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Abstract

We propose an attribution of collective causal responsibility in a stochastic nonlinear sys-

tem to individual actors. To this end, we take an existing measure of collective causal re-

sponsibility from Vallentyne (2008) and Baumgärtner (2020), and adopt Shapley’s (1953)

fundamental concept of how to divide a collective effect into individual marginal contri-

butions. Our generic setting is a system with a potential regime shift where actions affect

the regime-shift probability – e.g. financial markets, managed ecosystems, or the Earth’s

climate system. This paper closes a gap in the literature on responsibility attribution: our

concept has cardinal properties and allows for multiple actors with simultaneous actions.

This is relevant for implementing efficient incentive schemes and liability for managers of

stochastic systems.
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1 Introduction

Attribution of causal responsibility for an outcome to individual actors poses a challenge in

stochastic nonlinear systems with multiple actors who act simultaneously: any given outcome

could be due to (individual or collective) actions, or brute luck, or a combination of all. Hence,

there is the question: “To what extent is an outcome caused by an individual actor’s action,

rather than by some other actor’s action or by brute luck?” This is important for implementing

efficient incentive schemes, and liability, for managers of stochastic systems.

We propose an attribution of collective causal responsibility in a stochastic nonlinear system

to individual actors. To this end, we take an existing measure of collective causal responsibility

from Vallentyne (2008) and Baumgärtner (2020), and adopt Shapley’s (1953) fundamental

concept of how to divide a collective effect into individual marginal contributions. Our generic

setting is a stochastic system with a potential regime shift, where actions affect the regime-

shift probability. Examples include managed ecosystems with alternative stable states such as

shallow lakes, rangelands or fisheries (Folke et al., 2004), the tipping of the Earth’s climate

system due to greenhouse gas emissions (Lenton et al., 2008; Steffen et al., 2018), or regime-

switching in financial markets due to regulation or investor behavior (Ang and Timmermann,

2012).

Our paper closes a gap in the literature on responsibility attribution. Braham and Van Hees

(2009) consider multiple actors in a simultaneous situation and study degrees of causation, yet

not with a cardinal measure. Dehez and Ferey (2013) and Ferey and Dehez (2016) propose

a method for sharing the (absolute) value of damage caused jointly by a group of tortfeasors;

yet they assume a sequential structure of the damage causation. Our concept has cardinal

properties and allows for multiple actors with simultaneous actions.

The paper is organized as follows. In Section 2, we introduce the model. In Section 3, we

propose the attribution measure and discuss its properties. Section 5 discusses and concludes.

2 Model

Consider a system which can be in either one of two states. A potential regime shift from the

initial state to the other state occurs with probability p ∈ [0, 1]. Before any actions take effect,
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the regime-shift probability is p0. This means, a shift could naturally occur due to stochastic

influences.

Each actor i ∈ N = {1, ..., n} chooses simultaneously with, and independently of, the other

actors her individual action ai ∈ R+. The collective action a = (a1, ..., ai, ..., an) is an element

of the action set A ⊆ Rn
+. P(N ) denotes the power set of N , i.e. the set of all subsets of all

actors, where every element C ∈ P(N ) defines a group (coalition) of acting actors. |C| denotes

the number of members in coalition C.

For any given actual action a ∈ A we define hypothetical actions as follows. If only members

of a particular coalition C were considered, and all other potential actors were not, the collective

action would be the n-tuple aC with components

aCj =

 aj for all j ∈ C

0 else
.

If the members of the coalition C and an additional actor i were considered, and all other

potential actors were not, the collective action would be the n-tuple aCi with components

aCij =

 aj for all j ∈ C ∪ {i}

0 else
.

Note that aN = a. The collective action influences the regime shift probability, as described

by a continuously differentiable function p : A→ [0, 1]. In general, the effect of the individual

actions ai on p is not linear, symmetric, or additive.1 We assume the following properties.

Assumption 1. For all a ∈ A:

p(0, ..., 0, ..., 0) = p0 , (1)

∂p

∂ai
≥ 0 for all i . (2)

(1) states that a collective null-action is probabilistically neutral: it does not change the

initial regime-shift probability p0. (2) states that the regime-shift probability is increasing

in every individual action ai. That is, for simplicity we assume that there are no probability-

lowering actions. Together, these two assumptions imply that there is no individual or collective

1There might be amplifying or extenuating effects in the combination of different individual actions.
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action which reduces the regime-shift probability p below p0. Furthermore, (2) implies that

C1 ⊆ C2 ⇒ p(aC1) ≤ p(aC2) for all C1, C2 ∈ P(N ) . (3)

That is, the regime-shift probability effected by the collective action of a subgroup C1 of a

coalition C2 cannot be larger than the regime-shift probability effected by the collective action

of the coalition C2.

So far, we have described one particular system s which is defined by the set of actors N ,

the action set A and the probability function ps : A → [0, 1] which describes the probability

of a regime shift.2 For the same set of actors N and their action set A one may now consider

another system s′ which is defined by some other, independent, regime-shift event and the

probability ps
′

: A → [0, 1] by which it is effected by the action a. The set of all systems is

denoted by S. For simplicity, we assume that every s ∈ S is independent such that a change in

one system’s regime shift probability does not alter another system’s probability. For example

one may think of a set of fishing companies (N ), each of which decides on investments in

boats and gear (a = (a1, ..., an)), which affects the probabilities of two potential regime shifts,

collapse of the fish stock due to overfishing (s and ps) and tipping of the climate system due

to CO2-emissions from operation of the boats (s′ and ps
′
).

3 Responsibility attribution

A quantitative measure of causal responsibility answers the question: “If a regime shift actually

occurs, to what extent is it caused by the actor’s action, rather than by some other actor’s action

or by brute luck?” This is a real number between 0 and 1, which can be defined both at the

collective and the individual level. The coalition can be considered as a single actor, having a

collective responsibility of R(a) (“If a regime shift actually occurs, to what extent is it caused

by the coalition’s collective action, rather than by brute luck?”). Also, each individual actor i

has an individual responsibility Ri(a) (“If a regime shift actually occurs, to what extent is it

caused by the individual actor’s action, rather than by some other actor’s action or by brute

luck?”).

2In order to distinguish between different systems s we added a superscript s to the probability function.
When only one system is considered and no confusion can arise, we drop the superscript s.
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For measuring the coalition’s collective causal responsibility for a regime-shift we take an

existing measure from Baumgärtner (2020) who studies a setting where one single actor takes

action a and formalizes an idea of Vallentyne (2008):

R(a) =
p(a)− p0

p(a)
. (4)

This is the direct change of probability p(a)−p0 due to the action, which is weighted by 1/p(a)

due to the partial attribution of outcome realization luck to the action.3 In the setting studied

here, (4) corresponds to the coalition’s collective responsibility for a regime shift.

We now attribute the collective responsibility R(a) to individual actors i and denote this

individual responsibility Ri(a). We propose that the measure should fulfill the following axioms:

Axiom 1. Symmetry

Rπi(πa) = Ri(a) for every permutation π of individuals (1, ..., i, ..., n).

Axiom 1 states that the order in which the actors are numbered is irrelevant for the respon-

sibilities they get attributed.

Axiom 2. Full attribution

0 ≤ Ri(a) ≤ R(a) and
n∑
i=1

Ri(a) = R(a).

Axiom 2 states that no individual responsibility Ri(a) can be negative or larger than the

collective responsibility, and that the coalition’s collective responsibility is fully attributed to

the individual actors.4

For the next axiom, we consider several systems s ∈ S, such that the collective action a

simultaneously and independently influences probabilities ps of all potential regime shifts. In

this joint-systems setting, we can independently determine individual responsibilities Rs
i (a) for

the regime shift in system s, a collective responsibility Rs(a) of all individuals for the regime

shift in system s, an individual responsibility Ri(a) for the joint event of regime shifts in all

systems s ∈ S, and the collective responsibility R(a) for the joint event of regime shifts in all

systems s ∈ S.

3In climate change attribution science, (4) is known as the fraction of attributable risk (Otto, 2017; Pfrommer
et al., 2019).

4Note that Axioms 1 and 2 correspond to Shapley’s (1953) Axioms 1 and 2.
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Axiom 3. Consistent joint responsibility

R(a) =

|S|∑
s=1

wsR
s(a)⇔ Ri(a) =

|S|∑
s=1

wsR
s
i (a) for all ws ∈ [−1, 1].

This axiom guarantees consistency over several systems for which all or some actors of the

collective action have responsibility.5 It states that aggregation of individual responsibilities

over systems is possible by some weights ws if and only if aggregation of collective responsibility

is done by the very same weights. The weights ws can but do not need to take on negative

values, and they can but do not need to add up to 1. Hence, these weights are not relative

weights like probabilities, but they are absolute weights as they are known e.g. from linear

algebra when decomposing a vector into a weighted sum of its elementary vectors.

Axioms 1-3 uniquely characterize a cardinal measure of individual responsibility.

Proposition 1. For all i ∈ N and all a ∈ A, Ri(a) satisfies Axioms 1-3 if and only if

Ri(a) =
∑

C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
. (5)

Proof: See Appendix A1.

The logic behind (5), which extends Shapley’s (1953) fundamental concept of how to divide

a collective effect into individual marginal contributions to the realm of risky outcomes and to

partial causal responsibility, is as follows: The second fraction specifies the marginal relative

change in regime-shift probability caused by actor i when joining a coalition C. This marginal

change differs depending on the coalition C that i joins. As all actors act simultaneously,

we consider all possible coalitions C of which i is not a member, and average over them. To

ensure overall consistency, each of these possibilities is weighted by the relative frequency with

which it can occur when building up each coalition by sequentially adding one actor at a time.

This weighting is achieved by the binomial factor in (5). With this construction, i’s individual

responsibility Ri(a) does not only depend on her own action ai but, in general, on all actors’

actions a.6

The individual responsibility measure Ri has the following additional properties.

5Our Axiom 3 corresponds to Shapley’s (1953) Axiom 3. It takes into account that we are working with
relative measures instead of absolute payoff or utility amounts.

6Technically, this is due to p(a) not being additive. p(a) is additive if and only if p(aC1)+p(aC2) = p(aC1∪C2)
for all a ∈ A and all C1, C2 ∈ P(N ).
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Proposition 2. For all i, j ∈ N and all a ∈ A:

1. Ri(a) ≤ Ri(ã) if and only if

p(ã)

p(a)
≤

∑
C∈P(N\{i})

(n− 1− |C|)! · |C|! · (p(ãCi)− p(ãC))∑
C∈P(N\{i})

(n− 1− |C|)! · |C|! · (p(aCi)− p(aC))
(6)

with ã = (a1, ..., ai−1, ãi, ai+1, ..., an) for any ãi Q ai.

2. Ri(a) ≥ Rj(a) if and only if
∑

C∈P(N\{i,j})

(n− 2− |C|)! · |C|! · p(aCi) ≥
∑

C∈P(N\{i,j})

(n− 2−

|C|)! · |C|! ·p(aCj). In particular, for all C that contain neither i nor j, if p(aCi) = p(aCj)

then Ri = Rj.

3. For any actor j with aj such that p(aCj) − p(aC) = 0 for all C ∈ P(N ), it holds that

Ri(a) = Ri(a1, ..., aj−1, 0, aj+1, ..., an) for all i; in particular Rj(a) = 0.

4. Ri(a) ≤ Ri(ã) for a particular actor i and two collective actions a, ã with a = (a1, ..., ai, ..., an),

ã = (0, ..., ãi, ..., 0) and p(a) = p(ã).

Proof: See Appendix A2.

Property 1 states how individual responsibility changes with the actor’s action. Actor

i’s responsibility increases if and only if the change from action ai to ãi is such that, ceteris

paribus, the ratio of the weighted average over all coalitions of marginal increase in regime-shift

probability due to ãi (RHS nominator of (6)) to that of ai (RHS denominator of (6)) is greater

than the ratio of the regime-shift probability with collective action ã to the probability with

collective action a. Roughly speaking, this means that the change in actor i’s responsibility does

not only depend on the change in regime-shift probability due to the change in actor i’s action,

but also on the change in the weighted average over all coalitions of marginal increase in regime-

shift probability. Note that ∂p(a)/∂ai ≥ 0 is neither necessary nor sufficient for ∂Ri(a)/∂ai ≥ 0,

because the other actors’ actions matter, too, for attributing individual responsibility according

to (5).7

Property 2 compares two actors and their individual responsibilities. Actor i has a larger

responsibility than j if and only if i’s action has a larger influence than j’s in the sense that i’s

7Of course, ∂p(a)/∂ai ≥ 0 implies ∂R(a)/∂ai ≥ 0.
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marginal contribution to regime-shift probability is larger than that of j on (weighted) average

over all coalitions that do neither contain i nor j.8 In particular, the attributed individual

responsibility of two actors is equal if their marginal contribution to regime-shift probability

when joining any given coalition is equal.

Property 3 states that dummy actions are irrelevant for attributing responsibility to any

actor, where a dummy action is one which does not make a marginal contribution to regime-

shift probability in any coalition. As a consequence, for attributing responsibility to those

actors whose actions have a probability impact, it does not matter how many dummy actors

are present. Property 4 states that an actor i has lower responsibility when acting in a group

compared to committing a probability-equivalent action all by herself.

4 Illustrations and applications

4.1 A general numerical illustration

Consider a system with three actors where different coalitions have the following impact on

the regime-shift probability: p(a∅) = p0 = 0.1, p(a{1}) = 0.7, p(a{2}) = 0.5, p(a{3}) = 0.2,

p(a{1,2}) = 1, p(a{1,3}) = 0.9, p(a{2,3}) = 0.85, p(a{1,2,3}) = 1. There is a small probability that

the system shifts on its own due to stochastic processes. The combined actions of 1 and 2 is

already sufficient to cause a regime shift with certainty. Furthermore, the combined actions of

2 and 3 have a more-than-proportionally effect on the regime-shift probability.

Suppose all three actors act and a regime shift actually occurs. Table 1 shows for each

actor i = 1, 2, 3 the corresponding marginal probability changes for the different sequences of

building all possible coalitions, and the individual causal responsibilities Ri(a) according to (5).

8This does not imply that simply p(ai) > p(aj). The difference in influence can result from the higher
probability of a coalition that i is a member of while j is not.
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sequence i = 1 i = 2 i = 3

1–2–3 p(a{1})− p(a∅) = .6 p(a{1,2})− p(a{1}) = .3 p(a{1,2,3})− p(a{1,2}) = 0

1–3–2 p(a{1})− p(a∅) = .6 p(a{1,2,3})− p(a{1,3}) = .1 p(a{1,3})− p(a{1}) = .2

2–1–3 p(a{1,2})− p(a{2}) = .5 p(a{2})− p(a∅) = .4 p(a{1,2,3})− p(a{1,2}) = 0

2–3–1 p(a{1,2,3})− p(a{2,3}) = .15 p(a{2})− p(a∅) = .4 p(a{2,3})− p(a{2}) = .35

3–1–2 p(a{1,3})− p(a{3}) = .7 p(a{1,2,3})− p(a{1,3}) = .1 p(a{3})− p(a∅) = .1

3–2–1 p(a{1,2,3})− p(a{2,3}) = .15 p(a{2,3})− p(a{3}) = .65 p(a{3})− p(a∅) = .1

Ri(a) .45 .325 .125

Table 1: Marginal probability changes for the different sequences of building all possible coali-
tions, and individual causal responsibilities Ri(a), for each actor i

Note that the sum of individual probabilities, which is the actors’ collective responsibility

R(a1, a2, a3), is 0.9. This is in line with (4) which does not attribute p0 to the actors.

4.2 Linear additive probabilities

The, in general, complicated formula (5) for individual responsibility reduces to a simple and

plausible one if the probability function p has a simple structure.

Proposition 3. For all i ∈ N and a ∈ A it holds that

Ri(a) =
ai∑
i∈N ai

R(a) (7)

if and only if

p(aC) = β ·
∑
i∈C

ai + p0 with β ∈ R for all C ∈ P(N ) . (8)

Proof: See Appendix A3.

The responsibility attribution scheme (7) states that individual responsibility is given by

a proportional share of collective responsibility, where the proportionality is in terms of the

individual’s share of action relative to the aggregate action. For example, responsibility for

climate change is often attributed to individual countries according to the country’s relative

share of greenhouse gas emissions, where greenhouse gas emissions increase the probability
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of climate change.Our Proposition 3 shows that such a simplified attribution scheme is only

warranted if the actions impact on the probabilities as specified by (8), that is, if the probability

function is linear and additive in the actions. In the case of greenhouse gas emissions causing

climate change, however, this condition is not fulfilled.

The simplified responsibility attribution scheme (7), being a special case of the general

scheme (5), has all the properties stated in Proposition 2. Some of these general properties are

less ambiguous in this special case. For instance, 1. and 2. of Proposition 2 simplify as follows:

For all i, j ∈ N and all a ∈ A:

1. Ri(a) ≤ Ri(ã) if and only if ai ≤ ãi.

2. Ri(a) ≥ Rj(a) if and only if ai ≥ aj.

5 Discussion and conclusion

Equation (5) provides an attribution of collective causal responsibility in a stochastic nonlinear

system to individual actors who act simultaneously, adopting Shapley’s (1953) fundamental

concept of how to divide a collective effect into individual marginal contributions.

By the Shapley mechanism the individual responsibility depends not only on the actor’s

own action, but on the action of others, too. This can give rise to results which one may think

of as counterintuitive and which are discussed, e.g., in Braham and Van Hees (2009).

One restriction of our framework is the assumption that any action, ceteris paribus, increases

the regime-shift probability. This was to avoid that some individual responsibilities could

become smaller than zero and, consequently, other individual responsibilities greater than one.

One possible extension of our framework is to probability-lowering actions.

We suggest to apply our measure (5) to assign strict liability for a damage to an actor in

proportion to the actors’ causal responsibility for the damage. Another application would be

to calculate efficient user fees for exploiting a common-pool resource in proportion to the users’

impact on the state of the resource. For such applications, and their efficiencies, both the

regulator as well as the actors need to know the function p(a). While this seems demanding, it

is needed to attribute individual causal responsibility in a stochastic system.
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A1 Proof of Proposition 1

1. Ri(a) satisfies Axioms 1-3.

Axiom 1 is obvious.

Axiom 2.

0 ≤ Ri(a) ≤ R(a):

(i) 0 ≤ Ri(a), as
(n− 1− |C|)! · |C|!

|N |!
> 0 and

p(aCi)− p(aC)

p(a)
≥ 0 for all C ∈ P(N ).

(ii) Note that
p(aCi)− p(aC)

p(a)
≤ p(a)− p0

p(a)
≤ 1 for all a ∈ A, C ∈ P(N ). Further,

∑
C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

=
n−1∑
|C|=0

(n− 1)!

|C|!(n− 1− |C|)!
(n− 1− |C|)! · |C|!

n!
(A.1)

= n
(n− 1)!

n!
= 1. (A.2)

Hence, ∑
C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
≤ p(a)− p0

p(a)
. (A.3)

Therefore, 0 ≤ Ri(a) ≤ R(a). �
n∑
i=1

Ri(a) = R(a):

(i) Consider that actors’ actions are added to a coalition C according to an arbitrary sequence

v, until aC = aN = a. Then

n∑
i=1

p(aCi)− p(aC)

p(a)
=
p(a)− p0

p(a)
= R(a). (A.4)

(ii) Hence, the equal-probability average over all possible sequences of actors is

1

n!

∑
v(C)

n∑
i=1

p(aCi)− p(aC)

p(a)
=

1

n!
· n! · p(a)− p0

p(a)
= R(a) (A.5)

(iii) Note that
(n− 1− |C|)! · |C|!

|N |!
gives the relative frequency with which the specific marginal

probability change
p(aCi)− p(aC)

p(a)
can occur for a specific actor i when building up each coali-
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tion by sequentially adding one actor at a time. Hence,

1

n!

∑
v(C)

n∑
i=1

p(aCi)− p(aC)

p(a)
=

n∑
i=1

∑
C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
(A.6)

=
n∑
i=1

Ri(a) = R(a). (A.7)

�

Axiom 3.

(i) R(a) =
S∑
s=1

wsR
s(a)⇒ Ri(a) =

S∑
s=1

wsR
s
i (a):

R(a) =
S∑
s=1

wsR
s(a)

Ax.2
=

S∑
s=1

ws

n∑
i=1

Rs
i (a) =

n∑
i=1

S∑
s=1

wsR
s
i (a)

Ax.2⇒
S∑
s=1

wsR
s
i (a)

!
= Ri(a). (A.8)

(ii) Ri(a) =
S∑
s=1

wsR
s
i (a)⇒ R(a) =

S∑
s=1

wsR
s(a):

Ri(a) =
S∑
s=1

wsR
s
i (a)⇒

n∑
i=1

Ri(a) =
n∑
i=1

S∑
s=1

wsR
s
i (a)

Ax.2⇔ R(a) =
S∑
s=1

wsR
s(a). (A.9)

�

2. Axioms 1-3 imply Ri(a).

The remainder of this proof follows the determination of the Shapley Value (Shapley, 1953,

section 3) and has the following structure:

2.1 We define a set of (hypothetical) unanimity systems whose weighted probabilities decom-

pose the probabilities of an actual system s ∈ S.

2.2 The probabilities of the probability functions of the set of unanimity systems are a linear

basis of the probabilities of s. That means, that the probabilities in s, given by the

actions of all possible coalitions, can be represented by a unique set of values wU , such

that for all C ∈ P(N ), p(aC) can be expressed by linear combination of values wU and

the probability values of the corresponding unanimity system. We prove this by showing

that the vectors of probabilities of the unanimity systems are linearly independent.

2.3 We show that the individual i’s responsibility resulting from (5) is a weight sum of i’s

2



responsibilities in the set of unanimity systems and therefore unique.

2.1: So far, we have shown that Ri(a) fulfills the stated axioms. To prove that there exists

only one responsibility measure that fulfills the axioms for the general case, we consider (hy-

pothetical) systems, that we call ”unanimity systems”.9 A unanimity system sU ∈ S is defined

as a system for which the chosen actions a = (a1, ..., an) entail probabilities pU as follows: For

a corresponding coalition U ∈ P(N ),

pU(aC) =


1 , if U ⊆ C

0 else.

(A.10)

We assume that for any coalition U ∈ P(N ), a respective unanimity system sU exists, hence

there are 2n unanimity systems (given a finite |N |). We denote the set of unanimity systems as

(sU)U⊆N and the corresponding set of probability functions (pU)U⊆N . Note that for a coalition

U , pU(aU∪C) = pU(aU) = 1, and pU(aC∩U) = pU(aC) for any C ∈ P(N ).

Due to Axioms 1 and 2 the attributed responsibility of an actor i in a unanimity system is

RU
i (a) =


1
|U | if i ∈ U

0 else.

(A.11)

Note that RU
i (a) = 0 for all i if U = ∅. Further, unanimity system responsibilities can be

weighted, such that

w̄UR
U
i (a) =


w̄U

|U | if i ∈ U

0 else.

2.2:

Lemma 1. The regime shift probability p(a) of a system s ∈ S can be uniquely derived from a

linear combination of weighted probabilities of the set of unanimity systems, such that

p(a) =
∑
U⊆N

wUp
U(a) . (A.12)

9The term unanimity system stems from “unanimity games” which have a similar structure in payoffs as the
unanimity systems have in probability change, see e.g. Young (1988).
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The resulting wU do not only hold for p(aN ), but any regime shift probability p(aC), C ∈ P(N ).

Lemma 1 is true if the vectors of probabilities of the unanimity systems (pU)U⊆N are a linear

basis for the values of p(a). As stated above, there exist 2n distinct unanimity systems and

therefore also 2n distinct probability functions. Each probability function can be characterized

by a vector with length 2n, with components being the values of pU(aC) for any possible coalition

C ∈ P(N ). For instance, the vector for p∅ is a vector with 1 in every entry, and the vector for

pN is a vector with 0 except for one 1–entry. For illustrative purposes, the case of n = 3 looks

as follows:

HH
HHH

HHH
HH

pU

aC
a∅ a1 a2 a3 a1,2 a1,3 a2,3 a1,2,3

p∅(aC) =(1 1 1 1 1 1 1 1)

p1(aC) =(0 1 0 0 1 1 0 1)

p2(aC) =(0 0 1 0 1 0 1 1)

p3(aC) =(0 0 0 1 0 1 1 1)

p1,2(aC) =(0 0 0 0 1 0 0 1)

p1,3(aC) =(0 0 0 0 0 1 0 1)

p2,3(aC) =(0 0 0 0 0 0 1 1)

p1,2,3(aC) =(0 0 0 0 0 0 0 1)

Lemma 2. For any finite |N |, the set of vectors for (pU)U⊆N is linear independent, i.e.

∑
U⊆N

λUp
U(a) = (0, ..., 0)⇒ λU = 0 for all U ∈ P(N ). (A.13)

Proof: By contradiction, assume

∑
U⊆N

λUp
U(a) = (0, ..., 0) , where there exists at least one λU 6= 0. (A.14)

In this case, define M ∈ P(N ) as minimal size coalition, such that λM 6= 0. As U can either

be a subset of M or not, we rewrite

∑
U⊆N

λUp
U(a) = 0⇔

∑
U⊆M

λUp
U(aM) +

∑
U*M

λUp
U(aM) = 0. (A.15)
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From the definition of unanimity systems, we know that the second part of the addition is equal

0, and pU(aM) = 1 in the first part of the addition. Hence,

∑
U⊆M

λU = 0 . (A.16)

Since M is a subset of minimal size for which λM 6= 0, we have that λU = 0 for all real subsets

U ⊂ M . Thus (A.16) is reduced to λM = 0. This is a contradiction! Hence, the set of vectors

for (pU)U⊆N is linear independent (Lemma 2) and consequently, p(a) can be uniquely derived

from a linear combination (Equation A.12, Lemma 1). �

Note that from (A.12) results the general expression for wU : For any U ⊆ N ,

wU =
∑
V⊆U

(−1)|U |−|V | · p(aV ). (A.17)

For illustration, let us calculate w{1,2,3}. From (A.12), we know that

p(a∅) = w∅, p(a
{1}) = w∅ + w{1}, p(a

{2}) = w∅ + w{2}, p(a
{3}) = w∅ + w{3},

p(a{1,2}) = w∅ + w{1} + w{2} + w{1,2}, p(a
{1,3}) = w∅ + w{1} + w{3} + w{1,3},

p(a{2,3}) = w∅ + w{2} + w{3} + w{2,3} and

p(a{1,2,3}) = w∅ + w{1} + w{2} + w{3} + w{1,2} + w{1,3} + w{2,3} + w{1,2,3} .

⇔ w{1,2,3} = p(a{1,2,3})− w{2,3} − w{1,3} − w{1,2} − w{3} − w{2} − w{1} − w∅

= p(a{1,2,3})− (p(a{2,3}) + p(a{1,3}) + p(a{1,2})− 2w{3} − 2w{2} − 2w{1} − 3w∅)

− w{3} − w{2} − w{1} − w∅

= p(a{1,2,3})− (p(a{2,3}) + p(a{1,3}) + p(a{1,2})) + (w{3} + w{2} + w{1}) + 2w∅

= p(a{1,2,3})− (p(a{2,3}) + p(a{1,3}) + p(a{1,2})) + (p(a{3}) + p(a{2}) + p(a{1})− 3w∅) + 2w∅

= p(a{1,2,3})− (p(a{2,3}) + p(a{1,3}) + p(a{1,2})) + (p(a{3}) + p(a{2}) + p(a{1}))− p(a∅)

=
∑

V⊆{1,2,3}

(−1)3−|V |p(aV )

2.3: From Axiom 3, we know that the overall individual responsibility Ri(a) can be composed

from the responsibility of several systems Rs
i (a). This also holds in the case of unanimity
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systems such that:

Ri(a) =
∑
U⊆N
i∈U

w̄UR
U
i (a). (A.18)

Let us set

w̄U =
wU
p(a)

. (A.19)

Combining (A.11), (A.17), (A.18) and (A.19), we get

Ri(a) =
∑
U⊆N
i∈U

∑
V⊆U

(−1)|U |−|V | · p(a
V )

p(a)

1

|U |
(A.20)

=
∑
V⊆N

 ∑
U⊆N

V ∪{i}⊆U

(−1)|U |−|V | · 1

|U |
· p(a

V )

p(a)

 (A.21)

Let us define

γi(V ) :=
∑
U⊆N

V ∪{i}⊆U

(−1)|U |−|V | · 1

|U |
. (A.22)

(A.21) can be written as

Ri(a) =
∑
V⊆N
i∈V

γi(V )
p(aV )− p(aV \{i})

p(a)
. (A.23)

To see this, consider two coalitions V ′ and V = V ′ ∪ {i}. Note that γi(V
′) = γi(V ), except for

the cases in which i /∈ V ′, then γi(V
′) = −γi(V ).

With i ∈ V , there are

(
|N | − |V |
|U | − |V |

)
coalitions U with |U | elements such that V ⊆ U . Thus,

γi(V ) can be written as

γi(V ) =

|N |∑
|U |=|V |

(−1)|U |−|V |
(
|N | − |V |
|U | − |V |

)
1

|U |
(A.24)

Note that 1/a =
∫ 1

0
xa−1dx. Hence,

γi(V ) =

|N |∑
|U |=|V |

(−1)|U |−|V |
(
|N | − |V |
|U | − |V |

)∫ 1

0

x|U |−1dx (A.25)

6



=

∫ 1

0

|N |∑
|U |=|V |

(−1)|U |−|V |
(
|N | − |V |
|U | − |V |

)
x|U |−|V |x|V |−1dx (A.26)

=

∫ 1

0

x|V |−1

|N |∑
|U |=|V |

(−1)|U |−|V |
(
|N | − |V |
|U | − |V |

)
x|U |−|V |dx (A.27)

=

∫ 1

0

x|V |−1

|N |∑
|U |=|V |

(
|N | − |V |
|U | − |V |

)
(−x)|U |−|V |dx (A.28)

The Binomial Theorem states that
k∑
j=0

(
k

j

)
1k−j(−x)j = (1− x)k. Hence,

γi(V ) =

∫ 1

0

x|V |−1(1− x)|N |−|V |dx (A.29)

Note that this is an expression of the Euler integral of the first kind. For non-negative values

of the exponents, the integral can be expressed as factorials as follows:∫ 1

0

x|V |−1(1− x)|T |−1dx =
(|V | − 1)!(|T | − 1)!

(|V |+ |T | − 1)!
. Substituting |T | = |N | − |V |+ 1 gives

γi(V ) =
(|V | − 1)!(|N | − |V |)!

|N |!
. (A.30)

Hence, inserting (A.30) in (A.23) results in

Ri(a) =
∑
V⊆N
i∈V

(n− |V |)! · (|V | − 1)!

|N |!
p(aV )− p(aV \{i})

p(a)
(A.31)

⇔ Ri(a) =
∑

C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
, (A.32)

with V = C ∪ {i}, because |V | = |C|+ 1 and p(aV )− p(aV \{i}) ≡ p(aCi)− p(aC). �

A2 Proof of Proposition 2

Property 1 is obvious.

Property 2.

Ri(a) ≥ Rj(a)
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⇔
∑

C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
≥

∑
C∈P(N\{j})

(n− 1− |C|)! · |C|!
|N |!

p(aCj)− p(aC)

p(a)

⇔
∑

C∈P(N\{i})

(n− 1− |C|)! · |C|! · (p(aCi)− p(aC)) ≥
∑

C∈P(N\{j})

(n− 1− |C|)! · |C|! · (p(aCj)− p(aC))

(A.33)

Note that all C \ {i ∪ j} and all C ⊃ {i, j} occur on each side of the inequality with the same

frequency. Hence,

(A.33)⇔∑
C∈P(N\{i,j})

(n− 2− |C|)! · |C|! · p(aCi)−
∑

C∈P(N\{i,j})

(n− 2− |C|)! · |C|! · p(aCj)

≥
∑

C∈P(N\{i,j})

(n− 2− |C|)! · |C|!·p(aCj)−
∑

C∈P(N\{i,j})

(n− 2− |C|)! · |C|! · p(aCi)

⇔
∑

C∈P(N\{i,j})

(n− 2− |C|)! · |C|! · p(aCi) ≥
∑

C∈P(N\{i,j})

(n− 2− |C|)! · |C|! · p(aCj) (A.34)

�

If (A.34) holds with equality, it also holds by equivalence of (A.33) that Ri(a) = Rj(a). Hence,

it is obvious that p(aCi) = p(aCj) for all C \ {i∪ j} ⇒ Ri = Rj. One can easily find counterex-

amples to show that the reverse implication does not hold. �

Property 3.

(i) If p(aCj)− p(aC) = 0 for all C ∈ P(N ), then by definition

Rj(a) =
∑

C∈P(N\{j})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
= 0 (A.35)

(ii) By Axiom 2 it holds that
n∑
i=1

Ri(a) = R(a).

(iii) Hence, for Rj(a) = 0,
n∑
i 6=j

Ri(a) = R(a), and consequently

Ri(a) = Ri(a1, ..., aj−1, 0, aj+1, ..., n) for all i. �

Property 4.

(i) For collective action ã, Ri(ã) =
p(ã)− p0

p(ã)
= R(ã) and Rj(ã) = 0 for all j 6= i. This follows

from the property “irrelevance of dummy actions” and Axiom 2.
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(ii) For any collective action a for which holds that p(a) = p(ã), the collective responsibility

R(a) is equal to R(ã).

(iii) From Axiom 2 follows that Ri(a) ≤ R(a) = Ri(ã). �

A3 Proof of Proposition 3

Note that p(aC) = β ·
∑

i∈C ai + p0 implies p(aCi)− p(aC) = β · ai.

By (5):

Ri(a) =
∑

C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(aCi)− p(aC)

p(a)
(A.36)

=
∑

C∈P(N\{i})

(n− 1− |C|)! · |C|!
|N |!

p(ai)− p0

p(a)
=
|N |!
|N |!

βai
p(a)

(A.37)

⇔ Ri(a) =
β
∑

i∈N ai

β
∑

i∈N ai

βai
p(a)

=
ai∑
i∈N ai

β
∑

i∈N ai

p(a)
=

ai∑
i∈N ai

p(a)− p0

p(a)
(A.38)

⇔ Ri(a) =
ai∑
i∈N ai

R(a) (A.39)

�
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