
Rezaei, Sarah; Rosenkranz, Stephanie; Weitzel, Utz; Westbrock, Bastian

Conference Paper

Social Preferences on Networks

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2022: Big Data in Economics

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Rezaei, Sarah; Rosenkranz, Stephanie; Weitzel, Utz; Westbrock, Bastian (2022) :
Social Preferences on Networks, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2022: Big
Data in Economics, ZBW - Leibniz Information Centre for Economics, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/264063

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/264063
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Social Preferences on Networks

Sarah Rezaei* Stephanie Rosenkranz† Utz Weitzel‡

Bastian Westbrock§

July 24, 2021

This study belongs to the research program "Cooperation in Social and Economic Rela-
tions", which enjoys a waiver from Utrecht University’s Institutional Review Board (IRB).
Approval number: FETC17-028.

*Innsbruck University, Department of Economics, Sarah.Rezaei@uibk.ac.at
†Utrecht University School of Economics, S.Rosenkranz@uu.nl
‡Vrije Universiteit Amsterdam,& Tinbergen Institute & Radboud University, Institute

for Management Research, u.weitzel@vu.nl
§Fernuniversität Hagen, Institute for Economics, bastian.westbrock@gmail.com

1



Abstract

Social preferences are a powerful determinant of human behavior. We

theoretically and experimentally study their impact on behavior in a

local public goods game on a fixed network structure. The key fea-

ture of the game is that it has multiple equilibria which differ widely

in terms of their payoff consequences. This makes coordination a key

challenge. The coordination problem is exacerbated by the fact that

socially concerned players might disagree about the “right” payoff or-

dering. However, we show that when players’ social preferences “fit”

the network positions they occupy, players successfully coordinate on

a very fine-grained equilibrium set. How easily the preference require-

ments are met depends on a property of the network structure: neigh-

borhood nestedness. This means that equilibrium selection succeeds in

small, tightly connected structures and in very centralized networks,

but it fails in loosely-connected local interaction structures. We test

our predictions in an experiment, which gives players ample oppor-

tunities for coordination and randomly allocates players to networks

that widely differ in terms of their degree of nestedness. All our pre-

dictions are confirmed.

JEL: D85, C70, C91, H41

Keywords: social preferences, network games, equilibrium selection,

network nestedness
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1 Introduction

In our daily lives, we are involved in many social interactions and con-
stantly struggle to divide our time, effort, and resources with others. These
interactions can oftentimes be viewed as public goods games where each
partner’s investment is enjoyed by everybody else involved in the interac-
tion. Examples are gardening efforts which also our neighbors enjoy, the
preventive measures we take in a pandemic to protect our contacts or the
time we dedicate to a joint project with our co-workers. Many experimental
and empirical studies suggest that social preferences shape our behavior in
such public goods situations.1 Yet, it is not clear how social preferences play
out in a network of interdependent public goods situations.

Studying this topic in the field is difficult because of many obstacles,
starting with the difficulty of collecting the required data and ending with
the privacy concerns it would raise. In this paper, we therefore study it the-
oretically and experimentally. In particular, we extend on the seminal game
by Bramoullé and Kranton (2007) which has much in common with the so-
cial dilemma described above. Players are embedded in a fixed network,
and they make investments in a local public good which they share with
their direct network neighbors. Unlike in a standard public goods game,
the benefits of this investment are not linear. Instead, there is a strictly pos-
itive investment level that even a payoff maximizer would want to invest
in, and players aim to fill the gap between this optimum and their neigh-
bors’ investments. This strategic substitutes property speaks to many of
the public goods situations described above, as it is oftentimes clear that a
public good must be provided, and the only important question is who is
going to do it. But strategic substitutability also implies that the Bramoullé
and Kranton (2007) game has multiple equilibria because every investment
profile that satisfies the threshold condition is an equilibrium.

Three important questions are emerging from here: Do social prefer-
ences help players to maintain investments in the game that exceeds the
privately optimal level and that are closer to what is required for an efficient
level of the public good? Do social preferences help to coordinate behaviour
on a unique equilibrium? And if so, do they help to coordinate on equitable
payoff distributions when the network structure itself is asymmetric?

To structure our thoughts on these questions, we first develop a theory
of social preferences in network games. Towards this end, we incorporate
an n-player extension of the Charness and Rabin (2002) social preference
function into the Bramoullé and Kranton (2007) game. A nice feature of this
function is that it captures several distinct social preference types which
real people have been shown to care about, such as altruism, social welfare,

1For example, a large number of experimental studies has shown that individuals invest
more than what is optimal from a pure individual perspective in a public goods game. See,
for instance, Eckel and Harwell (2015) for a replication study of four classic experiments.
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inequity aversion, competitiveness, and spite.2 We then characterize the
equilibria of the modified game, which we refer to as the other-regarding
equilibria (ORE), where each player has one of these preferences.

Our main result is that, regardless of the exact preference type, a socially
concerned player strives for a certain payoff ordering in her network neigh-
borhood. In other words, she chooses an investment level considering the
relative payoff consequences for herself and for her neighbors in a way that
is consistent with her preference. This strive for a payoff ordering has some
important implications for the structure of equilibria. In particular, it im-
plies that many of the equilibria that were maintained in the original game
with pure payoff maximizers can be ruled out. In an ORE on the star net-
work, for example, the central player must earn more than at least one of
the peripheral players. And, if all players share the same connections, such
as in the complete network, they must earn the same. Even more so, when
the weights on players’ social preference components are small, we show
that the set of ORE must even be a strict subset of the payoff-maximizing
equilibria on many network structures. In other words, our theory suggests
that social preferences facilitate equilibrium selection in the Bramoullé and
Kranton (2007) game.

Our theory also suggests, however, that equilibrium selection does not
work on all networks and for all preference types alike. Rather, it is tied to
two conditions. First, players need, what we call, a set of compatible so-
cial preferences, that is, preferences that “fit” the position they occupy in
a network. Preference compatibility is, for instance, satisfied in a homoge-
neous group of players who share the same social preference. It is violated,
though, when an altruist is in a central network position or when compet-
itive players occupy the peripheral positions. For such players, our theory
predicts an ORE set that is wider than the payoff-maximizing equilibrium
set.

The second condition for equilibrium selection is that the neighborhoods
of a network need to be nested.3 Nestedness is a well-documented topology
of many ecological systems (Mariani, Ren, Bascompte, and Tessone, 2019)
and it emerges as the outcome of many evolving social networks (König,
Tessone, and Zenou, 2014; Belhaj, Bervoets, and Deroïan, 2016). In our
theory, it ensures that socially concerned players can enforce the payoff
ordering they desire to maintain in their neighborhood. This means that
equilibrium selection works particularly well in tightly connected network
structures, such as the complete network, or in highly centralized star-like
structures. Multiple equilibria may arise, in contrast, when the network has
a loosely-connected local interaction structure, such as the circle network.

2See Bellemare, Kröger, and Van Soest (2008), Falk, Becker, Dohmen, Enke, Huffman,
and Sunde (2018), and Kerschbamer and Müller (2020) for empirical evidence on the diver-
sity of social preferences.

3The neighborhoods of two players are nested if the neighborhood of one player is con-
tained in the neighborhood of the other (Mariani, Ren, Bascompte, and Tessone, 2019).
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In the second part of our paper, we validate the central mechanisms and
predictions of our theory. Our experiment has a number of design features
to facilitate the test. First, subjects play the Bramoullé and Kranton (2007)
game on a set of networks that differ widely in terms of their degree of
nestedness and the organization of nested neighborhoods. Second, our ex-
perimental games feature a large strategy space to allow for the full set of
payoff-maximizing equilibria as well as for deviations thereof to emerge.
Third, to ensure that subjects play equilibria at all, we let subjects adjust
their choices in continuous-time with random termination.

To give an outlook on our findings, first, we do not find any indica-
tion that social preferences would help to reach efficient levels of the public
good. Rather, the majority of investments in our experiment were indis-
tinguishable from payoff-maximizing behavior. If at all, subjects under-
invested compared to what a payoff maximizer would invest their stead.
Second, we find that subjects’ social preferences helped them to coordinate
their choices so as to reach the narrow set of ORE predicted by our theory.
For the identification of this effect, we make use of our theoretical predic-
tion that a group of social players only converges to a narrow set of equi-
libria if the social preferences of all group members are compatible. We
thus compare the successful coordination attempts of subject groups with
and without the proper preference combination. Finally, our experiment
suggests that subjects do not make any attempt to reach equitable payoff
distributions at all costs. Rather, as predicted by our theory, the majority
of investments just reinforced the inequality that was already inherent in a
network structure.

In the next section, we relate our contribution to the literature. Section 3
briefly summarizes the Bramoullé and Kranton (2007) game and presents
our theoretical predictions for socially concerned players. Section 4 de-
scribes the experiment, and Section 5 the findings. The proofs of all our
statements, additional evidence from the experiment, and the replication
instructions can be found in the appendix.

2 Related literature

Our study relates to the literature on social networks and social prefer-
ences. In the networks literature, there are a few other theories with socially
concerned players, notably Ghiglino and Goyal (2010), Immorlica, Kranton,
Manea, and Stoddard (2017), Bourlès, Bramoullé, and Perez-Richet (2017),
and Richefort (2018). A major difference between these theories and ours is
that they look at contexts without any strategic interaction between players
if it were not for their social comparison concerns. The examples they think
of are anonymous market interactions, financial transfers between family
members, or one’s status in a larger neighborhood. The situation we look
at, in contrast, is a complex local interaction game with multiple equilibria.
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So, while social preferences merely “shift” the unique equilibrium point in
these earlier theories, the players in our game are confronted with the addi-
tional problem of how to coordinate their choices.4

Our result that social preferences facilitate coordination in such a game
is related to one other important branch in the networks literature that aims
to tackle the pervasive problem of equilibrium multiplicity. Bramoullé,
Kranton, and D’Amours (2014) and Allouch (2015) make clear when the
problem is most severe, namely in games where players’ investments are
strategic substitutes. Several equilibrium refinement concepts have been
proposed so far. Bramoullé and Kranton (2007), for example, study Nash
tâtonnement stability, Boncinelli and Pin (2012) stochastic stability, and Ga-
leotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) look at the coor-
dinating role of the limitation of agents’ information about the network
structure beyond their immediate neighborhood. All these concepts select
roughly the same type of equilibrium on the class of asymmetric networks:
the periphery-sponsored equilibrium where players with fewer connections
invest more than players with more connections. Social preferences in our
theory help to select just the same type of equilibrium. Moreover, however,
they also explain why individuals typically succeed to coordinate on equal-
split equilibria on a 2-player dyad network and fail to coordinate on a circle
network—phenomenon the previous concepts have nothing to say about.

Regarding the experimental networks literature, most existing studies
test equilibrium selection in the lab, with mixed evidence. Charness, Feri,
Meléndez-Jiménez, and Sutter (2014), for instance, investigate the role of
uncertainty about the network structure. Yet, they conclude that uncer-
tainty does not facilitate coordination per se because equilibrium play is
also very high in treatments with complete information. The guiding prin-
ciple to equilibrium selection in their experiment is risk dominance instead.
In an experiment similar to ours, Rosenkranz and Weitzel (2012) compare
the role of Nash tâtonnement stability with risk dominance and quantal
response theory. Their findings provide partial support for all three the-
ories, primarily because the rate of equilibrium play is very low, so that
discrimination between the theories is difficult. Common to both these ex-
periments, social preferences, and fairness considerations have never been
given a chance to play a role as a coordination device. This is because
most of their evidence stems from games on asymmetric network struc-
ture, where they find just the equilibrium that is predicted by all the equi-
librium refinement concepts, including ours. Moreover, they either have
a simple binary strategy space that rules out equal divisions by designing
or implementing stranger’s designs that make it difficult for socially con-
cerned players to coordinate their choices. Our design, in contrast, gives

4The exception here is Richefort (2018) who also studies a public goods game with
strategic interaction. Nevertheless, his game yields a unique equilibrium whether or not
players are socially concerned. Hence, also in his model, social preferences merely shift the
equilibrium point.
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Figure 1: Networks in the experiment

social preferences a chance to play a role.
The only other experimental study of social preferences in network games

that we are aware of is Zhang (2018). He compares the explanatory power
of two preference types, altruism, and inequity aversion, in two network
structures, star and circle, and concludes that altruism explains the data bet-
ter. What we add is the structural test of a richer theory of social preferences
on a larger set of networks.

Finally, our study is related to the large literature on social preferences.
It is particularly close to a recently emerging group of studies that goes be-
yond the influence of pro-social behavior in standard public goods or bar-
gaining games. These studies have already argued that it is probably too
far-fetched to believe that social preferences would lead to radically differ-
ent choices from payoff-maximizing behavior. Nevertheless, social prefer-
ences play an important role in these studies because they help to navigate
unfamiliar social dilemmas (Binmore, 2005), are the foundation for social
norms (Reuben and Riedl, 2013; Fehr and Schurtenberger, 2018), or create
resistance to change (Eyster, Madarász, and Michaillat, 2021). Closest to our
study, Dufwenberg and Patel (2017) have shown that reciprocity concerns
can facilitate coordination in a threshold-level public goods game with mul-
tiple equilibria. The arguments underlying their result are entirely different
from ours. Moreover, while their theory speaks to public goods provisions
in small communities, the application we have in mind is allocating scarce
resources in a network of interdependent public goods.

3 Theory

3.1 Rules of the game

We study the role of social preferences in the Bramoullé and Kranton
(2007) public goods game. The rules are as follows: n players are embedded
in a fixed network g. Figure 1 illustrates the networks in our experiment.

All players simultaneously choose an investment that contributes to their
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Figure 2: Nash equilibria on three networks

own local public good and to that of their direct neighbors in g.5 Let e−i =

{e1, e2, ..., ei−1, ei+1, ..., en} denote the investments of all players except player
i, and let Ni = {j ∈ N\i : gij = 1} denote the set of players in the neighbor-
hood of i. The payoff of player i is given by

πi(ei, e−i) = b
(
ei + ∑

j∈Ni

ej
)
− cei , (1)

where b(·) is the public-good benefit function, which is increasing and con-
cave and which satisfies b′(0) > c > b′(∞) and b′′(x) ≤ b′′(y) < 0 for
x ≤ y.

An important property of the Bramoullé and Kranton (2007) game is that
investments are strategic substitutes. This means that there exists a strictly
positive investment level e∗, such that all players aim to fill the gap between
e∗ and the investments in their neighborhood (given that the latter do not
already exceed e∗).

Strategic substitutability furthermore implies that every network struc-
ture has multiple Nash equilibria that differ markedly in terms of the payoff
distribution they induce. Figure 2 illustrates the equilibria for three of the
networks in our experiment. On the star, for instance, there are two equilib-
ria, one equilibrium where the center player invests e∗ (given by e∗ = 12 in
our experiment) and the periphery players free ride; and another equilib-
rium where the periphery players invest each e∗ and the center free rides.
On the circle, there are three equilibria, one equilibrium where investments
are distributed equally and two equilibria where every second player pro-
vides e∗ so that every other player can free ride. In the complete network,
there is even a continuum of equilibria because every investment profile is
an equilibrium as long as the sum is equal to e∗. Moreover, also these equi-
libria differ markedly in terms of the payoff distribution they induce, with
one equilibrium being even entirely symmetric. As will be shown, social
preferences can lead to a fine-grained selection on these equilibrium sets,
and the equilibria they select are empirically relevant.

5Examples of such partner-independent investments are organizing parties for friends,
experimentation with new tools, or neighborhood beautification expenses, all vis-à-vis the
time or effort a person spends on her personal “projects”.
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3.2 A social preference function for network games

Social preferences are seen as the human tendency to take the payoffs of
others into account when making a decision (e.g., Fehr and Schmidt, 1999).
Yet, underneath this general tendency, there is much heterogeneity since
people have been shown to differ widely in terms of their understanding of
fairness (e.g., Bellemare, Kröger, and Van Soest, 2008; Falk, Becker, Dohmen,
Enke, Huffman, and Sunde, 2018; Bruhin, Fehr, and Schunk, 2019).

The theoretical literature on social preferences has produced various
meaningful utility functions that incorporate this empirical fact and that are
suitable for two-player or n-player symmetric games (see Sobel, 2005, for a
review). With the exception of the social network models mentioned in the
literature review, games on more complex interaction structures have been
left out of the perspective, however.6 Our preferred function is an n-player
extension of the distributional preference function of Charness and Rabin
(2002). It formulates a player’s social preferences in the following way:7

Ui(ei, e−i) = πi +
1
|Ri| ∑

j∈Ri

(
ρi rij + σi sij

)
πj , (2)

where Ri denotes player i’s reference group, ρi and σi are i’s preference pa-
rameters with 1 > ρi ≥ σi > −1, and

rij = 1 if πi ≥ πj and rij = 0 otherwise,

sij = 1 if πi < πj and sij = 0 otherwise.

Utility is thus a linear combination of players’ own material payoffs and a
social preference component. The latter captures the (dis-)utility players de-
rive from comparing their payoffs with those of other players. With whom
a player compares is defined by her reference group Ri. This group might
comprise any number of players. In a network context, it seems natural,
however, that players compare with their direct neighbors who they can
influence (Ri = Ni) or with everyone else in a network (Ri = N\i).

Players thereby distinguish between peers who are equal or behind (πi ≥
πj) and peers who are ahead (πi < πj). The parameters ρi and σi then gov-
ern the (dis-)utility from comparing with those behind and those ahead.
In combination, they define various meaningful social preference types:
Unconditional altruists (ρi ≥ σi > 0), for instance, always put a positive

6These studies have developed their own interdependent utility functions. Our func-
tion nests several of them as special cases. In particular, Ghiglino and Goyal (2010) consider
what we define as spitefulness, and Immorlica, Kranton, Manea, and Stoddard (2017) con-
sider competitiveness. Bourlès, Bramoullé, and Perez-Richet (2017) and Dufwenberg and
Patel (2017), in contrast, develop models where players know each other well and accord-
ingly, include each others’ utilities rather than payoffs in their utility functions.

7We deviate from the original Charness and Rabin (2002) function in that the absolute
level of another player’s payoff enters utility function (2), rather than the relative payoff vis-
à-vis the focal player. This modification circumvents a counter-intuitive prediction of the
original function in the context of a continuous investment game like the Bramoullé and
Kranton (2007) game. We address this issue in Appendix B.2.
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weight on other players’ payoffs. In the context of the Bramoullé and Kran-
ton (2007) game, this means that altruists are always willing to maintain
a public good in their neighborhood beyond the payoff-maximizing level
e∗, regardless of whether their peers earn more or less. Also social-welfare
types (ρi > σi = 0) like to maintain a public good beyond e∗, unless they
earn less than everybody else. In that case, they behave like ordinary pay-
off maximizers aiming to fill the gap between their neighbors’ investments
and e∗. In the negative domain, spiteful types (0 > ρi ≥ σi) always place a
negative weight on other players’ payoffs. They thus keep their investment
below e∗ to lower the payoffs of others. Competitive types (0 = ρi > σi), in
contrast, refrain from these welfare-reducing deviations when their payoffs
are weakly higher than everybody else. The two domains are connected by
the inequity-averse types (ρi > 0 > σi) who are willing to increase their
investments beyond e∗ for players with a lower payoff and reduce their in-
vestments below e∗ for players with a higher payoff.

Utility function (2) thus captures a wide range of empirically relevant
preference types. Moreover, as we will see, it is simple enough to produce
sharp predictions in the context of a continuous investment game.

3.3 General predictions

We now turn to our characterization of the equilibria with socially con-
cerned players, henceforth the other regarding equilibria (ORE).

3.3.1 Rules of the modified game

In line with the setup in our experiment, and the empirical reality more
broadly, we think of a game where each player has a different preference
type. Specifically, suppose the parameters of utility function (2) are ran-
domly determined for each player before the start of the game. The pref-
erence parameters of player i are summarized by her type τi ≡ (ρi, σi, Ri).
Moreover, a combination of player types in the game is denoted by ω =

(τ1, τ2, ..., τn). The set Ti then collects all potential types of player i, whereby
we assume that Ti is a finite subset of all feasible types of function (2), and
Ω = T1 × T2...× Tn is the set of all potential type combinations.

Players learn their own types τi before the start of the game. In addition,
they acquire some information about the preferences of the other players.
Concretely, we make one of the following alternative assumptions:

(A1) The player types τi are private information, but the player-specific
type sets Ti are common knowledge.

(A2) The player types are drawn from the common support T, but players
have complete information about other players’ types.

As becomes clear below, these assumptions on the information structure
are important for social preferences to foster equilibrium selection. Nev-
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ertheless, they are also reasonable to make. The common knowledge as-
sumption, for example, is justified in any context where players know each
other from prior encounters and have acquired at least some information
about their preferences. All players need to have for our purposes is some
vague impression about other players’ preferences, such as player 1 is of a
social-welfare or altruistic type, and player 2 is competitive or spiteful. The
complete information assumption, in contrast, is stronger. Nevertheless, it
can be justified in the context of our experimental games, where subjects
are able to update their decisions for a certain time interval and have full
information about the momentary investments of every other player. Be-
cause this is all a player needs to know to make her myopic best-response
investment, the conditions in the experiment emulate a dynamic game with
absorbing states that are identical to the Nash equilibria of a game that sat-
isfies the complete information assumption.

3.3.2 Other-regarding equilibria

Let fi(τi, e−i) denote the best-response investment of a type-τi player
against the investments e−i of every other player j 6= i. Under the incom-
plete information assumption, e−i consists of one investment for each type
τj ∈ Tj of every j. An ORE is then a (Bayesian) Nash equilibrium in pure
strategies, where eτi = fi(τi, e−i) for all players and all their types.

The following example illustrates the other-regarding best responses and
the ORE for the simplest possible case.

Example 1. Suppose a two-player game with player 1 being a payoff max-
imizer and player 2 a social player, and suppose that both players have
complete information about this. The best response of player 1 is given by

f1(e2) =

e∗ − e2 if e2 ≤ e∗

0 otherwise
.

The best response of player 2 depends, in contrast, on her payoff relative
to player 1. Player 2’s best-response correspondence thus has a kink in the
middle:

f2(τ2, e1) =



e∗(σ2)− e1 if e1 ≤ e′

e1 if e′ ≤ e1 ≤ 1
2 e∗(ρ2)

e∗(ρ2)− e1 if 1
2 e∗(ρ2) < e1 ≤ e∗(ρ2)

0 otherwise

,

where e∗(ρi) and e∗(σi) denote the total investments desired by a social
player who earns more, respectively less, than the other player (defined in
Lemma 1 below), and e′ is a threshold value that satisfies 0 < e′ ≤ 1

2 e∗(σ2).
As a result, player 2’s social preferences constrain the equilibrium payoff
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distribution. Moreover, depending on 2’s preference type, the set of ORE
might even be a strict subset of the payoff-maximizing equilibria:

(e1, e2) =



(e∗, 0) if τ2 = spiteful

(1
2 e∗ ≤ e1 ≤ e∗ , e∗ − e1) if τ2 = competitive

(1
2 e∗, 1

2 e∗) if τ2 = inequity averse

(1
2 e∗, 1

2 e∗) or (0 ≤ e1 ≤ e′ , e∗ − e1) if τ2 = social welfare

(1
2 e∗, 1

2 e∗) or (0 , e∗(σ2)) if τ2 = altruist

.

Point predictions for a more general network structure and arbitrary
player types are more difficult to make. This is because the best-response
investment of a social player can be significantly different from the invest-
ment that a payoff maximizer would make. Moreover, it depends on the
player’s relative standing vis-à-vis every single other player in her refer-
ence group.

Nevertheless, we can define several general properties that an other-
regarding best response, and an ORE, must satisfy. First, the magnitudes
of the parameters ρi and σi determine how far a player is willing to devi-
ate from a payoff-maximizing best response. To measure this deviation, we
define εi ∈ R+ as the maximal absolute deviation that a type τi of player
i would be willing to make from the investment that a payoff maximizer
would do in her stead. Formally,

εi ≡ max
{∣∣ fi(τi, e−i)− fi(e−i)

∣∣ : ∀ e−i ∈ R
|Ω−i|
+ , ∀ g ∈ G

}
. (3)

In words, εi is a measure for the strength of a player’s social preferences,
and it is defined by the most “unfair” situation that a player may encounter
in a game. The following result (proven in Appendix A.1) shows how the
preference parameters can be mapped into a value for εi.

Lemma 1. Suppose that players’ utilities are defined by the social preference func-
tion (2) with parameters τi = (ρi, σi, Ri) and payoff function (1). A player’s social
preference strength, εi, is given by

altruist or social-welfare types : ε
p
i = e∗(ρi)− e∗

competitive or spiteful types : εn
i = e∗ − e∗(σi)

inequity-averse types : max{εp
i ; εn

i } ,

and where e∗(ρi) ≡ (b′)−1( c
1+ρi

) and e∗(σi) ≡ (b′)−1( c
1+σi

).

Next, even though socially concerned players might deviate from a payoff-
maximizing best response, they do not deviate in an arbitrary way. As they
ultimately strive for a certain payoff ordering, the investment profiles that
qualify as an ORE are constrained in a systematic way. To see how they are
constrained, let us look at the following example.
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𝑒ଵ = 𝑒∗

𝑒ଵ = 0

𝑒ଶ = 0

𝑒ଶ = 0

𝑒௧ଵ = 0

𝑒௧ଶ = 0

𝑒௧ଷ = 𝑒∗

(a)

𝑒ଵ = 0

𝑒∗ > 𝑒ଶ ≥ 𝑒∗ − εଶ

𝑒∗ > 𝑒ଶ 
    ≥ 𝑒∗ − εଶ

𝑒௧ଵ = 0

𝑒௧ଶ = 0

(b)

𝑒∗ > 𝑒ଵ ≥ 𝑒∗ − εଵ

𝑒∗ > 𝑒௧ଷ ≥ 𝑒∗ − ε௧ଷ

Figure 3: Payoff-maximizing and refined other-regarding equilibria
NOTES: Panel (a) shows one of the four specialized payoff-maximizing equilibria that is
not a refined ORE. Panel (b) shows a refined ORE that coincides with one of the other three
specialized payoff-maximizing equilibrium profiles when ε ≡ max{εi | i ∈ N} → 0. The
other specialized payoff-maximizing equilibrium that can be supported in a refined ORE
is e∗ > ei ≥ e∗ − εi for i ∈ {p1, p2, t1, t2} and ec1 = ec2 = et3 = 0. The triangular and dia-
mond nodes indicate players in nested neighborhoods.

Example 2. Consider the investment profile in Figure 3 Panel (a). Suppose
that all players are inequity-averse and suppose they only compare with
their direct neighbors, both of which is known by all players (i.e., assump-
tion (A2) applies). The profile in Panel (a) cannot be maintained in an ORE
in this case, despite being a payoff-maximizing equilibrium. This is because
players c1 and t3 would want to reduce their investments below e∗ as they
are the only ones who contribute in their neighborhood and therefore feel
exploited. At the same time, all other players would want to increase their
investments (from zero) because they feel guilty.

To construct an ORE, we must therefore seek for an investment profile
where player c1 earns more than at least one of her neighbors, say player
p1 because player c1’s envy of players p2 and c2 may then be balanced out
against her guilt towards p1. Such a profile is displayed in Panel (b). Here,
player c1 free rides entirely on the investments of her neighbors, who each
make a positive contribution. To make this an ORE, we additionally require,
however, that player c1 and the other two free-riding players t1 and t2 see
no reason to make an investment despite their guilt. Put differently, we
require that players t1 and t2 receive more from their neighbors than the
highest investment to which they are willing to contribute. This is certainly
the case when

2(e∗ − ε) ≥ e∗ + ε ⇔ ε ≤ 0.33 e∗ ,

where ε ≡ max{εi | i ∈ N} denotes the maximal preference strength in
the player group. The corresponding condition for player c1 is 3(e∗ − ε) ≥
e∗ + ε⇔ ε ≤ 0.5 e∗.

A striking feature of the ORE in Panel (b) is that the central players c1
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and c2 are treated differently. While c1 earns more than everybody else, c2
is one of the players who earns the least. The reason lies in their different
positions in the larger network. Specifically, unlike player c2, player c1 nests
the neighborhoods of her neighbors p1 and p2 who thus do not receive any
investment which c1 does not have access to. Combined with their aver-
sion to inequity, p1 and p2 thus cannot earn more than player c1 because
their feelings of guilt would make them increase their investments ep1 and
ep2 beyond what a payoff-maximizer would invest so that together with
c1’s investment we get epi + ec1 > e∗. At the same time, player c1 cannot
earn weakly less than everybody else, because she would reduce her in-
vestment below what a payoff-maximizer would invest in her stead so that
ec1 + ∑j∈Nc1

ej < e∗. These two conditions contradict each other, however.
The same cannot be said about player c2 and her neighbors in Panel (b).

All three of them have access to at least one other player, who c2 does not
have access to and who contributes to their public good. And, because the
total investments that c2’s neighbors receive are beyond their personally de-
sired level of the public good when ε ≤ 0.33 e∗, they are not willing to make
the extra investment that would be needed for a more equitable outcome.
In an ORE, c2 can thus be one of the players who earn the least.

Equilibrium selection through social preferences is tied to another addi-
tional condition, however, next to the network’s nestedness. To see which,
consider the profile in Panel (a) again.

Example 3. Suppose that, instead of all players being inequity-averse, play-
ers c1 and t3 are of a social-welfare type while all other players are com-
petitive or spiteful. The profile in Panel (a) can then be maintained in an
ORE—in addition to the profile in Panel (b)—because c1’s and t3’s neigh-
bors do not feel guilty any longer (maintain ei = 0), while c1 and t3 look
after themselves (play ej = e∗).

Why can the profile in Panel (a) been ruled out as an ORE in Example 2
but not in Example 3? The reason is that in Example 2, players’ social pref-
erences “fit” the network position they are in, whereas this is not the case in
Example 3. Broadly speaking, equilibrium selection through social prefer-
ences is facilitated by competitive or spiteful types in the nesting positions
of a network because these types are determined to undo any payoff dif-
ference in their disadvantage if there is need to. Equilibrium selection is,
on the other hand, fostered by social-welfare types or altruists in the nested
positions of a network because these types are willing to undo any pay-
off disadvantages for their neighbors. Inequity-averse types, finally, sup-
port equilibrium selection in any network position because these types are
willing to undo their own payoff disadvantages as well as those of their
neighbors. Generalizing from here, we say that two players have compati-
ble social preferences when their types satisfy the following condition:
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Definition 1. Consider two neighbors i and j in a network such that i nests the
neighborhood of j, that is, it holds Nj ∪ j ⊆ Ni ∪ i. We say that their social prefer-
ences are compatible if τi ∈ T∗i and τj ∈ T∗j such that

T∗i = {competitive, spite, inequity averse} and T∗j = T\{spite}
OR (4)

T∗i = T\{altruist} and T∗j = {social welfare, altruist, inequity averse}.

Based on this definition, we say that an other-regarding equilibrium is
a refined ORE when at least some pairs of players in nested neighborhoods
have compatible social preferences.

The following result synthesizes the insights from Examples 2 and 3 into
a general property of a refined ORE. Let πi(ω) denote the equilibrium pay-
off of the type τi of player i associated with the type combination ω. Then,

Proposition 1. Consider two players i and j in a network such that i nests the
neighborhood of j. Moreover, suppose that either information assumption (A1) or
(A2) applies. In a refined ORE, there exists at least one type combination ω ∈
Ω∗ = T1× ...T∗i × ...T∗j × ...Tn such that the type of player i (j) earns weakly more
(strictly less) than at least one other player k (l) in the player’s reference group.
That is,

πi(ω) ≥ min
k∈Ri
{πk(ω)} OR πj(ω) < max

l∈Rj
{πl(ω)} (5)

for at least one ω ∈ Ω∗.

The intuition behind Proposition 1 (proven in Appendix A.2) extends
immediately from Examples 2 and 3. Suppose that payoff condition (5) is
violated, then this immediately implies that πi(ω) < πj(ω). Because player
j would feel obliged to “help” player j out in this case, j would choose an
investment above the payoff-maximizing best-response level. At the same
time, since player i would feel “exploited”, she would reduce her invest-
ment below the payoff optimal level. Combined with the fact that i nests
the neighborhood of j, this leads to a contradiction to best-response behav-
ior, however, because i has access to more investments than j while i invests
relative little. Thus, in a refined ORE, the payoffs of i and j must be ranked
according to (5).

Note that the assumption that all types of players i and j are drawn from
the restricted sets T∗i and T∗j is crucial in this argument. Otherwise, there
could be a type of player j who is not willing to help the focal type of player
i so that i could not afford to reduce her investment. The assumption of ei-
ther common knowledge (A1) or complete information (A2) about the types
of other players is also important. Otherwise, a player j of the correct type
τj ∈ T∗j might still mistakenly believe that player i is not needy or player i
might believe that j is not willing to help, etc. Equilibrium selection through
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social preferences thus requires at least some common understanding be-
tween players.

3.4 Experimental predictions

In the following, we fully characterize the sets of refined ORE for the
seven networks in our experiment. For ease of exposition, we thereby focus
on the predictions for the complete information assumption (A2) as these
are more easily linked to the setup of our experiment. The proofs of all
statements can be found in Appendix A.3. Table 6 in the same appendix
summarizes the predictions, again.

3.4.1 Dyad and complete network

Remember that any investment profile can be supported in a payoff-
maximizing equilibrium on the dyad or the complete network as long as
the sum of investments is equal to e∗. Social preferences expand this equi-
librium set, in a first instance, because deviations up to ±ε from e∗ are sup-
ported in an ORE as well.

When the social preferences of all players are compatible, however, then
these players will coordinate on a very fine-grained subset of the equilibria.
In particular, suppose the preference requirements of Appendix A.3 are met
by every player on the dyad or complete network. Then, all players must
invest exactly the same,

ei = ej = e , where e ∈
[ e∗ ± ε

n
]

. (6)

The intuition is as follows. Suppose that, contrary to (6), not all investments
are equal. The fact that players’ neighborhoods are mutually nested means
that the players with the highest investment earn weakly less than every-
body else and the players with the lowest investment earn weakly more. At
least one player would thus feel insulted in her understanding of fairness
and adjust her investment up- or downward. Such adjustments can only be
avoided when all players invest just the same.

3.4.2 Star, core periphery, and d-box

Two markedly different investment profiles can be supported in an equi-
librium on the star when all players are payoff maximizers: a periphery-
sponsorship profile where the center player free rides on the peripheral
players who each contribute e∗; or a center-sponsorship profile where the
peripheral players free ride on the center’s investment of e∗. The equivalent
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ORE on the star network satisfy

(periphery spon.) ei = 0 and e∗ − ε ≤ ej ≤ e∗ + ε

(center spon.) 12− 7ε

3
≤ ei ≤ 12 + ε and ∑

j∈P
ej ≤ 4ε ,

where i denotes the center player and j ∈ P the peripheral players. The ORE
on the core-periphery network and the d-box have a very similar structure
(see Table 6 in Appendix A.3).

In contrast, when players have compatible social preferences, a pure
center-sponsorship equilibrium with ej = 0 for all j ∈ P can be ruled out.
This is because the center player(s) must earn weakly more than at least one
non-center player in a refined ORE. Formally,

πi(e) ≥ min
j∈N\C

{πj(e)} for all i ∈ C . (7)

Suppose moreover that all players have limited preference strengths in
addition (see Appendix A.3 for the bounds). Then, the set of ORE can be
refined even further because the above payoff ordering can only be guar-
anteed for when the public good is entirely sponsored by the non-center
players.

3.4.3 Line

With payoff-maximizing players on the line network, every investment
profile is a Nash equilibrium as long as it satisfies for middle player mi and
for end player ei:

eei = e∗ , emi = 0 , em−i + ee−i = e∗ for i ∈ {1, 2} .

Expanding on this, the set of ORE also consists of end-sponsored and dis-
tributed public goods. A refined ORE, in contrast, must be an end-sponsored
public good with

πmi(e) ≥ πei(e) for i ∈ {1, 2} . (8)

Thus, social preferences also select among the equilibria on the line when
they match the network positions which the players occupy. Yet, they do so
less effectively than on the star, core periphery, or d-box because the payoff
ordering they imply only applies to the end players and their direct neigh-
bors in the line middle.

3.4.4 Circle

The absence of nested neighborhoods puts an end to the equilibrium
selection property of social preferences on the circle. All that can be said is
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summarized in the definition of ε in expression (3): The set of ORE is wider
than the payoff-maximizing equilibrium set and collapses with it if ε → 0.
In particular, when ε is small, other-regarding players coordinate on either
a (near) distributed investment profile or a (near) specialized profile where
every second player free rides on the investments of her neighbors.

Maybe surprisingly, a specialized profile can even be supported on the
circle when all players are social-welfare concerned or inequity-averse. This
follows from what we said about the role of nestedness. Even though the
contributing players might feel exploited, they maintain their investments
for the sake of their own payoffs. The free riders, therefore, receive a to-
tal contribution beyond their personal desired level of the public good and
consequently see no reason to bear the extra cost of a more equal outcome.

3.4.5 Network ranking

So far, we have seen that adding social preferences to the Bramoullé and
Kranton (2007) game allows us to exclude several of the investment profiles
that were Nash equilibria in the standard game where players are payoff
maximizers. Moreover, when the social preferences of our players are small
(ε → 0), we even obtain an ORE set that is a strict subset of the payoff-
maximizing equilibria for many of the networks in Figure 1.

Our theory does predict more, however. It suggests marked differences
between the networks of Figure 1 in terms of how likely a group of play-
ers will coordinate on a refined ORE. A first observation is that for a ran-
domly drawn type combination ω from the entire set Ω = Tn, the likeli-
hood that ω yields a combination of compatible preference types declines,
ceteris paribus, with the size of a player group. This has some immediate
implications for the dyad and the complete network because it means that

P
(
ω ∈ Ωdyad) ≥ P

(
ω ∈ Ωcomp) , (9)

where Ωdyad and Ωcomp denote the sets of compatible preference combina-
tions for these networks. Hence, we expect to see more equal-split profiles
on the dyad.8 That type of coordination problem is well known in the liter-
ature (e.g., Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000). Coordina-
tion is harder to achieve in larger groups because it is more difficult to get a
sufficient number of players together who share a common understanding
about which equilibrium to play.9

In a network context, the likelihood of yielding a compatible preference

8For this, we implicitly make the plausible assumption that players coordinate on a
random profile from the set of profiles compatible with their preferences, that is, the wider
set of ORE when players have incompatible preferences and the narrower set of refined
ORE when their preferences are compatible.

9In the theory of Fehr and Schmidt (1999), for example, the number of players adversely
affects the likelihood of cooperation in a public goods game with punishment options be-
cause the likelihood that a sufficient number of conditional cooperators is present is smaller
in larger groups.
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combination also depends on the precise structure of a network. We have
already seen above that in the absence of nested neighborhoods, such as
in the circle, a network is prone to produce multiple equilibria even when
all players have homogeneous preferences. Thus, at least some degree of
nestedness is a necessary prerequisite for a common understanding about
which equilibrium to play.

But even among the nested networks of Figure 1, our theory predicts
some marked differences. In particular, there is some asymmetry with re-
gard to the ideal number of central players (nc) who nest other players’
neighborhoods, and the ideal number of peripheral players (np) whose neigh-
borhoods are nested. The larger nc (e.g., comparing the star and the d-box),
the more likely it is that there is one central player who is of a social-welfare
or altruistic type so that this player is willing to sponsor the public good
when no one else in her neighborhood does. The larger nc, therefore, the
smaller the likelihood of a refined ORE as defined in (7) or (8). The num-
ber of peripheral players has the opposite effect. The larger np, the more
likely it is that at least one of them is willing to help out the center players
because this peripheral player is of a social-welfare or altruistic type. The
larger np, therefore, the higher the likelihood of a refined ORE. Applied to
our networks, we thus get

P
(
ω ∈ Ωstar) ≥ {

P
(
ω ∈ Ωcore) , P

(
ω ∈ Ωdbox)} (10)

≥ P
(
ω ∈ Ωline) .

This means that coordination on a refined ORE is easiest on the star, fol-
lowed by the core periphery and d-box, and followed by the line. Further-
more, coordination is easier on an asymmetric than on a symmetric nested
network:

P
(
ω ∈ Ωcore) ≥ P(ω ∈ Ωcomp) . (11)

Altogether, our theory leads to the following testable predictions:

Hypothesis 1: In the networks of Figure 1, except the circle, a group of players
with compatible social preferences is more likely to coordinate on a refined ORE
than a group without compatible preferences.

Hypothesis 2: The likelihood of a refined ORE depends on the network structure.
In particular, the networks of Figure 1 can be ranked according to the conditions in
(9)–(11).

Finally, for the circle network, we expect that even if all the compatibility
criteria of Definition 1 are met by a group of players, the group does nev-
ertheless not coordinate more likely on either a specialized or a distributed
profile than a group who does not meet the criteria.
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4 Experiment

We tested our hypotheses in an experimental version of the Bramoullé
and Kranton (2007) game. In particular, we modified the original static
game because earlier experiments made it clear that subjects find it very
hard to coordinate their choices in this game. Coordination was particu-
larly difficult in experiments that adopted the original large strategy space
(e.g., Rosenkranz and Weitzel, 2012). As at least some equilibrium play is
essential for our theory testing, however, we opted for a dynamic extension
of the game that nevertheless retains some key properties of the original
versions.

Specifically, following Callander and Plott (2005), Berninghaus, Ehrhart,
and Ott (2006), and Goyal, Rosenkranz, Weitzel, and Buskens (2017), ev-
ery game lasted between 30 and 90 seconds in our experiment. The final
decision moment, tmax, was randomly determined by a draw from a uni-
form distribution on the support [30, 90]. Starting from a situation of zero
investments, subjects could continuously update their investments, choos-
ing from the entire set of positive integer values. Full information about the
momentary investments of all other players was continuously provided and
updated five times per second. The momentary payoffs were, moreover, in-
dicated by the size of each player’s node on the screen (see screenshot in
Appendix C.2). Nevertheless, the actual payoff was solely determined by
the momentary investments at the random round end. Payoffs were thereby
calculated as follows

πi =


(
ei + ∑j∈Ni

ej
)(

29− ei −∑j∈Ni
ej
)
− 5ei if ei + ∑j∈Ni

ej ≤ 14

196 + ei + ∑j∈Ni
ej − 5ei otherwise

.

As we will see below, coordination was greatly facilitated by these de-
sign choices essentially because subjects did not need to formulate beliefs
about other players’ payoffs and investments. At the same time, the imple-
mented random stopping rule avoided last round effects.

4.1 Experimental procedure

We administered our experiment at the Experimental Laboratory for So-
ciology and Economics (ELSE) at Utrecht University, the Netherlands. The
experiment was programmed in z-tree 3.0 (Fischbacher, 2007) and subjects
were recruited via ORSEE (Greiner, 2015). A total of 120 students partici-
pated in eight sessions, with 12–20 students each session. No subject could
attend more than one session. Moreover, the order of games was randomly
varied between sessions.

The average subject’s age was 22, 67% were female, and 72% were of
Dutch nationality. Subjects played each of the seven networks of Figure 1
in a total of 35 games, one trial game and four payoff-relevant games per
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network. In each game, subjects were assigned to a random group of two
or four players and a random network position. The entire experiment thus
consisted of 960 payoff-relevant network games: 120 games per four-player
network and 240 games for the dyad. A typical session lasted 80 minutes,
and subjects earned 11.82 euros on average, including a 3 euro show-up fee.

4.2 Social preference elicitation

Key to our testing of Hypotheses 1 is that we have an estimate for the
social preference parameters of our subjects. We estimated the parameters
directly from their behavior in the network games.

In doing so, we confined the set of network games for our estimations
in two ways. First, we ensured that we did not use the same games for our
estimations that we used to test our theory on. In particular, every time we
tested the conformity of a group’s behavior with our predictions, we esti-
mated the members’ social preferences from their investments in another
set of network games (with different players). Second, we restricted the set
of games to ensure a balanced set of network positions for each subject. This
is because some positions, for instance the periphery positions of the star,
are due to the random assignment to network positions over-represented in
a subject’s set of games compared to, for example, the star center position.
Based on theory, we expect, however, that these two positions confronted
subjects with different decision situations and therefore triggered a differ-
ent social comparison concern.10 We thus categorized the network positions
into three classes:

• center positions (of the star, line, core periphery, and d-box)

• periphery positions (of the same networks), and

• symmetric positions (of the circle, core duo, complete network, and
dyad).

We then estimated each subject’s social preferences on an equal number of
games from each class. Otherwise, we used as many payoff-relevant deci-
sion moments (t ∈ [30, tmax]) and as many network games as possible.

Obviously, we made several choices. Therefore, to check the robustness
of our findings, we also elicited subject preferences in several alternative
ways. Appendices B.2 and B.3 summarize our findings on these tests.

10This was confirmed in a pre-test where we estimated the subject-average (ρ̂i, σ̂i)-pair
per network position and found that the average greatly differed by position.
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Figure 4: Investments by network position over time

5 Results

5.1 Descriptive findings

We first give an overview about the behavior in our experimental games
before we test our hypotheses. If not stated otherwise, all results refer to the
final investments at the randomly determined game ends.

Position-level findings: Figure 4 plots for each network position the evo-
lution of the median investment and the 10–90 percentile over time. Clearly,
with the exception of the d-box edge position, the medians converge to
some steady state values. At the same time, the 10–90 percentile ranges
shrank in all network positions but the circle, with a 90th percentile that
is always lower than the payoff-maximizing public good level of e∗ = 12
across all network positions. Thus, the evolution of behavior in our games is
reminiscent of some best-response dynamic that converges to a static equi-
librium.11

In support of this, Figure 5 plots the distribution of deviations from a
payoff-maximizing best response across all network positions and games.
Clearly, the predominant choice is a pure payoff-maximizing best response:
40% of investments. And, when subjects deviated from it, they typically did
not deviate by much: 74% of choices are no more than ±2 units away from
a payoff-maximizing best response, whereby subjects typically deviated in
the downward direction.

For more detail, Figure 6 plots the distributions of final investments per
network position. In line with our static ORE predictions for the dyad and

11The disturbance in this pattern after 70 seconds in some network positions is mainly
due to the fact that many games ended before that time.
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Figure 5: Deviations from payoff-maximizing response
NOTES: N = 3, 359 final investment decisions in all games are compared to a payoff-
maximizing best response. One value [+24] dropped for better display.

the complete network, the unique distributional modes are at six and three
units respectively, which is consistent with the predicted equal-split equilib-
rium. Moreover, subjects found it considerably harder to coordinate their
choices on the complete network, which is in line with the aggravated coor-
dination problem predicted in Hypothesis 2.

Turning to the asymmetric networks, consistent with our predictions
for the center positions of the star, core periphery, d-box, and—to a lesser
extent—the line, the most frequent choice is the zero contribution. Subjects
in the peripheral positions of these networks, in contrast, oftentimes invest
twelve units. Together, this suggests the predicted periphery-sponsorship
equilibrium, whereby the pattern is more pronounced on the star and the
core periphery network as predicted by Hypothesis 2.

For the circle network, Figure 6 shows a very dispersed investment pat-
tern. Nevertheless, what we see does not go against our theory, as we pre-
dicted that players might either coordinate on one of the two possible spe-
cialized equilibria or a distributed equilibrium. Quite on the contrary, if
we consider deviations of up to one (two) unit(s) from a payoff-maximizing
best response as consistent with an other-regarding response, 78% (95%) of
the investments in Figure 6 can be rationalized.

In sum, the first look at our findings by and large supports our theoret-
ical predictions. Nevertheless, because the investments of all players need
to “fit” in equilibrium, we now turn to the group-level behavior.

Group-level findings: Table 1 presents the shares of investment profiles
consistent with a (refined) ORE for each network. We thereby distinguish
between three degrees of deviation from a pure payoff-maximizing equilib-
rium: ORE with zero (χ = 0), two units (χ < 3), and any units (any χ) of
deviation from a payoff-maximizing best response by at least one player.
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Figure 6: Investments by network position

NOTES: Observations in star center, core center, core periphery, line middle, and line pe-
riphery: 120; core duo, d-box center, and d-box edge: 240; star periphery: 360; dyad, com-
plete, and circle: 480. One value on the dyad [29] dropped for better display.

The exact criteria can be found in Table 6 in Appendix A.3.12

12The critical value χ < 3 is chosen because a deviation of up to two units is the max-
imum deviation for which a periphery-sponsored public good is the unique refined ORE
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Table 1: Frequencies of other-regarding equilibria

Deviation from
payoff-maximizing equilibrium

Network Equilibrium type zero moderate any
(χ = 0) (χ < 3) (any χ)

Dyad egalitarian (rfd) 32.1% 45.8% 49.2%
other 8.8% 33.0% 50.8%

Complete egalitarian (rfd) 0.8% 0.8% 0.8%
other 20.8% 62.5% 99.2%

Star per-spon. (rfd) 15.8% 33.3% 62.5%
cent-sp. with πc ≥ πj (rfd) — — 36.6%
cent-spon. other 0% 0.8% 0.8%

Circle specialized 7.5% 16.6% 29.2%
distributed 3.3% 27.5% 55.0%

Core per-spon. (rfd) 17.5% 43.3% 68.3%
cent-sp. with πc ≥ πj (rfd) — — 31.7%
cent-spon. other 0% 0% 0%

D-box per-spon (rfd) 8.3% 15.0% 25.8%
cent-sp. with πc ≥ πj (rfd) — 0.8% 64.2%
cent-spon. other 0% 3.3% 10.0%

Line end-spon. (rfd) 0.8% 10.0% 46.7%
distr. with πm ≥ πe (rfd) 8.3% 26.7% 39.2%
distr. other 0.8% 0.8% 14.1%

NOTES: Percentages of investment profiles consistent with an other-
regarding equilibrium (ORE) at the random ends of the 960 network games.
240 observations for dyad, 120 for all other networks. Refined ORE are indi-
cated with "(rfd)".

A first observation is that the number of groups converging on a payoff-
maximizing equilibrium (ORE with χ = 0) is remarkably high.13 Not sur-
prisingly, the number of ORE is even higher when investments in the neigh-
borhood around a payoff-maximizing equilibrium point are rationalized by
subjects’ social preferences. Interestingly, however, a small expansion of the
range of feasible profiles is already enough to capture a significant share of
observed investments. For example, an inclusion of a deviation of ±2 units
(χ < 3) adds meaning to the frequently observed downward deviations in
the periphery positions of the star, core periphery, line, and d-box (see Fig-
ure 6). As a result, the shares of profiles consistent with an ORE more than
doubles on these networks.

Turning to the evidence regarding the refined ORE, we first look at Col-
umn 3 (with χ = 0):

(i) On the asymmetric networks (star, core periphery, d-box, and line), we
observe almost exclusively periphery-sponsored public goods. The
only exception is the 0.8% of groups on the line network (i.e., exactly
one group) who converge to a distributed equilibrium.

in all the asymmetric networks, except the d-box for which the critical value is already at
χ < 2 (see Table 6).

13Compared to Rosenkranz and Weitzel (2012), for example, who study the same
games with a non-continuous-time design, the number of groups converging on a payoff-
maximizing equilibrium increases by a factor of 3.4 in the star network (smallest increase)
to 27 in the circle (largest increase).
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(ii) On the dyad, a large majority of groups (32.1%) splits e∗ = 12 equally.
In the complete network, this is the case for only 0.8% of groups (i.e.,
exactly one group), which is however not entirely surprising given the
predicted coordination problems.

(iii) On the circle, 7.5% of groups coordinated on a specialized equilib-
rium with alternating investments of zero and twelve units. Another
3.3% of groups coordinated on an equal-split equilibrium. Thus, as
expected, both types of payoff-maximizing equilibria can be found.

In sum, the numbers in Column 3 largely support our theory because if
an investment profile is consistent with a payoff-maximizing equilibrium it
is almost always a refined ORE. Similar pictures emerge when we look at
the wider sets of ORE in Columns 4 and 5. On the star, core, d-box, and line,
the vast majority of groups converge to either a pure periphery-sponsored
public good or a partially center-sponsored public good where the center
player earns more than at least one periphery player. On the dyad, almost
half the groups choose an equal-split equilibrium. Finally, on the circle, both
the shares of “nearly” specialized and “nearly” distributed profiles increase
significantly when we look at the wider sets of ORE. So, again, the only
exception is the complete network where the share of equal-split equilibria
remains at 0.8%.

To put these findings into perspective, Appendix B.1 compares the num-
bers in Table 1 with the predictions and hit rates (Selten, 1991) of several
alternative equilibrium refinement concepts, notably efficiency, Nash tâton-
nement stability, and quantal response theory. To sum up the findings, our
social preference theory predicts at least as well as the best alternative re-
finement concept on all network structures. Its specific power is that it se-
lects the “natural” equilibria on the dyad and all the asymmetric networks
(star, core periphery, d-box, line) and, at the same time, it does not rule out
the co-existence of multiple, empirically relevant equilibria on the circle.

5.2 Hypothesis 1: preference compatibility

We have seen above that the behavior in our experiment is much in line
with our theory. Nevertheless, we cannot yet rule out the possibility that
our subjects chose their investments for reasons other than subjects’ social
comparison concerns. Much of what we observed may, for instance, also be
explainable with one of the refinement concepts mentioned above.

To remove all doubts, we test here a unique prediction of our theory
that discriminates it from all conceivable alternative explanations: The rea-
son why one subject group coordinates on one of the frequently observed
refined ORE, and another group does not, is that the former has a set of
compatible social preferences.
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Figure 7: Social preference estimates
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group, i.e., Ri = Ni. See Section 4.2 for procedural details. Ten pairs (with σ̂i < −2) are
dropped for better display.

Social preference estimates: To test this hypothesis, we first need an esti-
mate for the social preference parameters of our subjects. We performed the
subject- and game-specific conditional logit estimations for this purpose,
which we explained in Section 4.2. Concretely, we assumed that a subject
chose an investment ei at time t of a network game so as to maximize utility
function (2) augmented by a random utility component and responding to
the observed investments of the other players at t− 1. We then estimated
the (ρ̂i, σ̂i)-pair that maximizes the conditional likelihood that this subject
chose the actual investment pattern across all her games rather than any
feasible alternative investment pattern. For practical reasons, we limited
the alternative investments to {0, 1, 2, ..., 15} in our estimations. Moreover,
for our main specification, we assumed that subjects only include their di-
rect neighbors in their reference group.

Figure 7 visualizes the estimated (ρ̂i, σ̂i)-pairs. Table 9 in Appendix B.2
categorizes them into the social preference types identified by function (2).
Table 10 in the same appendix summarizes the preference estimates from
several alternative utility functions and an alternative subset of data, in-
cluding a specification where subjects compare their payoffs with everyone
in the network. Much in line with the findings from earlier experiments
(e.g., Falk, Becker, Dohmen, Enke, Huffman, and Sunde, 2018; Bruhin, Fehr,
and Schunk, 2019), both our preferred estimates in Figure 7 as well as the
alternative estimates in Appendix B.2 suggest considerable subject hetero-
geneity in social preferences. In particular, there are sizable numbers of
subjects who showed a concern for each of the preference types in (2).

In a next step, we could thus classify each of the 840 subject groups in
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Table 2: Groups with compatible preferences

Pref. strength dyad star core d-box line complete

any ε̂ 22.9% 70.8% 73.3% 30.0% 10.8% 3.3%
ε̂ < 3 17.1% 40.0% 45.8% 16.7% 7.5% 2.5%
ε̂ < 1 14.2% 25.0% 26.7% 6.7% 5.0% 2.5%
No. of groups 240 120 120 120 120 120

NOTES: Categorization of 840 subject groups (all but the 120 groups
playing the circle) according to whether their members meet the
preference-compatibility requirements for a given network or not.
Groups are additionally classified by the maximum preference strength
of their members. The detailed requirements can be found in the net-
work characterizations of Appendix A.3 and in Lemma 1.

our experiment (120 per 4-player network excluding the circle, 240 for the
dyad) with regard to whether all the group members have a combination
of compatible preferences or not. The results of this classification can be
found in Table 2. Clearly, the table suggests that there is a sizable number of
groups for every network structure who meet the preference requirements
of Section 3.4 and another sizable number of groups who do not meet these
requirements. We can thus turn to our main question whether groups who
do meet the requirements play a refined ORE more often.

Hypothesis test: Table 3 reports the results of two multinomial logit mod-
els. The dependent variable in these models is a multinomial variable that
classifies the investment profiles chosen by a subject group at the final de-
cision moment of a game into six different possible outcome types. Out-
comes (1)–(3) are the network-dependent refined ORE as predicted by our
theory, outcomes (4)–(6) are the remaining non-refined ORE. The two out-
come classes are further subdivided into how much a group’s investments
deviated from a pure payoff-maximizing equilibrium. Together, these six
outcomes capture all feasible investment profiles in our experiment.

The main independent variable is the group-specific preferences compat-
ibility indicator. Model 2 further distinguishes between groups who showed
significant (ε̂ ≥ 3) and weak (ε̂ < 3) social preferences in their other net-
work games. Next to this, the models include six outcome-specific con-
stants, and twelve outcome-specific measures of network size and network
clustering. Together, these outcome- and network-specific variables account
for many of the factors that may explain why certain investment profiles
were chosen more often than others. For instance, they account for the that
fact that a profile was chosen because it is efficient, strategically stable, a
quantal response equilibrium, or the basin of attraction of some other unob-
served process. Moreover, network size and network clustering control for
two of the coordination-facilitating factors found in previous experiments
(Charness, Feri, Meléndez-Jiménez, and Sutter, 2014; Cassar, 2007; Berning-
haus, Ehrhart, and Keser, 2002). The models additionally control for group
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Table 3: Test of Hypothesis 1—Multinomial logit estimations

refined ORE non-refined ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)
Model 1:

Compatibility 1.11 1.28 1.13 -0.59 0.76 base
(0.22) (0.45) (0.42) (0.83) (0.29) outcome

Experience 0.15 0.17 0.14 0.10 0.01 –
(0.09) (0.06) (0.09) (0.20) (0.06)

Likelihood ratio tests (Compatibility=0):
(1) versus (rest) 2.12
(1–2) versus (rest) 6.67***
(1–3) versus (rest) 16.69***

Model 2:
Compatibility (ε̂ ≥ 3) 0.59 0.78 0.88 -0.45 -0.16 –

(0.35) (0.53) (0.38) (0.55) (0.74)
Compatibility (ε̂ < 3) 1.45 1.61 1.32 -0.65 1.19 –

(0.36) (0.55) (0.56) (1.27) (0.41)
Experience 0.15 0.17 0.15 0.11 -0.01 –

(0.09) (0.05) (0.09) (0.20) (0.06)

Likelihood ratio tests:
Compatibility (ε̂ ≥ 3)=0:

(1) versus (rest) 0.10
(1–2) versus (rest) 0.48
(3) versus (rest) 6.26**

Compatibility (ε̂ < 3)=0:
(1) versus (rest) 2.87*
(1–2) versus (rest) 8.96***
(3) versus (rest) 1.91

NOTES: Coefficients and standard errors (in parentheses) of two multinomial logit mod-
els. 840 observations from final decision moments in all network games but the games
on the circle. Both models include additional measures of network size and clustering
(unreported). Likelihood ratio tests report χ2-statistics. ∗∗∗p(χ2) < 0.01,∗∗ p(χ2) <
0.05,∗ p(χ2) < 0.1.

experience with a certain network game because we expected that more ex-
perienced groups will find it easier to coordinate their investments on, for
instance, a refined ORE.

Our hypothesis tests are based on post-estimation likelihood ratio tests,
where we compared the full models against constrained models with the
coefficient of compatibility set to zero. In both the full and the constrained
models, we additionally equalized the coefficients of several outcomes to
the coefficient of the base outcome (6). This ways, we tested Hypothesis 1
in several different ways. For instance, the likelihood ratio test (1–3) versus
(rest) tells us something about whether a group with compatible preferences
played the refined ORE in the widest sense (any χ) more often than any
other profile. The test (1) versus (rest), in turn, focuses on the refined ORE
that are indistinguishable from a pure payoff-maximizing equilibrium.

The findings in Table 3 largely confirm Hypothesis 1. According to the
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likelihood ratio tests belonging to Model 1, groups with compatible social
preferences played the refined ORE more often than a non-refined ORE: χ2-
statistic=16.69 in the test (1–3) versus (rest) significant at p < 0.01. They
also played the refined ORE in the narrower sense (with χ < 3) more often:
χ2-statistic=6.67 significant at p < 0.01. Yet, they did not generally play
the narrowest class of refined ORE more often than any other investment
profile: χ2-statistic=2.12 in the test (1) versus (rest) is insignificant.

This last finding does not come entirely as a surprise. As we saw in
Table 2, there is a number of subject groups who showed considerable fair-
ness concerns and who are, therefore, expected to deviate much from the
ORE that are indistinguishable from a payoff-maximizing equilibrium. We
therefore estimated Model 2 and performed additional likelihood ratio tests.
Much in line with our expectations, group behavior is consistent with the
social preference estimated for its members. According to the likelihood
ratio tests, groups with compatible and strong social preferences tend to co-
ordinate on the refined ORE where investments deviate significantly from a
payoff-maximizing best response. Groups with compatible but small social
preferences chose, in contrast, the refined ORE with smaller or no devia-
tions.

Thus, altogether, the findings in Table 2 support Hypothesis 2 that so-
cial preferences facilitate equilibrium selection. As shown in Appendix B.3,
this finding is moreover robust to several alternative ways in which we can
estimate our subjects’ social preferences.

5.3 Hypothesis 2: network size and nestedness

The second prediction of our theory is that coordination on a refined
ORE is inhibited by the size of a network and it is facilitated by the degree
of nestedness, in particular the extent to which the nested neighborhoods
are centralized around a few players. We provide two pieces of evidence on
this.

Placebo test: The first piece of evidence comes from the circle network.
According to our theory, social preferences should not help to coordinate
on either a distributed or a specialized equilibrium because no neighbor-
hood is nested in this network. To put this to a test, we searched for groups
playing the circle who match the preference requirements that “worked” in
other networks. Concretely, we searched for groups who match the pref-
erence requirements for the complete network and asked whether they are
the ones who played the frequently observed distributed profiles on the
circle. Likewise, we checked whether groups who match the preference re-
quirements for the line network are also the ones who played the frequent
specialized investment profile.

Our findings from multinomial logit estimations similar to the ones in
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Table 4: Test of Hypothesis 2—Pairwise comparisons

Share of ORE with any χ
Star Core D-box Line Complete
0.99 1.00 0.90 0.85 0.008

Difference:
Core -0.008
D-box 0.09*** 0.10***
Line 0.13*** 0.14*** -0.04
Complete 0.98*** 0.99*** 0.89*** 0.85***

Share of ORE with χ < 3
Star Core D-box Line Complete
0.33 0.43 0.16 0.37 0.008

Difference:
Core -0.10
D-box 0 .17*** 0.28***
Line -0.03 0.07 -0.20***
Complete 0.17*** 0 .43*** 0.15*** 0.35***

Share of ORE with χ = 0
Star Core D-box Line Complete
0.16 0.18 0.08 0.09 0.008

Difference:
Core -0.02
D-box 0.08* 0.09**
Line 0.06 0.08* 0.00
Complete 0.15*** 0.17*** 0.07*** 0.08***

NOTES: Results of two-sided t-tests with 120 observations per
network. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Table 3 can be found in Appendix B.4. In line with our expectations, they
suggest no systematic relationship between preference compatibility and
the selection of either a distributed or specialized profile.

Hypothesis test: The second piece of evidence stems from a comparison
of the numbers of refined ORE across networks. According to Hypothesis 2,
we would expect a detrimental impact of network size. As we have already
seen in Section 5.1, the share of groups who coordinated on a refined ORE
was much higher on the two-player dyad network than on the four-player
complete network. This difference is also statistically significant at p <

0.001 in a two-sided mean difference test, lending strong support to our
hypothesis.

Next, Hypothesis 2 conjectured a facilitating impact of a network struc-
ture with a small number of players who nest other players’ neighborhoods
and a large number of players whose neighborhoods are nested. Table 4 re-
produces the shares of refined ORE from Table 1 for the networks compared
in Hypothesis 2. Consistent with the hypothesis, the shares of refined ORE
are highest on the star and the core periphery, intermediate on the d-box
and the line, and lowest on the complete network. Moreover, the two-sided
mean difference tests reported in Table 4 by and large confirm the pairwise
network orderings predicted in (10)–(11). The single exception is the com-
parison between the d-box and the line, where contrary to our theory, we
find a significantly larger share of refined ORE (with χ < 3) on the line net-
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Table 5: Test of Hypothesis 2—OLS estimations

Share of refined other-regarding equilibria
any χ χ < 3 χ = 0

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

One-way nestedness 0.97*** 0.42*** 0.16***
(0.022) (0.047) (0.030)

Nestedness 1.18*** 0.20*** 0.45*** 0.01 0.19*** 0.03*
(0.011) (0.016) (0.046) (0.024) (0.041) (0.015)

Clustering -0.35*** -0.91*** -0.20*** -0.41*** -0.06*** -0.15***
(0.019) (0.023) (0.046) (0.032) (0.012) (0.027)

Constant 0.74*** -0.01 -0.01 0.29*** 0.01 0.01 0.11*** -0.01 -0.01
(0.012) (0.006) (0.006) (0.037) (0.011) (0.011) (0.028) (0.007) (0.007)

Observations 48 48 48 48 48 48 48 48 48
R-squared 0.09 0.80 0.85 0.12 0.51 0.53 0.03 0.27 0.29

NOTES: Results of nine OLS estimations with 48 observations each: one observation per network except the dyad (6
networks) times number of sessions (8 sessions). Standard errors in parentheses: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

work. Nevertheless, apart from this exception, Table 4 strongly supports
the hypothesized conducive impact of a centralized network structure for
coordination.

This gains additional support from Table 5. There, we regress the refined
ORE shares for all our 4-player networks on three network statistics: first, a
measure of network nestedness,

nestedness =
1
|N| ∑

i∈N

|Nn
i |
|Ni|

,

where Nn
i denotes the subset of i’s neighbors whose neighborhoods are

nested by i or who nest i. Second, we include a measure of unidirectional
nestedness,

one-way nestedness =
1
|N| ∑

i∈N

|Nn∗
i |
|Ni|

,

where Nn∗
i is the set of neighbors who are either nested by i or who nest i,

but not both at the same time. One-way nestedness is thus high if one or a
few players nest all other players’ neighborhoods in a network who are just
connected to these central players. We finally add clustering in some mod-
els as a control variable, since clustering explained coordination in prior
experiments (e.g., Cassar, 2007; Charness, Feri, Meléndez-Jiménez, and Sut-
ter, 2014).14 The major finding of Table 5 is that nestedness has the predicted
positive effect on coordination. This effect disappears if one-way nestedness
is included, as expected as well. Finally, clustering has a negative impact on
coordination in our context.

14Due to the high joint correlation with nestedness and one-way nestedness, clustering
is excluded from the regression models whenever the other two are included.
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6 Conclusion

We set out to study how social preferences shape behavior in a network
of interdependent social interactions. Towards this end, we developed a
local public goods game with socially concerned players and tested the
model’s predictions in an experiment.

One of the main findings of this paper is that social preferences do not
produce more equitable or more efficient investments in all networks alike.
Rather, they help individuals to coordinate their choices in a way that rein-
forces the inequality that is already inherent in a network structure. In other
words, if a network is fully connected, social preferences support equitable
outcomes, and if a network structure is asymmetric, they support unequal
payoff distributions. But, we do not find any indication that individuals
would increase their investments significantly beyond what is payoff opti-
mal.

As suggested by our theory and supported in our experiment, the cen-
tral mechanism behind this finding is that socially concerned players want
to maintain a certain payoff ordering in the local neighborhood of their net-
work. In the small-scale networks of our experiment, many player groups
indeed managed to coordinate on this payoff ordering. An open question
from this study is, however, whether the same logic also extends to larger
networks. We, therefore, leave it for future studies to advance and test our
predictions for larger networks.
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A Theoretical Appendix

A.1 Proof of Lemma 1
Lemma 1 repeated. Suppose that players’ utilities are defined by the social preference
function (2) with parameters τi = (ρi, σi, Ri) and the payoff function (1). A player’s social
preference strength, εi, is defined by

altruist or social-welfare types : ε
p
i

inequity-averse types : max{εp
i ; εn

i }
competitive or spiteful types : εn

i ,
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where

ε
p
i = (b′)−1( c

1 + ρi

)
− (b′)−1(c)

εn
i = (b′)−1(c) − (b′)−1( c

1 + σi

)
.

Proof. We prove the statement for the more general case of an incomplete infor-
mation game.

For a given type τi = (ρi, σi, Ri), we aim to determine an upper bound for the
difference between that player’s best-response investment and a payoff-maximizing
best response, over all possible e−i and all possible networks g. Formally, the
deviation-maximizing investment ei = fi(τi, e−i) satisfies

εi = max
{∣∣ fi(τi, e−i)− fi(e−i)

∣∣ : ∀ e−i ∈ R
|Ω−i |
+ , ∀ g ∈ G

}
.

To find ei and εi, let us focus on the set of locally ‘tree-like’ networks where
no two players in i’s reference group are connected, i.e., gjk = 0 ∀ j, k ∈ Ri. This
gives us some freedom in the design of the critical g and e−i. Moreover, we focus
on symmetric profiles e−i, such that (i) all players j in i’s neighborhood invest the
same, (ii) all players k in i’s reference group who are not in i’s neighborhood invest
the same, and (iii) all players l and m in the ‘hinterlands’ of j and k who are not
in player i’s reference group invest the same. That is, we focus on profiles e−i
where for all ω−i = (τ1, ..., τi−1, τi+1, ..., τn) ∈ Ω−i: (i) eτj = eτ′j′

for all j, j′ ∈ Ni and

τj, τ′j′ ∈ Tj, (ii) eτk = eτ′k′
for all k, k′ ∈ Ri\Ni and τk, τ′k′ ∈ Tk, (iii) eτl = eτ′l′

for all
l, l′ /∈ Ri , l, l′ ∈ Nj and τl , τ′l′ ∈ Tl , and (iv) eτm = eτ′m′

for all m, m′ /∈ Ri , m, m′ ∈ Nk

and τm, τ′m′ ∈ Tm. As will become clear, the symmetry assumption, as well as the
focus on tree-like networks, is innocuous as it is anyway satisfied by the deviation-
maximizing e−i and g defined below. Nevertheless, because utility function (2) is
not continuous at investment profiles where the payoff of player i is identical to the
payoff of another player j, we need to make a case distinction.

Deviation-maximizing interior solutions: Suppose first that πi(ei, e−i) 6= πj(ei, e−i)
and πi(ei, e−i) 6= πk(e−i). Then, i’s best-response investment, ei = fi(τi, e−i), must
satisfy the first-order condition:15

b′
(
ei + |Ni|ej

)
− c + ρi

|Ni|
|Ri|

b′
(
ei + ej + |Nj|el

)
≤ 0 if πi > πj (A.1)

b′
(
ei + |Ni|ej

)
− c + σi

|Ni|
|Ri|

b′
(
ei + ej + |Nj|el

)
≤ 0 if πi < πj . (A.2)

The corresponding first-order condition of a payoff maximizer is

b′
(
ei + |Ni|ej

)
− c ≤ 0 . (A.3)

Note first that because ρi ≥ σi, the maximum positive deviation, ei − fi(e−i) >
0, is obtained in the range where πi > πj, and the maximum negative deviation,
ei − fi(e−i) < 0, in the range where πi < πj. Moreover, the absolute value of these
deviations is maximal when Ni = Ri. We thus get that the deviation-maximizing ei
must satisfy

b′
(
ei + |Ni|ej

)
− c + ρi · b′

(
ei + ej + |Nj|el

)
= 0 if ρi ≥ σi ≥ 0 (A.4)

b′
(
ei + |Ni|ej

)
− c + σi · b′

(
ei + ej + |Nj|el

)
≤ 0 if σi ≤ ρi ≤ 0 , (A.5)

Moreover, ei must satisfy one of the two conditions when σi < 0 < ρi.

15Note that the relationship between πi and πk is irrelevant in (A.1) and (A.2) because
marginally increasing ei does not have an impact on πk.

36



When we relax the assumptions of symmetric investments and locally tree-like
networks, we get to the same conditions after some additional steps. The first-order
condition corresponding to (A.1) and (A.2) is given by

∑
ω−i∈Ω−i

p(ω−i)

[
b′
(
ei + ∑

j∈Ni

eτj

)
− c

+
σi

|Ri| ∑
j∈N−i

b′
(
ei + eτj + ∑

l∈Nj\{i}
eτl

)
+

ρi

|Ri| ∑
j∈N+

i

b′
(
ei + eτj + ∑

l∈Nj\{i}
eτl

)]
≤ 0 ,

where N+
i (N−i ) denote the sets of neighbors with πi ≥ (<)πj. Again, we want

to determine the critical e−i and g that maximize | fi(τi, e−i)− fi(e−i)|. Because the
size of this deviation depends on the sign and the magnitude of the expressions in
line two, set eτj and eτl such that either πi ≥ πj or πi < πj for all types of every
player j and l. Next, replace the eτl of a player l who is neighbor of both j and i by
an equally valued eτl′ of a player l′ with l′ /∈ Ri , l′ ∈ Nj. This leaves the magnitude
and the sign of the deviation-maximizing ei unaffected. Finally, choose eτj = ej,
eτl = el , and |Nj| = |N′j | for all j, j′ ∈ Ni so as to maximize b′(ei + eτj + ∑l∈Nj\{i} eτl ).
In other words, the deviation-maximizing ei involves symmetric investments e−i
and a tree-like network g, such as in (A.4) and (A.5).

Continuing with the main argument, note that fi(e−i) − fi(τi, e−i) weakly in-
creases when we lower a single neighbor’s ej in (A.5) to zero. This is because when
the inequality in (A.5) is strict and the inequality in (A.3) is an equality, any reduc-
tion in ej increases the ei that solves (A.3) while it leaves the ei in (A.5) unaffected.
When (A.5) is an equality, instead, a reduction in ej does not alter fi(e−i)− fi(τi, e−i)
because ej and ei are perfect strategic substitutes in both (A.3) and (A.5), i.e., it holds
∂ei/∂ej = −1.

Define b′′i ≡ b′′(ei + |Ni|ej) and b′′j ≡ b′′(ei + ej + |Nj|el). The total derivatives
of (A.4) and (A.5), when (A.5) has an equality sign, result in

∂ei

∂el
=

−ρib′′j
b′′i + ρib′′j

< 0 if ρi ≥ σi ≥ 0

∂ei

∂el
=

−σib′′j
b′′i + σib′′j

if σi ≤ ρi ≤ 0 .

Hence, el and ei are strategic substitutes in equation (A.4). Moreover, because the
benefit function satisfies b′′(x) ≤ b′′(y) for x ≤ y, we can also unambiguously sign
the slope of the best-response function in (A.5), which is positive. Thus, for the
deviation-maximizing ei, set el = 0 in both equations (A.4) and (A.5).

Now, because ej = el = 0 in (A.5), the requirement πi < πj means that the
deviation-maximizing ei must still be positive. (A.5) must thus be satisfied with
equality and the maximum negative deviation is given by

εn
i = (b′)−1(c) − (b′)−1( c

1 + σi

)
. (A.6)

Furthermore, even though (A.4) is only valid for πi > πj, the fact that ej and ei are
perfect strategic substitutes in both (A.3) and (A.4) allows us to reduce ej in (A.4) to
zero in order to obtain the following simple expression for the maximum positive
deviation

ε
p
i = (b′)−1( c

1 + ρi

)
− (b′)−1(c) . (A.7)

Deviation-maximizing corner solutions: Suppose next that ei is such that
πi(ei, e−i) = πj(ei, e−i) or πi(ei, e−i) = πk(e−i). Because of the discontinuity of
utility function (2) at this point, the first-order conditions above do not help us
any longer. Instead, we have to compare the utility of a deviation-maximizing ei
directly with the utility of the best alternative investment.
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First, consider a player with ρi ≥ 0 and an investment ei with ei > fi(e−i) and
πi(ei, e−i) = πj(ei, e−i). This requires that for all e′i 6= ei it holds that

πi(ei, e−i) +
|Ni|
|Ri|

ρi πj(ei, e−i) +
|Ri| − |Ni|
|Ri|

(ρirik + σisik)πk(e−i) ≥ (A.8)

πi(e′i, e−i) +
|Ni|
|Ri|

(ρir′ij + σis′ij)πj(e′i, e−i) +
|Ri| − |Ni|
|Ri|

(ρir′ik + σis′ik)πk(e−i) .

Note first that we only need to consider deviations e′i with fi(e−i) ≤ e′i < ei. This
is because (i) we are seeking the largest ei that satisfies condition (A.8) and because
(ii) any e′i < fi(e−i) yields a lower utility than e′i = fi(e−i).

This has two implications: First, it is r′ij = 1 because πi(e′i, e−i) > πj(e′i, e−i)

for fi(e−i) ≤ e′i < ei. Second, the difference between the left-hand side (LHS) and
the right-hand side (RHS) of (A.8) is maximal when r′ik = rik and s′ik = sik. This is
because suppose rik = 1 (i.e., πi(ei, e−i) ≥ πk(e−i)). Then, r′ik = 1. And if sik = 1,
then s′ik ∈ {0, 1}. So, in order to maximize the difference between LHS and RHS,
and hence to maximize |ei − fi(e−i)|, set r′ik = rik and s′ik = sik. Inequality (A.8) can
then be simplified to

πi(ei, e−i) +
|Ni|
|Ri|

ρi πj(ei, e−i) ≥ πi(e′i, e−i) +
|Ni|
|Ri|

ρi πj(e′i, e−i) . (A.9)

Obviously, the above arguments also apply when we start from heterogeneous
investments for player i’s neighbors and non-neighbors and a more general net-
work structure. First, we only need to consider downward deviations e′i from ei for
the same reasons as given above. Second, for the same reasons as above, the pay-
offs of i’s non-neighbors have no impact on the deviation-maximizing ei. Third,
because πj(ei, e−i) > πj(e′i, e−i) for all neighbors j ∈ Ni, let πj(ei, e−i) enter the util-
ity of i with a positive weight ρi > 0 to obtain a deviation-maximizing ei. Finally,
choose ej and el to maximize πj(ei, e−i) − πj(e′i, e−i) for all j ∈ Ni. This leads to
condition (A.9).

Continuing with the main argument, note that because πj(ei, e−i) > πj(e′i, e−i),
the difference between the LHS and the RHS in (A.9) is maximal for Ni = Ri. Note
also that πj(ei, e−i)− πj(e′i, e−i) can be written as

πj(ei, e−i)− πj(e′i, e−i) =
∫ ei+ej+|Nj|el

e′i+ej+|Nj|el

b′(x)dx .

The integral is maximal when el = 0 because b(·) is concave. Thus, the difference
between the LHS and the RHS of (A.9) is maximal when el = 0. This means that
the deviation-maximizing investment is defined by the largest ei so that i’s utility
under ei, [1 + ρi] [b(ei + |Ni|ej)− cei], satisfies for all e′i with fi(e−i) ≤ e′i < ei:

[1 + ρi] [b(ei + |Ni|ej)− cei] (A.10)

≥ b
(
e′i + |Ni|ej

)
− ce′i + ρi

[
b
(
e′i + ej

)
− cej

]
.

For comparison, i’s utility under the deviation-maximizing ei in (A.7) is given by

[1 + ρi] b
(
ei
)
− cei ,

with ei = (b′)−1(c/(1 + ρi)). That term is identical to the RHS of (A.10) for ej = 0
and smaller than the RHS for any ej > 0.16 This means that the ei defined in (A.10)
is associated with a weakly higher utility than the ei defined in (A.7). Therefore, the
ei in (A.10) also yields a smaller deviation from a payoff-maximizing best response

16To see why the term is smaller when ej > 0, note that the e′i that maximizes the RHS
of (A.10) satisfies e′i : b′i + ρib′j − c = 0. The derivative of the RHS of (A.10) with respect to
ej is, on the other hand, given by (b′i + ρib′j − ρic)/(1 + ρi). Combined with the first-order
condition above, that derivative is thus positive since ρi < 1.
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than the ei in (A.7).
Consider next the same player with ρi ≥ 0, but consider a best-response invest-

ment with ei > fi(e−i) and πi(ei, e−i) = πk(e−i). Then, the same arguments from
above can be applied so that the resulting deviation-maximizing ei is not larger
than the ei defined in (A.7).

Consider again the same player with ρi ≥ 0, but suppose now an investment
with ei < fi(e−i) and πi(ei, e−i) = πk(e−i). Then, i can increase her utility by devi-
ating to e′i = ei + ε, where ε > 0. Hence, ei cannot be a best-response investment.

Consider again the same player with ρi ≥ 0 and an investment with ei <
fi(e−i). But suppose now that πi(ei, e−i) = πj(ei, e−i). Note first that for ei to be
a best response, we additionally need that πi(e′i, e−i) < πj(e′i, e−i) for all e′i > ei.
The reason is the same as above that player i could otherwise increase her payoff
and that of her neighbors by deviating upward. Hence, suppose that πi(e′i, e−i) <
πj(e′i, e−i) for all e′i > ei in addition. Then, ei is a best response if for all e′i, with
e′i > ei, it holds that

πi(ei, e−i) +
|Ni|
|Ri|

ρi πj(ei, e−i) +
|Ri| − |Ni|
|Ri|

(ρirik + σisik)πk(e−i) (A.11)

≥ πi(e′i, e−i) +
|Ni|
|Ri|

σi πj(e′i, e−i) +
|Ri| − |Ni|
|Ri|

(ρir′ik + σis′ik)πk(e−i) .

Note now that we can apply the argument from below inequality (A.8) that the
difference between the LHS and the RHS is maximal when r′ik = rik and s′ik = sik.
Inequality (A.11) thus simplifies to

πi(ei, e−i) +
|Ni|
|Ri|

ρi πj(ei, e−i) ≥ πi(e′i, e−i) +
|Ni|
|Ri|

σi πj(e′i, e−i) . (A.12)

The difference between the LHS and the RHS of (A.12) obviously depends on the
size of πj(e′i, e−i) and the sign of σi. Note however that πj(e′i, e−i) can be written as

πj(e′i, e−i) = πi(ei, e−i) +
∫ e′i+ej+|Nj|el

ei+ej+|Nj|el

b′(x)dx . (A.13)

Thus, since b(·) is concave, πj(e′i, e−i) is maximal when el = 0 and mininal when
el is large. Consider first a player with ρi ≥ 0 and σi < 0. Then, the difference
between the LHS and the RHS in (A.12) is maximal for el = 0 and Ni = Ri. The
deviation-maximizing ei is thus defined by the smallest ei so that i’s utility satisfies
for all e′i > ei:

[1 + ρi] [b(ei + |Ni|ej)− cei] (A.14)

≥ b
(
e′i + |Ni|ej

)
− ce′i + σi

[
b
(
e′i + ej

)
− cej

]
.

For comparison, i’s utility under the deviation-maximizing ei in (A.6) is given by

[1 + σi] b
(
ei
)
− cei , (A.15)

with ei = (b′)−1(c/(1 + σi)
)
. That term is identical to the RHS of (A.14) for ej = 0

and smaller for any ej > 0.17 Therefore, we can use the same argument from below
inequality (A.10) that the ei defined in (A.14) leads to a smaller absolute deviation
from a payoff-maximizing best response than the ei in (A.6).

Consider next a player with ρi ≥ σi > 0 and start from payoff expression (A.13),
again. Because the RHS of (A.12) is increasing in πj(e′i, e−i), choose a large el so
that πj(e′i, e−i) ≈ πi(ei, e−i). Moreover, set Ni = Ri. Inequality (A.12) can then be

17To see why the term is smaller when ej > 0, note that the investment e′i that maximizes
the RHS of (A.15) needs to satisfy b′i + σib′j − c = 0. The derivative with respect to ej is, on
the other hand, given by (b′i + σib′j − σic)/(1 + σi). This derivative is thus positive.
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written as

[1 + ρi]πi(ei, e−i) ≥ b
(
e′i + |Ni|ej

)
− ce′i + σiπi(ei, e−i) . (A.16)

For comparison, i’s utility under the deviation-maximizing ei in (A.6) (with σi < 0)
can be written as in (A.15). That term is smaller than the RHS of (A.16), and thus
we can again conclude that the ei defined in (A.16) leads to a smaller maximal
deviation than the ei defined in (A.6).

We next turn to the deviation-maximizing investment of a player with ρi < 0.
Consider first an investment with ei > fi(e−i) and either πi(ei, e−i) = πk(e−i) or
πi(ei, e−i) = πj(ei, e−i). Then, i could decrease her investment to e′i = ei − ε to raise
her own payoff and lower the payoffs of her neighbors. Thus, ei cannot be a best
response.

Consider finally an investment with ei < fi(e−i) and either πi(ei, e−i) = πj(ei, e−i)
or πi(ei, e−i) = πk(e−i). Then, we can apply the arguments as of inequality (A.11)
to conclude that this leads to no larger deviation from a payoff maximizing best
response than the ei defined in (A.6). �

A.2 Proof of Proposition 1
Proposition 1 repeated. Consider two players i and j in a network such that i nests
the neighborhood of j. Moreover, suppose that either information assumption (A1) or (A2)
applies. In a refined ORE, there exists at least one type combination ω such that the type
of player i (j) earns weakly more (strictly less) than at least one other player k (l) in the
player’s reference group. That is,

πi(ω) ≥ min
k∈Ri
{πk(ω)} OR πj(ω) < max

l∈Rj
{πl(ω)}

for at least one ω ∈ Ω∗ = T1 × ...T∗i × ...T∗j × ...Tn.

Proof for the complete information case. Under complete information, each
player has a commonly known type and Ω∗ thus reduces to a singleton. Suppose
now that, contrary to the statement, player i (j) earns strictly less (weakly more)
than all the players in her reference group. This implies in particular that πi(e) <
πj(e).

Combined with preference compatibility and network nestedness, we arrive at
the following chain of necessary conditions for this to be a refined ORE:

ei + ∑
k∈Ni

ek ≤ fi(e−i) + ∑
k∈Ni

ek = e∗ ≤ f j(e−j) + ∑
l∈Nj

el ≤ ej + ∑
l∈Nj

el .

The first and the final inequality follow from the fact player i feels exploited or
player j feels guilty (or both), so that i (j) under-(over-)invests compared to a pay-
off maximizer who would decide in the player’s stead. The identity fi(e−i) +

∑k∈Ni
ek = e∗ is the first-order condition of a payoff maximizer in i’s position who,

due to the facts that πi(e) < πj(e) and that i has access to more investments than
j, must make a positive investment. The remaining inequality is the first-order
condition of a payoff maximizer in j’s position.

Because players i and j have compatible preferences, either the first or the last
inequality in the chain must be strict. This however leads to a contradiction to the
requirement that i nests the neighborhood of j, which is

ei + ∑
k∈Ni

ek ≥ ej + ∑
l∈Nj

el .

Payoffs must thus be ordered as stated in the proposition. �

Proof for the incomplete information case. Suppose that, contrary to the
statement, all types of player i (j) earn strictly less (weakly more) under all ω ∈ Ω∗
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than all players in their respective reference group. That is, suppose that

πi(ω) < min
k∈Ri
{πk(ω)} and πj(ω) ≥ max

l∈Rj
{πl(ω)} ∀ ω ∈ Ω∗ .

This immediately implies that πi(ω) < πj(ω) ∀ ω ∈ Ω∗. Moreover, the fact that
player j’s neighborhood is nested in player i’s implies that for all ω ∈ Ω∗:

eτi + ∑
k∈Ni

eτk ≥ eτ j + ∑
l∈Nj

eτl .

In combination, we thus require that eτi > eτ j for all ω ∈ Ω∗ because i has access
to more investments than j. Yet, because i’s and j’s preferences are compatible, it
must also be that

eτi ≤ fi(e−i) and f j(e−j) ≤ eτ j ∀ ω ∈ Ω∗ , (A.17)

with at least one inequality being strict because either player i feels exploited or
player j feels guilty (or both). So, in order to simultaneously have πi(ω) < πj(ω)
and eτi > eτ j, we require that fi(e−i) > f j(e−j).

The best-response investments of payoff maximizers in i’s and j’s position are,
however, determined by the first-order conditions

∂Eπi

∂ei
= ∑

ω−i∈Ω∗−i

p(ω−i) b′
(

fi(e−i) + ∑
k∈Ni\j

eτk + eτj

)
− c = 0 (A.18)

∂Eπj

∂ej
= ∑

ω−j∈Ω∗−j

p(ω−j) b′
(

f j(e−j) + ∑
l∈Nj\i

eτl + eτi

)
− c ≤ 0 .

Now, because i nests the neighborhood of j and because the investments of i and j
are ordered as in (A.17), it follows for all ω ∈ Ω∗ that

∑
k∈Ni\j

eτk + eτj ≥ f j(e−j) + ∑
l∈Nj\i

eτl .

Combined with the concavity of b(·), this however means that eτi > fi(e−i) must
hold for at least one ω ∈ Ω∗ in order for the first-order conditions (A.18) to be
satisfied simultaneously. Hence, we arrive at a contradiction to the ordering of
investments in (A.17). Payoffs must thus be ordered as stated in the proposition. �

A.3 Experimental predictions
The following predictions characterize the refined ORE for the seven networks

in Figure 1 under the perfect information assumption (A2).

A.3.1 Dyad and complete network

Suppose that, contrary to the statement, there are two players i and j with ei <
ej. This means that πi(e) ≥ πk(e) for all k 6= i, with at least one inequality being
strict. Moreover, πj(e) ≤ πl(e) for all l 6= j, with at least one inequality being strict.
In particular, it is πi(e) > πj(e).

Suppose now that the preferences of all players are compatible in addition. For
the dyad, this means that for all ω ∈ Ω∗ = T∗1 × T∗2 it holds that ω contains (i) no
player of the type {altruist, spite}, (ii) no two payoff maximizers, and (iii) no two
distinct types from the set {payoff maximizer, social welfare, competitive}. For the
complete network, this means that all players are competitive.

Combined with the payoff inequalities shown above, preference compatibility
leads to following chain of necessary conditions for ei < ej to occur in a refined
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ORE:

ej + ∑
l∈Nj

el ≤ f j(e−j) + ∑
l∈Nj

el = e∗ ≤ fi(e−i) + ∑
k∈Ni

ek ≤ ei + ∑
k∈Ni

ek .

The first and the last inequality follow from the fact player j feels exploited or
player i feels guilty (or both). The identity f j(e−j) + ∑l∈Nj

el = e∗ is the first-order
condition of a payoff maximizer in i’s position who, due to the fact that πj(e) <
πi(e), must make a positive investment. The remaining inequality is the first-order
condition of a payoff maximizer in i’s position.

Because i and j have compatible preferences, either the first or the last inequal-
ity in the chain must be strict. In case of the competitive players on the complete
network, it is the first inequality. This however leads to a contradiction to the fact
that on the dyad and the complete network it must hold that

ei + ∑
k∈Ni

ek = ej + ∑
l∈Nj

el .

Thus, it must be ei = ej = e for all i, j ∈ N. The upper and lower bounds e ∈
[(e∗ ± ε)/n] follow, finally, from Lemma 1. �

A.3.2 Star, core periphery, and d-box

We first apply Lemma 1 to show that an ORE on these networks entails either a
center- or a periphery-sponsored public good. We then demonstrate that a center-
sponsored public good cannot be a refined ORE.

ORE with limited preference strength: Suppose first that ei = 0 for all i ∈ C
(periphery sponsorship). A payoff maximizer in the periphery position j ∈ P of
a star, core periphery, or d-box would respond with f j(e−j) = e∗. By Lemma 1, a
social type therefore responds with ej = f j(τj, e−j) such that

e∗ − ε ≤ ej ≤ e∗ + ε .

Moreover, social types in the duo position of the core periphery invest ek = fk(τk, e−k)
with

e∗ − ε ≤ ∑
k∈D

ek ≤ e∗ + ε .

Next, suppose that ei > 0 for at least one i ∈ C (center sponsorship). A payoff
maximizer in this position would invest

fi(e−i) = e∗ − ∑
l∈N\i

el .

Payoff maximizers in the non-center positions j ∈ P and k ∈ D would, on the other
hand, invest

f j(e−j) = e∗ −∑
i∈C

ei and

∑
k∈D

fk(e−k) = e∗ − ei .

Combined with Lemma 1, this means that the investments of social types are con-
strained by

e∗ − ∑
l∈N\i

el − ε ≤ ei ≤ e∗ − ∑
l∈N\i

el + ε , (A.19)

e∗ −∑
i∈C

ei − ε ≤ ej ≤ e∗ −∑
i∈C

ei + ε , (A.20)

e∗ − ei − ε ≤ ∑k∈D ek ≤ e∗ − ei + ε . (A.21)
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It follows from (A.19) that ∑i∈N ei ≤ e∗ + ε and from (A.20) and (A.21) that

∑
i∈C

ei + ej ≥ e∗ − ε and

ei + ∑
k∈D

ek ≥ e∗ − ε .

In combination, we find that the periphery players in the star and the d-box, except
for periphery player p1, jointly contribute at most

∑
j∈P\p1

ej = ∑
j∈P

ej + ∑
i∈C

ei −
[
∑
i∈C

ei + ep1

]
≤ e∗ + ε−

[
e∗ − ε

]
= 2ε .

Drawing the same comparison for any other periphery player p2, we again find
that ∑j∈P\p2

ej ≤ 2ε. Hence, the total contribution received by the center(s) is at
most

∑
j∈P

ej ≤ ∑
j∈P\p1

ej + ∑
j∈P\p2

ej ≤ 4ε .

Similar, in the core periphery, we find for the periphery player and the duo players,
respectively, that

ej = ∑
l∈N\i

el + ei −
[
ei + ej

]
≤ e∗ + ε−

[
e∗ − ε

]
= 2ε ,

∑
k∈D

ek = ∑
l∈N\i

el + ei −
[
ei + ∑

k∈D
ek
]
≤ e∗ + ε−

[
e∗ − ε

]
= 2ε.

The total contribution received by the center player in the core periphery is thus,
again, at most ∑k∈D ek + ej < 4ε. For the peripheral player with the lowest contri-
bution in the star, the core periphery, and the d-box, (A.20) requires that minj{ej}+
∑i∈C ei ≥ e∗ − ε. Thus, the centers players’ investments are necessarily larger than

∑
i∈C

ei ≥ e∗ − ε−min
j
{ej} ≥ e∗ − ε− 4ε

|N| − |C| ,

whereby the lower bound is determined by a situation where all peripheral (and
duo) players equally share 4ε. Moreover, (A.19) implies that the center players’
investments are necessarily smaller than

∑
i∈C

ei ≤ e∗ + ε .

Together, this defines the investment boundaries in a center-sponsored public good
summarized in Table 6.

Refined ORE: In a refined ORE, it must be

πi(e) ≥ min
j∈N\C

{πj(e)} for all i ∈ C . (A.22)

Suppose, to the contrary, that πi(e) < minj∈N\C{πj(e)} for at least one i ∈ C.
We first show that in this case it must hold that ei ≤ fi(e−i) for all i ∈ C and
ej ≥ f j(e−j) for at least one j ∈ P.

To see this, suppose in addition that some or all players compare their payoffs
with everyone else in the network, i.e., Ri = N\{i}. Then, on the star and the core-
periphery, τi ∈ T∗i (defined in Definition 1) combined with πi(e) < minj∈N\C{πj(e)}
implies that ei ≤ fi(e−i). Moreover, there is a j ∈ N\C who earns more than i and
weakly more than any other k ∈ N\C. When τj ∈ T∗j for all j ∈ N\C, then it
certainly holds for this j that ej ≥ f j(e−j).

On the d-box, πi(e) < minj∈N\C{πj(e)} for one i ∈ C does not necessarily
imply that j ∈ P earns less than both center players. Nevertheless, when τi ∈ T∗∗∗i
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and τj ∈ T∗∗∗j for all i ∈ C and all j ∈ P, where

T∗∗∗i = {comp., spite} and T∗∗∗j = {payoff, social welfare, altruist}
OR (A.23)

T∗∗∗i = {payoff, comp., spite} and T∗∗∗j = {social welfare, altruist} ,

then ei ≤ fi(e−i) for both i ∈ C, ej ≥ f j(e−j) for at least one j ∈ P, and

P
(
ω ∈ Ωstar) = P

(
ω ∈ Ωcore) ≥ P

(
ω ∈ Ωdbox) ,

which is what we were aiming to show.
Suppose next that all four players compare with their direct neighbors only,

i.e., Ri = Ni. The requirement on the number of players with compatible social
preferences can be significantly relaxed in this case. On the star and core-periphery
network, ei ≤ fi(e−i) for the central player again requires that τi ∈ T∗i for this
player. Similar on the d-box, ei ≤ fi(e−i) for both i ∈ C again requires that τi ∈ T∗∗∗i
for both of them. However, in the non-center positions, it suffices to have one j ∈ P
with τj ∈ T∗j (respectively τj ∈ T∗∗∗j on the d-box) for ej ≥ f j(e−j) because player
j will only compare herself with the center player(s). The duo players in the core
periphery will behave accordingly, that is, at least one of them invests ek ≥ f j(e−k),
if τk ∈ T∗j for both of them. Thus, again, we arrive at ei ≤ fi(e−i) for both i ∈ C and
ej ≥ f j(e−j) for at least one j ∈ P. Different to above, we have however

P
(
ω ∈ Ωstar) ≥ {

P
(
ω ∈ Ωcore) ; P

(
ω ∈ Ωdbox)} .

Now, because i has access to more investments than j and because πi(e) <
πj(e), we also have that ei > ej. Hence, we arrive at the following chain of con-
ditions that need to hold if πi(e) < minj∈N\C{πj(e)} ought to occur in a refined
ORE:

ei + ∑
k∈N\i

ek ≤ fi(e−i) + ∑
k∈N\i

ek = e∗ ≤ f j(e−j) + ∑
l∈Nj

el ≤ ej + ∑
l∈Nj

el ,

whereby either the first or the last inequality must be strict (or both). This however
leads to a contradiction to the requirement that i nests the neighborhood of j, that
is, a contradiction to

ei + ∑
k∈Ni

ek ≥ ej + ∑
l∈Nj

el .

Thus, payoffs must be ordered as in (A.22).
Note now that in a center-sponsored public good, the investments of the center

player(s) i ∈ C converge to
lim
ε→0

ei = e∗ .

In contrast, the investments of all other players j ∈ N\C converge to

lim
ε→0

ej = 0 .

Thus, there exists an εh such that for all ε < εh the payoff-ranking condition (A.22)
cannot be satisfied.

The critical value ε̄h depends on the network structure. On the star and the
core-periphery network, the center’s payoff in a center-sponsored public good is nec-
essarily lower than

πi(e) ≤ max πi(e) ≡ b
(
e∗
)
− c[e∗ − 4ε] .

Because the center invests more than e∗ − 7ε/3 and each non-center player less
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than 2ε, the non-centers’ payoffs are, on the other hand, larger than

πj(e) ≥ min πj(e) ≡ b
(
e∗ − 7

3
ε
)

.

Hence, εstar = εcore is defined by the largest ε to satisfy max πi(e) ≤ min πj(e) or,
equivalently,

c ≥
b(e∗)− b

(
e∗ − 7

3 εstar)
e∗ − 4εstar .

On the d-box, the lowest of the centers’ payoffs in a center-sponsorship equilibrium
is smaller than

πi(e) ≤ max{min
i∈C

πi(e)} ≡ b
(
e∗
)
− c

e∗ − 4ε

2
.

Because the centers invest more than e∗ − 3ε and the peripheral players less than
2ε, the latter’s payoffs are larger than

πj(e) ≥ min πj(e) ≡ min b
(
e∗ − 3ε

)
.

This means that εdbox is defined by the largest ε to satisfy max{min πi(e)} ≤ min πj(e)
or, equivalently,

c ≥
2b(e∗)− 2b

(
e∗ − 3εdbox)

e∗ − 4εdbox .

A comparison of the critical values gives εstar = εcore > εdbox. �

A.3.3 Line

ORE with limited preference strength: It follows from the definition of ε in
(3) that ei + ∑j∈Ni

ej ≥ e∗ − ε must hold for all i ∈ N in the line network. Suppose
now that all players have small social preferences, specifically ε < e∗/3. Then, each
ORE falls into one of the following two classes:

(end-sponsored) :
(
[e∗ − 3ε, e∗ + ε] , [0, 2ε] , [0, 2ε] , [e∗ − 3ε, e∗ + ε]

)
,

(distributed) :
(
[e∗ ± ε] , 0 , em2 + ee2 ∈ [e∗ ± ε]

)
.

To show this, fix the sequence of players in the order e1−m1−m2− e2 and exclude
out-of-equilibrium profiles:

a) Obviously, no investment profile can be an ORE where three or more players
invest nothing.

b) Expanding on condition (3), there are three possible ORE constellations where
two players invest nothing:

(i) :
(
[e∗ ± ε] , 0 , 0 , [e∗ ± ε]

)
,

(ii) :
(
[e∗ ± ε] , 0 , [e∗ ± ε] , 0

)
,

(iii) :
(
0 , [e∗ ± ε] , [e∗ ± ε] , 0

)
.

Profiles (i) and (ii) are contained in the classes of ORE described above. Con-
cerning (iii), the sum of player m1’s and m2’s investments must by (3) be
weakly less than e∗ + ε. Hence, this is not an ORE when 2(e∗ − ε) > e∗ + ε
and thus when ε < e∗/3.

c) There are two potential ORE configurations where one player invests noth-
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ing:

(iv) :
(
[e∗ ± ε] , 0 , eτm2 + eτe2 ∈ [e∗ ± ε]

)
,

(v) :
(
0 , [e∗ ± ε] , eτm2 , eτe2

)
.

The first one is contained in the classes of ORE described above. The second
one is not an equilibrium when for player m2 it holds that

min
{

∑
i∈N

ei
}
= e∗ − ε + e∗ − ε > max

{
em2

}
= e∗ + ε

and hence when ε < e∗/3.

d) When all players make a positive contribution, it follows from the best-response
conditions of the end players that

eei + emi ∈ [e∗ ± ε] .

At the same time, the best-response conditions of the middle players require
that

eei + emi + emj ∈ [e∗ ± ε] .

Together, this gives 0 ≤ emi ≤ 2ε and e∗− 3ε ≤ eei ≤ e∗+ ε. Hence, we arrive
at a profile that is contained in the classes of ORE described above.

Refined ORE: When every line middle player mi’s social preference is given by
τmi ∈ T∗∗∗i and every line end player ei’s preference is given by τei ∈ T∗∗∗j , where
T∗∗∗i and T∗∗∗j are defined in (A.23), then

πmi(e) ≥ πei(e) for i ∈ {1, 2} . (A.24)

To see this, suppose to the contrary that πmi(e) < πei(e) for i = 1 or i = 2 or for
both. Suppose moreover that either all players compare with their direct neighbors
only, with everyone else in the network, or any combination of the two. In either
case, when the preferences of all players satisfy τmi ∈ T∗∗∗i and τei ∈ T∗∗∗j , then it
holds that emi ≤ fmi(e−i) and eei ≥ fei(e−j) for i ∈ {1, 2}. Moreover{

P
(
ω ∈ Ωcore) ; P

(
ω ∈ Ωdbox)} ≥ P

(
ω ∈ Ωline) .

Now, because mi has access to more investments than ei, πmi(e) < πei(e) how-
ever also implies that emi > eei must hold. Hence, we arrive at the following chain
of necessary conditions for this to be a refined ORE:

emi + ∑
k∈N\mi

ek ≤ fmi(e−mi) + ∑
k∈N\mi

ek = e∗ ≤ fei(e−ei) + emi ≤ eei + emi ,

where either the first or the last inequality are strict (or both). This in turn leads
to a contradiction to the requirement that ei nests the neighborhood of mi. Thus,
payoffs must be ordered as in (A.24). �

A.3.4 Circle

ORE with limited preference strength: Suppose that all players’ social pref-
erences are “small”, i.e., ε < e∗/5. We show that the classes of ORE resemble a
specialized or a fully distributed investment profile.

Fix the sequence of players in the order i− j− k− l. First, suppose that em > 0
for all m ∈ N (a fully distributed profile). Based on the best-response condition (3),
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em > 0 must lie inside the interval e ≤ em ≤ ē, where

e + 2 ē = e∗ − ε ,
ē + 2 e = e∗ + ε .

Solving these two identities and simplifying, we arrive at

e∗

3
− ε ≤ em ≤

e∗

3
+ ε for all m ∈ N .

Next, suppose that ei = 0 for player i. It follows that player i’s neighbors, j and
l, must make some positive investment. In particular, it must be ej > 0 and el >
0 because suppose, to the contrary, that ej = 0 (or el = 0, or both are equal to
zero). Then, ek > 0 since otherwise ei + ej + ek = 0. In fact, we would require
that simultaneously it holds ek ≥ e∗ − ε and el ≥ e∗ − ε. This, however, leads to a
contradiction because it implies for a payoff maximizer in player k’s position that
fk(e−k) ≤ e∗ − (e∗ − ε). Thus, for a social player k we get fk(τk, e−k) = ek ≤ 2ε.
However, this is at odds with the requirement ek ≥ e∗ − ε when ε < e∗/3. Thus, if
ei = 0 for player i, then it must be ej > 0 and el > 0.

But this also implies that ek = 0 because suppose, to the contrary, that ek > 0.
Because

e∗ − ε ≤ ej + ek + el ≤ e∗ + ε

and

e∗ − ε ≤ ek + el ≤ e∗ + ε ,

it follows that el ≤ 2ε and ej ≤ 2ε. This implies, however, that the total contribution
received by player i is no larger than 4ε. Hence, for ε < e∗/5 it is ej + el ≤ 4ε <
e∗− ε. A contradiction to ei = 0. Thus, it must be ek = 0 (a specialized equilibrium).
In particular, together with the equilibrium investments of j and l, we get that
(0 , [e∗ ± ε] , 0 , [e∗ ± ε]). �
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B Experimental Appendix

B.1 Alternative refinement concepts
To put our findings into perspective, this appendix compares our refined ORE

predictions with those of several alternative equilibrium refinement concepts. Ta-
ble 7 summarizes the predictions of the most relevant concepts:18

• Asymptotic stability (Bramoullé and Kranton, 2007) based on the idea that sta-
ble equilibria occur more frequently in our continuous-time experiment be-
cause a best-response dynamic leads back to them after a single mistake.

• Efficiency (Charness, Feri, Meléndez-Jiménez, and Sutter, 2014) based on the
idea that subjects used the time we gave them to coordinate on a group
welfare-maximizing equilibrium.

• Quantal response (logit) equilibria (McKelvey and Palfrey, 1995; Rosenkranz
and Weitzel, 2012) based on the idea that subjects play a best response to the
fluctuating, probabilistic choices of their neighbors.

As can be seen in Table 7, the alternative concepts do not explain our experi-
mental findings better than our social preference theory. On the contrary,

• Efficiency performs worse than our social preference theory in most net-
works. The predictive power of efficiency is particularly low in the star and
the core-periphery network, where it is efficient when the center player pro-
vides the public good all by himself but where such a center-sponsored pro-
file is never observed. This is not entirely surprising. As suggested by the
findings in Charness, Feri, Meléndez-Jiménez, and Sutter (2014), efficiency
concerns are particularly powerful in games where equilibrium outcomes
can be Pareto ranked, which is however not the case in our games with strate-
gic substitutes.

• Asymptotic stability predicts better than efficiency, in particular in the star,
the core periphery, and the d-box. But it fails to predict the empirically very
relevant equal-split equilibria on the dyad.19

• Only quantal response theory comes close to our social preference theory. As
shown in Rosenkranz and Weitzel (2012), the theory selects a unique payoff-
maximizing equilibrium when players make no more than marginal decision
errors. The resulting refined payoff-maximizing equilibria are identical to
our refined ORE in all the networks mentioned above. Yet, quantal response
theory tends to generate a too fine-grained selection on the equilibrium set.
This leads to the situation that on the circle, quantal response theory predicts
an egalitarian split of e∗ = 12 as the unique equilibrium profile, even though
a specialized equilibrium is equally relevant in the data.

For additional evidence, Table 8 calculates the hit ratios (Selten, 1991) of our so-
cial preference theory and the alternative refinement concepts. The hit ratio bench-
marks the predictive power of a concept against the chance prediction. It is the ratio
between the observed frequency of the predicted equilibrium type and the predicted
frequency of this type assuming that all investment profiles are randomly drawn

18Risk dominance (Harsanyi and Selten, 1988) is omitted as a selection criterion because
we deem it less relevant in our context. The subjects in our experiment were continuously
informed about the investments of the other players so that strategic uncertainty is not a
major concern for them.

19The reason is that all equilibrium profiles are stable on the dyad. To see this, start
from a payoff-maximizing equilibrium profile with ei + ej = 12. Suppose player i would
mistakenly reduce her investment ei by x. A best response by player j would then lead to
the different equilibrium (ei − x) + (ej + x) = 12.
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from a set of potential profiles. The hit ratio thus takes into account that some equi-
librium types might be more frequently observed because there is a larger number
of investment profiles consistent with them so that they are more likely to emerge
by pure chance. A hit ratio greater (smaller) 1.00 indicates a prediction that is more
(less) successful than a chance prediction. In particular, the hit ratios in Table 8
benchmark the observed frequencies of an equilibrium type against its predicted
likelihood given a random draw from the set of (extended) Nash equilibria. Ac-
cordingly, the sets of potential profiles in Table 8 are the sets of payoff-maximizing
equilibria in columns 2–4, the sets of ORE profiles with χ < 3 in column 5, and the
ORE profiles with any χ in column 6.

Comparing the different columns in Table 8 shows that our social preference
theory predicts at least as well as any of the alternative concepts in all network
structures. In contrast to efficiency and asymptotic stability, the power of our the-
ory is that it selects the “natural” equilibria in the dyad and all the asymmetric
networks (star, core periphery, d-box, line), that is, an egalitarian equilibrium in
the former and a periphery-sponsored public good in the latter. The value-added
over quantal response theory is, in turn, that it does not rule out the co-existence of
multiple, empirically relevant equilibria on the circle network.

B.2 Alternative social preference estimates
Table 9 categorizes our preferred parameter estimates from the main text for

each subject’s (σi, ρi)-pair into seven distinct social preference types and three dis-
tinct strength classes. Notably, the preference strength estimates are much in line
with our descriptive findings in Figure 6. There, we saw that the final investments
in each network position did not deviate much from a pure payoff-maximizing best
response. 84.8% of the estimates in Table 9 imply a moderate (ε̂i < 3) and 74.6% a
marginal (ε̂i < 1) preference strength. This confirms the validity of our estimations.
Strikingly also, the preference type estimates indicate the same sizable preference
heterogeneity that was already found in earlier experiments (e.g., Charness and
Rabin, 2002; Falk, Becker, Dohmen, Enke, Huffman, and Sunde, 2018; Bruhin, Fehr,
and Schunk, 2019). Yet, there are some marked differences with regard to the most
prevalent preference types. According to our estimations, a large majority of sub-
jects is of an inequity-averse, competitive, or spiteful type. Meanwhile, only 2.1%
and 4.8% show some concern for social welfare or altruism respectively, which are
the most frequent types in the studies mentioned above.20

We therefore also estimated our subjects’ social preferences in several alterna-
tive ways. Table 10 summarizes these estimates, which stem from three alterna-
tive utility functions and a different subset of experimental data. Column 1 repli-
cates our preferred estimates based on utility function (2) and assuming that sub-
jects only compare with their direct neighbors in a network (Ri = Ni). Columns
2–4 are based on a variant of this function. In particular, in Columns 2 and 3,
we assume that subjects compare with everybody else, which is a plausible alter-
native assumption to make because subjects can see everyone’s payoffs on their
screens.21 Columns 2 and 4, in turn, use a different subset of data as we have based
our estimations there on the investment decisions in the early rounds of the net-
work games, t ∈ [20, 30). Our motivation is to alleviate the potential concern that
the late-game decisions are “spoiled” by the early decisions by other players. In
Columns 5 and 6, we, finally, base our estimations on the original distributive pref-
erence function of Charness and Rabin (2002). According to this function, a player’s
social preference component consists of the difference between players’ own payoffs
and the payoffs of their peers, rather than the absolute level of other players’ payoff

20The estimates in Bellemare, Kröger, and Van Soest (2008) and Kerschbamer and Müller
(2020) are, in contrast, closer to our findings.

21Against this assumption speaks the fact that subjects only influence their neighbors’
payoffs directly.
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as in function (2).22 Again, just as in Columns 1–4, we estimated two variants of
this utility function that differ with respect to how many players are included in a
subject’s reference group.

Overall, the preference estimates based on the late-game decisions [30, tmax] are
preferable over those from the early decisions [20, 30). The latter seem to be heav-
ily influenced by the initial conditions, that is, the fact that subjects click up from
initial zero investments, as indicated by the unreasonably high shares of spiteful
subjects in Columns 2 and 4. Similarly, the assumption of a neighborhood com-
parison in Column 1 seems to be more reasonable to make because the alternative
assumption in Column 3 yields an unreasonably high share of asocial types. For the
same reason, the estimates in Column 1 are preferable over those in Columns 5 and
6, which are based on the original Charness and Rabin (2002) function and which
show unreasonably high shares of asocial types. An issue with this utility function
in the context of the Bramoullé and Kranton (2007) game is that—depending on the
curvature of the benefit function b(·)—the function can rationalize a downward de-
viation from a payoff-maximizing best response as either an attempt to increase or
to reduce payoff inequality. In particular, given the curvature of b(·) in our exper-
iment, the function interprets the frequently observed downward deviations from
the privately optimal level of e∗ = 12 units in the peripheral positions of the star,
core periphery, and d-box as attempts to increase payoff inequality when the focal
player is behind. This is because an investment reduction by the peripheral player
has a more detrimental impact on her own payoff than on the center’s payoff. As
a result, the Charness and Rabin (2002) utility function classifies many decisions
as motivated by a love of behindness, that is, it estimates positive values for σi.
Accordingly, we find many asocial types, which are instead classified as spiteful or
competitive types by our preferred model (2).

B.3 Hypothesis 1: additional evidence
Our results should not be affected by the way we estimate the social preference

types of our subjects. Intuitively, if the measurement affects all social preference es-
timates alike, then it should not change our conclusion regarding the compatibility
of preferences in a subject group.

In support of this, Table 11 replicates our results on Hypothesis 1 based on the
three most meaningful alternatives to our preferred social preference estimates.
The results of all three models lend support to the key mechanism behind our the-
ory: Groups with compatible preferences coordinate more likely on a refined ORE
and less likely on a non-refined ORE.

B.4 Hypothesis 2: Additional evidence
Here, we present the results of our Placebo test for the circle network. Accord-

ing to our theory, social preferences should fail to select equilibria on this network,
even if all players share the same preference so that a distribute equilibrium might
be expected, or every second player is competitive while every other player is an
altruist so that a specialized profile is expected.

Table 12 presents our findings from four multinomial logit models. The de-
pendent variable in all four models is a multinomial variable that categorizes the

22In particular, we estimated the following function:

Ui(ei, e−i) = πi +
1
|Ri| ∑

j∈Rs

(
ρi rij + σi sij

)
(πj − πi) + θ(ei ,i),

where θ(ei ,i) denotes a random player- and investment-specific utility component and

rij = 1 if πi > πj and rij = 0 otherwise,
sij = 1 if πi < πj and sij = 0 otherwise.
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round-end investment profiles on the circle into six different outcome classes. In
Model 1, investments are categorized in terms of how much they resemble a dis-
tributed equilibrium, and in Models 2 and 3 in terms of how much they resem-
ble one of the two specialized equilibria on the circle.23 Model 4 presents a joint
test of Models 1–3. The independent variable measures whether a subject group
has a preference combination that matches the compatibility requirements for the
complete network (Model 1) or the line network (Models 2 and 3). Concretely,
for Model 1, we searched for groups where every subject matches the compatibil-
ity requirements defined in Appendix A.3.1. For Models 2 and 3, in contrast, we
searched for groups where every second subject matches the compatibility require-
ments for a line middle player and every other subject the requirements for a line
end player (see Appendix A.3.3).

Turning to the findings, the accompanying likelihood ratio tests do not show
any sign of equilibrium selection on the circle. Because of the small number of
groups who match the preference requirements for either the complete network or
the line, many of the tests are inconclusive. If they are conclusive, however, the
χ2-statistic is too small to reject the null hypothesis of no impact on equilibrium
selection.

23Table 6 presents the exact criteria for a distributed and a specialized equilibrium on the
circle, respectively.
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C Replication instructions

C.1 Experimental design
The computerized experiment was designed using the software program z-tree

3.0 (Fischbacher, 2007) and conducted in the Experimental Laboratory for Sociol-
ogy and Economics (ELSE) at Utrecht University between 09.06. and 18.06.2008.

In the experiment, subjects had to invest in the production of a local public
good in each of the seven network structures shown in Figure 1. In total, eight ex-
perimental sessions of approximately one-and-a-half hours length were scheduled
and completed. Using the ORSEE recruitment system (Greiner, 2004), over 1,000
potential subjects were approached by e-mail to participate in the experiment. On
average, 15 students participated per session, which gives 120 subjects in eight ses-
sions.

A session consisted of seven treatments with varying order of treatments be-
tween the sessions. Each network structure represents a different treatment. Table
8 gives an overview.

Ordering of treatments in sessions 

Session Ordering Treatment 
1 2 3 4 5 6 7 

1 1 Dyads Line Star Square Core Dbox Complete 
2 2 Complete Dbox Core Square Star Line Dyads 
3 3 Dyads Star Line Core Square Dbox Complete 
4 4 Complete Dbox Square Core Line Star Dyads 
5 3 Dyads Star Line Core Square Dbox Complete 
6 2 Complete Dbox Core Square Star Line Dyads 
7 1 Dyads Line Star Square Core Dbox Complete 
8 4 Complete Dbox Square Core Line Star Dyads 
 

Links between players (see power point): 

Dyads:   1-2, 3-4 

Line:   1-2-3-4 

Star :   1 is the center 

Square:   1-2-3-4-1 

Core:   4 is the center; 2 and 3 connected;  

Dbox:   1 and 3 are not connected 

Complete:  all connected 

Figure 8: Order of treatments by session

General instructions were given before the start of a session (see the instruc-
tions below). In each treatment, subjects played a local public goods game on a
given network structure fives times, for 60 seconds on average under the same
conditions. In particular, being positioned in a specific network, subjects could in-
vest for a limited amount of time in order to improve their experimental points that
were calculated based on formula (12).

The five repetitions of a treatment are called rounds, and each treatment con-
sisted of one trial round and four payment rounds. At the beginning of a round,
subjects were randomly allocated to a group together with either one or three other
participants. Subjects were indicated as circles on the screen and could identify
themselves by color: Each subject saw him- or herself as a blue circle while all
neighbors were represented as black circles (see below for a screenshot).

Each round had the same structure and lasted between 30 and 90 seconds. The
round ends were unknown and randomly determined. Starting from a situation
of zero investments, subjects indicated simultaneously on their computer termi-
nals (by clicking on one of two buttons at the bottom of the screen) whether they
wished to in- or decrease their investment. Full information about the momen-
tary investments of all other subjects was continuously provided and updated five
times per second by the computer. Also, the resulting payoffs of all participants
could continuously be observed on the screen. At the end of a round, subjects were
informed about the number of points they earned with the investments they saw
on their screen. In other words, final earnings only depended on the situation at
the end of a round.

Subjects were not identifiable between different rounds or at the end of the ex-
periment. In this fashion, we minimized the dependence across observations (Falk
and Kosfeld, 2012). Taking the seven treatments together, every subject played 35
network games in 35 different groups, of which 28 were payoff relevant. Alto-
gether, this gives 960 networks games and 3,360 investment decisions (8 sessions
times 15 subjects on average per session times 7 treatments (6 networks of 4 sub-
jects and 1 network of 2 subjects) times 4 cycles). At the end of the experiment,
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the experimental points were converted into euros at a rate of 400 points = 1 euro.
In addition, subjects received a 3 euro participation fee. The average earning was
thus 11.82 euros.

C.2 Experimental instructions
C.2.1 English version

 1 

Experimental Laboratory for Sociology and Economics 

 

- Instructions - 
 

Please read the following instructions carefully. These instructions state everything you 

need to know in order to participate in the experiment. If you have any questions, please 

raise your hand. One of the experimenters will approach you in order to answer your 

question. The rules are equal for all the participants. 

 

You can earn money by means of earning points during the experiment. The number of 

points that you earn depends on your own choices, and the choices of other participants. 

At the end of the experiment, the total number of points that you earn during the 

experiment will be exchanged at an exchange rate of: 

 

400 points = 1 Euro 

 

The money you earn will be paid out in cash at the end of the experiment without other 

participants being able to see how much you earned. Further instructions on this will 

follow in due time. During the experiment you are not allowed to communicate with 

other participants. Turn off your mobile phone and put it in your bag. Also, you may 

only use the functions on the screen that are necessary for the functioning of the 

experiment. Thank you very much. 

 

 

- Overview of the experiment - 

 

The experiment consists of seven scenarios. Each scenario consists again of one trial 

round and four paid rounds (altogether 35 rounds of which 28 are relevant for your 

earnings).  

 

In all scenarios you will be grouped with either one or with three other randomly 

selected participants. At the beginning of each of the 35 rounds, the groups and the 

positions within the groups will be randomly changed. The participants that you are 

grouped with in one round are very likely different participants from those you will be 

grouped with in the next round. It will not be revealed with whom you were grouped at 

any moment during or after the experiment. 

 

The participants in your group (of two or four players, depending on the scenario) will 

be shown as circles on the screen (see Figure 1). You are displayed as a blue circle, 

while the other participants are displayed as black circles. You are always connected to 

one or more other participants in your group. These other participants will be called 

your neighbors. These connections differ per scenario and are displayed as lines 

between the circles on the screen (see also Figure 1). 

 

Each round lasts between 30 and 90 seconds. The end will be at an unknown and 

random moment in this time interval. During this time interval you can earn points by 

producing know-how, but producing know-how also costs points. The points you 

receive in the end depend on your own investment in know-how and the investments of 

your neighbors. 
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Figure 1 

 
 

By clicking on one of the two buttons at the bottom of the screen you increase or 

decrease your investment in know-how. At the end of the round, you receive the amount 

of points that is shown on the screen at that moment in time. In other words, your final 

earnings only depend on the situation at the end of every round. Note that this end can 

be at any between 30 and 90 seconds after the round is started and that this moment is 

unknown to everybody. Also different rounds will not last equally long. 

 

The points you will receive can be seen as the top number in your blue circle. The 

points others will receive are indicated as the top number in the black circles of others. 

Next to this, the size of the circles changes with the points that you and the other 

participants will receive: a larger circle means that the particular participant receives 

more points. The bottom number in the circles indicates the amount invested in know-

how by the participants in your group. 

 

Remarks: 

 It can occur that there is a time-lag between your click and the changes of the 

numbers on the screen. One click is enough to change your investment by one. A 

subsequent click will not be effective until the first click is effectuated. 

 Therefore wait until your investment in know-how is adapted before making 

further changes! 

 
- Your earnings - 

 
Now we explain how the number of points that you earn depends on the investments. 

Read this carefully. Do not worry if you find it difficult to grasp immediately. We also 

present an example with calculations below. Next to this, there is a trial round for each 

scenario to gain experience with how your investment affects your points.  

 

In all scenarios, the points you receive at the end of each round depend in the same way 

on two factors: 

 

1. Every unit that you invest in know-how yourself will cost you 5 points. 

2. You earn points for each unit that you invest yourself and for each unit that 

your neighbors invest. 
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If you sum up all units of investment of yourself and your neighbors, the following table 

gives you the points that you earn from these investments: 

 

Your investment plus 

your neighbors’ 

investments 

0 1 2 3 4 5 6 7 8 9 10 

Points 0 28 54 78 100 120 138 154 168 180 190 

 

Your investment plus 

your neighbors’ 

investments 

11 12 13 14 15 16 17 18 19 20 21 

Points 198 204 208 210 211 212 213 214 215  216 217 

 

The higher the total investments, the lower are the points earned from an additional unit 

of investment. Beyond an investment of 21, you earn one extra point for every 

additional unit invested by you or one of your neighbors. 

 

Note: if your and your neighbors’ investments add up to 12 or more, earnings 

increase by less than 5 points for each additional unit of investment. 

 

- Example - 

Suppose 

1. you invest 2 units; 

2. one of your neighbors invests 3 units and another neighbor invests 4 units. 

 

Then you have to pay 2 times 5 = 10 points for your own investment.  

 

The investments that you profit from are your own plus your neighbors’ investments: 2 

+ 3 + 4 = 9. In the table you can see that your earnings from this are 180 points. 

 

In total, this implies that you receive 180 − 10 = 170 points if this would be the situation 

at the end of the round. Figure 1 shows this example as it would appear on the screen. 

The investment of the fourth participant in your group does not affect your earnings. In 

the trial round before each of the seven scenarios, you will have time to get used to how 

the points you will receive change with investments. 

 

- Scenarios - 

 

All rounds are basically the same. The only thing that changes between scenarios is 

whether you are in a group of two or four participants and how participants are 

connected to each other. Also your own position randomly changes within scenarios and 

between rounds. We will notify you each time on the screen when a new scenario and 

trial round starts. At the top of the screen you can also see when you are in a trial round 

(see top left in Figure 1). Paying rounds are just indicated by “ROUND” while trial 

rounds are indicated by “TRIAL ROUND”. 

 
- Questionnaire - 

 

After the 35 rounds you will be asked to fill in a questionnaire. Please take your time to 

fill in this questionnaire accurately. In the mean time your earnings will be counted. 

Please remain seated until the payment has taken place.  
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C.2.2 Dutch version

 1 

Experimental Laboratory for Sociology and Economics 

 

- Instructions - 
 

Neemt u alstublieft de volgende instructies aandachtig door. Hierin staat alles wat u 

moet weten om deel te nemen aan het experiment. Indien u vragen hebt, steek uw hand 

op. Er zal iemand bij u komen om uw vraag te beantwoorden. Deze regels zijn hetzelfde 

voor alle deelnemers. 

 

U kunt geld verdienen tijdens dit experiment door het vergaren van punten. Het aantal 

punten dat u verdient, hangt af van uw eigen keuzes en van de keuzes van andere 

deelnemers. Het totaal aantal punten dat u verdient in het experiment zal aan het einde 

van het experiment omgewisseld worden tegen de wisselkoers van: 

 

400 punten = 1 Euro 

 

Aan het einde van het experiment krijgt u het geld dat u verdiend hebt tijdens het 

experiment contant uitbetaald. Later volgen hierover verdere instructies. Tijdens het 

experiment is het niet toegestaan te communiceren met andere deelnemers. Zet u 

mobiele telefoon uit en berg hem op in uw tas. U mag ook alleen de functies op het 

scherm activeren die nodig zijn voor het functioneren van het experiment. Hartelijk 

dank. 

 

- Overzicht van het experiment - 

 

Het experiment bestaat uit zeven scenario’s. Elk scenario bestaat weer uit één 

proefronde en vier betaalde rondes (samen 35 rondes waarvan er 28 relevant zijn voor 

uw verdiensten).  

 

In alle scenario’s wordt in een groep geplaatst met één of drie andere deelnemers. Aan 

het begin van elk van de 35 rondes worden de groepen en de posities binnen de groepen 

willekeurig veranderd. De deelnemers waarmee u in de ene ronde in een groep zit, zijn 

zeer waarschijnlijk andere deelnemers dan diegene waarmee u in de volgende ronde in 

een groep zit. Tijdens of na het experiment zal het niet bekend worden gemaakt met wie 

u in een groep gezeten hebt. 

 

De deelnemers in uw groep (dat zijn er twee of vier afhankelijk van het scenario) 

worden als cirkels weergegeven op het scherm (zie Figuur 1). U wordt zelf 

weergegeven met een blauwe cirkel, terwijl de andere deelnemers worden weergegeven 

als zwarte cirkels. U bent altijd verbonden met één of meer andere deelnemers in uw 

groep. Deze andere deelnemers noemen we uw buren. Deze verbindingen verschillen 

per scenario and worden weergegeven met lijnen tussen de cirkels op het scherm (zie 

ook Figuur 1). 

 

Elke ronde duurt tussen de 30 en 90 seconden. Het einde zal op een onbekend en 

willekeurig moment in dit tijdsinterval plaatsvinden. Tijdens dit tijdsinterval kunt u 

punten verdienen door kennis te produceren, maar de productie van kennis kost ook 

punten. De punten die u aan het einde ontvangt, hangen af van uw eigen investering in 

kennis en van de investeringen van uw buren.  
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Figuur 1 

 
 

Door te klikken op de twee knoppen onder aan het scherm, kunt u uw investering in 

kennis verhogen of verlagen. Aan het einde van elke ronde, ontvangt u het aantal punten 

dat op dat moment op het scherm wordt weergegeven. Uw uitbetaling hangt dus alleen 

af van de situatie aan het einde van elke ronde. Merk op dat dit einde komt op een voor 

iedereen onbekend moment tussen de 30 en 90 seconden na het begin van de ronde. 

Verschillende rondes zullen ook niet even lang duren. 

 

Het aantal punten dat u zult ontvangen zijn weergegeven als het bovenste getal in uw 

blauwe cirkel. De punten die anderen zullen ontvangen zijn weergegeven als het 

bovenste getal in hun zwarte cirkels. Daarnaast verandert de grootte van de cirkels met 

het aantal punten dat u of de andere deelnemers zullen krijgen: een groter cirkel 

betekent dat die deelnemer meer punten zal verdienen. Het onderste getal in de cirkels 

geeft het aantal punten weer dat de deelnemers in uw groep investeren in kennis. 

 

Opmerkingen: 

• Het kan gebeuren dat er een vertraging is tussen uw klik en de veranderingen van de 

getallen op het scherm. Eén klik is voldoende om uw investering met één punt te 

veranderen. Een volgende klik zal pas effect hebben als de eerste klik is verwerkt. 

• Wacht daarom met een volgende klik totdat uw eerdere verandering verwerkt 

is op het scherm! 

 
- Uw verdiensten - 

 
Nu leggen we uit hoe uw verdiensten afhangen van de investeringen. Lees dit 

zorgvuldig! Wees niet bezorgd als het niet meteen helemaal duidelijk is. We zullen 

zodadelijk ook een rekenvoorbeeld laten zijn. Daarnaast is er bij elk scenario een 

proefronde om ervaring te krijgen met hoe uw investering uw aantal punten bepaalt.  

 

In alle scenario’s hangt het aantal punten dat u ontvangt aan het einde van een ronde af 

van twee factoren: 

 

1. Elke eenheid die u investeert in kennis kost uzelf 5 punten. 

2. U verdient punten met elke eenheid die uzelf investeert en met elke eenheid 

die uw buren investeren. 
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Als u de hoeveelheid die uzelf investeert en de investeringen van uw buren optelt, geeft 

de volgende tabel weer hoeveel punten u verdient met deze investeringen: 

 

Uw investeringen plus 

investeringen van uw 

buren 

0 1 2 3 4 5 6 7 8 9 10 

Punten 0 28 54 78 100 120 138 154 168 180 190 

 

Uw investeringen plus 

investeringen van uw 

buren 

11 12 13 14 15 16 17 18 19 20 21 

Punten 198 204 208 210 211 212 213 214 215  216 217 

 

Hoe hoger de investeringen worden, hoe minder punten erbij komen voor nieuwe 

investeringen. Als het totaal van investeringen boven de 21 komt, ontvangt u nog één 

punt voor elke volgende eenheid die u of een van uw buren investeren.  

 

Let op: als uw investering plus die van uw buren samen 12 of meer zijn, stijgen uw 

verdiensten met minder dan 5 punten per extra eenheid investering. 

 

- Voorbeeld - 

Stel 

1. u investeert 2 eenheden; 

2. één van uw buren investeert 3 eenheden, een andere buur 4 eenheden. 

 

Dan moet u 2 keer 5 = 10 punten betalen voor uw eigen investering. 

 

De investeringen waarvan u profiteert zijn uw eigen investering plus die van uw buren: 

2 + 3 + 4 = 9. In the tabel kunt u zien dat dit u 180 punten oplevert.  

 

In totaal betekent dit dat u 180 − 10 = 170 punten verdient als dit de situatie zou zijn aan 

het einde van de ronde. Figuur 1 laat dit voorbeeld zien zoals het op uw scherm 

verschijnt. De investering van de vierde deelnemer in uw groep heeft geen effect op uw 

aantal punten. In de proefronde aan het begin van elk scenario krijgt u de kans om te 

wennen aan hoe de punten die u ontvangt veranderen met de investeringen.  

 

- Scenario’s - 

 

Alle rondes zijn in principe hetzelfde. Het enige wat verandert tussen de scenario’s is de 

manier waarop u met andere deelnemers verbonden bent. Ook zal uw eigen positie in 

een groep kunnen veranderen tussen rondes. U krijgt elke keer een mededeling op het 

scherm als een nieuw scenario en een proefronde begint. Bovenaan het scherm kunt u 

ook zien of u in een proefronde zit (zie Figuur 1). Betaalde rondes worden aangegeven 

met alleen “RONDE”, terwijl proefrondes worden aangegeven met “PROEFRONDE”. 

 
- Vragenlijst - 

 

Aan het einde van de 35 rondes vragen we u nog om een vragenlijst in te vullen. Neem 

alstublieft rustig te tijd om deze vragenlijst precies in te vullen. Ondertussen tellen wij 

uw verdiensten. Blijft u op uw plek totdat de betaling is afgerond. 

C.3 Selection and eligibility of participants
Subjects subscribe to a database via a website (www.elseutrecht.nl), which ex-

plains the type of experiments that they subscribe for. The Welcome-text is shown
in Appendix C.4.

All subjects are recruited from this database. By subscribing a subject indicates
her willingness to participate in the type of experiments described. This means that
by subscribing, a subject in principle agrees to participate in the described type of
task. All experiments exclusively involve computerized tasks.

At the beginning of an experiment, subjects are informed that if for any reason
they might not be willing to continue, they can notify the experiment leader and
stop the experiment (for details on the rules, see elseutrecht.nl/public/rules.php).
No further explicit consent form is used for individual experiments.
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C.4 Recruitment text

Recruitment text participants  

Welcome! This is the web site of the "Experimental Laboratory for Sociology and Economics"(ELSE)              
at Utrecht University. 

ELSE is a computer room. It is used for studying social science and economics research questions in an                  
experimental manner. For this purpose, we are looking for people who are interested to participate in                
our experiments. During an experiment, up to 30 participants at a time can get a place at one of the                    
computers in ELSE. The participants anonymously interact with other participants via the computer and              
answer a short questionnaire about themselves. On average, participants earn between 8 and 10 EURO               
per hour, but this amount can vary between studies. The exact amount of money received typically                
depends on the decisions made by oneself and other participants. The experiments do not involve other                
tasks than making decisions during anonymous interactions, and answering questions via the computer,             
unless this is explicitly mentioned in an invitation.  

Are you interested in earning money for your decisions and answering our questions, support science 
and gain some insight into this research field? Then be welcome to participate in our experiments!  

In order to participate, you first need to subscribe to the participants database via this web site (click on                   
register in the menu on the left side). Every now and then you will receive a message inviting you for a                     
specific experiment. At that moment you can decide whether you want to participate in a specific                
experiment (see Rules)  

Before you subscribe to the participants database, you need to indicate that you agree with the rules we 
follow. Please read the information provided on our web site concerning:  

- Participation and Rules of Proper Laboratory Behavior - 
Researchers' Commitments and Privacy Policy - 
Frequently Asked Questions (FAQs)  

If you have further questions, please feel free to contact us using the e-mail address below.  

ELSE is located at the Uithof in the Sjoerd Groenmangebouw, Padualaan 14 at the 3rd floor in room 
A3.03.  
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C.5 Approval of the Institutional Review Board
This experiment is one of a series of experiments conducted for a project enti-

tled “Cooperation in Social and Economical relationship”. The Ethics committee
of Social and Behavioral Sciences of Utrecht University granted joint approval to
all the experiments of this project including the current experiment. The approval
was filed on October 22, 2017, under number FETC17-028.
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Table 6: Experimental predictions

Payoff-maximizing equilibria Other-regarding equilibria

Dyad and ∑i∈N ei = 12 (S,E) ∑i∈N ei ∈ [12± ε]
complete (Q: ei = ej =

12
n ) Refined ORE:

ei = ej ∈ [ 12±ε
n ]

Star (i) ec = 0, ep = 12 (i) ec = 0, ep ∈ [12± ε]
(ii) ec = 12, ep = 0 (ii) ec ∈ [12− 7ε

3 , 12 + ε],
(S,Q: (i) selected) ∑j∈P ej ≤ 4ε

(E: (ii) selected) Refined ORE:
πc ≥ minj∈N\c{πj}

Refined ORE with ε < 3:
(i) selected

Core (i) ec = 0, ep = 12, (i) ec = 0, ep ∈ [12± ε],
periphery ∑j∈D ej = 12 ∑j∈D ej ∈ [12± ε]

(ii) ec = 12, e−c = 0 (ii) ec ∈ [12− 7ε
3 , 12 + ε],

(S: (i) selected) ∑j 6=c ej ≤ 4ε

(Q: (i) selected with ed = 6) Refined ORE:
(E: (ii) selected) πc ≥ minj∈N\c{πj}

Refined ORE with ε < 3:
(i) selected

D-box (i) ec = 0, ep = 12 (E) (i) ec = 0, ep ∈ [12± ε]
(ii) ep = 0, ∑i∈C ei = 12 (E) (ii) ∑i∈C ei ∈ [12− 3ε, 12 + ε],

(S,Q: (i) selected) ∑j∈P ej ≤ 4ε

Refined ORE :
πc ≥ minj∈P{πj}

Refined ORE with ε < 2:
(i) selected

Line (i) eei = 12, emi = 0, ∀i : ei + ∑j∈Ni
ej ≥ e∗ − ε

emj + eej = 12 (S) ORE with ε < 3:
(ii) emj = 0, eej = 12 (Q) (i) eei ∈ [12± ε], emi = 0,
(iii) emj = 12, eej = 0 (E) emj + eej ∈ [12± ε],

(ii) ee ∈ [12− 3ε, 12 + ε],
em ≤ 2ε

Refined ORE:
πmi ≥ πei

Circle (i) ei = 0, ei+1 = 12 ∀i : ei + ei−1 + ei+1 ≥ e∗ − ε
(ii) ei = 4 ORE with ε < 3:

(S,E: (i) selected) (i) ei = 0, ei+1 ∈ [12± ε]
(Q: (ii) selected) (ii) ei ∈ [4± ε]

NOTES: (Other-regarding) equilibria for the experimental games where deci-
sions in the final round are rewarded according to payoff function (12) with
e∗ = 12. For comparison, the equilibria selected by alternative equilibrium re-
finement methods are indicated as well: (S) asymptotic stability, (Q) quantal
response equilibria with marginal decision errors, (E) efficient equilibra.
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Table 7: Frequency of refined equilibria

Deviation from
payoff-maximizing equilibrium

Network Equilibrium type zero moderate any
(χ = 0) (χ < 3) (any χ)

Dyad equal 32.1% (S,E,Q,rfd) 45.8% (rfd) 49.2% (rfd)
other 8.8% (S,E) 33.0% 50.8%

Complete equal 0.8% (S,E,Q,rfd) 0.8% (rfd) 0.8% (rfd)
other 20.8% (S,E) 62.5% 99.2%

Star per-spon 15.8% (S,Q,rfd) 33.3% (rfd) 62.5% (rfd)
cent-sp: πc ≥ πj — — 36.6% (rfd)
cent-sp: other 0% (E) 0.8% 0.8%

Circle spec 7.5% (S,E) 16.6% 29.2%
distr 3.3% (Q) 27.5% 55.0%

Core per-spon 17.5% (S,Q,rfd) 43.3% (rfd) 68.3% (rfd)
cent-sp: πc ≥ πj — — 31.7% (rfd)
cent-sp: other 0% (E) 0% 0%

D-box per-spon 8.3% (S,E,Q,rfd) 15.0% (rfd) 25.8% (rfd)
cent-sp: πc ≥ πj — 0.8% (rfd) 64.2% (rfd)
cent-sp: other 0% (E) 3.3% 10.0%

Line end-spon 0.8% (S,Q,rfd) 10.0% (rfd) 46.7% (rfd)
distr: πm ≥ πe 8.3% (S,rfd) 26.7% (rfd) 39.2% (rfd)
distr: other 0.8% (S,E) 0.8% 14.1%

NOTES: Percentages of (refined) equilibrium profiles at the random ends of the
960 network games. 240 observations for dyad, 120 for all other networks. Re-
fined equilibria are: (Q) quantal response, (S) stable, (E) efficient, (rfd) refined
other-regarding equilibria.

Table 8: Hit ratios of alternative refinement concepts

Quantal Refined ORE
Efficiency Stability response χ = 0 χ < 3 any χ

Dyad 1.00 1.00 10.20 10.20 12.59 8.36
Complete 1.00 1.00 16.85 16.85 9.88 39.30
Star 0.00 2.00 2.00 2.00 118.39 1.16
Circle 1.04 1.04 0.48 1.00 1.00 1.00
Core periphery 0.00 1.08 1.08 1.08 17.80 1.20
D-box 1.00 14.00 14.00 14.00 40.57 1.51
Line 0.15 1.00 1.99 1.99 1.05 2.01
Average 0.60 3.02 6.66 6.73 28.75 7.79
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Table 9: Preference type distribution

Preference strength
any moderate marginal

Preference type (any ε̂i) (ε̂i < 3) (ε̂i < 1)
altruism (ρ̂i ≥ σ̂i > 0) 4.8% 4.8% 4.8%
social welfare (ρ̂i > σ̂i = 0) 2.1% 2.1% 1.9%
inequity-aversion (ρ̂i > 0 > σ̂i) 10.2% 5.4% 3.5%
competitive (0 = ρ̂i > σ̂i) 30.6% 28.8% 25.4%
spiteful (0 > ρ̂i ≥ σ̂i) 20.8% 18.8% 14.0%
payoff maximizer (ρ̂i = σ̂i = 0) 23.3% 23.3% 23.3%
asocial (σ̂i > 0 > ρ̂i) 8.1% 1.7% 1.7%

100.0% 84.8% 74.6%

NOTES: Categorization of estimated (σ̂i, ρ̂i)-pairs according to re-
vealed preference type and revealed preference strength. A value
of −0.0465 < x < 0.048 for x ∈ {σ̂i, ρ̂i} is set to zero because a
player with such a small preference parameter would take a deci-
sion indistinguishable from a payoff-maximizer. The mapping of
the other (σ̂i, ρ̂i)-pairs into types and strengths is based on utility
function (2) and Lemma 1 applied to the experimental payoff func-
tion (12), yielding ε

p
i = 2.5ρi/(1 + ρi) and εn

i = 2.5σi/(1 + σi) as
preference strength measures. All remaining estimates, including
pairs with σ̂i ≤ −1 or ρ̂i ≥ 1, are categorized as asocial types.

Table 10: Alternative type distributions

Utility function: Function (2) C&R function
Reference group: neighbors all neighbors all
Estimation period: [30, tmax] [20, 30) [30, tmax] [20, 30) [30, tmax] [30, tmax]
Type distribution: (1) (2) (3) (4) (5) (6)

altruist 4.8 0.6 3.1 0.8 17.5 26.9
social welfare 2.1 0.2 2.1 0.4 4.4 5.4
inequity-averse 10.2 10.6 2.9 1.7 15.2 15.6
competitive 30.6 25.4 15.8 10.4 4.2 2.3
spiteful 20.8 41.0 15.4 59.2 7.3 3.1
payoff-max. 23.3 5.4 41.9 11.9 3.3 2.1
asocial 8.1 16.7 18.8 15.6 48.1 44.6

100 100 100 100 100 100

NOTES: Classification of estimated (σ̂i, ρ̂i)-pairs into social preference types. Estimates
are based on subject- and game-specific conditional logit estimations of four alternative
utility functions and two alternative estimation periods. See Section 4.2 for procedural
details.
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Table 11: Multinomial logit results for alternative type distributions

refined ORE non-refined ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)
Model 1 (Type distribution 3):
Compatibility 0.60 0.37 – 0.53 -0.05 -0.30

(0.57) (0.56) (0.87) (0.67) (0.68)
LR tests (Compatibility=0):

(1) versus (rest) 2.25
(1–2) versus (rest) 3.18*
(1–3) versus (rest) 1.00

Model 2 (Type distribution 5):
Compatibility 0.87 0.75 – -0.02 0.47 -25.14

(0.40) (0.17) (1.10) (0.49) (0.46)
LR tests (Compatibility=0):

(1) versus (rest) 5.87**
(1–2) versus (rest) 11.76***
(1–3) versus (rest) 3.02*

Model 3 (Type distribution 6):
Compatibility 1.22 1.04 – 0.65 0.72 -16.22

(0.78) (0.70) (0.58) (0.89) (0.87)
LR tests (Compatibility=0):

(1) versus (rest) 2.32
(1–2) versus (rest) 3.85**
(1–3) versus (rest) 1.96

NOTES: Coefficient estimates and standard errors (clustered at the session level in paren-
theses) of three multinomial logit models. Models are based on 840 observations from
final decision moments of all networks games, except the games on the circle. All mod-
els include an additional group-specific experience variable, measuring the x-th repetition
of the same network game, and two measures of network size and clustering. Likelihood
ratio tests report χ2-statistics. ∗∗∗p(χ2) < 0.01,∗∗ p(χ2) < 0.05,∗ p(χ2) < 0.1.
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Table 12: Placebo test on the circle—Multinomial logit results

Model 1: distributed ORE non-distributed ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)

Compatibility -0.26 -0.16 14.88 — -0.17 base
(0.79) (0.28) (1.07) — (0.32) outcome

Likelihood ratio test (Compatibility=0):
(1–3) versus (rest) —

Model 2: ORE: players 2 and 4 as free riders other ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)

Compatibility -14.55 -14.52 -14.52 -14.49 1.06 base
(0.85) (0.80) (0.94) (0.98) (0.67) outcome

Likelihood ratio test (Compatibility=0):
(1–3) versus (rest) —

Model 3: ORE: players 1 and 3 as free riders other ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)

Compatibility -12.64 1.36 1.21 -12.34 -0.17 base
(1.22) (1.05) (1.23) (1.00) (1.06) outcome

Likelihood ratio tests (Compatibility=0):
(1) versus (rest) —
(1–2) versus (rest) 0.40
(1–3) versus (rest) 1.98

Model 4: distributed/specialized ORE other ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)

Compatibility -13.88 -0.48 0.78 -13.77 0.55 base
(0.56) (1.01) (0.93) (0.86) (0.64) outcome

Likelihood ratio tests (Compatibility=0):
(1) versus (rest) —
(1–2) versus (rest) 1.11
(1–3) versus (rest) 0.00

NOTES: Results of four multinomial logit estimations for the final investments on the circle
network. Models 1–3: 120 observations; Model 4: pooled data of Models 1–3. All models
include a group-specific experience measure (measuring the x-th repetition of the game on
the circle). Likelihood ratio tests report χ2-statistics.
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