.

Figure 8: Point estimates of week-day e�ects for three di�erent passes in two areas over
three age groups.
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Figure Notes: All panels indicate point estimates of week-day e�ects (δd̃) in model (17) with the Sundays
as reference categories. The three columns separate the estimates by age groups and the two rows by areas
2 and 3. The vertical bars indicate 95% con�dence intervals of the estimates but remain mostly invisible
due to very small bands. 7-day pass owners indicate no preference across all areas and age groups. 6-day
pass owners clearly ski less on Saturdays due to mostly arriving er departing that day and 5-day pass owners
show a preference for non-weekends.

To evaluate Hypothesis (II) the weather index is interacted with the week-day dummies
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to test whether the weather dependence changes throughout a week. The modi�ed model

reads then

log(yd̃ks) = βwd̃ks + δ′d̃+ γ′d̃ · wd̃ks + αk + ed̃ks + εd̃ks, (19)

where all variables and coe�cients remain as in (17) and γ indicates the vector of coe�cients

of the week-day and weather interaction. Essentially, (19) exploits the within week-day

variation of one-week pass owners and estimates the weather elasticities separately for each

week-day. As I recover the partial e�ect of the weather ∂ log(yd̃ks)
∂wd̃ks

= β̂ + γ̂′ · d̃ for each of

the 7 week-days and this model can be estimated 9 times (across three age groups and

three pass-validity groups), I receive 62 point estimates for each area. Lining those up on

the weekdays and apply a demand-weighting (the summed up demand upon which each

estimate is drawn) allows me to estimate the correlation of weather e�ects and week-days

by a weighted least-squares (WLS) estimator. The results are depicted in Figures 9 and 10.

I �nd that the weather e�ect substantially decreases to the end of the week and by that

support Hypothesis (II). The two �gures suggest, that the weather e�ect decreases by 0.0008

and 0.01 per day for area 2 and 3, respectively. To put this in perspective in area 3: When on

Sundays a decrease in the weather index by 10 (approximately one half standard deviation

of the weather index) hold on average around 7.5% individuals o� skiing, the same decrease

in the weather index on Fridays reduces demand only by roughly 2.5%. Hence demand

is a�ected by roughly one percentage point less per day of the week from the weather.

Because of the infeasibility of disentangling NW

N
and γ in (16) it remains unclear whether the

individual's weather elasticity is decreasing over the span of a week or just fewer individuals

decide upon the weather. Nevertheless, both show the circumstance that week-pass owners

on average become less sensitive to the weather at the end of their vacation.

To evaluate Hypothesis (III) the forecast index is interacted with the week-day dummies

to test whether the forecast error dependence changes throughout a week. The modi�ed

model reads then

log(yd̃ks) = βwd̃ks + δ′d̃+ ν∆d̃ks + γ′d̃ ·∆d̃ks + αk + ed̃ks + εd̃ks, (20)

where all variables and coe�cients remain as in (19) except that ν is the coe�cient on the

forecast error and γ indicates the vector of coe�cients of the week-day and forecast error

interaction. Essentially, (20) exploits the within week-day variation of one-week pass owners

and estimates the forecast error elasticities separately for each week-day while controlling

for the weather. This is necessary as a forecast error is a proxy of the forecast deviation

from the weather and as such can only deviate in the direction given a certain weather. In

particular, a forecast error cannot be negative when the weather is already at its worst. As I
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Figure 9: Point estimates of partial weather e�ects in area 2 across week-pass groups and
three age groups.
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Figure Notes: All points indicate single point estimates of partial weather e�ects (β̂ + γ̂′ · d̃) in model
(19) weighted by the overall demand of the days involved in estimating (19). The sample consists of week-
pass owners (�ve- to seven-day passes). Standard errors are clustered on the week-level (k) to account for
intra-cluster correlations. Statistically signi�cance at the 5%-level is indicated by red dots within the points.
Larger points indicate an estimate that is backed by more demand and receives a relatively high weighting
in the WLS estimation. The purple line gives the linear �t of the WLS estimation and results in a negative
correlation between weather e�ects and week-days. The slope coe�cient of this correlation and its standard
error are provided directly in the graph.
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Figure 10: Point estimates of partial weather e�ects in area 3 across week-pass groups and
three age groups.
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Figure Notes: All points indicate single point estimates of partial weather e�ects (β̂ + γ̂′ · d̃) in model
(19) weighted by the overall demand of the days involved in estimating (19). The sample consists of week-
pass owners (�ve- to seven-day passes). Standard errors are clustered on the week-level (k) to account for
intra-cluster correlations. Statistically signi�cance at the 5%-level is indicated by red dots within the points.
Larger points indicate an estimate that is backed by more demand and receives a relatively high weighting
in the WLS estimation. The purple line gives the linear �t of the WLS estimation and results in a negative
correlation between weather e�ects and week-days. The slope coe�cient of this correlation and its standard
error are provided directly in the graph.
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recover the partial e�ect of the forecast error ∂ log(yd̃ks)
∂∆d̃ks

= ν̂+ γ̂′ · d̃ for each of the 7 week-days

and this model can be estimated 9 times (across three age groups and three pass-validity

groups), I receive 62 point estimates for each area. Lining those up on the weekdays and

apply a demand-weighting (the summed up demand upon which each estimate is drawn)

allows me to estimate the correlation of weather e�ects and week-days by a weighted least-

squares (WLS) estimator. The results are depicted in Figures 11 and 12. Clearly, there

seems to be a quadratic relationship between forecast error e�ects and days of the week in

both areas. This is in line with Hypothesis (II) and (III): The role of the weather and the

forecast are diminished as probably most week-pass owners want to make full use of their

last day in vacation, regardless of the weather. But at the start of the week things look

di�erent. Most individuals decide rather late but still weather sensitive. In that respect, the

forecast is not of much use. Whereas at mid-week most season-pass owners seem to decide

early upon forecasts. The reason for this might be quite obvious: It is the perfect moment

to take a break from skiing and engage in other activities to recover strength for the last two

days.
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Figure 11: Point estimates of partial forecast error e�ects in area 2 across week-pass groups
and three age groups.
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Figure Notes: All points indicate single point estimates of partial forecast error e�ects (ν̂ + γ̂′ · d̃) in
model (20) weighted by the overall demand of the days involved in estimating (20). The sample consists of
week-pass owners (�ve- to seven-day passes). Standard errors are clustered on the week-level (k) to account
for intra-cluster correlations. Statistically signi�cance at the 5%-level is indicated by red dots within the
points. Larger points indicate an estimate that is backed by more demand and receives a relatively high
weighting in the WLS estimation. The purple line gives the quadratic �t of the WLS estimation.
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Figure 12: Point estimates of partial forecast error e�ects in area 3 across week-pass groups
and three age groups.
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Figure Notes: All points indicate single point estimates of partial forecast error e�ects (ν̂ + γ̂′ · d̃) in
model (20) weighted by the overall demand of the days involved in estimating (20). The sample consists of
week-pass owners (�ve- to seven-day passes). Standard errors are clustered on the week-level (k) to account
for intra-cluster correlations. Statistically signi�cance at the 5%-level is indicated by red dots within the
points. Larger points indicate an estimate that is backed by more demand and receives a relatively high
weighting in the WLS estimation. The purple line gives the quadratic �t of the WLS estimation.
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6 Conclusion

The impact of the weather and its forecast on ski demand is strongest in one-day pass

owners. In a static setting potential one-day pass owners form their decision regarding their

activity choice day-by-day. Using this framework I show that a substantial share of aggregate

demand base their choice on the expectation of weather outcomes. It appears that between

20 and 25% of the variation in demand can be explained by weather outcomes alone. As

skiing is a typical leisure activity that involves high transaction cost, the seasonality of

the weekends, Christmas, Easter and school holidays is determined by an individual daily

activity constraint. This constraint amounts to around 50% of the variation in the aggregate.

Furthermore, the daily weather is seasonal too and is largely a�ected by large scale situations

that are more or less persistent over time. The weather service's forecast accuracy varies with

these situations and impacts the risk evaluation of the weather sensitive skier. In particular,

the less stable the weather situation, the more risky an early decision based on forecasts

become. From this it follows that potential skiers are incentivized to postpone their skiing

decision as close to the activity as possible. But, as potential late deciders face increasing

transaction costs, some opt for early decisions and might fail in their individual optimization

when forecasts deviate from the weather. In the aggregate, I estimate that forecast errors

of one standard deviation amount to changes in demand up to 20%. Observing variation

in weather and forecast errors allows me to estimate the share of early deciders among the

weather sensitive skiers. This share amounts to 38%, 70% and 28% in area 1, 2 and 3,

respectively.

Separating demand into di�erent age groups and pass-validity groups in area 2 and 3

reveals that those groups related to high transaction costs consist of a larger share of early

deciders. The best way to see this is comparing one-day pass owners to season pass owners

in area 3. The former face arguably relatively large transaction costs compared to the latter.

I estimate that 30% of the one-day pass owners consist of early deciders whereas all of the

season-pass owners consist of late deciders. On top of that, children and juveniles, often

accompanied by their families, reveal of being consistently more a�ected by forecasts and

consist, thus, of higher shares of early deciders. This is in line with the idea that high

transaction costs enforce an early decision.

By introducing the option for individuals to choose among a third weather dependent

but much cheaper alternative activity, I suggest that early deciders face stronger losses

in potential optimistic forecasts compared to potential pessimistic forecasts. The losses

from a suboptimal early decision against skiing, due to better than expected weather, can

be mitigated by following the alternative outdoor activity at home. On the contrary, the
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losses from a suboptimal early decision in favour of skiing, due to worse than expected

weather, cannot be mitigated as transaction costs have been born already and these sunk

costs incentivize the skier to enter the area in unfortunate weather. Including a slope dummy

on the forecast error supports this hypothesis as all estimates in pessimistic forecasts have

larger coe�cients than in the optimistic case. The emergence of more low-cost outdoor

activities coupled with less fog days and milder winter weather might actually contribute to

a large extent to the stagnating skiing demand within the Alps (Plaz & Schmid, 2015).

From these learnings I suggest that ski area operators should pay attention to unstable

weather situations when implementing new pricing regimes. In particular, prices should be

conditional on forecast uncertainty rather than on weather forecasts itself. The loss invoked

on an individual through an optimistic forecast can be large already. Extracting more out-

of-pocket expenses in such a situation could alienate the a�ected further. On the contrary,

lowering the price for a day with a potential optimistic forecast could mitigate losses and lure

additional skiers to the area that would otherwise rest at home. Or, instead of using dynamic

prices, an operator could refund sold tickets in the case of worse weather outcomes and allow

them to switch the price of ski passes for alternative activities within the destination. In

practice, such a refund works better when �rms are horizontally integrated within the area.

Similar to the reduced prices, this could dampen the losses from an optimistic forecast.

In the last part I look at the dynamic choices of week-pass owners and �nd that they

do not fully make use of their week-pass by skipping some days with unfortunate weather.

The estimates indicate that weather sensitivity decreases to the end of the week suggesting

that week-pass owners make the most out of their last days of vacation or that they become

polarized in their motivation. Namely that they either decrease or increase their skiing

engagement due to deteriorating endurance or increasing skills. The decision to ski at the

last days hinges then less on the weather but to a larger extent on these motivational factors.

Looking at forecast errors reveals that mid-week days encounter the largest drop in demand

when forecasts are unfortunate. The reason for this might be that skiers tend to use these

days for a break to regain strength for the last days and more often, when the weather

forecast for such a day is unfortunate. As the de-motivated skiers form a regret on their

already paid week-passes to the end of the week, they might fail in their optimization and ski

in harsh conditions. Introducing refundable days in week-passes would help these individuals

to overcome their regrets and follow their optimal activity on such a day.
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8 Appendix

8.1 Spatial join of weather data to lift stations

To spatially join the highest and lowest lift with all weather stations within 30km, we use

ArcGIS software to match geo-referenced data of our highest and lowest lifts and of all

weather stations from MeteoSwiss23. We �nd two types of weather stations: Those only

measuring precipitation and those measuring almost all variables. The distance weighting

23found here: https://www.meteoschweiz.admin.ch/home/messwerte.html?param=messnetz-
automatisch
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has to be calculated for each variable in each year to account for missing data in a given

year and station. The basis of these calculations is drawn from (Carson & Yu, 2020) section

3.1.2:

ŵit =

wA,t

dpA,i
+

wB,t

dpB,i

1
dpA,i

+ 1
dpB,i

(21)

Where i is area/lift i, t is the year, A and B are the two weather stations within the 30km

radius. ŵ depicts the estimated weather variable, w the weather input variables and d the

distance between stations A,B and area/lift i. p is a power parameter that penalizes distance

(usually p = 2 according to (Carson & Yu, 2020)). Rearranged and evaluated for n weather

stations in the vicinity of 30km we get the weight ω for station A at time t:

ωA,t =

1
dpA,i∑n
s=A

1
dps,i

(22)

for each weather station. The �nal weather variable is then the sum over all weather variables

weighted by stations:

ŵit =
n∑

s=A

ws,t ∗ ωs,t (23)

8.2 Impact of Season Fixed E�ect

To check upon the impact of a season �xed e�ect, I compare log-linear estimates (10) across

the three areas. Point estimates are in Tables 4, 5 and 6. Column (1) and (2) indicate

the models without and with the season �xed e�ect ςs for all three forecast horizons and

the weather, respectively. The tables indicate the OLS estimates of the coe�cients and

standard errors in parentheses. These are clustered on the season day to account for the

likely intra-cluster correlation of the seasonality. In all areas and over all forecast horizons the

sunshine is signi�cantly positive related to skiing demand. The opposite is true for measured

precipitation: There is a signi�cant negative relationship to demand but only up to the cubic

term in area 1 and only in areas 1 and 3 additionally in the forecast speci�cations. Measured

wind-chill temperature is signi�cantly related to demand in area 1 and 2, the forecast wind-

chill temperature in area 2 and 3. I refrain from the interpretation of any e�ect sizes due

to the ceteris paribus property of OLS estimates. Despite the exogeneity of the regressors,

in reality it is hardly ever the case that a single weather variable changes while the others

remain constant.

Comparing the estimates in (1) and (2) reveals that the season �xed e�ect has in almost

all cases no signi�cant confounding e�ect on any of the regressors. The exception are the
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measured wind-chill temperature e�ect sizes in area 3. After incorporating the season �xed

e�ects, the e�ects are half the size and are no longer statistically signi�cant. A possible

explanation could be infrastructure investments in temperature and wind exposed lifts (e.g.

chairlift with bubbles) that led demand to being less dependent on wind-chill temperature

during the observed time period. However, with the goal of exploiting as much variation as

possible, the season �xed e�ects are disregarded in most of the following analysis.
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Table 4: Log demand and its association to weather and forecast variables in area 1

Forecast d-2 Forecast d-1 Forecast d-0 Weather

variables (1) (2) (1) (2) (1) (2) (1) (2)

fsnow −0.00022 −0.0011 −0.0021 −0.0026 0.00054 −0.00017 −0.0020 −0.0027

(0.0029) (0.0028) (0.0036) (0.0034) (0.0051) (0.0049) (0.0060) (0.0057)

prec −0.12∗∗∗ −0.12∗∗∗ −0.13∗∗∗ −0.13∗∗∗ −0.11∗∗∗ −0.12∗∗∗ −0.16∗∗∗ −0.16∗∗∗

(0.025) (0.025) (0.031) (0.029) (0.024) (0.023) (0.027) (0.026)

prec2 0.0046∗ 0.0042∗ 0.0063∗ 0.0063∗ 0.0050∗∗ 0.0053∗∗∗ 0.0073∗∗∗ 0.0073∗∗∗

(0.0018) (0.0018) (0.0028) (0.0026) (0.0015) (0.0015) (0.0021) (0.0020)

prec3 −0.000068∗ −0.000060 −0.00011 −0.00011 −0.000071∗∗ −0.000074∗∗∗ −0.00010∗∗ −0.00010∗∗

(0.000031) (0.000031) (0.000060) (0.000057) (0.000023) (0.000022) (0.000036) (0.000035)

sun 0.0056∗∗∗ 0.0057∗∗∗ 0.0049∗∗∗ 0.0049∗∗∗ 0.0059∗∗∗ 0.0057∗∗∗ 0.0082∗∗∗ 0.0082∗∗∗

(0.0011) (0.0011) (0.0011) (0.0010) (0.0011) (0.0011) (0.00072) (0.00072)

wct −0.021 −0.026 −0.020 −0.027 −0.016 −0.022 −0.022∗ −0.022∗

(0.014) (0.015) (0.014) (0.015) (0.016) (0.016) (0.0091) (0.0094)

wct2 −0.0012 −0.0015∗ −0.0011 −0.0015∗ −0.00098 −0.0013 −0.0015∗∗∗ −0.0016∗∗∗

(0.00064) (0.00068) (0.00062) (0.00067) (0.00072) (0.00074) (0.00042) (0.00043)

easter 1.07∗∗∗ 1.05∗∗∗ 0.96∗∗∗ 0.94∗∗∗ 0.96∗∗∗ 0.94∗∗∗ 1.10∗∗∗ 1.08∗∗∗

(0.20) (0.20) (0.22) (0.21) (0.23) (0.24) (0.19) (0.20)

season FE No Y es No Y es No Y es No Y es

season day FE Y es Y es Y es Y es Y es Y es Y es Y es

N 910 910 910 910 910 910 910 910

R2 0.776 0.786 0.757 0.768 0.738 0.748 0.785 0.794

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of model (10) for three forecast horizons and the weather in area 1. The estimates for each

horizon are separated by two columns (1) without the season �xed e�ects ςs and (2) with the season �xed e�ects. Standard errors are clustered on

the season day to account for intra-day correlations across seasons (seasonality). To allow a comparison between the areas only one-day passes are

used. The weather and forecast variables are all spatially matched to the same coordinate within the area (lowest lying lift). Easter (e) is a dummy

indicating the four Easter holidays (Good Friday to Easter Monday). All models are estimated using season day �xed e�ects to account for the

seasonality.
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Table 5: Log demand and its association to weather and forecast variables in area 2

Forecast d-2 Forecast d-1 Forecast d-0 Weather

variables (1) (2) (1) (2) (1) (2) (1) (2)

fsnow 0.0052 0.0054 0.0076 0.0077 0.010∗ 0.011∗ 0.0017 0.0013

(0.0041) (0.0039) (0.0048) (0.0047) (0.0048) (0.0045) (0.0032) (0.0030)

prec −0.043 −0.065 −0.044 −0.069∗ −0.052 −0.068 −0.17∗∗∗ −0.15∗∗∗

(0.034) (0.034) (0.032) (0.033) (0.038) (0.038) (0.030) (0.031)

prec2 −0.0034 −0.0014 −0.0014 0.00062 0.0016 0.0028 0.0090∗∗ 0.0079∗

(0.0035) (0.0036) (0.0033) (0.0034) (0.0041) (0.0041) (0.0032) (0.0032)

prec3 0.00019∗ 0.00014 0.000098 0.000054 −0.000027 −0.000049 −0.00013 −0.00012

(0.000092) (0.000094) (0.000077) (0.000082) (0.000100) (0.000099) (0.000088) (0.000089)

sun 0.0091∗∗∗ 0.0078∗∗∗ 0.010∗∗∗ 0.0087∗∗∗ 0.0096∗∗∗ 0.0086∗∗∗ 0.0058∗∗∗ 0.0066∗∗∗

(0.0012) (0.0012) (0.0011) (0.0011) (0.0014) (0.0013) (0.00077) (0.00071)

wct −0.039∗∗∗ −0.027∗∗ −0.032∗∗∗ −0.023∗∗ −0.034∗∗∗ −0.024∗∗ −0.026∗∗ −0.020∗

(0.0091) (0.0085) (0.0082) (0.0080) (0.0093) (0.0084) (0.0087) (0.0081)

wct2 −0.0023∗∗∗ −0.0021∗∗∗ −0.0019∗∗∗ −0.0017∗∗∗ −0.0022∗∗∗ −0.0020∗∗∗ −0.0011∗ −0.0013∗

(0.00051) (0.00047) (0.00048) (0.00046) (0.00051) (0.00047) (0.00055) (0.00050)

easter 1.46∗∗∗ 1.38∗∗∗ 1.42∗∗∗ 1.33∗∗∗ 1.44∗∗∗ 1.35∗∗∗ 1.39∗∗∗ 1.30∗∗∗

(0.21) (0.20) (0.19) (0.19) (0.21) (0.20) (0.21) (0.20)

season FE No Y es No Y es No Y es No Y es

season day FE Y es Y es Y es Y es Y es Y es Y es Y es

N 1099 1099 1099 1099 1099 1099 1099 1099

R2 0.677 0.707 0.675 0.707 0.662 0.699 0.658 0.699

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of model (10) for three forecast horizons and the weather in area 2. The estimates for each

horizon are separated by two columns (1) without the season �xed e�ects ςs and (2) with the season �xed e�ects. Standard errors are clustered on

the season day to account for intra-day correlations across seasons (seasonality). To allow a comparison between the areas only one-day passes are

used. The weather and forecast variables are all spatially matched to the same coordinate within the area (lowest lying lift). Easter (e) is a dummy

indicating the four Easter holidays (Good Friday to Easter Monday). All models are estimated using season day �xed e�ects to account for the

seasonality.
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Table 6: Log demand and its association to weather and forecast variables in area 3

Forecast d-2 Forecast d-1 Forecast d-0 Weather

variables (1) (2) (1) (2) (1) (2) (1) (2)
fsnow 0.0022 0.00094 0.0060 0.0050 0.0055 0.0032 0.0012 0.0019

(0.0039) (0.0037) (0.0047) (0.0043) (0.0052) (0.0051) (0.0044) (0.0040)

prec −0.089∗∗ −0.083∗∗ −0.12∗∗∗ −0.12∗∗∗ −0.077∗∗ −0.069∗ −0.20∗∗∗ −0.19∗∗∗

(0.028) (0.026) (0.029) (0.029) (0.029) (0.029) (0.034) (0.034)

prec2 0.0017 0.0015 0.0033 0.0035 0.00059 −0.00010 0.0088 0.0080
(0.0022) (0.0020) (0.0028) (0.0028) (0.0033) (0.0033) (0.0050) (0.0051)

prec3 −0.000020 −0.000020 −0.000043 −0.000052 0.0000067 0.000018 −0.00011 −0.00010
(0.000035) (0.000033) (0.000059) (0.000060) (0.000086) (0.000085) (0.00017) (0.00017)

sun 0.010∗∗∗ 0.011∗∗∗ 0.0091∗∗∗ 0.0098∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.0093∗∗∗ 0.010∗∗∗

(0.0011) (0.00099) (0.0011) (0.0010) (0.0011) (0.0010) (0.00059) (0.00060)

wct −0.015∗ −0.011 −0.017∗∗ −0.011 −0.016∗∗ −0.0089 −0.010∗ −0.0052
(0.0060) (0.0061) (0.0055) (0.0057) (0.0057) (0.0059) (0.0044) (0.0046)

wct2 −0.0022∗∗∗ −0.0017∗∗∗ −0.0022∗∗∗ −0.0016∗∗∗ −0.0021∗∗∗ −0.0014∗∗∗ −0.0012∗∗ −0.00058
(0.00040) (0.00042) (0.00035) (0.00039) (0.00035) (0.00037) (0.00038) (0.00039)

1.easter 0.99∗∗∗ 0.92∗∗∗ 0.81∗∗ 0.73∗∗ 0.90∗∗∗ 0.83∗∗∗ 0.93∗∗∗ 0.86∗∗∗

(0.24) (0.24) (0.24) (0.24) (0.26) (0.24) (0.24) (0.23)

season FE No Y es No Y es No Y es No Y es

season day FE Y es Y es Y es Y es Y es Y es Y es Y es
N 1154 1154 1154 1154 1154 1154 1212 1212
R2 0.778 0.796 0.773 0.791 0.754 0.773 0.784 0.804

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of model (10) for three forecast horizons and the weather in area 3. The estimates for each

horizon are separated by two columns (1) without the season �xed e�ects ςs and (2) with the season �xed e�ects. Standard errors are clustered on

the season day to account for intra-day correlations across seasons (seasonality). To allow a comparison between the areas only one-day passes are

used. The weather and forecast variables are all spatially matched to the same coordinate within the area (lowest lying lift). Easter (e) is a dummy

indicating the four Easter holidays (Good Friday to Easter Monday). All models are estimated using season day �xed e�ects to account for the

seasonality.
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8.3 The bias-variance trade-o� of the LSDV and WT estimator

Applying the least-squares dummy variable (LSDV) and the within (WT) estimator to the

baseline model (10) does not necessarily imply equal prediction accuracy. To see this, con-

sider the least-squares dummy variable (LSDV) and the within (WT) estimator. The former

is estimating (??) by

yds = w′dsβ + α1d1 + ...+ αDdD + edsγ + εds. (24)

In this formulation the �xed e�ect αd is represented by 155 dummy variables for each day

in a season. It �ts a line to the regressors after adding or subtracting for each season day a

constant (the "�xed" e�ect). The α̂s estimate this constant jump in demand compared to

the base category and capture the between season day variation. Thus, the β̂s estimate the

within season day variation of weather e�ects. Using this as a prediction estimator has the

caveat that predicting the between variation from at most 10 days across seasons produces

a very tight �t and, therefore, leads to a relatively high prediction variance.

The WT estimator, on the other hand, estimates

ỹds = w̃′dsβ + ẽdsγ + εds, (25)

where w̃ds = wds − wd, ỹds = yds − yd and ẽds = eds − ed. The upper bar over the variable

indicates the mean of that variable across seasons within season days. The WT estimator

demeans all regressors by season days and this results in exactly the same β̂ as in the LSDV

estimator.24 In contrast to the LSDV estimator, the demeaning purges the between season

day variation before estimating (25). Predicting demand using the WT estimator requires

therefore only the demeaned weather variables as regressors compared to the additional re-

quirement of 155 dummy variables by the LSDV. The higher degrees of freedom of the WT

estimator produce mechanically a worse �t. This results in a much lower variance at the

expense of some bias in the mean squared error (MSE) of the prediction (see e.g. Hastie

et al. (2008)).

8.4 Risk for di�erent forecast horizons

The shorter the forecast horizon the more accurate it becomes and, by that, the risk of

skiing in unfavoured weather conditions is reduced. In Figure 13 the root-mean-squared

errors (RMSE) are depicted for the weather index (�rst row) and the three key variables

24By the FWL-theorem, see e.g. Lovell (2008).
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in all three areas over all ten seasons. From these graphs we learn three things: (i) In

almost all depicted groups the black dots - indicating the shortest forecast horizon - display

the lowest RMSE supporting the idea that 0-day forecasts are more accurate than 1- and

2-day forecasts. (ii) The di�erences between the three forecast horizons are surprisingly

low in accuracy - all points are in close proximity and suggest that the weather-related risk

reduction between these forecast horizons is very small if not null. (iii) Prediction errors do

not follow any systematic trend over the observed periods. The prediction in area 1 became

slightly better, whereas in area 2 and 3 it is slightly worse in season 10 than in season 0.

But, more strikingly, no clear pattern is visible.

Figure 13: RMSE of forecast horizons split by season, areas and weather variables
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Figure Notes: On the horizontal axes are the seasons depicted and the vertical axes indicate the root-
mean-squared errors (RMSE) of di�erent weather variables. The RMSE are depicted for all three forecast
horizons h = 1, 2 or 3. In the top row we �nd the forecast indices, in rows 2 to 4 the three key-weather
variables identi�ed in section 3.5.
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8.5 Derivation of ATT

Suppose that absent any inaccuracies in the forecast outcome is determined by

E(y0
ds|d, s, wds) = αd + βwds (26)

with wds being the weather index, αd being the season day �xed e�ect that is common

across seasons but �xed across season days. To evaluate the e�ect of a wrong forecast

on skier outcome, I �rst de�ne two dummy variables that indicate whether a forecast was

optimistic, pessimistic or correct on a given day, denoted by Do
ds = 1[(fd−hds − wds) > 0.1]

and Dp
ds = 1[(fd−hds − wds) < −0.1]. Now, for those days with an incorrect forecast outcome

is determined by

E(y1
ds|d, s, wds) = αd + βwd,s + δoDo

ds + δpDp
ds

which separates into optimistic and pessimistic days

E(y1,o
ds |d, s, wds, D

o
ds = 1) = αd + βwds + δo

E(y1,p
ds |d, s, wds, D

p
ds = 1) = αd + βwds + δp

Then, under the conditional independence assumption, the ATTs are given by

δo = E(y1,o
ds − y

0
ds|d, s, wds)

δp = E(y1,p
ds − y

0
ds|d, s, wds).

Note that the assignment of the treatments is random as long as the forecaster does not

systematically render the forecast either optimistic or pessimistic. In a classical policy eval-

uation study, the ATT are recovered using a two-way �xed e�ect model. As our speci�cation

is not dependent on the direction of time (simply comparing treated days to untreated is

not corrupted by the fact that one day follows the other) and seasonal e�ects do not alter

any coe�cients in the baseline speci�cation in section ??, it is su�cient to include individual

�xed e�ects alone (in our case the season day �xed e�ects αd).

8.6 Estimation of ATT

The empirical model to test the above hypotheses is derived using a potential outcome

framework (see e.g. Angrist and Kruger) where I compare skiing demand on days with

optimistic/pessimistic forecasts to a potential outcome with accurate forecasts. Thus, I
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assign days with an optimistic/pessimistic forecast as being treated and days with accurate

forecasts as controls. As the forecaster does not systematically publish wrong predictions,

the treatments are considered to be random after controlling for seasonality and the weather.

The model to be estimated is then

log(yds) = wdsβ + δoDo
ds + δpDp

ds + αd + edsγ + εds, (27)

with wds being the weather index, Do
ds = 1[(fd−hds − wds) > 0.1] is a dummy indicating

optimistic forecast days, Dp
ds = 1[(fd−hds − wds) < −0.1] is a dummy indicating pessimistic

forecast days, αd being the season day �xed e�ect that is common across seasons but �xed

across season days, e is a dummy indicating Easter holidays and ε is the error term. This

speci�cation allows that the coe�cients δo and δp recover average treatment e�ects on the

treated (ATT) days. A short derivation of this result is in Appendix 8.5. Controlling for the

actual weather is crucial here because I want to recover the e�ect of a forecast above/below

the variation that is induced by the weather alone.

I estimate model 27 by a least-squares dummy variable estimator (LSDV). The results

are presented in Table 7. The estimates of pessimistic forecasts are statistically signi�cant

across all areas and most forecast horizons. A pessimistic 0-day forecast is estimated to

decrease demand by 39% relative to a day with an accurate forecast in area 1. The same

reductions in area 2 and 3 are estimated to be around 25% and 17%, respectively. Optimistic

forecasts are only statistically distinguishable from zero in area 2 where a 0-day optimistic

forecast increases demand by 26% relative to a comparable day with an accurate forecast.

Notice that the e�ect sizes for the weather index are much larger than for the forecasts. In

area 1 I estimate that roughly one in seven skiers decide early as
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Table 7: E�ect of optimistic and pessimistic forecast indicators on log demand

area 1 area 2 area 3

0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast

optimistic 0.025 0.10 0.069 0.28∗∗∗ 0.26∗∗∗ 0.20∗∗ 0.093 0.045 0.083
(0.052) (0.054) (0.053) (0.057) (0.061) (0.062) (0.050) (0.048) (0.043)

pessimistic −0.32∗∗∗ −0.15∗ −0.17∗∗ −0.24∗∗∗ −0.20∗∗ −0.20∗∗∗ −0.18∗∗ −0.20∗∗ −0.16∗∗

(0.063) (0.064) (0.057) (0.063) (0.066) (0.057) (0.057) (0.062) (0.051)

weather_index 0.023∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗

(0.0013) (0.0013) (0.0014) (0.0015) (0.0015) (0.0015) (0.0011) (0.0011) (0.0011)

easter 1.02∗∗∗ 0.98∗∗∗ 0.97∗∗∗ 1.46∗∗∗ 1.40∗∗∗ 1.44∗∗∗ 0.89∗∗∗ 0.86∗∗∗ 0.86∗∗∗

(0.19) (0.19) (0.20) (0.19) (0.19) (0.20) (0.23) (0.23) (0.24)

season day FE Y es Y es Y es Y es Y es Y es Y es Y es Y es

N 913 913 913 1099 1099 1099 1212 1212 1212
R2 0.788 0.783 0.782 0.670 0.669 0.666 0.788 0.788 0.787

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of model (27) for three areas and three forecast horizons. To allow a comparison between

the areas only one-day passes are used. The same tables for area 2 and area 3 demand in all passes are in Appendix XX (in area 1 only one-

day passes are used). The variables optimistic and pessimistic are dummies Do
ds = 1[(fd−hds − wds) > 0.1] indicating optimistic forecast days and

Dp
ds = 1[(fd−hds − wds) < −0.1] indicating pessimistic forecast days. The weather (wds) and forecast fd−hds indices are continuous variables scaled

between 0 and 1. Easter is a dummy indicating the four Easter holidays (Good Friday to Easter Monday). All models are estimated using season day

�xed e�ects to account for the seasonality.
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Table 8: E�ect of optimistic and pessimistic forecast indicators on log demand

area 1 area 2 area 3

0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast 0-day forecast 1-day forecast 2-day forecast
strongly_optimistic 0.036 0.079 0.044 0.22 0.30∗ 0.20 −0.071 −0.024 −0.017

(0.13) (0.12) (0.11) (0.12) (0.12) (0.10) (0.076) (0.078) (0.071)

slightly_optimistic 0.035 0.13∗ 0.060 0.23∗∗∗ 0.22∗∗ 0.19∗∗ 0.13 0.12 0.086
(0.060) (0.058) (0.060) (0.065) (0.071) (0.068) (0.077) (0.072) (0.079)

slightly_pessimistic −0.23∗∗ −0.072 −0.14 −0.22∗∗∗ −0.23∗∗∗ −0.21∗∗∗ −0.15∗∗ −0.13∗∗ −0.13∗

(0.077) (0.083) (0.085) (0.053) (0.054) (0.060) (0.045) (0.046) (0.054)

strongly_pessimistic −0.50∗∗∗ −0.27∗ −0.18 −0.32∗∗ −0.21 −0.27∗∗ −0.20∗ −0.26∗∗∗ −0.18∗∗

(0.11) (0.12) (0.094) (0.11) (0.12) (0.091) (0.079) (0.076) (0.068)

weather_index 2.32∗∗∗ 2.49∗∗∗ 2.50∗∗∗ 2.01∗∗∗ 2.08∗∗∗ 2.06∗∗∗ 2.94∗∗∗ 2.91∗∗∗ 2.95∗∗∗

(0.13) (0.13) (0.14) (0.14) (0.15) (0.15) (0.11) (0.11) (0.11)

easter 1.01∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 1.49∗∗∗ 1.46∗∗∗ 1.44∗∗∗ 0.91∗∗∗ 0.89∗∗∗ 0.88∗∗∗

(0.19) (0.19) (0.20) (0.19) (0.18) (0.20) (0.24) (0.23) (0.24)

day FE Y es Y es Y es Y es Y es Y es Y es Y es Y es
N 913 913 913 1099 1099 1099 1212 1212 1212
R2 0.790 0.784 0.782 0.671 0.669 0.667 0.789 0.790 0.788

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table Notes: The table depicts LSDV estimates of an extension to model (27) for three areas and three forecast horizons. To allow a comparison

between the areas only one-day passes are used. The same tables for area 2 and area 3 demand in all passes are in Appendix XX (in area 1 only

one-day passes are used). The variables slightly optimistic and slightly pessimistic are dummies Do
ds = 1[0.1 < (fd−hds −wds) ≤ 0.2] indicating slightly

optimistic forecast days and Dp
ds = 1[−0.1 > (fd−hds − wds) ≥ −0.2] indicating slightly pessimistic forecast days. The variables strongly optimistic

and strongly pessimistic are dummies Do
ds = 1[(fd−hds − wds) > 0.2] indicating strongly optimistic forecast days and Dp

ds = 1[(fd−hds − wds) < −0.2]

indicating strongly pessimistic forecast days. The weather (wds) and forecast fd−hds indices are continuous variables scaled between 0 and 1. Easter is

a dummy indicating the four Easter holidays (Good Friday to Easter Monday). All models are estimated using season day �xed e�ects to account for

the seasonality.
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8.7 Starting day of validity spells

Figure 14: Shares in starting days of di�erent validity spells in area 1
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Figure Notes: On the horizontal axis is the share of each starting day in validity depicted. The vertical
axis indicates di�erent validity spells from one-day passes up to 21-day passes. Note that �ve- to seven-day
passes often start at a day to cover the weekdays Monday to Friday as most owners of such passes spend
their vacation from weekend to weekend.
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Figure 15: Shares in demand for di�erent validity spells in area 2 and 3

sun mon tue wed thu fri sat
0% 25% 50% 75% 100%

share in demand

7-day pass

6-day pass

5-day pass

area 2

sun mon tue wed thu fri sat
0% 25% 50% 75% 100%

share in demand

7-day pass

6-day pass

5-day pass

area 3

Figure Notes: On the horizontal axis is the share of demand for each weekday depicted. The vertical axis
indicates di�erent validity spells from �ve-day passes up to 7-day passes. Note that demand of �ve- and
six-day passes is often high on the days Sunday/Monday to Friday as most owners of such passes spend their
vacation from weekend to weekend and depart on Saturday.
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