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Abstract

We investigate the impact of exogenous shocks on network and stability parameters

in proof-of-work-based permissionless blockchains with structurally concentrated

mining ecosystems, such as the Bitcoin network. While plunging hashing power

during a shock intuitively weakens the network by lowering the attacking costs, we

show that parallel movement of important covariates (such as the coin price) can

offset this effect and keep the mining process incentive compatible. Fundamental

to our analysis is a theoretical framework building on Budish (2018) and Capponi

et al. (2021). We then examine two exogenous shocks to the Chinese Bitcoin mining

ecosystem caused by the Corona pandemic in October 2020 and grid disruptions

in April 2021 to provide empirical evidence for our hypotheses. Our results illus-

trate i) the crucial structural parameters that affect the robustness of the consensus

design against exogenous shocks, and ii) how market participants incorporate and

value variation in the implied stability of the distributed ledger.
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1 Introduction

Distributed ledger technologies (DLT) promise to become the most significant innovation

of the 21st century in terms of transparent, cost-effective, and automated coordination

of processes in business and society. In most DLT, a blockchain replaces trusted third-

party intermediaries by combining a publicly accessible, decentralized database with a

permission-specific consensus algorithm. This structure facilitates interaction among a

(basically) unlimited number of anonymous and arbitrarily distributed individuals at

low transaction costs and independently of any existing trust relation. Central to the

operation of each permissionless blockchain is a consensus mechanism designed to en-

sure that initiated transactions are stored in the decentralized ledger in a tamper-proof

and externally verifiable format. Historically, proof-of-work consensus (PoW) has been

prevalent, although several alternative concepts have emerged and are gaining traction

(see Irresberger et al., 2020; Stinner & Tyrell, 2021).

PoW consensus encourages some nodes in the network (also called ”miners”) to engage

in a competitive tournament for the right to update the ledger. Miners verify and settle

pending transactions in new block candidates and maintain the ledger’s integrity. Hence,

they form the backbone of any PoW-based network. Participation is incentivized by a

reward in the form of native currency units for the miner, who first appends a valid

transaction candidate to the blockchain. In this process, a miner’s probability of success

is proportional to the ratio of computing power employed to solve the cryptographic

puzzle associated with block creation.

By construction, PoW consensus intends to maintain a symmetric distribution of

hashing power among miners based on a competitive equilibrium (Nakamoto, 2008).1

Preventing dominant actors or coalitions is critical for the stability of the consensus

design since an attacker with a majority of hash capacity is able to successfully attack

the ledger (see, among others, Budish (2018), Eyal and Sirer (2014), and Nakamoto (2008)

1Computing power exerted to PoW mining is generally interpreted as ”hash-rate” and expressed in
trillions of hashes or tera-hash (TH). The hash-rate reflects the estimated number of hash computations
performed to solve the cryptographic function underlying the PoW mechanism. See Naor and Yung
(1989) or Al-kuwari et al. (2011) for more information on hash functions, and Schär and Berentsen
(2020) for their application in proof-of-work-based cryptocurrencies.
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for theoretical and Shanaev et al. (2020) for empirical work). However, looking at the

Bitcoin network – the most prominent implementation of PoW consensus – we observe

recurring centralization based on economic forces, technical characteristics, and strategic

behavior of heterogeneous miners. These patterns poss a systemic threat to the consensus

protocol and have prompted a growing body of academic research (see section 2). We

extend the literature by examining the implications of exogenous shocks on the robustness

and incentive compatibility of PoW consensus with structural concentrated patterns in

the mining ecosystem.

Concentration patterns are central for our analysis since they substantially influence

the occurrence and impact of exogenous shocks, such as cyberattacks, political and regu-

latory interventions, or energy-supply disruptions. This interdependence arises from two

aspects: First, miners sharing a particular characteristic (e.g., location) are simultane-

ously affected by an exogenous disturbance that impinges on that quality. Second, a few

large miners are easier for a malicious party to corrupt or compromise than a symmetri-

cally distributed network, in order to gain control over a relevant fraction of computing

capacity. Taken together, an exogenous shock is more likely to cause a severe capacity de-

cline and develop into a systemic crisis when the mining ecosystem is clustered. Although

essential for the long-term stability of decentralized PoW consensus, this interaction has

received little attention in the academic literature.

Our first contribution is a theoretical framework building on Budish (2018) and Cap-

poni et al. (2021) that captures the competition and industry dynamics of PoW con-

sensus. The model formally describes the comparative statics of the mining market and

allows to derive implications on the influencing factors and market dynamics. Moreover,

the theoretical examination provides empirically verifiable hypotheses on the tension be-

tween competition, incentive compatibility, and transaction stability in the presence of

exogenous shocks, which negatively influence the hash capacity provided by miners.

Our second contribution is an empirical analysis on the impact of exogenous disrup-

tions on transaction and stability parameters in the Bitcoin network – a PoW-based

permisionless blockchain ecosystem with a centralized mining industry. Based on a com-
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parative natural experiment setting, we provide evidence from two exogenous shocks to

the Chinese Bitcoin mining industry in autumn 2020 and spring 2021.

The first event is associated with the regional distribution of computing capacity in

China, which followed a seasonal pattern over the last decade: During the rainy season

(June-October), numerous mining centers were located in the southern Chinese provinces

Sichuan and Yunnan to exploit cheap surplus energy from local hydropower plants. When

hydro-energy becomes expensive during the winter months, mining operators relocate to

the northern provinces Xinjiang and Inner Mongolia – a distance of ≈ 3, 000 kilometers

– to employ coal energy. In autumn 2020, the physical transport of computing units was

severely restricted by quarantine restrictions following local Coronavirus outbreaks in

Xinjiang. Over 3-4 weeks, this restriction represented an unexpected negative production

shock. The second event occurred in April 2021, when the flooding of a coal mine in

Hutubi county, Xinjiang province, trapped 21 coal miners. Safety inspections following

the accident led to the closure of the district’s commodity mines for about ten days. At

this time of the year, many Bitcoin miners were still active in Northern China. However,

the limited energy access due to the blackout of the coal-based energy infrastructure

forced cryptocurrency miners to shut down facilities.

Both events are remarkably similar regarding their impact on the Bitcoin network:

During October 2020 and April 2021, the global hash-power exerted to mining declined

by 32 and 34 percent, respectively.2 The observed shocks thus constitute the sharpest

capacity losses in Bitcoin’s history to that date. In addition, the weekly block formation

exhibits the lowest and second-lowest number of blocks ever observed between January

2012 and May 2021. Various figures demonstrate that the capacity squeeze adversely

compromised transaction settlement: The average block time increased to 15.01 and

15.25 minutes (compared to 9.5 minutes o.a.), the number of unprocessed transactions

peaked at 135K and 126K (compared to 17.8K o.a.), and transaction fees grew by a

factor of 4.02 and 4.24. Our results show that the relation between transaction fees and

settlement congestion, as studied by Easley et al. (2019) in a general equilibrium model,

2Each deviation was observed within a 14-day interval, i.e., within one period of global block difficulty.
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holds under exogenous shocks. They further suggest that miners not affected by the

shock benefit from higher fees associated with the stringency of settlement capacity.

While Bitcoin’s transactional capability was similarly impaired during the observed

shocks, the robustness of the consensus protocol was not. Plunging mining capacity dur-

ing a shock intuitively lowers the costs associated with a majority attack, which enhances

the vulnerability of the decentralized ledger. However, whether the ledger remains im-

mutable (i.e., the consensus mechanism incentive-compatible) depends not only on the

aggregate of hashing capacity but also on the parameters affecting the economics of min-

ing. The rationale behind this is straightforward: The opportunity costs of an attack

proportionally increase with the rents extracted from honest mining. A shock naturally

reduces competition and increases transaction fees. Additional movements of the BTC-

USD exchange rate modify the present value of operated equipment.3 Hence, increasing

gains from honest mining may offset declining attacking costs, rendering malicious ac-

tions economically unviable. Ideally, this mechanism maintains honest behavior, and the

blockchain system remains incentive-compatible against a majority attack. During the

described shocks, the BTC price shows an opposite trend with a trajectory of +50 percent

in October 2020 and -20 percent in April 2021. Given similar trends in other parameters,

we argue that Bitcoin’s fragility remained at or declined from pre-shock levels in October

2020, but significantly increased in April 2021.

We leverage this heterogeneity to study how market participants internalize informa-

tion on Bitcoin’s varying stability levels. To empirically quantify this property, we esti-

mate bid-ask spreads for 11 cryptocurrencies based on hourly trade data from Kraken.com,

a major cryptocurrency exchange. Bid-ask spreads have been shown to implicitly mimic

a market’s liquidity. Moreover, under distress or general uncertainty, market-makers im-

pose higher spreads to offset risks from providing a trading venue. Hence, bid-ask spreads

are a suitable instrument to reflect the implied stability of the Bitcoin network. Some

cryptocurrencies in our dataset employ alternative consensus mechanisms (e.g., Proof-of-

Stake), which do not require relevant amounts of electricity; Others simply appear not to

3The terms ”Bitcoin price”, ”valuation”, and ”exchange rate” are used interchangeably in this paper
and always refer to the BTC-USD conversion rate.
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be affected by the shock. We cluster a control group from unaffected cryptocurrencies and

employ a comparative regression design to isolate implications of the shocks on Bitcoin

and a few other treated cryptocurrencies.

Our findings show that bid-ask spreads for trading Bitcoin in October 2020 are not

significantly different from currencies in the control group. However, in April 2021, we ob-

serve significant positive spreads, as predicted by our hypotheses. Additional robustness

checks confirm the result from our baseline fixed-effects regression. Consistent with our

intuition, bid-ask spreads for trading Bitcoin widened considerably in April 2021, when

the vulnerability of the ledger was relatively high, while we observe insignificant variation

in October 2020, when price appreciation compensated shrinking attacking costs. The

evidence presented indicates that sophisticated market participants, such as cryptocur-

rency exchanges, carefully observe Bitcoin’s stability level and internalize fluctuations

during exogenous shocks accordingly. Overall, we theoretically and empirically uncover

relevant fragility parameters of PoW consensus and demonstrate conditions under which

the design remains robust when confronted with exogenous shocks.

The paper proceeds as follows: Section 2 provides a literature review. Section 3

describes the theoretical framework of the mining market, considering both homogeneous

and heterogeneous miners. Section 4 first discusses the relevance of the Chinese mining

industry to introduce the context of the empirical analysis. The section then provides

descriptive results, the econometric design and calibration, as well as a discussion of the

findings. Finally, section 5 concludes by shortly summarizing the paper.

2 Literature Review

Our paper joins the growing academic literature studying the implications and economics

of blockchain technologies, digital currencies, and crypto-assets. Irresberger et al. (2020)

and John et al. (2020) study the efficiency, while Wang et al. (2019) provide a literature

review of various consensus algorithms. Prominent papers elaborating the mechanism

of cryptocurrency pricing and returns include Griffin and Shams (2020), Pagnotta and
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Buraschi (2018), Pagnotta (2021), Biais et al. (2021), Liu and Tsyvinski (2021), Makarov

and Schoar (2020), and Li et al. (2018). A variety of authors address certain aspects

of PoW consensus, such as competitive dynamics, incentive compatibility, and stability,

in permissionless blockchains. Abadi and Brunnermeier (2019), Ma et al. (2019), Biais

et al. (2019), and Chiu and Koeppl (2017) provide equilibrium frameworks to formalize

the economic mechanism of the consensus design and study its properties. Leshno and

Strack (2020) use an axiomatic approach to formulate economic limits of decentralized

consensus in an impossibility theorem. Budish (2018) formally establishes the incentive

compatibility of mining and discusses several attack scenarios. Shanaev et al. (2020)

empirically analyze the value depreciation of 13 cryptocurrencies that have been exposed

to a majority attack. Prat and Walter (2021) provide a structural model of miners’ entry

and exit decision based on variation in the Bitcoin price. Benetton et al. (2021) point

to negative externalities of organized mining activities. Garratt and van Oordt (2020)

highlight the relevance of fixed costs associated with the operation of mining equipment

for the robustness of the consensus protocol. Easley et al. (2019), Basu et al. (2021),

Brown and Koeppl (2019), Huberman et al. (2021) and Auer (2019) examine transaction

fees. Lehar and Parlour (2020) suggests that colluding miners inflate fee levels based on

effective price discrimination against Bitcoin users. Surveys are provided by Halaburda

et al. (2021), who give an overview of the microeconomics of cryptocurrencies, and by

Chen et al. (2020), who discuss several strands of the literature.

We focus on the economic robustness (i.e., incentive compatibility) underpinning PoW

consensus. Related to our paper, several authors describe concentration patterns in the

mining ecosystem and study potential implications/threats to the consensus design:

Eyal and Sirer (2014) elaborate centralization by so-called ”selfish” miners. Slightly

simplified, selfish miners form a secret coalition and pool block rewards by repeatedly

creating private versions of the public blockchain. By strategically releasing blocks from

the private chain, selfish miners provoke honest participants working on the public chain

to waste their resources. Eventually, discouraged honest miners will leave the network

(or join the selfish miners), which increases the relative share of the selfish coalition and
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allows for disproportionate earnings. In practice, recurrently publishing alternative chains

leads to forks in the assignment of the generally valid blockchain. This decreases users’

trust in the value of the cryptocurrency, which is not in any miners’ interest.

Cong et al. (2020) and Savolainen and Ruiz-Ogarrio (2020) examine the concentration

of computing power in mining pools and incentives for attacks on the network arising from

such constructs.4 Importantly, they suggest that economic barriers limit the size of pools

and their incentive to execute attacks.

Moreover, the consensus design suggests a limited expansion of individual pools: Since

the PoW protocol dictates proportional returns equal to the ratio of individual and global

hashing power, a miner gains the same amount of rewards when working for a small or

large pool. Consequently, increasing a single pool’s size does not generate meaningful

economic gains. In fact, honest miners will leave a pool that becomes too large, as

inflating size imposes a systemic risk to the stability of the network, on which mining

revenues critically depend. Pool formation by rational miners, therefore, does not treat

system stability.

Capponi et al. (2021) develop a Cournot-nash equilibrium of PoW-based mining. Akin

to Arnosti and Weinberg (2021), the willingness (or ability) of miners to invest in inno-

vative hardware creates heterogeneous hashing costs. While such cost variation explains

structural concentration in the mining ecosystem, the authors imply that large miners

do not inherently increase their advantage over small miners. In particular, capacity

constraints on access to low-cost energy prevent the most efficient miners from extending

their advantage indefinitely. Capponi et al. (2021) further show that increasing invest-

ment in hardware has two opposing effects on network immutability: On the one hand,

technology investments raise the level of computing capacity exerted to mining, which

intuitively makes it more costly to obtain a majority qualified for attacking the network.

On the other hand, operating innovative equipment decreases the cost-per-hash, which

mitigates the first effect. In equilibrium, the investment intensity is a function of mining

4Miners organize themselves into pools to offset idiosyncratic risks. Pool participation became more
or less obligatory for participants when competition in the Bitcoin mining market intensified. Typically,
miners consolidate their capacity and distribute revenues proportionally to the contributed computing
power within a pool.
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returns, which retains a certain level of robustness. As we will demonstrate later, this

mechanic is stressed during exogenous shocks: Per definition, an exogenous disturbance

pushes the total hash-rate below the equilibrium rate. Therefore, a majority attack must

become cheap when capacity collapses. However, we empirically show that this cannot

be taken for granted as the movement of covariates (such as coin price and transaction

fees) during the shock can offset this effect.

Referring to the geographical distribution of the mining industry, Hileman and Rauchs

(2018), Rauchs et al. (2019) and Rauchs et al. (2021) locate ≈ 65 percent of the globally

operating Bitcoin mining farms in mainland China. In a recent paper, Makarov and

Schoar (2021) exploit the semi-transparent Bitcoin blockchain to study the distribution

of mining rewards within the 20 largest mining pools. Their analysis implies a large

concentration in the mining industry, with a minority of 10 percent of miners controlling

more than 90 percent of the total computing capacity. By tracking miners’ transaction

flows to local cryptocurrency exchanges, the authors reveal miners’ regional composition

with significant geographic capacity clusters of 60 to 80 percent in China between 2015

and 2020. On the qualitative side, Kaiser et al. (2018) analyze the role of the Chinese

government as a looming threat to the stability of the Bitcoin network. The authors are

primarily concerned with cataloging motives and potential threat scenarios that might

be in the interest of the Chinese government but do not quantify the impact of these

actions on the network. Eventually, Scharnowski and Shi (2021) investigate an exogenous

shock on the energy supply in the Chinese mining market in April 2021 to highlight the

effects of grid disruptions on market integration, i.e., volatility, transaction volume, and

transactions costs in the network. In contrast to their work, we primarily study the

fragility of the consensus design in the presence of concentrated mining capacity and

exogenous shocks.
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3 Theoretical framework

In this section, we outline the theoretical framework based on previous work, especially

Budish (2018) and Capponi et al. (2021). The framework elaborates the properties of

PoW consensus from a competition-theoretic perspective and aims to highlight its fun-

damental economic principles. Without loss of generality for PoW-based consensus, we

primarily refer to the Bitcoin network.

3.1 Free-entry equilibrium, homogeneous miners and fragility

of the blockchain

We start with the basic economic mechanisms under the assumption of free entry and

homogeneous miners, following the widely established model of Budish (2018). The

model employs the following notation: RB denotes the expected income of a miner who

succeeds in the mining competition and adds transaction block B to the chain.5 A miner

succeeds if she is the first to bundle an unspecified number of pending transactions with

the solution of a computational problem into a block candidate that is accepted by the

network. From a miner’s perspective, the computational problem constitutes the major

challenge as she competes with other miners for the solution that, in probabilistic terms,

solely depends on the provided computational capacity. This computational tournament

follows a winner-takes-it-all format, while the underlying consensus protocol rules that the

winning probability always remains proportional to the provided capacity. The amount

of computing power thus determines a miner’s likelihood to present the solution to the

network and earn the reward RB.

The reward consists of two components: First, the winning miner receives a freshly

minted amount S > 0 of Bitcoins, currently 6.25 BTC. Second the miner collects any

fees
∑

i∈B fi embedded in the transactions bundled to block B. All miners have equal

access to an identical mempool – a repository that contains unsettled transactions trans-

mitted by network participants.6 Easley et al. (2019) analyze the evolution of transaction

5Note that cost and revenue components are denoted per block.
6Unsettled transactions are stored in the mempool until they are included in a block and appended
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fees in a game-theoretic model and provide empirical evidence. They show that higher

transaction fees are driven by congestion, i.e., the number of unsettled transactions in the

mempool. More specifically, Bitcoin users compete for the limited block size to have their

transactions included in the blockchain. Because rational miners prioritize transactions

according to relative fees, some users are willing to pay higher fees to reduce waiting

times. It follows that increasing congestion, as indicated by a larger mempool, inflates

transaction fees. The total revenues are defined as RB = p(S +
∑

i∈B fi), with p as the

dollar value of Bitcoin. We expect the sum of fi to increase with the size of mempool,

i.e.,
∂(

∑
i∈B fi)

∂sizemp
> 0 with sizemp denoting the mempool size. The first reward component

currently accounts for the majority of total revenues, but the ratio may change to the

favor of fees in the future as the amount of fixed reward S halves in a roughly 4-year

sequence.

cB denotes the per block cost of one unit of computing capacity that miners can

deploy. We assume that one unit of capacity requires both one ASIC chip and one unit

of electricity as complementary production factors. This means that the cost structure

can be expressed by cB = rC + eB, where C is the acquisition cost of the chip, r is the

per block capital cost of the chip (including depreciation) and eB is the per block energy

cost. For simplicity, we initially assume that costs incur symmetrically to all market

participants.

Let H refer to the total number of units of hash capacity in the system. Given the

symmetric cost distribution, each unit has a probability of 1
H

to first find a valid block in

the mining competition. For example, a mining pool that controls a share of 50 percent

of the total hash-rate has a 50 percent probability of success. Moreover, considering free

market entry and pure competition, the following condition arises:

H∗cB = RB (1)

Potential miners continue to invest in computing capacity until all profit opportunities

are exploited. This is the typical result of a rent-seeking competition under free market

to the blockchain.
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entry logic. The competition condition determines the system’s equilibrium hash-rate H∗

as the outcome of competitive dynamics. However, what condition assures the reliability,

credibility, and stability of the decentralized architecture against attacks for a given

level H∗? To answer this question, we next study the incentive compatibility of market

participants.

In simple terms, the incentive compatibility requires that a miner’s expected pay-

offs from ’honest’ behavior (as defined by the consensus protocol) mus exceed those of

malicious activities (e.g., manipulation of transaction blocks). A manipulation scenario

generally occurs as follows: In the event of an attack, one or more manipulated block

candidates are settled and collectively accepted on the blockchain, containing transac-

tions that exclusively benefit the attacker. Network participants collectively agree that

the longest chain of blocks is considered valid. The attacker seeks to build an alternative

chain that contains more aggregated blocks than the blockchain originally formed by hon-

est miners. If the attacker combines more than 50 percent of the system’s computational

capacity, he is able to grow the manipulated chain faster than the honest miners. After

a particular time, it is necessarily considered valid by the network. The attacker thus

competes with the aggregate of honest miners. Constructing an alternative chain involves

high costs for the attacker since a valid solution for the resource-intensive computational

problem must be provided for each block on the alternative chain. When assessing the

attacker’s effort, it is essential to distinguish whether the attack originates from inside

or outside the system, i.e., whether or not the computational capacity was already used

for mining. Equation (1) indicates that there are H∗ units under the control of honest

miners. An outside attacker must employ at least H∗ + ϵ to form a larger alternative

chain in purely probabilistic terms. In the case of an insider attack, the attacker must

control slightly more than half of the existing computational capacity, H∗

2
+ ϵ.

The costs increase proportionally if an attacker controls a super-majority of hashing

power: A share of A > 1 that delivers a super-majority of A
A+1

imposes per-block costs

of A · H∗cB on the attacker. A = 2, for example, provides a 2/3 majority. In addition,

we need to consider the expected average time that an attacker needs to form a larger
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alternative chain. Akin to revenues and cost parameters, the attacking time is described

per block formation.7 If an attacker requires t blocks to establish an alternative chain

with manipulated blocks, then the cost of the attack is At·H∗cB−tRB, which becomes At·

H∗cB − tH∗cB when competition condition (1) is included. By inserting the competition

condition, the costs of an attack are calculated net of the block rewards that an attacker

receives in the course of alternative chain formation. If the attack succeeds, the costs are

offset by its expected payoff Vattack, which we discuss in more detail below. We can now

set α = (A− 1)t and arrive at the following incentive compatibility condition:

α ·H∗cB > Vattack (2)

Equation (2) implies that the costs of attacking the blockchain must exceed the expected

returns of doing so (Budish, 2018). If condition (2) holds, the attack is economically

unviable for a potential attacker, and system stability is maintained. It follows that the

computing capacity devoted to mining is an essential variable for generating trust in a

PoW-based decentralized transaction system, such as Bitcoin. Two aspects of the incen-

tive compatibility are fundamental: First, the cost patterns derived in (2) refer to a pure

flow quantity, namely the operating costs H∗cB for maintaining the system. Influences of

other variables, such as the level of confidence in the overall system and the static value

of mining equipment, are not included. Second, the security of the decentralized ledger

is linearly dependent on the mining costs H∗cB. A sharp and unpredictable drop in the

hash-rate, such as the exogenous shocks we will discuss later, should immediately impact

the fragility of the network.

The competition condition (1) in conjunction with the incentive condition (2) dictates

that the total hash-rate follows from individual investments of mutually competing min-

ers. By investing in mining capacity, miners aim to extract rents, which is only possible if

the system proves to be stable in the future. In such an environment, the equilibrium con-

dition results from the competition condition (1) and incentive compatibility constraint

7A new block is added to the Bitcoin blockchain every 10 minutes on average.
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(2) as follows:

RB >
Vattack

α
. (3)

In equilibrium, the one-off rewards of an attack must be relatively small to the per-

block proceeds of honest behavior to maintain stability. From a miner’s perspective,

employing mining power to propose blocks with valid transactions must be economically

beneficial compared to the returns from a one-time attack. It follows that block revenues

must be high, limiting the operating conditions and scalability of PoW consensus.

But what are the potential proceeds of an attack? The answer depends on the at-

tacker’s possible actions, which we describe below. An attacker, controlling a majority

of hash-power, is able to generate an alternate chain faster than the aggregate of honest

miners. The attacker can use this private chain strategically to replace the blockchain

created by honest miners with his own alternative. By doing so, the attacker controls

which transactions are included in the transaction ledger. More importantly, the attacker

can remove transactions settled on the public blockchain by starting an alternative chain

with varying transactions based on the most recent public history. The alternative chain

evolves into the longest chain at a particular stage, depending on the majority of com-

puting capacity the attacker holds, while honest miners continue to append blocks to the

public blockchain. Once the alternative surpasses the public chain, honest miners accept

the attacker’s chain following the consensus protocol.

An attacker’s proceeds first contain all block rewards from the alternative chain.

However – since the attacker controls a majority of processing capacity – he could earn

similar payoffs by mining on the public blockchain. The main incentive for an attack

stems from the ability to select the transactions that are executed on the decentralized

ledger. This opportunity is not unlimited: An attacker, for instance, cannot manipulate

accounts on the blockchain or transfer Bitcoins owned by other network participants to

addresses under his control. To initialize such transactions, the attacker would need to (i)

successfully impair the cryptographic fundamentals or (ii) gain access to a users’ private

key. However, the attacker can perform a so-called ”double-spending attack”.

In a first step, the attacker spends his Bitcoins in exchange for (off-chain) goods,
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assets, or fiat currencies. The record in the public blockchain validates the transaction,

and the counterparty delivers the goods or assets. After a short lock-up period, the seller

considers the payment irrevocable through the entry in the blockchain.8 In a second

step, the attacker reverses the transactions after receiving the counter value. For this

purpose, he creates an alternative blockchain that no longer contains the transactions

underlying the original trading contract. By employing his majority of processing power,

the alternative chain becomes the longest chain and is considered valid by the network.

This approach undermines the finality of transactions on the decentralized ledger, as the

attacker reverses the payment process while retaining the goods and assets. Conceptu-

ally, the attacker can use his native coins multiple times by repeatedly performing the

manipulation approach. Therefore, it is not strictly a ”double-spending” but rather a

”multiple-spending problem”.

We further follow Budish (2018) to specify the value of a majority attack. Assume that

a typical block contains k individual transactions. The attacker can create a manipulated

block by bundling k Bitcoin transactions from different addresses that he controls into

one block and append it to the public blockchain. For simplicity, let Block 1 represent the

manipulated bundle of transactions and the previous Block 0 the state of the blockchain

with its entire history before the attack. The average value of all transactions located in

Block 1 is equal to vtransaction =
∑

i∈B pvi
k

. After an trade is initiated, the counterparties

wait an lock-up period of t blocks, before delivering the goods and assets. The honest

miners provide a cumulative share of H∗ units of computational capacity, while the at-

tacker controls AH∗, with A > 1. The attacker accumulates the block revenues of RB

for the duration of the attack, which corresponds to the period until his alternative chain

surpasses the public blockchain. Further, we assume that the attack does not affect the

Bitcoin value but only incurs costs and revenues in the form of stream quantities.9 Under

these assumptions, the value of an attack is Vattack = kvtransaction. If we further streamline

the per-block rewards to the number of transactions in the block, i.e., rtransaction = RB

k
,

8The lock-up/escrow period considerably varies among cryptocurrencies (see Irresberger et al., 2020).
Concerning Bitcoin, the escrow period is typically set to 2-3 blocks or 20-30 minutes on average.

9This (strict) assumption will be critically discussed and eliminated below.
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equilibrium condition (3) can be specified as follows:

rtransaction >
vtransaction

α
. (4)

Equation (4) illustrates that the transaction proceeds must be sufficiently high to main-

tain incentive compatible. The profit expectation of honest mining exceeds those of

attacks on the network if condition (4) is satisfied.

We can ease the equilibrium constraint by assuming that the system’s perceived value

and thus its native coin will be severely affected by a successful attack. This reflects

the more realistic scenario of market participants losing trust in the stability of the

decentralized system after an attack. To formally integrate this aspect into condition

(4), let ∆attack denote the proportional loss in the native coin’s value in response to an

attack. If the attacker holds native coins equal to a manipulable block (kvtransaction) and

we further assume that mining hardware can be deployed for other purposes than mining,

the modified equilibrium condition is as follows:

rtransaction >
1−∆attack

(A− 1 + ∆attack)t
vtransaction (5)

We can conclude that the loss of value in the native coin increases the cost of the attack

and reduces the potential value available for double-spending. A collapse of the ecosystem

results in ∆attack = 1, which renders a double-spending attack worthless. Thus, a higher

∆attack implies lower returns of an attack that is supposed to generate additional income

for the attacker.

This relationship reverses when an attack is instead intended to sabotage the blockchain,

which Budish (2018) refers to as a sabotage attack. Such an attack becomes more success-

ful as the anticipated loss in value of the native coin increases. The expected coin depre-

ciation following the attack thus affects the miners’ incentives to attack the blockchain,

depending on the specific motivation. Low coin depreciation makes double-spending at-

tacks attractive, while high depreciation entails a higher risk of sabotage attacks.

Analyzing flow quantities of costs and revenues without including other variables is
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adequate if the mining technology is unspecific to the blockchain. However, this can-

not be generalized to all forms of cryptocurrencies. For example, the diffusion of spe-

cialized single-purpose hardware (so-called ”Application-Specific Integrated Circuits” or

”ASICs”), which can be used exclusively for mining, is obligatory in the Bitcoin min-

ing industry. When a blockchain collapses after an attack (∆attack = 1), its native coin

and employed specialized equipment are rendered worthless. The incentive compatibility

condition then changes to

H∗C > Vsabotage. (6)

Compared to incentive condition (2) (α ·H∗cB > Vattack), condition (6) is less strict,

at least with respect to the left-hand side of the inequality. α is smaller than 1 provided

A < 2, i.e., the attacker controls less than a 2/3 majority of computing capacity, then α =

(A− 1)t < 1 holds. Moreover, cB = rC + eB is typically smaller than C. This highlights

that the high degree of specialization of mining technology reduces the vulnerability to

sabotage.

The theoretical framework provides initial insights into the mechanics of PoW-based

blockchains. The assumption of pure competition and free market entry dictates that

miners cannot extract surplus profits in the long run. Instead, profit potentials stimulate

market entry and additional investment in mining technology, which escalates competition

and reduces payoffs from participation. The system’s stability is conserved by the same

dynamics in equilibrium. However, exogenous shocks that abruptly alter one of the

system’s core variables may severely affect the stability and transaction capability of the

network, as we will discuss in section 4. Before turning to the empirical examination, we

extend our analysis to an explicit game-theoretical model of miners’ strategic behavior.

In subsection 3.2, we sketch a model based on Capponi et al. (2021) in order to analyze

competition between heterogeneous miners, who differ in terms of cost-efficiency.
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3.2 Cryptocurrency mining, heterogeneous miners, and fragility

of the blockchain

Using the framework of Capponi et al. (2021) we construct a game between miners, who

compete for rewards from solving the computationally costly hashing problem. N ≥ 2

miners decide on their individual hash-rate commitment during the mining competition.

ci denotes the cost-per-hash of miner i, and we assume differences in the cost efficiency of

miners because of varying individual investment levels βi in new hardware.10 Accounting

for these differences of the initial cost-per-hash across miners, we can sort the miners in

order of increasing cost-per-hash, i.e., ci ≤ ci+1. In the following analysis, we consider

the investment level βi in new hardware as given and exogenous. Since more efficient

hardware lowers the cost of mining, the investment level is also a strategic variable that

impacts the outcome of the mining game. hi denotes the hash-rate of miner i exerted at

the mining stage for i = 1, · · · , N . Of course, the individual hash-rate depends on the

miner’s investment profile in hardware. Similar to Capponi et al. (2021), we assume that

miners have limited hashing capacity, which is captured by a quadratic cost term (γ/2)h2
i .

This capacity constraint originates from a bounded supply of low-cost electricity, with

larger values of γ corresponding to smaller capacity. However, it is a soft constraint due

to the convex cost function, i.e., the hash-rate can be raised at increasing marginal costs.

H =
∑N

j=1 hj is the aggregate hash-rate of all miners.

R > 0 denotes the total revenues from mining, which are defined similar to subsec-

tion 3.1. Now the objective function of miner i is given by

πi(βi, hi; β−i, h−i) =
hi

H
R− cihi − (γ/2)h2

i . (7)

In the game-theoretic setting, miners compete for the revenues generated from adding

blocks to the blockchain by solving the computationally costly hashing problem. In the

first step, following Capponi et al. (2021), we determine the equilibrium hash-rate and

10Cost differences also reflect the quality of the old and less efficient hardware stock. The most
recently introduced hardware decreases the cost-per-hash. Typically large miners have lower costs per
hash than small miners. They are able to invest more in new hardware and may receive discounts due
to greater bargaining power and larger quantities.
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equilibrium profits of miners. Since we treat the cost-per-hash (ci)1≤i≤N of all miners as

exogenous, we can define c(n) =
∑n

i=1 ci as the cumulative cost of the first n most efficient

miners. Capponi et al. (2021) show that a Nash equilibrium hash-rate profile exists

for any investment profile β of the miners h∗(β) = (h∗
i (β))1≤i≤N with n miners active in

equilibrium (see their proposition 4.1). The first-order condition of the objective function

(7) provides the equilibrium hash-rates from equating marginal gains and marginal cost.

This condition is given by

R

H∗ (1−
h∗
i

H∗ ) = ci + γh∗
i . (8)

solving for h∗
i provides the equilibrium hash-rate for active miner i

h∗
i =

H∗(R− ciH
∗)

R + γ(h∗
i )

2
. (9)

The equilibrium aggregate hash-rate H∗ is determined by summing over all individual

equilibrium hash-rates of active miners. For the realistic case of limited hashing capacity

(γ > 0), the aggregate hash-rate is given by

H∗ =

√
(c(n))2 + 4(n− 1)Rγ − c(n)

2γ
. (10)

Not surprisingly, the aggregate equilibrium hash-rate increases with rewards R and de-

creases with smaller hashing capacity, i.e., larger value of γ. Higher cumulative costs of

the active miners c(n) also decrease the aggregate hash-rate H∗. Only the n most efficient

miners with marginal gains at least as large as marginal costs for positive hi are active in

equilibrium. As we can see from (9), miners with lower costs ci have higher hash-rates.

The least efficient miner n controls the smallest nonzero hash-rate. We can observe from

(8) that the equilibrium revenue-per-hash R/H∗ is larger than the marginal gain because

the marginal probability of earning the reward is decreasing in the exerted hash-rate. The

marginal cost of miner i is given by MC∗
i = ci + γh∗

i , with (MC∗
i )1≤i≤N as an increasing

sequence. Since MC∗
i < R/H∗ implies that ci < R/H∗, a miner is active only if its
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cost-per-hash is lower than the return-per-hash.

Except for the marginal miner n, all other active miners make positive profits in

equilibrium. The profit-per-hash of an active miner i is given by

π∗
i

h∗
i

=
R

H∗ − ci −
γ

2
h∗
i =

R

H∗ − (ci + γh∗
i ) +

γ

2
h∗
i . (11)

Because ci + γh∗
i is increasing in i and h∗

i is decreasing in i, profit-per-hash must be

decreasing in i. The largest miners in terms of exerted hash-rate are also most profitable.

Therefore, the equilibrium mining profits (π∗
i )1≤i≤N and the profits-per-hash (

π∗
i

hi∗
)1≤i≤N

form a decreasing sequence. The oligopolistic competitive pattern and the heterogene-

ity of miners are the main drivers of these results. Miners exploit their individual cost

advantages to generate profits, which is the typical outcome of a Cournot-Nash equi-

librium. Homogeneous cost structures would drive miners’ profits toward zero since an

infinite number of identical miners would operate with total costs equal to total revenues

in equilibrium.

The number of active miners is given by the largest number n which satisfies the

following condition:

cn <
c(n) +Rγ/cn

n− 1
(12)

We know that miners are only active in equilibrium if the expected rewards-per-hash

R/H∗ are greater than the associated costs ci. This means, R−H∗ci must be greater than

zero. Inserting condition (10) for H∗ we get 2Rγ
ci

+ c(i) >
√

(c(i))2 + 4(i− 1)Rγ. Solving

for ci and simplifying results in condition (12) for n = i shows, that the equilibrium

number of active miners is the largest value still satisfying this equation. Miner i + 1,

who faces higher costs than miner i cannot be active if miner i is not active.

Inspecting condition (12) delivers some interesting insights. For instance, higher av-

erage cost of the first n− 1 miners ( c
(n−1)

n−1
) weakens the participation constraint for miner

n. Thus, a miner’s decision to become active depends on the relation of its costs to those

of other miners. Increased cost heterogeneity leads to lower average costs of the first

n−1 miners and a smaller number of active miners in equilibrium. Full cost homogeneity
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would imply that all miners are active regardless of their costs. Even more interesting

is the impact of γ – the hash capacity constraint. The number of active miners, n, in-

creases with a tighter capacity constraint. To understand this effect, it is instructive to

first analyze condition (12) without imposing a capacity constraint (γ = 0). Then equa-

tion 12 becomes cn < n
n−1

c(n)

n
. The cost of the marginal miner can only be slightly higher

(more precisely, by the factor n
n−1

) than the average cost of all active miners, c(n)

n
. This

means that the mining competition is highly vulnerable to centralization, which might

undermine the system’s security. If miners have unbounded capacity, the most efficient

one will dominate the market. In the case of γ > 0, the capacity constraint prevents

the efficient miners from expanding their activities indefinitely. Their marginal cost of

hashing increases with the exerted hash-rate hi. Therefore, the number of active miners

is increasing in γ. A higher mining reward R increases the number of active miners,

whether it results from a higher Bitcoin price p or from higher transaction fees
∑

i∈B fi.

Higher rewards are an incentive for active miners to expand their capacity as the marginal

gain increases. However, this effect is limited by the capacity constraint.

R and γ are crucial determinants of mining centralization, which, as discussed above

with reference to the model of the Budish (2018), is an enormous threat to the security of

the system. Since miners are only active if their cost ci are lower than R/H∗, larger values

of R and γ increase the mining decentralization. In turn, it becomes more expensive to

attack the network.

3.3 Testable implications for exogenous shocks

The theoretical framework provides a number of implications, which we relate to the

occurrence of exogenous shocks in this subsection. We begin by examining the incentive

compatibility of homogeneous miners to exogenous shocks.

By definition, adverse exogenous shocks, such as the events described in section 4,

constrain the total hash rate exercised in the system. For the course of the shock, com-

petition condition (1) changes to H(s)cB < RB, where H(s) denotes the exogenously

constrained hash-rate during the shock with H(s) < H∗. In accordance with Budish
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(2018), a decreasing hash-rate lowers the costs associated with a majority attack and

increases the system’s vulnerability. However, this development might be offset by coun-

tervailing effects. While pure competition ruled out any mining profits in equilibrium,

the exogenous constraint allows the remaining participants to extract rents. When tak-

ing both aspects into account and substituting RB with pB(S +
∑

i∈B fi), the adjusted

(compounded) incentive compatibility condition during an exogenous shock is given by

t∑
B=0

AH(s)cB − pB(S +
∑

i∈B fi)

(1 + r)B︸ ︷︷ ︸
Mining costs net of rewards

+E

[
κ∑

B=0

pB(S +
∑

i∈B fi)−H(s)cB

(1 + r)B

]
︸ ︷︷ ︸

Expected net profits

>
∑
i∈B

pBvi︸ ︷︷ ︸
Vattack

. (13)

Where pB corresponds to the native coin price (e.g., BTC) at the arrival of block B, t

to the expected duration of a double-spending attack, and vi to the value of transactions

(in BTC) an attacker is able to double spend. Again, inequality (13) states that the

expected cost of an attack (i.e., the left-hand side) must exceed the benefits Vattack, for

the system to remain robust during an exogenous shock. Since H(s) < H∗, the mining

costs net of rewards decrease ceteris paribus compared to the equilibrium state. However,

contrary to (1), the attacker must additionally weight the net present value of pending

profits that arise from the difference of aggregated mining costs and rewards during the

shock. Since the expected profits depend on p, which collapses after a successful offense

against the network, the sum of compounded net rents increases the opportunity costs of

an attack. Notably, the severity of the exogenous constraint ∆H dictates the cost decline

to H(s)cB, which both lowers net mining costs and increases expected net rents (i.e.,

opportunity costs). However, rents cannot be extracted indefinitely. Rather, κ restricts

profitable mining to the period until the exogenous constraint is relieved (or ∆p < ∆H

for ∆H < 0) and a new equilibrium emerges. Hence, the set B{1, 2, 3, ..., κ} is primarily

driven by the expected duration of the shock. Whether (13) is satisfied significantly

depends on the parallel movement of reward variables (p, S and f). In fact, we next

demonstrate that the covariation of pB during the shock is crucial for the stability of the

network.
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The Bitcoin price pB simultaneously affects costs and gains from an attack in equa-

tion (13) and is subject to significant volatility. Importantly, this price volatility has

an asymmetric impact on the adjusted incentive compatibility constraint. To be more

specific, consider the partial derivative of (13) with respect to p, as denoted by

∂(13)

∂p
: −

t∑
B=0

S +
∑

i∈B fi

(1 + r)B
+ E

[
κ∑

B=0

S +
∑

i∈B fi

(1 + r)B

]
>

∑
i∈B

vi. (14)

By assuming that the expected duration of the shock κ exceeds the expected time t for

the attack to succeed, this can be simplified to

∂(13)

∂p
: E

[
κ∑

B=t+1

S +
∑

i∈B fi

(1 + r)B

]
>

∑
i∈B

vi. (15)

Provided κ > t, equation (15) gives the net marginal costs and gains for a double-

spending attack during the shock when the BTC price changes by one unit. Since the

incentive compatibility condition S +
∑

i∈B fi >
∑

i∈B vi is satisfied in equilibrium (oth-

erwise the network was attacked prior to the shock), the change of marginal attack costs

must also surpass the marginal gains. It follows that condition (13) increases for ∆p > 0,

and decreases for ∆p < 0. This is an important observation: Adverse exogenous shocks

have a divergent impact on network stability, depending on the evolution of the cryp-

tocurrency price during the shock period. If the BTC price increases during the shock,

positive marginal attack costs (partially) counteract the decreasing robustness of the

network. However, if the price declines, the negative marginal attack costs lower the

network robustness beyond the magnitude of the exogenous shock. Therefore, we argue

that the price movement is essential for the vulnerability of PoW-based consensus during

an exogenous shock.

Two properties of equation (15) require careful examination. First, the shock duration

must exceed the time required for an attack (κ > t). The duration of the attack depends

on the majority of computing power an attacker controls (A), and any escrow period

imposed by vendors or exchanges before the asset or good is delivered. Budish (2018)

estimates a simulation of all major parameter specifications (see Table 1). Estimates with
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reasonable parameters for the Bitcoin network and an escrow period of six blocks show

a maximum attack period of 46.02 blocks (or≈7.67 hours).11 The shocks elaborated in

section 4.2 suggest a typical duration of at least 1-4 weeks, or the equivalent of 1008 to

4032 blocks. Consequently, κ > t is satisfied by several orders of magnitude. Second,

the coin price pB may follow a predetermined response to the hash-rate decline (i.e., it

is not truly exogenous to the shock). In line with Biais et al. (2021), we argue that the

fundamental value of Bitcoin corresponds to its future stream of expected net transaction

benefits. Since these benefits depend on the future BTC price, equilibrium prices reflect

not only fundamentals but also sunspots. BTC prices thus fluctuate even when the

fundamentals are constant. Biais et al. (2021) empirically demonstrate that a large

fraction of variation in BTC returns seems to reflect extrinsic volatility. Moreover, Liu

and Tsyvinski (2021) and Fantazzini and Kolodin (2020) demonstrate a unidirectional

causality from the Bitcoin price to the hash-rate, i.e., miners cannot influence the price

of a PoW-based cryptocurrency by choosing a certain production level. We conclude

that the pB cannot be endogenized in our framework and shows no determined relation

to exogenous shocks. In addition, we provide empirical examples of the price and hash-

rate development during shocks to the Bitcoin mining industry in section 4. Overall, if

the price shows an increasing tendency during an exogenous shock event, we principally

expect a positive impact on mining profits. As shown above, this increases the stability

of the system. On the other hand, a decreasing BTC price trend lowers profits. As a

result, the adjusted incentive compatibility constraint becomes tighter, which decreases

the system’s stability.

The mining reward R consists of three additional components that we briefly discuss:

First, the per-block reward S is exogenously specified by the protocol underlying Bitcoin’s

consensus mechanism. Hence, S varies only about every four years in the cause of the

prescribed halvings and can be considered constant in the vast majority of shocks. Second,

11The observed escrow period from cryptocurrency exchanges trading Bitcoin has declined in recent
years and is meanwhile well below six blocks (see Irresberger et al. (2020) Table A.1). Therefore, the
relevant escrow period for Bitcoin is between 1 and 6 blocks. The corresponding maximum t with
A=1.05, the smallest estimated majority, amounts to an average of 30.80 and 46.02 blocks (or 5.01 and
7.67 hours).
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the evolution of transaction fees depends on the congestion in the network, as reflected by

the mempool size. If transaction fee levels increase because of higher congestion during the

shock, rewards from mining are positively influenced. We generally expect such a positive

relation and empirically verify it in subsection 4.4. However, since transaction fees still

exhibit a small proportion of total rewards, the overall effect is relatively small. Third, a

negative shock on the aggregated hash-rate should expand the arrival rate of blocks for a

period of up to 14 days. An increasing arrival rate temporarily decreases the total rewards

until the block difficulty of solving the computational problem adjusts. Since a reduced

block arrival also affects the attacker’s alternative chain (thus limiting the amount of

double-spending), it does not affect the incentive compatibility condition. Drawing on

the above reasoning, we expect little to no impact on the network’s vulnerability to

attacks when an exogenous shock co-occurs with a significant price appreciation. This

is because positive mining profits counter the negative influence of the lower aggregate

hash-rate. However, when an exogenous shock and declining coin prices coincide, we

expect to see signals of increasing instability.

The framework of Capponi et al. (2021) delivers further predictions concerning the

distribution of miners’ individual hash-rates and profits which, in principle, can be tested

with appropriate data. The sensitivity of a miner’s hash-rate to its own cost-per-hash

parameter depends on a direct and an indirect effect. The direct effect on the individual

hash-rate h∗
i is always negative when the marginal costs of mining increase with ci. Since

the indirect effect measures the sensitivity of a miner’s hash-rate to the cost-per-hash of

other miners, it accounts for the strategic reactions in an oligopolistic market environ-

ment. The outcome of the indirect effect is as follows: First, the aggregate hash-rate

H∗ changes with h∗
i , which alters the equilibrium marginal gain of hashing and therefore

affects the strategic decision of other active miners. Of course, these miners react, and

the miner subject to the cost shift, considers the reactions of other miners. If the cost-

affected miner controls less than a majority of the total hash-rate (i.e.,
h∗
i

H∗ < 1/2, which

is typically the case), the indirect effect is positive and (partially) alleviates the negative

direct effect. However, the net effect is still a decreasing h∗
i if the miner’s cost-per-hash
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increases, regardless of its hash-rate share.

Concerning the security of the system, the effects of exogenous shock events on the

hash-rate allocation are particularly interesting. The vulnerability of the system depends

on the mining concentration. Higher capacity concentrations typically increase the prob-

ability of an attack. If the exogenous shock affects the cost-per-hash in a heterogeneous

manner, the resulting shares of the active miners are informative with respect to the

stability of the entire system. The theoretical framework also provides some answers

to these questions. It can be shown that miner i′s hash-rate share
h∗
i

H∗ decreases if her

cost-per-hash ci increase. The sensitivity of miner i′s hash-rate share to an increasing

cost-per-hash of miner j is always positive. The share of miner i increases in case of a

cost-per-hash increase of miner j. Moreover, mining profits are affected similarly: Miner

j becomes less competitive with increasing cost-per-hash, and when j′s profit decreases,

all other miners benefit and increase their profits.

If the exogenous shock event increases the homogeneity of miners in terms of cost

efficiency, decentralization increases similarly, even if the set of active miners is fixed.

This mechanic enhances the system’s robustness. The same intuition can be applied to

the capacity constraint: An exacerbating capacity constraint due to an exogenous shock

increases decentralization. Smaller miners gain market shares at the expense of larger

miners. A larger mining reward R has a similar effect since it increases the marginal gain

of hashing. Even though the hash-rate of each miner increases, small miners can increase

their hash-rate disproportionately to large miners. This amplifies the decentralization

of shares within the network if the expansion of hash capacity is not systematically

constrained for exogenous reasons.

How do exogenous shocks affect the hash-rate allocation of heterogenous miners and

consensus stability? Given the relevance of cost-efficiency for the capacity and profit al-

location, miners gravitate towards areas with the most cost-effective production factors.

As we will describe carefully in section 4, mining clusters emerged in areas such as the

Xinjiang province in Mainland China with particularly low energy fees (see Figure 1).

Makarov and Schoar (2021) analyze the distribution of mining capacity in the context
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of an exogenous shock in Xinjiang (referred to as Event [2] in chapter 4). Their results

suggest that most mining companies closed between 20 and 50 percent of mining capacity

during the shock, but only a small fraction lost 100 percent. The reason for this obser-

vation is that large (and most efficient) miners are diversified across multiple locations.

Therefore, we argue that the exogenous shocks impaired the most efficient miners. As

large miners temporarily lost the most cost-effective energy source, we expect that miner

homogeneity increased with respect to cost-effectiveness. Following the mechanic of the

mining game presented in section 3.2, the shock principally facilitates network stability.

However, we argue that the exogenous shock creates a temporary window of oppor-

tunity for miners with medium cost-per-hash efficiency. Temporarily, the market share

of these miners increases until the exogenous constraint fades. While (previously) large

miners are significantly constrained and less cost-efficient, medium-efficient miners face

less competition, apply larger capacities, and generate higher profits-per-hash due to the

oligopolistic nature of the mining competition. Nevertheless, they are well aware of the

temporary nature of this position: Once the external restriction eases, profit potentials

will drop significantly.

In such an environment, active miners may act honestly, i.e., process transactions and

validate blocks adherent to the fundamentals of the consensus protocol. They temporarily

earn windfall gains since the block rewards surpass hashing costs. As argued above, the

magnitude of windfall gains is tied to the Bitcoin price trend and shock duration. This

option becomes attractive in the event of a rising price trajectory.

Instead, the remaining miners may consider an attack when the opportunity to (col-

lectively) control a capacity share of > 50 percent becomes feasible and economically

attractive. In particular, the subset of miners whose marginal profits barely exceed

marginal costs during the shock might try to coordinate for an attack. The long-term

prospects and commitment of such miners are low (i.e., they do not have much ”skin in

the game”), as they are doomed to low (or even negative) profits once the equilibrium is

restored. However, the least efficient miners control only a tiny fraction of the network

capacity, and coordination costs increase with the number of coalition members. There-
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fore, we expect coordination for an attack from the medium-efficient miners that gained

relevant market shares due to the drop of the global hash-rate. Of course, whether these

miners decide for honest or malicious behavior depends on their individual incentive com-

patibility condition. As demonstrated above, a decreasing Bitcoin price trajectory during

the shock tightens the condition and thus increases the vulnerability of the ledger. There-

fore we predict a higher fragility of the system if the exogenous shock and a decreasing

Bitcoin trend coincide.

The rationale developed in this chapter provides testable predictions if the impact of

an exogenous event on the cost-per-hash, capacity constraint, and rewards parameters

can be accurately captured. In the next section, we analyze two events to illustrate the

impact of exogenous disturbances on network and stability parameters in PoW consensus.

4 Empirical results

Section 3 provides several conclusions regarding the stability and incentive compatibil-

ity of PoW consensus in the face of exogenous shocks. This section provides empirical

evidence from two shocks on the Bitcoin mining ecosystem that were exacerbated by

geographic concentration.

4.1 Background

The framework described in subsection 3.2 shows that cost variation in the provision of

hash capacity (ci) determines both profits and market shares of miners. Due to the design

of the PoW competition, absolute mining rewards are independent of mining capacity,

as the adaptive block difficulty guarantees a constant block arrival. Economies of scale,

however, are the dominant force in the organization of cost-effective mining and greatly

influence the distribution of mining revenues. When the cryptocurrency mining sector

matured, this dynamic inevitably led to a geographical concentration in countries with

the most economical production factors. The proliferation of ASICs accelerated the

concentration since it ruled out semi-professional miners and favored the organization in
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data centers (Küfeoğlu & Özkuran, 2019; Song & Aste, 2020; Stinner, 2021).

With the emergence of ASICs, the People’s Republic of China developed into the

dominant location for operators of mining centers over the past decade. China proved an

ideal environment since it offered low-cost and rapid access to the essential production

factors energy and hardware, as well as loose regulation (e.g. tax incentives).12 Similar to

large industrial customers, mining companies benefited from globally competitive energy

prices in China’s subsidized energy infrastructure (Hileman & Rauchs, 2018). In addition,

farm operators were able to quickly adopt innovative mining hardware from the world’s

leading Chinese manufacturers (e.g., Bitmain). Based on data from three major mining

pools (BTC.com, Poolin, and ViaBTC), Rauchs et al. (2021) identify an average share

of 63.7 percent of Bitcoin miners in China between September 2019 and April 2021

(see Figure 1).13 In a recent paper, Makarov and Schoar (2021) investigate the reward

distribution within the 20 largest mining pools by analyzing the transaction flow from the

pool operator to individual contributors on the Bitcoin blockchain. By further tracking

miners’ transaction flows to local cryptocurrency exchanges, the authors estimate miners’

regional composition between 2015 and 2020 with a significant geographic capacity cluster

of 60-80 percent in mainland China. It follows that a majority of computing power

dedicated to Bitcoin mining was localized in mainland China during the last decade.

[Figure 1 about here]

4.2 Event Description

We next describe two shocks on the Chinese mining ecosystem in October 2020 and April

2021. Shocks are identified endogenously from the global hash-rate (H) and defined as a

decline of ∆H < −0.25 within 14 days (i.e., one period of global block difficulty).

12By June 2021, the Chinese Government imposed a strict ban on cryptocurrency mining activities
with the argument that the industry jeopardizes China’s pursuit of carbon neutrality. Thus, after June
2021, mining capacities have been shifted to Kazachstan, the United States of America, and other
countries (K Wan et al., 2021).

13Mining pools typically tag their block candidates with an identifier in the Coinbase transaction.
Between September 2019 and April 2021, BTC.com, Poolin, and ViaBTC accounted for an aggregate of
29.7 percent of all blocks.
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The first event is closely linked to the regional allocation of mining capacity within

China, which exhibits a strong seasonal component. During the rainy summer months,

numerous mining operators relocate their computing capacity to the southern Chinese

provinces of Sichuan and Yunnan, where surplus energy from hydro-power plants is avail-

able at uniquely cheap conditions. The energy surplus is a result of structurally inade-

quate grid expansion, as revealed by data on the regional power generation and demand

from the China National Bureau of Statistics (NBS, 2021). Between 2015 and 2020,

Sichuan and Yunnan jointly supplied 42.7 percent of the nation-wide hydropower energy.

Electricity generation periodically spikes by about 50 percent during the rainy summer

from June to October compared to the dry winter and spring. On average, the provinces’

overall electricity generation exceeded local demand by about 55.6 percent between 2011

and 2020, with the surplus increasing by 4.7 percent annually. The expansion of grid

infrastructure to the energy-intensive eastern China has so far been inadequate to cope

with this growth, resulting in immense excess power during the summer (Sichuan Gov-

ernment, 2019). Bitcoin miners have effectively monetized this structural oversupply by

utilizing the overage for energy-intensive PoW mining.

Once the rainy season ends, miners return to Xinjiang and Inner Mongolia to use the

relatively cheap coal power during the winter months. Based on data from Rauchs et al.

(2021) and Stinner (2021), the logistics between the two most relevant regions Xinjiang

and Sichuan comprised at minimum 400,000 units, or 46 percent of the domestic capacity,

between April and September 2020 (see Figure 1). Although the distance between the

provinces is about 3,000 kilometers, transporting the specialized computer equipment

appears economically viable in the light of the industry’s enormous energy demand.

The cyclical capacity transition in the Bitcoin mining industry was unexpectedly in-

terrupted in autumn 2020 when the northern regions Xinjiang and Inner Mongolia were

classified as high-risk areas following regional outbreaks of the Coronavirus. Such an

intervention was not anticipated during the summer since the official figures from Chi-

nese authorities and the World Health Organization suggested deficient infection levels.

Weekly new infections declined from 31,300 in February 2020 to a moderate level of 120 to
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250 cases in September and October, following drastic infection control measures (WHO,

2021; Zhong & Mozur, 2020). However, the infection activity in late summer 2020 was

particularly concentrated in northern provinces. To prevent a resurgence of infections,

the Chinese authorities imposed extensive social restrictions, even when a few infected

individuals were identified (Reuters, 2020; Xinjiang Government, 2020). For example, on

October 25, 2020, 138 new infections were detected in the city of Kashgar, Xinjiang, which

triggered extensive testing of all 4.7 million residents in the region and massive restric-

tions (BBC, 2020; Hernández, 2020). Comments from mining facility and pool operators

on the Chinese platform Weibo show that the unexpected situation severely disrupted

transportation and operational processes (Zhao, 2020). As a result, mining centers in

Xinjiang could not operate efficiently for about 3-4 weeks. In addition, a considerable

amount of mining equipment was stalled on its transit to the northern provinces.

The impact of the Corona pandemic exhibits an unanticipated negative production

shock to the Chinese mining industry in fall 2020, manifested by a 34 percent plunge

of the global hash-rate.14 Figure 2 illustrates the trajectory of the global hash-rate and

block difficulty from September 2020 to May 2021. We label this shock as ”Event [1]”

and define its period from October 16 to November 23, 2020.

[Figure 2 about here]

The second exogenous shock occurred in April 2021, when the flooding of a major

coal mine in the Xinjiang province disrupted the power supply to local Bitcoin miners.

On April 10, 2021, 21 workers were trapped in the Fengyuan coal mine in Hutubi county

after flooding cut off parts of the facility and disrupted communications (CNN, 2021).

In response to the accident, the local government ordered to shut down the region’s

coal mines (and thus its power supply) in the context of safety inspections starting from

April 16. As described earlier, miners migrate to Xinjiang to avoid high electricity tariffs

associated with the dry season in the southern provinces. At this time of year, Xinjiang,

and Hutubi County, in particular, were a magnet for Bitcoin miners, who took advantage

14This is among the most severe shocks on the mining industry to date, along with downturns in
March 2020 (28.9 percent), and April 2021 (32.1 percent).
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of the abundant and comparably cheap coal-fired electricity. The drastic 32 percent drop

in global Bitcoin mining capacity during the post-accident shutdown is a testament to

the importance of the region (see Figure 2). Once production resumed and electricity

was made available, a rapid return to pre-incident capacity levels can be observed. We

refer to the exogenous shock caused by the Xinjiang coal mine accident as ”Event [2]”

and specify its duration from April 16 to April 25, 2021.

4.3 Data and Summary Statistics

We construct our data set by examining various sources with an observation horizon from

July 2020 to May 2021. First, we exploit all 46,637 blocks appended in the period from the

publicly accessible Bitcoin blockchain to generate relevant block-level information, such

as block-time, difficulty, transaction fees, transfer volume, and miner remuneration. Sec-

ond, we derive the daily BTC-USD conversion ratio from Coindesk.com, which provides

a market-representative value based on the average across multiple major cryptocurrency

exchanges.15 Third, we use estimates from Blockchain.com and Bitinfocharts.com to

specify the global hash-rate for any of the involved PoW cryptocurrencies.16 The pro-

vided hash data constitute retrospective estimates based on the respective historical block

difficulty and observed arrival rate. In some illustrations and analyses, we thus calcu-

late the 3-day moving average of the daily figure to balance the probabilistic element.

Fourth, we use median confirmation times for a transaction to be settled on the public

blockchain from Blockchain.com.17 As an additional measure of transaction capacity and

demand, we obtained the number of unconfirmed transactions (mempool-transactions)

from BTC.com, using web-scraping techniques.18 Table 1 contains descriptive statistics

of the daily aggregated parameters of the variables listed above.

[Table 1 about here]

15See https://www.coindesk.com/price/bitcoin
16See https://www.blockchain.com/de/charts/hash-rate and https://bitinfocharts.com/de/comparison/bitcoin-

hashrate.html3y for more information.
17See https://www.blockchain.com/charts/median-confirmation-time
18See https://btc.com/stats/unconfirmed-tx
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Eventually, to derive a proxy parameter for cryptocurrency fragility, we exploit hourly

data on open, high, low, and close market prices from Kraken.com for a total of 11 cryp-

tocurrencies with varying consensus algorythms.19 For each cryptocurrency, we collected

data on both the USD and EUR conversion rate and weighted figures derived on this

data according to the respective trading volume. As we will explain in the next section,

this approach eliminates potential confoundings in our estimates from covariation in a

single fiat currency. Kraken, a major crypto exchange headquartered and regulated in

the US, is considered among the most liquid and well-established exchanges in the crypto

universe (Dimpfl & Peter, 2021). Regarding trading volume, Kraken ranks among the

top 10 of ≈ 310 listed crypto exchanges throughout the observation period and is thus

adequate to supply representative metrics.20 Table 3 presents some summary statistics

for the variables obtained from Kraken.com. We conclude the data sourcing by adding

the overall trading volume and market capitalization for each cryptocurrency from Coin-

marketcap.com.21

[Table 3 about here]

We begin our analysis by exploring the determinants making the combination of our

observed shocks unique in the history of the Bitcoin network. Figure 2 relates the capacity

decrease during the events to the endogenous block difficulty, which adjusts at a rate of

roughly 14 days. Given this rigidity, declines that occur within a shorter time are expected

to impact block formation considerably. Figure 3 (a) illustrates the weekly number of

blocks registered on the Bitcoin blockchain for an 8-week window centered upon each

event. In addition, the graph depicts the population average from January 2012 to June

202122 of 1080 blocks and the relevant difficulty adjustments on November 3, 2020, and

May 01, 2021, respectively. Both events show a substantial drop in block attachment

with weekly minimum values of 787 and 817 – the lowest values ever observed to this

date. This circumstance also becomes evident from Figure 3 (b), which plots the density

19See https://docs.kraken.com/rest/ for a description of the Kraken REST API.
20See https://coinmarketcap.com/de/rankings/exchanges/
21See https://coinmarketcap.com/api/ for information about the Coinmarketcap API.
22The period before 2012 and earlier shocks (e.g., price bubbles or reward halving) have been removed

from the calculation of the population average to provide a figure of stable periods.
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function for the equivalent interval (with all blocks included). Again, the observed shocks

are clear outliers from the (fairly) normally distributed block count.

[Figure 3 about here]

To formally specify our event periods, we conduct weekly one-sample t-tests on the

difference in observed block number against the two-tailed alternative of the population

average and the observed hash-rate against its mean over the three-week interval pre-

ceding the interventions. The results are reported in Table 4. Event [1] and Event [2]

deviate on a statistically highly significant level from the expected block number and

hash-rate. Therefore, we consider weeks with significant divergence in either variable to

specify our event periods quantitatively. Interestingly, hashing capacity was restored fast

when electricity became available during the second event. Thus, the difficulty adjust-

ment following the abrupt capacity drop caused a statistically significant above-average

block arrival after May 01, 2021.

[Table 4 about here]

While a comparable decline of mining capacity characterizes both events, they differ

substantially in the parallel trajectory of underlying determinants. Prat and Walter

(2021) and Garratt and van Oordt (2020) demonstrate that the supply of mining capacity

can be modeled as a function of the Bitcoin price. Under sufficient competition and for

a given level of short-term production costs, price volatility encourages market entry or

exit. Figure 4 contrasts the relative evolution of the hash-rate and Bitcoin price clustered

for 20 days around each of the observed minimum values during the four most significant

shocks between January 2012 and May 2021 (with t0 = 1). The key finding is that the

variables show the expected coherent structure in the first two shocks (i.e., the hash-rate

decline is endogenous to the price), a weak co-movement in April 2021, and opposite

development in October 2020.23 The shock in October 2020 differs substantially as the

endogenous determinants display an opposite trajectory: In November 2018 and March

23We decided not to include the halving period in May 2020 into our estimation since it was anticipated
by market participants and is not related to concentration patterns.

33



2020, the Bitcoin price dropped by about 50 percent, driven by a waning cryptocurrency

hype and the global dispersion of the Corona pandemic. During the shock in April 2021,

we observe a moderate decline of 20 percent. In contrast, Bitcoin appreciated by about

50 percent in October 2020, parallel to the falling hash-rate.

[Figure 4 about here]

It follows that endogenous market conditions cannot explain the declining supply of

mining capacity especially during Event [1], which corroborates our argumentation of ex-

ogeneity.24 Moreover, we leverage this quasi-natural experiment in our further analysis:

As discussed in subsection 3.3, the network fragility during shocks depends not only on

the magnitude of affected mining capacity but also on the evolution of reward parameters.

Event [1] and [2] allow us to study Bitcoin’s fragility under two circumstances that are

widely similar in the shock’s magnitude but substantially deviate in the price develop-

ment. Since the BTC price markedly affects the economic viability of mining (and thus

miners’ incentive compatibility), attacking the network in October 2020 remained expen-

sive, given that the net present value of engines increased. In contrast, the interaction of

a capacity shock and BTC price depreciation severely decreased the costs of a majority

attack in April 2021. A graphical representation of the relative change in mining capacity

and miners’ gross revenue during the events is given by Figure 5. We take advantage of

this heterogeneity to test the hypotheses formulated in subsection 3.3 and investigate

how market participants incorporate information on varying security levels of the Bitcoin

blockchain. We next study the market and fragility dynamics during the two events.

[Figure 5 about here]

4.4 Blocktime, Congestion and Transaction Fees

This subsection examines the evolution of transaction capacity and fees during the de-

scribed exogenous interferences. We limit the examination to a descriptive analysis in

this version of the paper.

24Note that the recession in April 2021 is disproportional compared to the co-movement of earlier
shocks, i.e., the decrease in capacity is much larger than the price decline.
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Several theoretical and empirical articles demonstrate that transaction fees in the Bit-

coin network depend fundamentally on impatient users, interested in a fast settlement,

rather than determinants associated with miners’ revenues (e.g., block rewards) (Auer,

2019; Easley et al., 2019; Huberman et al., 2021; Möser & Böhme, 2015). Since block

size exogenously dictates settlement capacity, fees typically increase with demand, which

becomes transparent in the number mempool transactions and the median confirmation

time.25 As described earlier, the difficulty of the cryptographic function underlying the

PoW consensus mechanism endogenously adapts to the exerted processing power in a

bi-weekly interval. Because of this rigidity, block settlement must decrease significantly

when mining capacity suddenly plunges, but block difficulty remains unchanged. Hence,

we expect sharply decreasing transaction settlement, paired with rising mempool trans-

actions and fee levels during the described events.

Figure 6 depicts daily figures for the average block time (in seconds), number of

unprocessed transactions, and transaction fees per block (in BTC), each centered for ±20

days around the observed shocks. Since both periods show a widely similar magnitude,

we use the average across Event [1] and Event [2] in most of the following calculations

(as not stated otherwise) and compare them to the population average based on all non-

shock intervals between January 2012 and May 2021.26 As expected, the arrival rate

of blocks increased to > 15 minutes during the events, or by 59.5 percent compared to

the population average of 9.5 minutes. Following the bottleneck in block creation, the

number of transactions settled on the blockchain decreased by about 75.000 per day. In

turn, the number of unprocessed transactions accumulated to 130,000 – an increase by

factor 7.3 and a value only surpassed by the Bitcoin hype in December 2017. Eventually,

the median confirmation time increased to 21.6 minutes for a transaction with average

fees to be settled on the blockchain. This corresponds to an increase of 122 percent

compared to the population average of 9,69 minutes.

25In the history of Bitcoin, various technical improvements gradually increased the block capacity or
established second-layer solutions to expand the settlement capacity (see Divakaruni and Zimmerman
(2020) and Brown and Koeppl (2019) among others). However, none of these adjustments were applied
during our observation period, and therefore we treat block capacity as constant.

26Non-schock intervals exclude the Bitcoin hype in December 2017, the price shock in December 2018,
and Event [1] and [2].
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Since transaction fees are subject to a generally increasing trend (see Easley et al.

(2019)), we compare the movement during our shocks to the average in stable periods

from January 2019 to May 2021. As predicted by our model, per block transaction fees

jumped from an average of 0.59 BTC to a peak of 2.46 BTC during the event periods,

corresponding to a factor of 4.16. Again, comparable fee levels are observed when the BTC

price reaches a new historic all-time high, resulting in a massive increase in transaction

volume. This interaction signifies that a short-term drop in computing capacity leads to a

similar increase in transaction fees as we would expect from a short-term multiplication of

the Bitcoin price. Event [1] and [2] show a widely similar development of executed hashing

power, settlement capacity, and transaction fees. However, we observe a countervailing

price trend between the shocks, which we exploit in the following subsection to examine

the network vulnerability.

[Figure 6 about here]

4.5 Blockchain Fragility and Mining Shocks

Our primary interest in this subsection is to investigate the impact of temporary restric-

tions in the Chinese mining ecosystem on the fragility of the Bitcoin network.

As argued in subsection 3.3, PoW consensus remains incentive-compatible (i.e., ro-

bust) during mining shocks when parallel price movements offset declining attacking

costs. Plunging mining capacity during the shock intuitively lowers the costs associated

with a majority attack but lower competition, increasing transaction fees, and rising

BTC prices may raise the net present value of operated equipment. As a result, an at-

tacker’s increasing (opportunity) costs from more valuable equipment potentially render

malicious actions economically unviable. This mechanism stimulates the economic incen-

tives of honest behavior; the decentralized network remains robust and mining incentive

compatible. Considering the evolution of relevant parameters in our observation period,

we argue that the network’s fragility remained comparably equal during Event [1] but

significantly increased during Event [2].
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Unfortunately, the robustness of a decentralized ledger technology cannot be directly

observed by any standard continuous metric. Irresberger et al. (2020) develop a measure

of implied security across multiple cryptocurrencies from the escrow period installed by

exchanges before considering a payment in a given currency irreversible. This figure

reflects the perceived risk for a particular cryptocurrency of being compromised. However,

it is not available in a continuous format that would allow us to decompose its variation.

We, therefore, propose a proxy in the form of bid-ask spreads to empirically examine

network stability.

Bid-ask spreads have been shown to be closely related to the stability of a market, as

they implicitly reflect its liquidity. This interrelation arises as the market maker’s ability

to enforce a specific spread level depends on market conditions. For example, in relatively

illiquid markets, market makers impose wider spreads to offset risks associated with

holding less liquid assets. Moreover, by providing a venue for buyers and sellers, liquidity

providers in such markets can extract higher rents, given that fewer alternatives exist for

trading the asset. In times of distress or general uncertainty, market-making becomes

riskier, resulting in higher spreads and reduced exposure of liquidity providers even if

markets are otherwise fairly liquid (Anand & Venkataraman, 2016). With risk-averse

participants, market liquidity decreases during periods of high uncertainty (Muranaga &

Shimizu, 1999). Thus, we expect bid-ask spreads to expand when sophisticated market

participants, such as a major cryptocurrency exchange, evaluate market conditions as

unstable (e.g., during an exogenous shock to the mining industry).

Several academic papers explore liquidity measures, such as bid-ask spreads, based on

data from cryptocurrency exchanges (Koutmos, 2018; Scharnowski, 2021; Scharnowski

& Shi, 2021). We exploit data from Kraken.com on open, close, high, and low trade

prices for eight cryptocurrencies in US-Dollar and Euro and weight our results according

to the trading volume in the respective fiat currency. Since the seminal work of Roll

(1984), spread estimation from trade prices has seen considerable advances (Abdi &

Ranaldo, 2017; Corwin & Schultz, 2012). In this paper, we use the Efficient Discrete

Generalized Estimator (EDGE) proposed by Ardia et al. (2021) to estimate effective
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spread data from hourly open, close, high, and low trade prices. Compared to previous

work, the EDGE-estimator relies on the most general conditions (e.g., includes non-

frequent trade), encloses most information from discrete prices to minimize the estimation

variance and therefore naturally produces fewer negative results. We aggregate daily

effective spread estimates from hourly price data and ensure non-negativity by zero-

setting negative results, as it is standard practice (Ardia et al., 2021).

Based on the argumentation above, we expect significant positive spreads during

Event [2] compared to our baseline group of unaffected cryptocurrencies, while Event [1]

exhibits no significant effect. To formally test this hypothesis, consider the unobserved

structural model

ln(Yit) = βDit + γln(Zit) + δtdt+ ...+ δTdT + αi + ϵit, t = 1, ..., T ; i = 1, . . . , I, (16)

where i identifies the cryptocurrency and t denotes each day in the observation interval

t, . . . , T . Dit is a binary intervention indicator equal to 1 if a cryptocurrency is affected

by the exogenous intervention at day t. In our baseline regression, the treatment group

consists solely of Bitcoin, while seven cryptocurrencies are integrated as control groups.

We examine the case of multiple affected currencies in subsection 4.6. Zit is a vector of

control variables, including total trading volume (in all currencies), closing price in USD,

and an indicator of volatility, calculated as the standard deviation of the closing price

over the last three days. Each control variable has been identified as functional for the

magnitude of bid-ask spreads (McInish & Wood, 1992). Standard panel unit root tests

imply that closing prices are integrated by order I(1) (see table 6) (Dickey & Fuller, 1979).

However, first-differenced closing prices are stationary. We thus integrate closing prices

using first differences and generally take the natural logarithm of all figures to interpret

results as elasticities. Eventually, αi denotes fixed effects to eliminate unobserved static

heterogeneity among cryptocurrencies, and δtdt represents an exhaustive set of time-

period dummies for each t ∈ T .

[Table 6 about here]
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Although we integrate relevant control variables and time-period dummies, the ob-

served correlation patterns may potentially be biased by the simultaneous variation of

unobserved covariates. We apply a quasi-experimental (comparative) identification strat-

egy to address this concern. To allow for a causal interpretation, we use a set of seven

control cryptocurrencies with various consensus algorithms and differentiate the varia-

tion between treatment and control observations. The set of control entities includes

Ethereum, Ethereum Classic, and Z-Cash (PoW), Algorand, Cardano, and Tezos (PoS),

as well as EOS (DPoS). We only consider reasonably large cryptocurrencies in our control

group with an average market capitalization of USD> 500M during the event periods.27

Since Proof-of-Stake (PoS) and Delegated Proof-of-Stake (DPoS) consensus generally do

not involve mining (and thus do not rely on large amounts of electricity), the respec-

tive currencies cannot be affected by our shocks. Moreover, the hash-rate evaluation of

Ethereum, Ethereum Classic, and Z-Cash demonstrates that they were not affected by

the intervention in Event [1] and [2] (see Figure 7). Notably, the currencies in our con-

trol group belong to the same asset class and trade on similar crypto-exchanges but are

not affected by the shock. Therefore, we can isolate the intervention effect by comparing

spreads from trading Bitcoin against US-Dollar and Euro to those of the cryptocurrencies

in the control group.

We estimate equation 16 for a two-panel structure. Each panel contains the event

period as specified in subsection 4.2 and the same amount of days preceding the inter-

vention to balance shock and non-shock periods. Table 5 reports the coefficients with

cluster-robust standard errors in parentheses, obtained from estimating equation 16 us-

ing currency fixed-effects regression. Regarding the first panel (Event [1]), column (1)

shows the estimates without control and time-period variables, column (2) integrates the

controls, and column (3) contains the estimates of the fully specified model. Results for

the second panel (Event [2]) under the same reporting format are presented in columns

(4), (5), and (6), respectively.

27We exclude Dogecoin from the control group because the USD/DOGE exchange ratio and market
capitalization multiplied by factor 10 between April 08 and May 05, 2021. This trajectory led to extensive
volatility, which is significantly different from all other observed cryptocurrencies.
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Consistent with our intuition, the coefficientDit is insignificant on all common levels of

statistical inference in the first panel. In contrast, the coefficient is of relevant magnitude

and statistically significant in the second panel. This finding corroborates our hypothesis:

The bid-ask spreads expanded considerably during Event [2], when the vulnerability of

the Bitcoin blockchain was relatively high, whereas they showed no significant variation

during Event [1] when price increases counterbalanced shrinking attacking costs. Table 5

further reveals that smaller cryptocurrencies exhibit significantly wider spreads. When

considering the substantially smaller transaction volumes of those currencies as docu-

mented in Table 3, this result confirms the presumed connection between trade liquidity

and spread magnitude. We conclude our analysis by performing additional robustness

checks in the next subsection.

[Table 5 about here]

4.6 Robustness Checks

Our basic regression approach in subsection 4.5 employed a limited treatment group

restricted solely to Bitcoin. However, Chinese miners targeting alternative PoW-based

cryptocurrencies may have been simultaneously subject to constraints after the Covid-19

outbreak and coal mining accident in Xinjiang. Neglecting affected PoW-cryptocurrencies

in the analysis might lead to incorrect effects estimations. Figure 7 illustrates the rela-

tive hash-rate evolution for a set of 7 PoW-based cryptocurrencies in the relevant period

around each exogenous shock. In autumn of 2020, the mining activity of Bitcoin Cash

(BCH), Litecoin (LTC), and Ripple (XMR) appears to be constrained in addition to

Bitcoin. Interestingly, only Bitcoin Cash is subject to a similar decline in hashing power

as Bitcoin in April 2021. To detect systematic spread variation in any affected PoW-

currency, we utilize the entire set of PoW cryptocurrencies and adjust the treatment

dummy Dit accordingly before repeating the estimation of the equation 16. Results are

reported in Table 7 with cluster-robust standard errors in paratheses. All findings remain

consistent. Overall, the robustness diagnosis lends further support to our interpretation
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that the vulnerability of PoW-based consensuses to exogenous shocks depends fundamen-

tally on the concentration in the mining ecosystem and the covariation in the price of the

proprietary coin.

[Figure 7 about here]

[Table 7 about here]

5 Conclusion

This paper studies the robustness of PoW-based permissionless blockchains with struc-

turally concentrated mining ecosystems against exogenous shocks. Based on existing lit-

erature, we theoretically characterize the mining game and formally describe the economic

incentive compatibility underlying PoW consensus with homogeneous and heterogeneous

miners. The empirical section studies two exogenous shocks to the Chinese mining ecosys-

tem in October 2020 and April 2021. The analysis reveals that the structural parameters,

such as the hash-rate, settlement capacity, and transaction fees, were indeed exceptional.

Our empirical analysis further demonstrates that the impact of exogenous shocks on the

stability of PoW-based consensuses substantially depends on fundamental parameters,

such as covariation in the price of the cryptocurrency’s native coin. Moreover, we show

that market participants incorporate and price variations in the implied stability of the

distributed ledger.
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Figure 1: Global and provincial hash-rate distribution (Sep.2019-Aug.2021). Panel (a) shows the
monthly percentage composition of the global hash-rate by country. ”Other” summarizes countries
contributing < 5 percent during the observation period (e.g., Iran, Canada, Germany, and Ireland).
Panel (b) displays the percentage hash-rate distribution localized in China, classified by provinces and
months. Provinces contributing < 5 percent during the observation period are summarized (e.g., Gansu,
Zhejiang, and Beijing). Both plots are based on data from Rauchs et al. (2021).

Table 1: This table contains descriptive statistics on daily transaction and network parameters. Figures
are constructed from 44,204 blocks (i.e., block 637091 to 681295) that were appended to the Bitcoin
blockchain between July 2020 and May 2021. See subsection 4.3 for further details.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Hash-rate (EH/s) 304 140.5 17.5 97.9 127.2 153.6 186.4
Block Difficulty (Trillion) 304 19.4 2.2 15.8 17.3 21.4 23.6
Mean Block Time (Seconds) 304 601.0 69.4 469.6 555.6 627.2 915.2
Block Number 304 145.4 14.8 91 138 156 185
Transaction Number (100K) 304 310.4 34.1 194.6 290.4 333.8 404.8
Transaction Volume (M BTC) 304 1.91 0.66 0.59 1.45 2.28 4.19
Sum of Block Rewards (BTC) 304 909.0 92.7 568.8 862.5 975.0 1,156.2
Sum of Transaction Fees (BTC) 304 109.0 49.9 24.6 75.8 134.6 301.8
BTC Price (1K USD) 304 27.2 18.3 9.1 11.4 46.7 63.3
Mempool Transactions (1000) 417 34.7 28.0 0.4 12.7 47.8 135.9
Confir. Time (Minutes) 304 12.7 3.4 5.0 10.2 14.4 25.2
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Figure 2: Global hash-rate and block difficulty (Sep.2020-May.2021). This figure shows the 3-day
moving average of the estimated global hash-rate and the standard block difficulty. Event periods from
October 16 to November 23, 2020 and April 16 to April 25, 2021, are highlighted by dashed vertical
lines.
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Table 2: This table provides daily descriptive statistics on effective bid-ask spreads, closing prices,
trading volume (in all currencies), and volatility (defined as the standard deviation of the closing price
in a 3-day period) for nine cryptocurrencies and an observation period from January 2020 to October
2021. See subsection 4.3 for further details.

Variable Levels N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Bid-Ask Spread (%) ADA 638 0.4 0.2 0.0 0.3 0.5 2.4

ALGO 617 0.7 0.4 0.0 0.5 0.8 4.1
BTC 638 0.1 0.1 0.0 0.1 0.1 0.8
EOS 638 0.4 0.2 0.0 0.3 0.5 2.1
ETC 638 0.6 0.3 0.0 0.4 0.7 3.2
ETH 638 0.2 0.1 0.0 0.1 0.2 0.9
XMR 638 0.4 0.2 0.0 0.3 0.5 2.2
XTZ 638 0.5 0.2 0.0 0.3 0.6 3.0
ZEC 638 0.6 0.3 0.0 0.4 0.7 2.4
all 5721 0.4 0.3 0.0 0.2 0.6 4.1

Closing Price (USD) ADA 638 0.6 0.8 0.0 0.1 1.2 3.0
ALGO 638 0.6 0.5 0.1 0.3 1.0 2.4
BTC 638 25389.0 17903.9 4970.8 9512.5 40621.8 63503.5
EOS 638 3.7 1.6 1.8 2.6 4.3 14.4
ETC 638 20.9 24.3 4.0 6.0 33.6 134.1
ETH 638 1170.6 1122.3 110.6 236.4 2077.8 4168.7
XMR 638 155.2 97.0 33.0 68.3 229.6 483.6
XTZ 638 3.2 1.3 1.2 2.3 3.6 7.5
ZEC 638 94.6 56.9 24.5 55.0 126.6 318.9
all 5742 2982.1 9930.0 0.0 2.3 202.3 63503.5

Trading Volume ($M) ADA 638 2318.9 2987.4 20.8 211.9 3533.6 19142.0
ALGO 638 222.9 358.6 17.0 60.5 255.8 4812.1
BTC 638 40915.1 21730.5 12252.6 27186.0 49062.1 350967.9
EOS 638 2907.8 2020.1 673.6 1682.1 3521.0 20328.7
ETC 638 2103.3 2986.8 373.3 765.8 2233.6 42721.4
ETH 638 20978.4 11776.3 5109.0 12743.5 25825.4 84482.9
XMR 638 580.5 1793.0 41.8 111.8 738.2 28959.1
XTZ 638 290.5 300.2 30.5 119.1 359.3 2721.4
ZEC 638 609.7 993.5 90.8 283.4 620.5 12719.4
all 5742 7880.8 15673.4 17.0 229.3 5868.1 350967.9

Volatility ADA 638 0.0 0.0 0.0 0.0 0.0 0.3
ALGO 638 0.0 0.0 0.0 0.0 0.0 0.5
BTC 638 688.5 782.6 6.9 125.8 1031.6 4397.8
EOS 638 0.2 0.3 0.0 0.0 0.2 2.7
ETC 638 1.1 2.6 0.0 0.1 1.0 32.6
ETH 638 44.7 63.1 0.6 5.3 66.1 505.0
XMR 638 5.7 7.4 0.2 1.6 6.7 81.1
XTZ 638 0.1 0.2 0.0 0.0 0.2 1.1
ZEC 638 4.3 5.3 0.1 1.3 5.3 56.6
all 5742 82.7 338.3 0.0 0.0 6.2 4397.8
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Figure 3: Weekly block number during two shocks and overall block density. Panel (a) shows the
decrease of weekly blocks during two exogenous shocks together with the population average (red line)
and the block difficulty adjustments (yellow line). Panel (b) displays the overall density of weekly blocks,
including the population mean (red line). The block creation during the two shocks is highlighted (red).

Table 4: This table provides results from one-sample t-test against the two sided alternative of the
sample mean or population mean for the number of blocks and network hash-rate. The test calculation
includes population mean and standard deviation for the block number, whereas tests on the hash-
rate deploy sample figures. Test periods cover the relevant weeks around the presumed shocks (see
subsection 4.2).

Panel 1

Week
Sum of
Blocks

t-Value
(Blocks)

p-Value
(Blocks)

Average
Hash-Rate

t-Value
(Hash-Rate)

p-Value
(Hash-Rate)

1 2020-09-25 1021 -1.72 0.1366 140.95 -0.12 0.905
2 2020-10-02 1028 -1.52 0.1798 140.33 -0.27 0.799
3 2020-10-09 1040 -1.18 0.2842 142.62 0.47 0.655
4 2020-10-16 968 -3.23 0.0179** 138.65 -0.53 0.617
5 2020-10-23 817 -7.54 3e-04*** 118.55 -3.31 0.016**
6 2020-10-30 890 -5.45 0.0016*** 115.16 -6.34 0.001***
7 2020-11-06 1077 -0.12 0.9081 127.37 -5.69 0.001***
8 2020-11-13 1054 -0.78 0.467 130.31 -3.20 0.019**
9 2020-11-20 1099 0.51 0.6301 137.73 -0.81 0.447
10 2020-11-27 1011 -2.00 0.092* 133.03 -2.85 0.029**

Panel 2

Week
Sum of
Blocks

t-Value
(Blocks)

p-Value
(Blocks)

Average
Hash-Rate

t-Value
(Hash-Rate)

p-Value
(Hash-Rate)

1 2021-03-26 1054 -0.78 0.467 165.26 -0.71 0.505
2 2021-04-02 1008 -2.09 0.0817* 167.70 0.18 0.866
3 2021-04-09 1047 -0.98 0.3667 168.61 0.29 0.785
4 2021-04-16 787 -8.39 2e-04*** 134.58 -4.97 0.003***
5 2021-04-23 941 -4.00 0.0071*** 160.65 -2.08 0.083*
6 2021-04-30 1154 2.08 0.0832* 170.61 0.82 0.444
7 2021-05-07 1214 3.79 0.0091*** 182.92 4.71 0.003***

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 4: Evolution of Bitcoin price and global hash-rate during four shocks (2018-2021). This figure
shows four shocks to the Bitcoin mining industry (upper panel) and the corresponding change in the
BTC price (lower panel). Shocks are defined as significant short-term recessions in the global hash-rate
of > 25 percent within 14 days. All Variables are standardized with t0 = 1 and a period centered ±20
days around the observed hash-rate minimum values.
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Figure 5: Evolution of miners’ gross revenues and global hash-rate for two mining shocks. This figure
depicts miners’ gross revenues and the global hash-rate for two exogenous shocks in October 2020 and
April 2021. Gross revenues are the product of block rewards, transaction fees, and daily USD/BTC
conversion rates. Figures are standardized with t0 = 1.
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Figure 6: Effects of exogenous shocks on transaction parameters. This chart illustrates the average of
block time (in seconds), number of mempool transactions, and transaction fees (in BTC per block), with
t = 0 corresponding to the observed minimum hash-rate of each shock.
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Figure 7: PoW-based cryptocurrencies and mining shocks. This chart illustrates the standardized
hash-rate of seven Pow-based cryptocurrencies during the exogenous shocks in October 2020 and April
2021. All figures are standardizes with t0 = 1; vertical (red) lines indicate shock periods.
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Table 5: Currency fixed-effects regression: Effect of shock treatment dummy (Dit) on ln(Average
Spread). This table reports regression results from estimating equation 16.
Figures are specified as follows: The log average spread denotes the estimated mean bid-ask spread
from trading the respective cryptocurrency against USD and EUR (weighted by volume), log volume
the overall trading volume in all currencies, the change of log closing price denotes the first difference of
the daily closing price in USD, and log volatility the moving standard deviation of the closing price in
a 3-day period. The shock treatment dummy (Dit) is equal to one if the currency at day t was affected
by a shock (denoted by (1) and (2)) and zero otherwise. The sample period of Panel 1 (September
9 to November 23, 2020) and Panel 2 (April 3 to April 25, 2021) contains 600 and 184 observations,
respectively, for a total of 8 cryptocurrencies.

Dependent variable:

Ln(Average Spread)

Panel 1 Panel 2

(1) (2) (3) (4) (5) (6)
treatment (D1

it) 0.16 0.19 0.32
(0.23) (0.17) (0.21)

treatment (D2
it) 0.55∗∗∗ 0.42∗∗∗ 0.19∗∗∗

(0.00) (0.02) (0.05)
ln(Volume) 0.24∗∗ 0.17∗∗ 0.47∗∗∗ 0.37∗∗

(0.07) (0.03) (0.12) (0.12)
ln(Volatility) 0.08∗∗ 0.01 0.04 0.02

(0.02) (0.05) (0.05) (0.07)
∆ln(Closing Price) −0.60 1.20 −1.56∗∗∗ −0.28

(0.58) (1.03) (0.35) (0.38)
ALGO 0.58∗∗∗ 0.95∗∗∗ 0.92∗∗∗ 0.53∗∗∗ 1.59∗∗∗ 1.38∗∗∗

(0.00) (0.13) (0.12) (0.00) (0.29) (0.28)
BTC −1.80∗∗ −3.61∗∗∗ −2.66∗∗∗ −1.67∗∗∗ −3.29∗∗∗ −2.75∗∗∗

(0.12) (0.51) (0.50) (0.00) (0.36) (0.74)
EOS −0.19∗∗∗ −0.66∗∗∗ −0.39∗∗ 0.51∗∗∗ 0.40∗∗∗ 0.45∗∗

(0.00) (0.12) (0.11) (0.00) (0.11) (0.16)
ETC 0.62∗∗∗ 0.37∗∗∗ 0.60∗∗ 0.84∗∗∗ 0.94∗∗∗ 0.93∗∗

(0.00) (0.08) (0.18) (0.00) (0.20) (0.26)
ETH −1.04∗∗∗ −2.39∗∗∗ −1.64∗∗∗ −0.71∗∗∗ −1.95∗∗∗ −1.63∗∗

(0.00) (0.33) (0.35) (0.00) (0.27) (0.53)
XTZ 0.02∗∗∗ 0.12 0.24 0.75∗∗∗ 1.56∗∗∗ 1.42∗∗∗

(0.00) (0.10) (0.18) (0.00) (0.30) (0.29)
ZEC 0.22 −0.28 0.09 0.78∗∗∗ 1.26∗∗ 1.20∗∗

(0.12) (0.22) (0.35) (0.00) (0.40) (0.46)
(0.00) (0.02) (0.05)

Time Per. D. NO NO YES NO NO YES
R2 0.78 0.80 0.84 0.78 0.85 0.90
Adj. R2 0.77 0.79 0.82 0.77 0.84 0.88
Num. obs. 600 600 600 184 184 184
RMSE 0.41 0.39 0.37 0.42 0.36 0.30
N Clusters 8 8 8 8 8 8
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 6: This table reports results from the Augmented Dickey-Fuller test (ADF-test) for unit roots in
panel data structures (Dickey & Fuller, 1979).

Variable Unit root test Test statistic p-value

In levels:

log(Average Spread) ADF (LP=17) -8.244 0.0000
log(Trading Volume) ADF (LP=17) -3.9455 0.0116
log(Closing Price) ADF (LP=17) -1.691 0.7092
log(Volatility) ADF (LP=17) -8.0129 0.0000

In first-differences:

∆log(Closing Price) ADF (LP=17) -15.762 0.000

57



Table 7: Currency fixed-effects regression: Effect of shock treatment dummy (Dit) on ln(Average
Spread). This table reports regression results from estimating equation 16.
Figures are specified as follows: The log average spread denotes the estimated mean bid-ask spread
from trading the respective cryptocurrency against USD and EUR (weighted by volume), log volume
the overall trading volume in all currencies, the change of log closing price denotes the first difference of
the daily closing price in USD, and log volatility the moving standard deviation of the closing price in
a 3-day period. The shock treatment dummy (Dit) is equal to one if the currency at day t was affected
by a shock (denoted by (1) and (2)) and zero otherwise. The sample period of Panel 1 (September
9 to November 23, 2020) and Panel 2 (April 3 to April 25, 2021) contains 825 and 253 observations,
respectively, for a total of 11 cryptocurrencies.

Dependent variable:

Ln(Average Spread)

Panel 1 Panel 2

(1) (2) (3) (4) (5) (6)
treatment (D1

it) 0.11 0.04 0.20
(0.08) (0.08) (0.11)

treatment (D2
it) 0.56∗∗∗ 0.33∗∗∗ 0.12

(0.02) (0.09) (0.08)
ln(Volume) 0.18∗∗ 0.11∗∗ 0.46∗∗∗ 0.39∗∗∗

(0.04) (0.04) (0.09) (0.11)
ln(Volatility) 0.09∗∗∗ 0.02 0.02 −0.02

(0.02) (0.03) (0.03) (0.04)
∆ln(Closing Price) −0.79 0.69 −1.38∗∗∗ −0.23

(0.51) (0.82) (0.29) (0.29)
ALGO 0.58∗∗∗ 0.82∗∗∗ 0.78∗∗∗ 0.53∗∗∗ 1.58∗∗∗ 1.45∗∗∗

(0.00) (0.10) (0.12) (0.00) (0.22) (0.26)
BCH −0.48∗∗∗ −1.33∗∗∗ −0.81∗∗∗ 0.17∗∗ 0.03 0.39

(0.04) (0.20) (0.23) (0.01) (0.23) (0.32)
BTC −1.77∗∗∗ −3.47∗∗∗ −2.50∗∗∗ −1.68∗∗∗ −3.06∗∗∗ −2.39∗∗∗

(0.04) (0.31) (0.28) (0.01) (0.27) (0.49)
EOS −0.19∗∗∗ −0.63∗∗∗ −0.36∗∗∗ 0.51∗∗∗ 0.44∗∗∗ 0.54∗∗∗

(0.00) (0.08) (0.07) (0.00) (0.07) (0.10)
ETC 0.62∗∗∗ 0.32∗∗∗ 0.56∗∗∗ 0.84∗∗∗ 0.99∗∗∗ 1.07∗∗∗

(0.00) (0.09) (0.12) (0.00) (0.14) (0.17)
ETH −1.04∗∗∗ −2.34∗∗∗ −1.56∗∗∗ −0.71∗∗∗ −1.80∗∗∗ −1.40∗∗∗

(0.00) (0.23) (0.20) (0.00) (0.18) (0.34)
LTC −0.35∗∗∗ −1.11∗∗∗ −0.68∗∗∗ 0.18∗∗∗ −0.16 0.08

(0.04) (0.16) (0.18) (0.00) (0.16) (0.24)
XMR −0.08 −0.74∗∗∗ −0.32 0.30∗∗∗ 0.97∗∗ 1.07∗∗

(0.04) (0.19) (0.24) (0.00) (0.30) (0.34)
XTZ 0.02∗∗∗ 0.00 0.11 0.75∗∗∗ 1.57∗∗∗ 1.54∗∗∗

(0.00) (0.11) (0.15) (0.00) (0.22) (0.25)
ZEC 0.25∗∗∗ −0.30 0.07 0.78∗∗∗ 1.33∗∗∗ 1.45∗∗∗

(0.04) (0.18) (0.24) (0.00) (0.29) (0.33)

Time Per. D. NO NO YES NO NO YES
R2 0.73 0.75 0.81 0.75 0.82 0.89
Adj. R2 0.73 0.75 0.78 0.74 0.81 0.87
Num. obs. 825 825 825 253 253 253
RMSE 0.40 0.39 0.36 0.40 0.34 0.29
N Clusters 11 11 11 11 11 11
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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