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Abstract

We conduct a series of Cournot duopoly market experiments with a high number of repetitions and

fixed matching. Our treatments include markets with (a) complete cost symmetry and complete in-

formation, (b) slight cost asymmetry and complete information, and (c) varying cost asymmetries and

incomplete information. For the case of complete cost symmetry and complete information, our data

confirm the well-known result that duopoly players achieve, on average, partial collusion. However, as

soon as any level of cost asymmetry or incomplete information is introduced, observed average indi-

vidual quantities are remarkably close to the static Bayes-Nash equilibrium predictions.
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1 Introduction

This paper is concerned with the experimental occurrence of collusion (low quantities) in Cournot environ-

ments. The novelty is that we introduce repeated Bayes-Nash Cournot games, where two firms repeatedly,

independently, and privately draw their cost in each round, and compare them to environments where firms

either have the same costs or have different, but constant and known, costs.

The emergence of (tacit) collusion in oligopolistic environments is of particular interest. For one,

collusion in oligopoly typically takes the form of a social dilemma (with Nash equilibrium predictions

conflicting with the collective interests of the players, as exemplified by the difference between Cournot

equilibrium profits and monopoly profits). Cooperation in social dilemmas is the subject of an enormous

literature across the various social sciences. Second, in many countries, the fight against collusion and

cartels is at the top of competition authorities’ concerns so that work on the determinants of collusion in

oligopolistic markets can directly inform public policy.

Cournot competition is a workhorse of industrial organization and it has been extensively studied

in the lab. Some of the very first studies in experimental economics concerned themselves with behavior in

Cournot environments (see Sauermann and Selten, 1959; Hoggatt, 1959). Many determinants of collusion

in Cournot environments have now been explored: the number of firms (Huck et al., 2004); the possibility of

pre-play communication (Binger et al., 1990; Waichman, Requate, and Siang, 2014; Fischer and Normann,

2019); the type of feedback information about play (Huck et al., 2000; Davis 2002; Offerman et al., 2002;

Altavilla et al. 2006); the matching protocol (Davis et al., 2003); the frequency or duration of interaction

(Normann, Requate, and Waichman, 2014; Bigoni, Potters, and Spagnolo, 2019); the use of complete con-

tingent strategies (as opposed to making a choice in every round; see Selten, Mitzkewitz, and Uhlich, 1997);

gender effects (Mason, Phillips, and Redington, 1991); the level of the discount rate (Feinberg and Husted,

1993); or the nature of decision-making (Raab and Schipper, 2009).1

The majority of studies look at symmetric environments, where firms have the same cost functions.

Some studies (Fouraker and Siegel, 1963; Mason, Phillips, and Nowel, 1992; Mason and Phillips, 1997;

Selten, Mitzkewitz, Uhlich, 1997; Rassenti et al., 2000; Normann, Requate, Waichman, 2014; Fischer and

Normann, 2019) introduce asymmetric costs. Overall, there is evidence that asymmetry makes it harder to

collude in the lab and observed quantities are typically higher than in symmetric configurations.

Most of this literature looks at environments with complete information. Exceptions include: Fouraker

and Siegel (1963), Carlson (1967), Mason and Phillips (1997), which have conditions in which a given

player does not have any information about the payoff of the other player(s).2 Not all of those studies com-

1For a meta-study on the determinants of collusion in oligopoly experiments, more generally, see Engel (2007).
2Thus, in those studies, the games are not Bayesian, in the technical sense (Harsanyi, 1967) of having a prior distribution of

types commonly known by all players.
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pare complete information to incomplete information environments; when they do, they report a tendency

for collusion to be harder to achieve in the presence of complete information.

To our knowledge, no paper so far has looked at a (finitely) repeated standard Bayes Cournot game

with uncertain costs, an environment which displays both incomplete information and potential changes in

asymmetric cost levels (as cost types are drawn anew in every round). In fact, there is a scarcity of articles

looking at repeated Bayes-Nash environments in the more general literature about experimental oligopolies.

We are only aware of a study by Abbink and Brandts (2005), which speaks to the possibility of collusion in

Bayes-Nash Bertrand oligopolies. In their experiment, Bertrand firms face a known linear demand curve but

they independently and repeatedly draw their unit cost from a common (uniform) distribution under fixed

matching for 50 rounds.

A Bayes-Nash Cournot environment is interesting to study for several reasons. First, that game

is canonical and, as such, worthy of investigation. Second, under finite repetition, subgame-perfection

predicts that players will play the unique, static Bayes-Nash equilibrium in every round and one would want

to know whether that prediction will be borne out. In complete information duopolies, Cournot players

typically manage, under sufficiently long repetition, to achieve higher payoffs than predicted by the Cournot

equilibrium. The previous literature suggests that the presence of (possible) cost asymmetry or incomplete

information should complicate the task of subjects in our context but it is simply not known to which extent

collusion might be impaired and whether that depends on the magnitude of the asymmetry. Third, outside

the lab firms are likely to have private information about their (changing) cost level. Although arguably

specific, the Bayes Cournot environment brings a measure of stochasticity to a literature which has mainly

focused on very stable (indeed, identically repeated) contexts.

We conduct a series of laboratory experiments with two players under fixed matching and finite

repetition. Our treatments include full symmetry and complete information, some cost asymmetry under

complete information, and private information about repeatedly drawn costs (the proper Bayes-Nash treat-

ments). Subjects remain matched to the same partner for 60 rounds and face the same, known linear demand

curve. In the Bayes-Nash treatments, in every round, costs are drawn to be high or low with equal probabil-

ity. In a sequence of treatments, we vary the level of asymmetry (i.e. the distance between the high and the

low cost).

We uncover the following main findings. Whereas for markets with complete cost symmetry and

complete information our data reproduce the known result that duopoly players achieve on average partially

collusive outcomes (see e.g. Huck et al., 2004), we find that as soon as any level of cost asymmetry or

incomplete information is introduced observed average individual quantities are remarkably close to the

static (Bayesian) Nash equilibrium values. Moreover, we do not observe substantial differences in collusion

levels among treatments based on the size of the cost asymmetry.
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We investigate the adjustment process of decision-making by subjects from one round to the next

(‘learning’) in the spirit of Huck, Normann and Oechssler (1999) and Rassenti et al. (2000). We find evid-

ence that in the treatments where either cost asymmetry or incomplete information is present, subjects’

adjustments are more in line with Cournot best-response to the opponent’s previous choice rather than with

imitation of it. By contrast, the symmetric, complete-information treatment is the only one where players put

less weight on playing a best-response to their opponent’s last round choice and more weight on imitating it

(thus, allowing players to find their way towards cooperation by achieving gradual reductions in output).

We conclude that there is something special to the treatment involving two players under symmetry,

complete information and finite repetition, which leads players to depart more from myopic optimization.

In the other treatments, we find that the static Bayes-Nash equilibrium values are good predictors. In that

sense, observed behavior is ‘discontinuous’ as soon as one moves away from complete information and full

symmetry.

This finding reinforces the idea that tacit collusion can be achieved in Cournot environments only

in very specific circumstances. Remarkably (and setting external validity concerns aside for a moment),

this seems to align well with the decisional practice of competition authorities when ruling on the so-called

“coordinated effects” (i.e. the possibility of tacit collusion) in merger control. Davies, Olczak and Coles

(2011) indeed show that the European Commission concerns itself with collusion threats only in the case of

post-merger symmetric duopolies.

The rest of this paper is structured as follows. In Section 2, we briefly describe the standard theoret-

ical predictions associated with our Bayes-Nash environment. Section 3 describes our experimental set-up

and the various treatments. Section 4 contains our findings and our analysis of subjects’ adaptive behavior.

Section 5 concludes.

2 Theory

Consider an incomplete-information Cournot duopoly operating in a market with inverse demand

P (Q) = max{a− bQ, 0},

where Q = q1 + q2 is the aggregate quantity in the market. Suppose that firm i = 1, 2 has unit costs cHi

with probability λi and cLi with probability 1 − λi, where cHi ≥ cLi ≥ 0, and that these costs are privately

observed.

Let q∗i (c
H
i ) and q∗i (c

L
i ) denote the quantities produced by firm i = 1, 2 in the Bayes-Nash equilib-
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Table 1: Experimental Design

Treatment Info Parameter Choices #Subjects #Markets #Obs

In all Treatments: a = 120 and b = 1

T-30,30-C C c1 = c2 = 30 14 7 840

T-29,31-C C cH1 = cH2 = 31, cL1 = cL2 = 29 30 15 1, 800

T-29,31-I I λ1 = λ2 = 0.5, cH1 = cH2 = 31, cL1 = cL2 = 29 28 14 1, 680

T-25,35-I I λ1 = λ2 = 0.5, cH1 = cH2 = 35, cL1 = cL2 = 25 28 14 1, 680

T-20,40-I I λ1 = λ2 = 0.5, cH1 = cH2 = 40, cL1 = cL2 = 20 26 13 1, 560

T-20,40-10,50-I I λ1 = λ2 = 0.5, cH1 = 40, cL1 = 20, cH2 = 50, cL2 = 10 28 14 1, 680

Notes: The letter I (C) in column Info indicates that firms have (In)Complete information about each other’s costs.

The individual equilibrium quantities for each treatment are indicated in Table 2 in the column labeled “Quantity

Predicted.”

rium (BNE) depending on own costs. It is routine to show that these quantities are given by:

q∗i (c
L
i ) =

1

6b

(
2a− 4cLi + 2cLj − λicHi + 2λjc

H
j + λic

L
i − 2λjc

L
j

)
(1)

q∗i (c
H
i ) =

1

6b

(
2a− 3cHi − cLi + 2cLj − λicHi + 2λjc

H
j + λic

L
i − 2λjc

L
j

)
, (2)

where i, j = 1, 2 and i 6= j.

In a Cournot duopoly with complete information about (possibly different) costs ci ≥ 0 firms choose

the following quantities in the Nash equilibrium (just set cLk = cHk = c for k = i, j in (1) or (2))

q∗i =
1

3b
(a− 2ci + cj) , i, j = 1, 2 and i 6= j. (3)

Provided the BNE of a stage game is unique, in a finitely repeated Bayesian game, the only per-

fect Bayesian equilibrium is to play the stage-game BNE in every round of the repeated game. While the

collusive outcome in a symmetric Cournot duopoly with complete information is clear (each firm produces

half the monopoly quantity), in a Cournot duopoly with asymmetric costs and complete information players

do not agree on the collusive actions (see Schmalensee (1987) for a theoretical and Fischer and Normann

(2019) for a theoretical and experimental investigation of this case). Finally, in a Bayesian Cournot game

cooperation/collusion problems are arguably even more severe, due to private information about costs.

3 Experimental Design and Procedures

In the experiment, subjects participated in 60 consecutive rounds. In each round, the inverse demand func-

tion was given by P (Q) = max{0, 120 −Q}, where Q = q1 + q2 represents the aggregate quantity in the
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market. Participants acted as firms and decided simultaneously on their quantities qi, i = 1, 2. We employed

a between-subjects design. Table 1 gives an overview of all treatments. The treatments differ with respect to

the distribution of the unit costs of the two firms, ci, and with respect to the information about the cost struc-

ture in the market. In two out of the six treatments (indicated with the letter ‘C’ in the treatment’s name), the

costs of both firms in a round were common knowledge. In the other four treatments (with the letter ‘I’ in

the treatment’s name), subjects only knew their own costs. More precisely, T-30,30-C is a standard Cournot

duopoly in which firms have constant unit costs of 30 each throughout the experiment and know it. In all

other treatments, firms have one of two possible unit costs in each round, where in each round the unit costs

are randomly and independently assigned with probability 0.5. While in T-29,31-C both firms know their

own and the other firm’s unit costs in each round, in all I-treatments each firm knows (a) its own randomly

assigned unit cost and (b) the binary distribution of the unit cost of the other firm but not its realization. Note

that three of the four I-treatments are ex-ante symmetric, while the fourth, T-20,40-10,50-I, is asymmetric

as one firm has the two possible costs level of 20 and 40 and the other 10 and 50, respectively. Finally, note

that in all treatments the ex-ante expected costs of firms are equal to 30.

In each round, subjects could choose a non-negative quantity not larger than 120 with the smallest

step size being 0.01. Before making their quantity decision, subjects also had the opportunity to simulate

different market scenarios with the help of a profit calculator: they could enter two arbitrary quantities,

one for themselves and one for their opponent, and were then shown the resulting profit for them.3 After all

subjects had submitted their decisions, the computer software cleared the market by quoting the price leading

(simulated) demand to equal the entire fictional quantity supplied. Subjects were then informed about the

following: the last round’s cost information (own cost in I treatments or both costs in C treatments), the

quantity decisions of both firms, and their own profit in this round. This information remained present on

the screen when deciding in the next round. Note that no information about the unit cost of the other firm

was ever provided in the incomplete-information treatments.

Upon arrival in the lab, participants were given written instructions (see the Appendix for a trans-

lated version). Each participant was assigned to a computer and randomly matched with another subject

with whom they interacted over the entire experiment. Subjects never learnt with whom they formed a

market and it was made sure that communication among subjects was not possible. However, it was com-

mon knowledge that the composition of markets formed at the beginning of the experiment remained fixed

throughout the whole experiment. The instructions stated that subjects would represent a firm in a market

competing with one another firm.

The experiment was programmed and conducted using zTree (Fischbacher 2007) at the Technical

3The profit calculator, provides essentially the same information as commonly used payoff tables, but helps to avoid a possible

bias due to limited computational abilities of participants (Huck et al. 2000, p. 42).
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University Berlin and Humboldt University Berlin. Participants were students (32% female), mostly from

economics, business, natural sciences, or engineering. Altogether, we conducted 77 markets with 154 sub-

jects and collected 9,240 quantity decisions. Each subject participated in one market only.

In the experiment, a fictional currency called ECU (Experimental Currency Unit) was used, with a

pre-announced exchange rate of 3000 ECU = 1 EUR. Subjects were made aware of the fact that their profit

could become negative in case the market price exceeded their unit costs. For this reason subjects received a

starting balance of 7500 ECU and were told that in case of a loss the negative payoff would be offset against

their cumulative profits so far in addition to their starting balance. At the end of the experiment, they were

paid on the basis of their cumulated earnings over the 60 rounds of play. Sessions took about 60 minutes to

complete. The average total earnings per subject was 20.43 EUR.

4 Experimental Results

4.1 Aggregated results

Table 2 provides summary statistics of our experimental results. We provide averages of individual quantities

per market (with standard errors of the mean in parentheses) for various time intervals and for each of our

treatments separately.4 Table 2 also shows the results of two-tailed one-sample t-tests of whether the sample

mean is equal to the theoretically predicted value. The unit of observation for the tests are market averages

of individual quantities. Looking at Table 2, we make a number of observations. First, for treatment T-

30,30-C, we find confirmation of the known result that subjects are, on average, (partially) able to collude.

For the three time intervals considered, the t-test indicates that the observed individual market averages are

statistically significantly below the Nash equilibrium.5 Second, in all other treatments the observed averages

are remarkably close to the Bayes-Nash equilibrium values (and in only very rare cases do we observe that

the t-test only weakly significantly rejects equality of observed averages with predicted values). This is

perhaps most surprising in treatments T-29,31-C and T-29,31-I where subjects know that in each round

they have very similar costs. Yet it appears that subjects are unable to collude successfully even though

they interact repeatedly over 60 rounds in fixed pairs. Figure 1 in the Appendix shows the distributions

(histograms) of averages of individual quantities per market for each treatment separately.

The question is why we observe successful collusion in treatment T-30,30-C but neither in the other

complete-information treatment T-29,31-C nor in any of the incomplete-information treatments. We conjec-

ture that except in treatment T-30,30-C subjects just do not know what quantity or quantities to collude on as

market conditions change (albeit only slightly in some of the treatments) from round to round. Note, addi-

4As mentioned before, collusive outcomes are unclear in all treatments but T-30,30-C. Hence, we do not provide collusion

indices (Friedman 1971) as is customary in many papers on market experiments.
5Note that the individual collusive quantity is 22.5.
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Table 2: Summary statistics

Quantity Average Individual Quantity Observed

Treatment Costs in the BNE Rounds 1-30 Rounds 31-60 Rounds 1-60

T-30,30-C c = 30 30 26.72∗∗

(1.26)

25.72∗∗

(1.24)

26.22∗∗

(1.09)

T-29,31-Ca cL1 = 29, cL2 = 29 30.33 28.81∗

(0.79)

30.27

(0.71)

29.69

(0.66)

cL1 = 29, cH2 = 31 31 30.75

(0.78)

30.68

(0.47)

30.70

(0.58)

cH1 = 31, cL2 = 29 29 28.15

(0.80)

29.19

(0.54)

28.72

(0.64)

cH1 = 31, cH2 = 31 29.67 28.49∗

(0.64)

29.75

(0.50)

28.99

(0.56)

T-29,31-I cL = 29 30.5 29.72

(0.85)

29.26

(0.95)

29.49

(0.88)

cH = 31 29.5 28.04

(0.73)

28.89

(0.92)

28.45

(0.78)

T-25,35-I cL = 25 32.5 32.22

(0.77)

32.30

(0.53)

32.27

(0.57)

cH = 35 27.5 27.63

(0.41)

28.25

(0.70)

27.93

(0.49)

T-20,40-I cL = 20 35 34.52

(0.71)

35.69

(0.77)

35.12

(0.65)

cH = 40 25 24.96

(0.58)

25.27

(0.78)

25.08

(0.56)

T-20,40-10,50-I cL1 = 20 35 35.00

(1.46)

36.50

(1.96)

35.64

(1.62)

cH1 = 40 25 24.18

(1.45)

23.44

(1.17)

23.77

(1.24)

cL2 = 10 40 37.72

(1.84)

39.16

(2.20)

38.49

(1.88)

cH2 = 50 20 19.86

(1.04)

17.90∗

(1.17)

18.93

(1.09)

Notes: This table shows averages of individual quantities per market with standard errors of the mean in parentheses.

BNE refers to the Bayesian Nash equilibrium. a In treatment T-29,31-C, BNE and observed quantities refer to those

of player 1. Test statistics refer to two-tailed one-sample t-tests of whether the sample mean is equal to BNE

quantities. The unity of observation for the tests are averages of individual quantities per market. The symbols ∗∗, ∗

indicate significance at the 5%, 10% level.

8



tionally, that for asymmetric costs in treatment T-29,31-C the two players disagree about the collusive action

(Schmalensee, 1987 and Fischer and Normann, 2019). The stability of the market environment in treatment

T-30,30-C seems to enable successful coordination, while this is not the case in all other treatments.

In the next subsection, we shed light on this issue by estimating to what extent behavior in our

treatments accords with various well-known learning dynamics.

4.2 Learning dynamics

In view of results in the literature (Huck et al. 1999, 2002, Rassenti et al. 2000) and the inspection of our

data, we consider the following learning dynamics.

Best-response dynamics. According to this dynamics, player i chooses some quantity in round

t = 1 and in round t ≥ 2 chooses a best response, denoted by rt−1i , to the other player’s quantity in the

previous round, qt−1j . In case of a complete-information Cournot duopoly with linear demand and costs, this

dynamic converges to the Nash equilibrium of the one-shot game given in (3); see Theocharis (1960). In

the incomplete-information games considered in this study, the best response dynamics can be shown (own

simulations) to converge on average to the Bayes-Nash equilibrium given in (1) and (2), where individual

quantities oscillate in the interval

• [q∗i (c
k
i )−∆, q∗i (c

k
i ) + ∆] with k ∈ {L,H}, q∗i (cki ) given in (1) and (2), and ∆ = (q∗i (c

L
i )− q∗i (cHi ))/2 in

case of treatments T-29,31-I, T-25,35-I and T-20,40-I;

• [q∗i (c
k
i )−∆i, q

∗
i (c

k
i ) + ∆i] with k ∈ {L,H}, q∗i (cki ) given in (1) and (2), and ∆i = q∗i (c

H
i )/3, i = 1, 2 in

case of treatment T-20,40-10,50-I.

Fictitious-play dynamics. According to this dynamics, player i chooses some quantity in round

t = 1 and in round t ≥ 2 chooses a best response, denoted by f t−1i , to the average of the other player’s

quantities in all previous rounds, 1
t−1
∑t−1
k qkj . This dynamics can be shown to converge (Nachbar (1990)

and own simulations) to the (Bayesian) Nash equilibrium quantities given in (1), (2) and (3).

Imitate the other. According to this dynamics, player i chooses some quantity in round t = 1 and

in round t ≥ 2 either chooses what the other player chose in the previous round (the version we call “imitate

last round” and denote by ilt−1i ) or the average of the other player’s quantities in all previous rounds (the

version we call “imitate fictitious” and denote by if t−1i ). Note that the first version is simply the learning

rule “imitate the average,” also used in Huck et al. (1999, 2002), which in our duopoly context simply

means “imitate the other firm.”6 The “imitate last round” dynamic does not converge and perpetually jumps

between the initial choices of the two players. The “imitate fictitious” dynamics converge in three rounds to

the average of the two players’ initial choices in all treatments.

6Note that the rule “imitate the average” should not be confused with the imitation rule analysed by Vega-Redondo (1997), in

which a player, when given the opportunity to revise its choice, imitates the firm with the highest payoff in the last round or chooses

randomly with some positive probability.
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Several remarks are in order. First and most importantly, the applicability of these dynamics to all

of our treatments can be challenged. For instance, the strict best-response dynamics that only takes into

account the quantity chosen in the previous round can be questioned in case of treatment T-29,31-C as well

as in the incomplete-information treatments: in treatment T-29,31-C, players face different combinations of

ci and cj in every round and know about it, and in case of the incomplete-information treatments, players

should best respond to the expected quantity given the two possible cost levels. Note, though, that players

in the incomplete-information treatments only observe the quantity chosen, but not the type of the other

player in the previous round. Second, questions also arise as to whether the fictitious-play dynamics should

be applied in all treatments. For example, in treatment T-29,31-C in which players know their own and the

other player’s cost when making a decision, one might argue that players should only use relevant previous

rounds to form their fictitious-play beliefs, that is, those rounds in which both players had the same costs as

in the current round.7

Despite these qualifications, we run estimations based on all the dynamics above for all treatments

as it is an open question which rounds of earlier play subjects take into account (if any) when deciding about

the choice in the current round. Moreover, we invoke all the dynamics for all treatments to compare their

performance on equal terms across all treatments.

We estimate two different models using two ways of constructing regressors of the estimation equa-

tions. We explain these in turn. The first model we estimate (see also Huck et al., 1999, 2002; Rassenti et

al., 2000) is

qti − qt−1i = β0 + β1(r
t−1
i − qt−1i ) + β2(il

t−1
i − qt−1i ), (4)

where rt−1i denotes subject i’s best response to the other firms quantity in t−1 and ilt−1i denotes the quantity

of the other firm’s quantity in t− 1. The second model we estimate is

qti − qt−1i = γ0 + γ1(f
t−1
i − qt−1i ) + γ2(if

t−1
i − qt−1i ), (5)

where f t−1i is the best reply against fictitious play beliefs, and if t−1i is the average of the quantities of i’s

rival in all previous rounds. We do not estimate an equation in which we combine the regressors of equations

(4) and (5), because the terms (rt−1i − qt−1i ) and (f t−1i − qt−1i ) (as well as the terms (ilt−1i − qt−1i ) and

(if t−1i − qt−1i )) are highly correlated with each other.

Clearly, the size of the estimated coefficients β̂1 and β̂2 in model (4) and γ̂1 and γ̂2 in model (5),

respectively, indicate whether subjects tend to play a best response to the last or to the average of previous

rounds or tend to imitate what the other firm did in the last round or the previous rounds on average.

We estimate models (4) and (5) using two different ways of constructing regressors. In the regres-

7Below we explain how we account for these qualifications.
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sions labeled “previous rounds” we compute rt−1i and ilt−1i for model (4) using qt−1−i , where, with abuse

of notation, t − 1 refers to the “truly” previous round; and compute f t−1i and if t−1i for model (5) by using

the average of the quantities of i’s rival in all previous rounds. In the regressions labeled “previous relevant

rounds” we use qt−1−i , where t − 1 now refers to the most recent “relevant” round. More precisely, say that

in the current round ci = cj = 29. Then t − 1 refers to the most recent round in which firms had the same

cost information as in the current round. To compute f t−1i and if t−1i for model (5), we use the average of all

quantity choices by i’s rival in all previous “relevant” rounds. More precisely, say that in the current round

ci = cj = 29. Then we used the average of all quantities chosen by i’s rival in all previous rounds in which

ci = cj = 29.

In treatment T-30,30-C, the costs of players remain the same across all rounds. Hence, the two

ways of constructing regressors are the same and so we just estimate models (4) and (5) once. In all other

treatments, cost assignments are random across rounds. Hence, we estimate models (4) and (5) twice, once

using “previous rounds” data and once using “previous relevant rounds” data. We estimated the models by a

mixed-effects, multilevel panel data model where subjects are nested in markets, controlling for heteroske-

dasticity. The results are given in Table 3.

Inspection of Table 3 reveals that treatment T-30,30-C is the only one for which we find the estimated

constants to be significantly smaller than zero. This indicates a downward time trend of average chosen

quantities. Second, the estimated coefficients of the main regressors are positive in all treatments but clearly

below 1, which means that adaptations do not accord fully with any of the dynamics specified. Third, for

treatment T-30,30-C we find that β̂1 is significantly smaller than β̂2 in model (4), indicating that subjects on

average choose more in accordance with imitation of the other firm’s last-round choice than best responding

to it. In model (5) of T-30,30-C, we find that γ̂1 is also smaller than γ̂2. However, the difference is not

statistically significant. Fourth, and most importantly, in all other treatments we observe that the estimated

coefficient β̂1 (γ̂1) is significantly larger than the estimated coefficient β̂2 (γ̂2), indicating that subjects in

the treatments with either cost asymmetry or incomplete information choose on average more in accordance

with best-response behavior than with imitation.8 In fact, neglecting two extreme cases, the mean of the

ratios β̂1/β̂2 and γ̂1/γ̂2 is 2.5 with a standard deviation of 1.4 in all treatments other than T-30,30-C. Finally,

note that the Log LL values for the two models estimated for the same way of constructing regressors are

usually very close to each other, which indicates that none of the models is clearly favored in accounting

for the way subjects adapt and learn over time. This is arguably not surprising given the earlier observation

regarding the correlation between regressors in models (4) and (5).9

8There is one exception, namely, model (5) in treatment T-25,31-I when estimated using previous round data.
9We repeated the analysis reported in Table 3 (that uses all data), for the data of the first half of the experiment only. We did so

as adjustments might be particularly pronounced at the beginning of the experiment. We find very similar results to those shown in

Table 3 with the one exception that for treatment T-30,30-C the coefficients β1 than β2 in model (4) are not statistically different

from each other anymore. Hence, also for the first half of the data we find that subjects’ adjustments are on average more in line

11



Table 3: Results of adjustment regressions

Treatment T-30,30-C Treatment T-29,31-C

“Previous rounds” “Previous relevant rounds”

Model (4) Model (5) Model (4) Model (5) Model (4) Model (5)

β1 / γ1 0.204∗∗∗ 0.211∗∗∗ 0.490∗∗∗ 0.570∗∗∗ 0.520∗∗∗ 0.535∗∗∗

(0.067) (0.054) (0.066) (0.089) (0.026) (0.038)

β2 / γ2 0.399∗∗∗ 0.276∗∗∗ 0.227∗∗∗ 0.152∗∗∗ 0.254∗∗∗ 0.240∗∗∗

(0.050) (0.077) (0.039) (0.026) (0.029) (0.024)

β0 / γ0 −1.126∗∗∗ −1.283∗∗∗ −0.283 −0.416 −0.144 −0.171

(0.368) (0.336) (0.395) (0.457) (0.424) (0.425)

N 826 826 1,770 1,770 1,680 1,680

Log LL −2082 −2116 −5061 −5053 −4637 −4636

p-value of H0 0.044 0.410 < 0.001 < 0.001 < 0.001 < 0.001

β̂1 = β̂2 / γ̂1 = γ̂2

Treatment T-29,31-I Treatment T-25,35-I

“Previous rounds” “Previous relevant rounds” “Previous rounds” “Previous relevant rounds”

Model (4) Model (5) Model (4) Model (5) Model (4) Model (5) Model (4) Model (5)

β1 / γ1 0.500∗∗∗ 0.509∗∗∗ 0.582∗∗∗ 0.537∗∗∗ 0.547∗∗∗ 0.544∗∗∗ 0.491∗∗∗ 0.496∗∗∗

(0.045) (0.057) (0.043) (0.065) (0.048) (0.059) (0.029) (0.035)

β2 / γ2 0.296∗∗∗ 0.289∗∗∗ 0.291∗∗∗ 0.336∗∗∗ 0.386∗∗∗ 0.391∗∗∗ 0.294∗∗∗ 0.288∗∗∗

(0.044) (0.069) (0.026) (0.053) (0.036) (0.062) (0.027) (0.052)

β0 / γ0 −0.816 −0.827 −0.919 −0.838 0.154 0.233 0.173 0.195

(0.596) (0.628) (0.728) (0.701) (0.388) (0.377) (0.343) (0.347)

N 1,652 1,652 1,624 1,624 1,652 1,652 1,624 1,624

Log LL −4987 −4989 −4897 −4895 −4988 −4998 −4865 −4867

p-value of H0 < 0.001 0.021 < 0.001 0.072 0.023 0.165 < 0.001 0.010

β̂1 = β̂2 / γ̂1 = γ̂2

Treatment T-20,40-I Treatment T-20,40-10,50-I

“Previous rounds” “Previous relevant rounds” “Previous rounds” “Previous relevant rounds”

Model (4) Model (5) Model (4) Model (5) Model (4) Model (5) Model (4) Model (5)

β1 / γ1 0.710∗∗∗ 0.824∗∗∗ 0.402∗∗∗ 0.505∗∗∗ 0.742∗∗∗ 0.935∗∗∗ 0.389∗∗∗ 0.530∗∗∗

(0.042) (0.075) (0.049) (0.062) (0.029) (0.093) (0.094) (0.126)

β2 / γ2 0.301∗∗∗ 0.142∗∗ 0.156∗∗∗ 0.079∗ 0.315∗∗∗ 0.056 0.148∗∗∗ 0.046

(0.035) (0.060) (0.033) (0.045) (0.024) (0.098) (0.045) (0.051)

β0 / γ0 0.133 0.106 0.138 0.132 −0.797 −1.159 −0.361 −0.593

(0.393) (0.469) (0.235) (0.293) (0.914) (1.065) (0.488) (0.602)

N 1,534 1,534 1,508 1,508 1,652 1,652 1,624 1,624

Log LL −4728 −4698 −4424 −4404 −5835 −5775 −5527 −5505

p-value of H0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

β̂1 = β̂2 / γ̂1 = γ̂2

Notes: This table shows the results of the adjustment regressions using all data. For a description of the specifications labeled “previous rounds”

and “previous relevant rounds,” see page 10 of the main text. In treatment T-30,30-C, the costs of players remain the same across all rounds.

Hence, the two ways of constructing regressors are the same and so we just estimate models (4) and (5) once. In all other treatments, cost

assignments are random across rounds. Hence, we estimate models (4) and (5) twice, once using “previous rounds” data and once using “previous

relevant rounds” data. The β / γ coefficients refer to model (4) / (5). The symbols ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5%, 10% level.
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We checked these results also at the individual level. That is, for each subject of a treatment separ-

ately we estimated models (4) and (5) for both ways of construction regressors, controlling for autocorrel-

ation and heteroskedasticity. The results are presented in Table 4 in the appendix. The entries in this table

indicate the share of subjects per treatment for which the hypothesis listed in the second column of Table 4

is rejected. We make several observations. First, in T-30,30-C the share of subjects for which the hypothesis

of H0: β0 ≥ 0 (γ0 ≥ 0) is rejected in favor of H1: β0 < 0 (γ0 < 0) is clearly positive, while the share

of subjects for which H0: β0 ≤ 0 (γ0 ≤ 0) is rejected in favor of H1: β0 > 0 (γ0 > 0) is zero. Note that

the corresponding numbers in all other treatments are usually more similar to each other. This indicates that

also at the individual level, in treatment T-30,30-C there is on average more of a downward trend in chosen

quantities than an upward trend. Second, in all treatments but T-30,30-C the share of subjects for which

the hypothesis of H0: β1 ≤ β2 (γ1 ≤ γ2) is rejected in favor of H1: β1 > β2 (γ1 > γ2) is always much

larger than the share of subjects for which H0: β1 ≥ β2 (γ1 ≥ γ2) is rejected in favor of H1: β1 < β2

(γ1 < γ2). Note that the corresponding numbers in Treatment T-30,30-C are the same. This indicates that

also at the individual level, in all treatments but T-30,30-C subjects’ adjustments are on average more in line

with best-response behavior than with imitation.

4.3 Additional evidence

The analysis of the recorded simulations conducted by subjects prior to the actual quantity choices confirms

the observed difference in the subjects’ decision approach used in treatment T-30,30-C compared to the

treatments with either cost asymmetry or incomplete information.10 For example, subjects in treatment T-

30,30-C used the profit calculator least often, and also the share of actual quantity choices tried out in the

simulations were at the minimum in treatment T-30,30-C (see Table 5 in the Appendix for more detailed

results from the simulation data analysis). The observed “discontinuity” in behavior is also confirmed by

subjects’ answers in the post-experimental questionnaire regarding the question of how they came to their

decisions in the experiment. For example, in T-30,30-C, the word “collusion” or a description of an attempt

to achieve collusion was mentioned by 71% of the subjects, while the corresponding share in all other

treatments is not higher than 39%.

with best-response behavior than with imitation in all treatments but treatment T-30,30-C.
10Recall that according to our experimental design, before making their quantity decisions, subjects had the opportunity to

simulate different market scenarios with the help of a profit calculator. More precisely, they could try different pairs of quantities

(own and of the opponent) and were then shown the resulting profit for themselves.
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5 Conclusions

We report on Cournot duopoly market experiments with a relatively high number of repetitions and fixed

matching. We run treatments that include markets with (a) complete cost symmetry and complete informa-

tion, (b) slight cost asymmetry and complete information, and (c) varying cost asymmetries and incomplete

information.

The main result can be interpreted as a “discontinuity” in behavior: While for markets with complete

cost symmetry and complete information our data confirm the known result that duopoly players achieve on

average partially collusive outcomes, we find that as soon as any level of cost asymmetry or incomplete in-

formation is introduced observed average individual quantities are remarkably close to the static (Bayesian)

Nash equilibrium values. This is so despite repeated and fixed matching over the course of 60 rounds.

The results of various regressions analyzing players’ adjustment behavior over time provide an

explanation of this main result. We find significantly more adjustments in line with best-response behavior

than with imitation in all but the treatment with complete symmetry and information. This provides an

explanation of our results as simulations show that best-response dynamics do converge (on average) to

static (Bayesian) Nash equilibrium quantities.

In their duopoly treatment (as well as the ones with 3 or 4 firms), Abbink and Brandt (2005) found

that prices were systematically below the Bayes-Nash values, that is, observed play was more competitive

than Bayes-Nash equilibrium predictions. We find, on the contrary, that, in our incomplete information

treatments, observed average quantities are in line with Bayes-Nash equilibrium predictions. This may yet

again point to a fundamental difference between experimental Bertrand and Cournot environments (and

more generally, games of strategic substitutes vs. games of strategic complements, see e.g. Potters and

Suetens, 2009; Mermer, Müller and Suetens, 2021). Note, however, that, in contrast to the evidence relating

to complete-information, symmetric contexts (Suetens and Potters, 2007), in Bayes-Nash environments

Bertrand appears to lead to more competitive outcomes than Cournot.

The adjustment dynamics we explore in this paper have so far mainly been applied to data of sym-

metric and complete-information markets. We find that none of the models we specify (models (4) or (5)) or

the way regressors are constructed (using strictly previous rounds or previous “relevant” rounds) is clearly

favored in accounting for the way subjects adapt and learn over time. The appropriateness of applying some

of these dynamics in markets with incomplete-information is debatable. Future theoretical and econometric

work should, hence, probe whether alternative specifications can better account for players’ adaptations over

time.

14



References

[1] Abbink, K. and J. Brandts (2005): Price competition under cost uncertainty: A laboratory analysis,

Economic Inquiry 43, 636–648.

[2] Altavilla, C., L. Luini and P. Sbriglia (2006): Social learning in market games, Journal of Economic

Behavior & Organization 61, 632–652.

[3] Bigoni, M., J. Potters and G. Spagnolo (2019): Frequency of interaction, communication and collusion:

an experiment, Economic Theory 68, 827–844.

[4] Binger, B.R., E. Hoffman, G.D. Libecap and K. Shachat (1990): An experimetric study of the Cournot

theory of firm behavior, University of Arizona working paper.

[5] Carlson, J.A. (1967): The stability of an experimental market with a supply-response lag, Southern

Economic Journal 33 , 305–321.

[6] Davis, D.D. (2002): Strategic interactions, market information and predicting the effects of mergers in

differentiated product markets, International Journal of Industrial Organization 20, 1277–1312.

[7] Davis, D.D., R.J. Reilly and B.J. Wilson (2003): Cost structures and Nash play in repeated Cournot

games, Experimental Economics 6, 209–226.

[8] Davis, S., M. Olczak and H. Coles (2011): Tacit collusion, firm asymmetries and numbers: evidence

from EC merger cases, International Journal of Industrial Organization 29, 221–231.

[9] Engel, C. (2007): How much collusion? A meta-analysis of oligopoly experiments. Journal of Com-

petition Law & Economics 3(4), 491–549.

[10] Feinberg, R.M. and T.A. Husted (1993): An experimental test of discount-rate effects on collusive

behaviour in duopoly markets, Journal of Industrial Economics 41, 153–160.

[11] Fischbacher, U. (2007): z-Tree: Zurich toolbox for ready-made economic experiments, Experimental

Economics 10, 171–178.

[12] Fischer, C. and H.-T. Normann (2019): Collusion and bargaining in asymmetric Cournot duopoly–An

experiment, European Economic Review 111, 360–379.

[13] Fouraker, L.E. and S. Siegel (1963): Bargaining behavior. New York: McGraw-Hill.

[14] Friedman, J. W. (1971): A non-cooperative equilibrium for supergames, The Review of Economic

Studies 38, 1–12.

[15] Harsanyi, J.C. (1967): Games with incomplete information played by “Bayesian” players, I—III Part

I. The basic model, Management Science 14, 159–182.

[16] Hoggatt, A.C. (1959): An experimental business game, Behavioral Science 4, 192–203.

[17] Huck, S., H.-T. Normann and J. Oechssler (1999): Learning in Cournot Oligopoly-An Experiment,

The Economic Journal 109, C80–C95.

15



[18] Huck, S., H.-T. Normann and J. Oechssler (2000): Does information about competitors’ actions in-

crease or decrease competition in experimental oligopoly markets?, International Journal of Industrial

Organization 18, 39–57.

[19] Huck, S., H.-T. Normann and J. Oechssler (2002): Stability of the Cournot process – experimental

evidence, International Journal of Game Theory 31, 123–136.

[20] Huck, S., H.-T. Normann and J. Oechssler (2004): Two are few and four are many: number effects in

experimental oligopolies, Journal of Economic Behavior & Organization 53, 435–446.

[21] Mason, C. F., O. R. Phillips and C. Nowell (1992): Duopoly behavior in asymmetric markets: An

experimental evaluation, Review of Economics and Statistics 74(4), 662–670.

[22] Mason, C. F., O. R. Phillips and D.B. Redington (1991): The role of gender in a non-cooperative game,

Journal of Economic Behavior & Organization 15, 215–235.

[23] Mason, C. F. and O. R. Phillips (1997): Information and cost asymmetry in experimental duopoly

markets, Review of Economics and Statistics 79(2), 290–299.

[24] Mermer, A. G., W. Müller and S. Suetens (2021): Cooperation in infinitely repeated games of strategic

complements and substitutes. Journal of Economic Behavior & Organization 188, 1191–1205.

[25] Nachbar, J.H. (1990): “Evolutionary” selection dynamics in games: Convergence and limit properties,

International Journal of Game Theory 19, 59–89.

[26] Normann, H.-T., T. Requate and I. Waichman (2014): Do short-term laboratory experiments provide

valid descriptions of long-term economic interactions? A study of Cournot markets, Experimental

Economics 17, 371–390.

[27] Potters, J. and S. Suetens, S. (2009): Cooperation in experimental games of strategic complements and

substitutes. Review of Economic Studies 76(3), 1125–1147.

[28] Offerman, T., J. Potters and J. Sonnemans (2002): Imitation and belief learning in an oligopoly exper-

iment, Review of Economic Studies 69, 973–997.

[29] Raab, P. and B. C. Schipper (2009): Cournot competition between teams: An experimental study,

Journal of Economic Behavior & Organization 72, 691–702.

[30] Rassenti, S., S.S. Reynolds, V.L. Smith, and F. Szidarovszky (2000): Adaptation and convergence of

behavior in repeated experimental Cournot games, Journal of Economic Behavior & Organization 41,

117–146.

[31] Requate, T. and I. Waichman (2011): “A profit table or a profit calculator?” A note on the design of

Cournot oligopoly experiments, Experimental Economics 14, 36–46.

[32] Sauerman, H. and R. Selten (1959): Ein Oligopolexperiment, Zeitschrift für die gesamte Staatswis-

senschaft 115, 427–471.

[33] Schmalensee, R. (1987): Competitive advantage and collusive equilibria, International Journal of

16



Industrial Organization 5, 351–367.

[34] Selten, R., M. Mitzekewitz and G.R. Uhlich (1997): Duopoly strategies programmed by experienced

players, Econometrica 65, 517–555.

[35] Suetens, S. and J. Potters (2007): Bertrand colludes more than Cournot. Experimental Economics

10(1), 71–77.

[36] Theocharis, R.D. (1960): On the Stability of the Cournot Solution on the Oligopoly Problem, Review

of Economic Studies 27, 133–134.

[37] Vega-Redondo, F. (1997): The evolution of Walrasian behavior, Econometrica 65, 375–384.

[38] Waichman, I., T. Requate and C.N.K. Siang (2014): Communication in Cournot competition: an ex-

perimental study, Journal of Economic Psychology 42, 1–16.

17



ONLINE APPENDIX

(Not for publication)

Figure 1: Average observed quantities per market

Notes: The panels in this figure show histograms of observed average quantities per market, using the data of all

rounds.
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Table 4: Summary of hypothesis tests for individual adjustment regressions

H0 H1 T-30,30-C T-29,31-C T-29,31-I T-25,35-I T-20,40-I T-20,40-10,50-I

Percentage of subjects for which H0 is rejected at the 5% level

“Previous rounds” β0 ≥ 0 β0 < 0 23.08 13.33 21.43 17.86 11.54 35.71

data, Model (4) β0 ≤ 0 β0 > 0 0.00 13.33 14.29 17.86 11.54 17.86

β1 ≥ β2 β1 < β2 23.08 10.00 7.14 0.00 3.85 10.71

β1 ≤ β2 β1 > β2 23.08 30.00 32.14 50.00 84.62 67.86

“Previous rounds” γ0 ≥ 0 γ0 < 0 38.46 10.00 21.43 17.86 26.92 42.86

data, Model (5) γ0 ≤ 0 γ0 > 0 0.00 20.00 17.86 17.86 19.23 10.71

γ1 ≥ γ2 γ1 < γ2 15.38 20.00 7.14 3.57 0.00 10.71

γ1 ≤ γ2 γ1 > γ2 15.38 20.00 35.71 25.00 69.23 71.43

“Previous relevant rounds” β0 ≥ 0 β0 < 0 23.08 16.67 21.43 7.14 7.69 14.29

data, Model (4) β0 ≤ 0 β0 > 0 0.00 26.67 14.29 14.29 11.54 17.86

β1 ≥ β2 β1 < β2 23.08 0.00 0.00 3.57 0.00 10.71

β1 ≤ β2 β1 > β2 23.08 46.67 35.71 28.57 23.08 14.29

“Previous relevant rounds” γ0 ≥ 0 γ0 < 0 38.46 16.67 25.00 10.71 15.38 25.00

data, Model (5) γ0 ≤ 0 γ0 > 0 0.00 26.67 14.29 17.86 15.38 28.57

γ1 ≥ γ2 γ1 < γ2 15.38 0.00 10.71 7.14 3.85 10.71

γ1 ≤ γ2 γ1 > γ2 15.38 46.67 32.14 21.43 38.46 39.29

Notes: This table shows the results of adjustment regressions at the individual level, using all data. In treatment T-30,30-C

one subject had to be excluded as the dependent variable was constant and zero.
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Table 5: Statistics from choice simulations prior to actual choices

# simulations actual quantity choice actual quantity choice first simulated own first simulated other

per subject was one of was last simulated quantity was other quantity was own

& round simulated quantities own quantity other quantity quantity last round quantity last round

Treatment (average) (average) (relative frequency) (relative frequency)

T-30,30-C 1.46 12.21 40% 41% 35% 49%

T-29,31-C 3.10 28.87 40% 26% 21% 30%

T-29,31-I 4.17 31.96 42% 20% 27% 33%

T-25,35-I 3.23 27.07 49% 19% 23% 23%

T-20,40-I 3.33 29.89 42% 22% 22% 24%

T-20,40-10,50-I 1.84 16.52 36% 12% 15% 13%

Notes: This table shows statistics from subjects’ choice simulations prior to actual choices.

Refer to Table 5. The analysis of the recorded simulation data provides additional evidence for

the diverse decision approaches used by the subjects in the different treatments. Recall that according to

our experimental design, before making their quantity decisions, subjects had the opportunity to simulate

different market scenarios with the help of a profit calculator. More precisely, they could try different pairs

of quantities (one for themselves and one for the opponent) and were then shown the implied profit for them.

The analysis of the simulation data reveals that the decision approach taken in treatment T-30,30-C clearly

differs from the approach used in the treatments with either cost asymmetry or incomplete information. For

example, subjects in T-30,30-C used the profit calculator least often. The average number of simulations per

subject and round is with 1.46 the lowest compared to all other treatments. The actual quantity decision in

treatment T-30,30-C was also based least often on the simulation results. In treatment T-30,30-C, in about

12% of the 60 rounds, the subjects’ actual quantity choice was equal to one of their own simulated quantities,

whereas this number rose up to 28.87% in T-2930-C and 31.96% in T-2939-I, respectively. In T-30,30-C, in

73% of all rounds the actual quantity equals the opponent’s quantity chosen in the previous round, whereas

in all other treatments this number is not higher than 26%. Finally, in T-30,30-C compared to all other

treatments, the first simulated opponent’s (own) quantity equals the own (opponent’s) actual quantity in the

previous round 49% (35%) of all simulations. In all other treatments, those numbers are clearly lower and

quite similar in size (see Table 5.)11

11The simulation data are available upon request.
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Below we reproduce the translated version of the instructions. For the original instructions (in

German), please contact one of the authors. The variants in the instructions for the different treatments are

indicated.

Instructions

Please read these instructions carefully. If there is anything you do not understand, please indicate this by
raising your hand. We will then answer your questions privately.

In this experiment, you will make decisions repeatedly. In this process you can earn money. How much
money you earn depends on your decisions, those of another participant and random moves. The instruc-
tions use the fictitious money unit ECU (Experimental Currency Unit). At the end of the experiment, your
payouts are converted into euros (see below).

Your anonymity towards us as well as towards the other participants will be preserved.

In this experiment you represent a company that produces and sells one and the same product together
with another company on one market. You remain assigned to the same other participant throughout the
experiment. All companies always have only one decision to make, namely which quantities they want to
produce.

The production costs per unit of your and the other company are determined as follows:

[T-30,30-C]:

• The production costs per unit of your company are 30 ECU.

• The production costs per unit of the other company in your market are 30 ECU.

Afterwards you and the other company decide simultaneously on your quantity.

[T-29,31-C]:

• Regarding the production costs per unit of your company in one round the following holds: with a
probability of 50% they will be 31 ECU and with a probability of 50% they will be 29 ECU.

• Regarding the production costs per unit of the other company in one round the following holds: with
a probability of 50% they will be 31 ECU and with a probability of 50% they will be 29 ECU.

The production costs per unit of your company and the other company will be chosen independently of
each other. Before you decide on the quantity of your company in a round, the production costs per unit of
your and the other company are randomly determined and reported to you. Afterwards you and the other
company decide simultaneously on your quantity.

[T-29,31-I]:

• Regarding the production costs per unit of your company in one round the following holds: with a
probability of 50% they will be 31 ECU and with a probability of 50% they will be 29 ECU.

• Regarding the production costs per unit of the other company in one round the following holds: with
a probability of 50% they will be 31 ECU and with a probability of 50% they will be 29 ECU.

The production costs per unit of your company and the other company will be chosen independently of
each other. Before you decide on the quantity of your company in a round, the production costs per unit of
your company are randomly determined and reported to you. Similarly the production costs per unit for the
other company are determined randomly. Each company learns only its own production costs per unit, but
not those of the other company. Afterwards you and the other company decide simultaneously on your own
quantity.

[T-25,35-I]:
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• Regarding the production costs per unit of your company in one round the following holds: with a
probability of 50% they will be 35 ECU and with a probability of 50% they will be 25 ECU.

• Regarding the production costs per unit of the other company in one round the following holds: with
a probability of 50% they will be 35 ECU and with a probability of 50% they will be 25 ECU.

The production costs per unit of your company and the other company will be chosen independently of
each other. Before you decide on the quantity of your company in a round, the production costs per unit of
your company are randomly determined and reported to you. Similarly the production costs per unit for the
other company are determined randomly. Each company learns only its own production costs per unit, but
not those of the other company. Afterwards you and the other company decide simultaneously on your own
quantity.

[T-20,40-I]:

• Regarding the production costs per unit of your company in one round the following holds: with a
probability of 50% they will be 40 ECU and with a probability of 50% they will be 20 ECU.

• Regarding the production costs per unit of the other company in one round the following holds: with
a probability of 50% they will be 40 ECU and with a probability of 50% they will be 20 ECU.

The production costs per unit of your company and the other company will be chosen independently of
each other. Before you decide on the quantity of your company in a round, the production costs per unit of
your company are randomly determined and reported to you. Similarly the production costs per unit for the
other company are determined randomly. Each company learns only its own production costs per unit, but
not those of the other company. Afterwards you and the other company decide simultaneously on your own
quantity.

[T-20,40-10,50-I]:

• Regarding the production costs per unit of your company in one round the following holds: with a
probability of 50% they will be 40 ECU [50 ECU] and with a probability of 50% they will be 20
ECU [10 ECU].

• Regarding the production costs per unit of the other company in one round the following holds: with
a probability of 50% they will be 50 ECU [40 ECU] and with a probability of 50% they will be 10
ECU [20 ECU].

The production costs per unit of your company and the other company will be chosen independently of
each other. Before you decide on the quantity of your company in a round, the production costs per unit of
your company are randomly determined and reported to you. Similarly the production costs per unit for the
other company are determined randomly. Each company learns only its own production costs per unit, but
not those of the other company. Afterwards you and the other company decide simultaneously on your own
quantity.

The market price (which can be between 120 ECU and 0 ECU) depends on the total quantity offered by
your company and the other company. The following important rule applies: the higher the total quantity
of both companies, the lower the price that will be on the market. Moreover, above a certain total quantity,
the price becomes zero. More precisely, the price per unit is determined in each round as follows:

Price = 120 − quantity of your company − quantity of the other company

That means, that in each round the price is equal to the difference between 120 and the total quantity offered
by your and the other company. Furthermore, if the total quantity offered by your company and the other
company is greater than or equal to 120, the market price is zero.
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Your profit per unit in a round is the difference between the market price and your production cost per unit
in that round. Note that you make a loss if the market price is less than your unit costs. Your profit in each
round is thus equal to the profit per unit times the quantity you chose.

In each round, the quantities of the two companies are recorded, the corresponding price is determined and
the respective profits are calculated.

From the second round on, you will be told in each round the quantity of the other company and your own
profit of the previous round. For your information, you will be shown your production costs per unit in the
previous round and your own quantity in the previous round [Complete Information-treatments]: as well
as the production costs per unit of the other company. [Incomplete Information-treatments]: However,
you will not see the production costs per unit of the other company in the previous round.

Before making your choice, you can also simulate your decisions. You can do this on the left side of the
decision screen. Here you simply enter any quantity of your own and any quantity of the other company
into the two fields and then press the “Compute”-button. In the upper left corner of the screen, you can then
see what profit would result for you in that case.

When you have decided on a quantity, enter it in the field on the right side of the screen and press the
“OK”-button. Any number between 0 and 120 with two digits after the decimal point can be chosen as a
quantity.

The experiment consists of 60 rounds.

Your total payment is the sum of your payments per round. At the end of the experiment, your payments
will be converted to Euros, where 3000 ECU = 1€. At the beginning of the experiment, you will receive a
(one-time) initial endowment of 7500 ECU.

If you make a loss in a round, it will be deducted from your previous profit (or from your initial endowment).

If there is anything you do not understand, please indicate this by raising your hand. We will then answer
your questions privately.
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