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Abstract  

We consider if a road is self-financing under flat or step tolling and optimized capacity while 

incorporating preference heterogeneity, bottleneck congestion and linear capacity cost. Previous 

work has shown that a sufficient condition for the toll revenue to equal the capacity cost is that 

the toll to equals the marginal external costs (MECs) of all types of user at all moments when 

their users travel. However, under ‘ratio heterogeneity’ between values of time (VOT) and 

schedule delay, an anonymous second-best coarse toll must differ from the heterogeneous MECs. 

This paper derives that this toll will be a weighted average of the MECs with the weights 

depending on the derivatives of the demand and travel cost functions. The capacity rule also has 

a second-best correction: the capacity is set higher than following the first-best rule to reduce the 

distortion from overpricing High-VOT users. This was ignored in previous work and makes self-

financing less likely than previously thought, but it can still occur if Low-VOT users are much 

more price sensitive than High-VOT users, as this raises the toll. In our numerical model, the 

Low-VOT type must be almost twice as price sensitive than the High-VOT type for there not to 

be loss; and, typically, there is a 5% to 15% loss. Imposing self-financing only causes a small 

welfare loss of 0% to 1.5%. 

We also analyze other forms of heterogeneity: proportional heterogeneity, heterogeneity in 

the preferred arrival time and heterogeneity between values of schedule delay early and late.   

 

Keywords: Self-financing, road pricing, flat toll, step toll, coarse toll, heterogeneity, second best 
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1. Introduction 

The self-financing result of Mohring and Harwitz (1962) states that if the toll equals the 

marginal external congestion cost (MEC), the toll revenue will exactly equal the cost of the 

optimized road capacity. This ‘first-best’ capacity minimized total cost, which is the sum of 

capacity and total travel cost. Self-financing is important for the social acceptability of 

congesting pricing. It means that people have to pay to use the roads, but this goes toward road 

capacity and so they get something in return. It means that there is no cross-subsidization 

between modes and that no other distortive taxes are needed to pay for our roads. Finally, road 

capacity is mostly set to deal with peak demand; so it can be seen as fair that users of the centre 

peak pay more. All this is why self-financing has been extensively studied, especially in settings 

that are more realistic: with, for example, uncertainty, dynamics with the day or the long run (see 

the extended literature review in Section 2). 

Mohring and Harwitz (1962) studied homogeneous users and static congestion. Their 

conditions for self-financing—which we assume throughout this paper—are that capacity and 

number of users are continuous, capacity cost is homogeneous to degree one in capacity and that 

per car travel cost only depends on the ratio of number of cars and capacity.1 Arnott et al. (1992, 

1993) showed that the self-financing result carries over to dynamic bottleneck congestion, both 

with a fine toll that can vary every microsecond as with a coarse toll. In reality, congestion varies 

over the day; but tolls are coarse, being either a constant flat toll—as in London—or at most 

having a few steps—as in Singapore, Stockholm and some US pay-lanes. Under preference 

heterogeneity, Arnott and Kraus (1995) found that a sufficient condition for self-financing is that 

the (coarse) toll equals the MEC throughout the peak. They consider two-type ‘ratio 

heterogeneity’ between the value of time (VOT) and values of schedule delay.2 This 

heterogeneity means that people differ in their preference for trading off travel time and schedule 

delay (i.e. arriving at an earlier or later than the preferred arrival time). Thus, it implies 

differences in flexibility. This heterogeneity could stem from differences in type of job, trip or 

family status (Van den Berg and Verhoef, 2011a; Hall, 2018, 2021ab).3 The marginal external 

congestion cost (MEC) is higher for the Low-VOT users than for High-VOT users. Hence, an 

anonymous coarse toll must be second best as it cannot equal the MEC throughout the peak 

(Arnott and Kraus, 1995). Only few papers have looked at user heterogeneity and self-financing 

in a dynamic congestion model,4 and this is the aim of the present paper. We study coarse tolls 

 
1 The assumption on capacity cost implies neutral scale economies, which later empirical research found to hold more or less, at least at the 

network level (de Palma and Lindsey, 2002; Small and Verhoef, 2007). 
2 The value of time is the cost of one hour of travel time, the value of schedule delay early (late) is the cost of arriving one hour earlier (later) 

than most preferred. Note that unlike the current paper, they assumed heterogeneity in the value of schedule delay for a fixed value of time, 

whereas we use a heterogeneous value of time and fixed values of schedule delay. Their set-up in fact in implies that there is both ratio and 
proportional heterogeneity, but as we will see only the presence of the ratio heterogeneity affects the self-financing.  

3 Income differences may have little to nothing to do with ratio heterogeneity, as they should affect values of time and schedule delay 

similarly. 
4 Yet, in really, there certainly is heterogeneity: different people have different preferences (e.g., Small et al., 2005; Small, 2012). Moreover, 

preference heterogeneity affects the optimal levels of policy instruments and their effects on consumer surplus and societal welfare. 

Heterogeneity also means that policies have distributional effects (e.g., Arnott er al., 1988; Small and Yan, 2002). 
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and capacity setting under preference heterogeneity: how large a deficit or profit will there be 

and what is the welfare loss of imposing self-financing? 

What Arnott and Kraus (1995) did not consider—and what we will show—is that, under two-

type ratio heterogeneity, the capacity rule will also be second best. The second-best capacity is 

higher than following the first-best rule that minimized total cost. This raises welfare by 

increasing the number of High-VOT users as they face a toll that exceeds their MEC and thus 

have too little travel. Even with the extra second-best capacity, the scheme may have a zero or 

even positive profit if the (average) toll well exceeds the average MEC. Our toll rule shows that, 

for this to happen, the Low-VOT type must be much more price sensitive than the High-VOT 

type. Low-VOT users have the higher MEC, and them being more price sensitive means that a 

second-best flat or step toll is closer to their MEC. The single-step toll tends to have a lower loss 

or profit than the flat toll and it is less likely to have a loss. This is because the step toll has a 

smaller second-best capacity adjustment.  

Ratio heterogeneity seems the most interesting dimension of heterogeneity as it affects the 

self-financing result. Consistent with Van den Berg and Verhoef and Van den Berg (2014), we 

find that separate ‘proportional heterogeneity’—which varies all values of time and schedule 

delay in a fixed proportion—and heterogeneity in the preferred arrival time do not lead to a 

heterogeneous MEC, and hence the system is self-financing. Finally, heterogeneity between 

values of schedule delay early and late means that there must also be ratio heterogeneity, and 

thus it has similar effects as ratio heterogeneity.   

 Our methodological contribution is deriving, under preference heterogeneity, explicit 

formulas for the optimal flat and single-step toll as well as for the capacity. The flat toll and the 

flat part of the step toll are a weighted average of the MECs, with the weights depending on the 

derivatives of the demand and cost functions. The weights are independent of the numbers of 

users of the types. Using these results, we derive the resulting profit or loss, allowing us to 

analyze when a system is self-financing. Our policy contribution is adding to the discussion on 

self-financing road by considering coarse tolls under heterogeneity and dynamic congestion.   

 The next section will give an extended literature review, showing how our paper fits in and 

extends the literature. Section 3 presents the basic model. Section 4 considers flat and single-

step tolling under ratio heterogeneity. Section 5 turns to the numerical model and does extensive 

sensitivity analyses. Sections 6 and 7 look at other forms of heterogeneity. Section 8 concludes. 

The below nomenclature box summarises the notation. 
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Nomenclature  
αi Value of time (VOT) of user of type i. It is the cost of an hour of travel time. 

βi Value of schedule delay early of user of type i. It is the cost of arriving an hour earlier than the preferred 

arrival time t*. 

γi Value of schedule delay late of user type i. It is the cost of arriving an hour later than the preferred arrival 

time t*. 

δi Compound preference parameter for type i: δi≡βiγi/(βi+γi)  

ηi Relative preference parameter for type i: ηi≡βi/γi 

τ[t] Toll, τ, that varies of arrival time t 

ρ Step part of the toll. In a step toll scheme, it is levied between t+ and t- in addition to the flat toll of μ 

μ Flat part of the toll, it does not vary over time. 

Bi Consumer benefit. It is the integral of the inverse demand, Di, from 0 to Ni. 

Di[Ni] Inverse demand of type i. It gives the willingness to pay for a trip of the Ni’th user. 

d0i The numerical model uses a linear demand, with d0i being the demand intercept of type i 

d1i The numerical model uses a linear demand, with d1i being the demand slope of type i 

ci Travel cost for a type i user. It is the sum of the queuing time cost plus the schedule delay cost.  

fi Frequency of type i with two type heterogeneity: fi=Ni/(NL+NH) 

k Marginal cost per unit of capacity of the bottleneck. Total capacity cost is k ∙ s. 

MECi Marginal external cost of a type i user. It equals the marginal social cost of type i (MSCi=∂TC/∂Ni ) minus 

the own travel cost: MECi=MSCi −ci =∂TC/∂Ni − ci. 

MSCi Marginal social cost of a type i user is the derivative of total cost to the number of type i users: 

MSCi=∂TC/∂Ni. 

Ni Total number of users of type i 

Pi (Generalised) price for type i. It equals the travel cost, ci, plus the possible toll.  

s Bottleneck capacity.  

t Arrival time. 

t* Preferred arrival time. 

t+ Moment when the step part of the toll is turned on. 

t- Moment when the step part of the toll is turned off. 

te Moment of the last arrival and hence when the peak ends. 

ts Moment of the first arrival and hence when the peak starts. 

TT Travel time.  

TCi Total travel cost of type i: TCi=  Ni ∙ ci 

TC Total cost including capacity cost: TC=TC1+TC2 +k ∙ s 

W Welfare equals Consumer benefits of the two types, Bi, minus total cost: W=B1 + B2 – TC1 – TC2  –  k ∙ s 

wi The weight attached to type i’s marginal external cost in the toll rule  

  Profit, which equals toll revenue, TR, minus capacity cost of k ∙ s 

  

Indicators used in superscripts 
F Flat toll 
SS Single-step toll 
sh Shoulder periods with a step toll when the toll equals μ. It lasts from ts to t+ and from t- to te. 
cp Centre peak period with a step toll when the toll equals μ+ρ. It lasts from t+ to t-. 

2. Extended literature review 

The self-financing results was first derived by Mohring and Harwitz (1962). It states that toll 

revenue from congestion externality pricing will exactly cover the cost of optimally set road 

capacity when: i) capacity and number of users are continuous, ii) capacity cost is homogeneous 

to degree one in capacity (i.e. doubling capacity doubles capacity costs), and iii) that per car 

travel cost only depends on the ratio of number of cars and capacity (i.e. doubling both usage 

and capacity leaves travel cost unchanged). The congestion charge only covers the marginal 

external congestion costs, the pricing of other externalities would come on top of this.  
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This analysis has been extended to include that road last many years and the amount of travel 

changes over time (e.g., Arnott and Kraus (1998b)), that there is uncertainty in what demand and 

costs will be (e.g., Kraus (1982), D'Ouville and McDonald (1990), Lindsey and de Palma (2014), 

Lu and Meng (2017), and Fu et al. (2018)), that input prices may vary with the amounts used 

(e.g., Small (1999)), and to considered networks (e.g., Yang and Meng (2002)).5  

These papers focused on static congestion, the extension to dynamic congestion was 

introduced by Arnott et al. (1990, 1993) and Arnott and Kraus (1993, 1995, 1998a). The 

bottleneck model is the work horse model for dynamic congestion where travel times vary over 

the peak, and it has been very heavily used in the literature. See Small (2015) and Li et al. (2020) 

for detailed overviews. 

 Heterogeneity in preferences is an important component of our setting as it can cause the self-

financing result to break down. It was first introduced to the bottleneck model by Vickrey (1973) 

and extended by Newell (1987), and Arnott et al. (1988, 1990, 1993) and many others.  Van den 

berg and Verhoef (2011b) introduced the distinction between ratio heterogeneity and 

proportional heterogeneity. Ratio heterogeneity means that there is heterogeneity in the ratio of 

value of time to value of schedule delay, and this means that user types separate over time if 

there is congestion. Proportional heterogeneity varies all values of time and schedule delay in 

fixed proportions, and it affects the outcome under fully time variant and step tolling (Van den 

Berg, 2014). Later papers such as Liu et al (2015), Chen et al. (2015a) and Hall (2018, 2021ab) 

have looked at many more multiple dimensions of heterogeneity.6   

 With flat tolling, the toll is a constant amount throughout the peak. Examples would be the 

London congestion charge and the various schemes in Norway. For the bottleneck model under 

homogeneous users, Arnott et al (1990, 1993) showed that the optimal flat toll equals the 

marginal external cost (MEC)—i.e., how the difference between marginal social cost and private 

travel cost—where this MEC is constant under flat tolling.  

 With a step toll, the toll has one or more discrete steps over time but it is constant otherwise. 

Examples are the schemes in Singapore and Stockholm and various toll road, lanes and bridges 

in the USA. Various models have been proposed that differ in how the ensure that the generalised 

price is constant over time. These include the ADL model (Arnott et al.,1990, 1993), the Laih 

model (Laih, 1994, 2004) and the braking model (Lindsey et al., 2012; Xiao et al. 2012). Again, 

under homogeneity, the step toll will equal the MEC that now has steps in it (Van den Berg, 

2012). Various extensions have been made by Ren et al. (2016) and Li et al. (2017), and Xu et 

al. (2019).  

 Let us now turn to the papers on coarse tolling under preference heterogeneity. For the 

bottleneck model, Van den Berg and Verhoef (2011b) studied flat tolling under ratio 

heterogeneity. Xiao et al. (2011) added proportional heterogeneity to the ADL step toll model. 

 
5 See Lindsey (2012) for a more extensive overview. 
6 Hall (2021ab) shows that in particular adding heterogeneity in the preferred arrival time to ratio and proportional heterogeneity has large 

effects. Conversely, Arnott et al (1988, 1994) found that if there is only heterogeneity in the preferred arrival time, and not also other 

heterogeneity, this does very little. 
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Under homogeneous users and bottleneck congestion, a fully-time-variant congestion toll will 

remove all travel delays and leaves the generalised prices unchanged. Xiao et al. (2011) find that 

their ADL step toll lowers generalised prices. This also occurs with homogeneity due to the Mass 

departures (Lindsey et al, 2012), but this is strengthened by the proportional heterogeneity which 

makes tolling more beneficial for users (Van den Berg and Verhoef, 2011a). Xu et al. (2019) 

studied the ADL, Laih and Braking models under proportional heterogeneity, while Van den 

Berg (2014) studied separate ratio heterogeneity, proportional heterogeneity and heterogeneity 

between values of schedule delay early and late. Finally, Chen et al. (2015b) and Li et al. (2017) 

looked at coarse tolling under more general heterogeneity and preferences.  

 Finally, there is a small literature that investigates coarse tolling under other dynamic 

congestion models. Chu (1999) used his dynamic flow congestion model to study a flat and a 

single-step toll. Börjesson and Kristoffersson (2012) used their model for the Stockholm step 

toll system. Zheng et al. (2015) used a macroscopic fundamental diagram to model a flat cordon 

change for the city of Zurich. Ge and Stewart (2010a,b) and Ge et al. (2016) used a cell 

transmission models to study step tolling. 

3. Model Set-up  

3.1. General costs functions and welfare 

This section focuses on arbitrary discrete heterogeneity in values of time and schedule delay, 

with a homogeneous preferred arrival time. Therefore, for now, we consider any number of 

discrete types of users; Sections 4 to 6 will consider only two types for easy of presentation.  A 

type is defined by its users having the same preferences for travel time and schedule delay. 

Within a type there will be differences in willingness to pay for the trip, as for each type there is 

an independent price sensitive demand.  

We will not go into details on how our bottleneck model works. See Small and Verhoef 

(2007), Small (2015) and Li et al. (2020) for overviews.   

The travel cost per trip for type i user as a function of the arrival time t is: 

[ ] ( , ) [ ].i i i ic t Max t t TT t= −   +                       (1) 

It is the sum of the schedule delay and travel time cost. The preferred arrival time, t*, is 

normalized to zero, and is assumed to be the same for all. So, t=0 means an arrival at the most 

preferred moment. The βi is the value of schedule delay early for type i: it is the value of an hour 

earlier arrival than most preferred. The γi is the corresponding value for an hour late arrival. The 

TT[t] is the travel time when arriving at t. The αi is the value of time (VOT) for type i. We 

consider bottleneck congestion, and normalize the free-flow travel time to zero.7 Travel time 

equals the number of cars in the queue before reaching it divided by the capacity s. The queue is 

assumed to be at a single point. 

 
7 This normalization does not affect results. The numerical model will be more realistic and includes a free-flow travel time of 30 minutes and 

fuel costs.  
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Total cost is the sum of the capacity cost, k ∙ s, and the travel costs of the different types: 

TC = k ∙ s+ ∑ Ni ∙ ci. (2) 

We assume that the capacity cost is linear in capacity s. Hence, k is the marginal capacity cost. 

Ni is the total number of users of type i. 

There are separate inverse demands for all types. The generalized price—henceforth price for 

brevity—is the sum of the travel cost, ci, and the possible toll, τ. In user equilibrium, the price 

for type i, Pi, equals its inverse demand, Di[Ni], for all moments that a type i users arrives; the 

price is no lower on all moments that there are no arrivals of type i users: 

Di[Ni]=Pi≡ci[t]+τ[t] (3) 

Consumer benefit, Bi, for type i is the integral of its inverse demand, and welfare equals the 

sums of the consumer benefits minus the total cost:   

0

[ ] [ ] ,
iN

i i i i iB N D n dn=   (4) 

W =  ∑ 𝐵𝑖– TC . (5) 

 

3.2 Capacity setting and self-financing when the toll equals the marginal external costs 

throughout the peak. 

Now, we briefly discuss the general outcome when the coarse toll equals the (potentially 

heterogeneous) marginal external costs (MECs) throughout the peak. The results directly follow 

from Arnott and Kraus (1995) and Van den Berg and Verhoef (2011a,b).  

 

Lemma 1: First-best capacity   

Consider M discrete types of heterogeneous users, were the travel cost, ci[N1, .., NM, s], of type 

i increases with the number of users of the different types, Nj, and decreases with the bottleneck 

capacity, s. Suppose that the toll equals the marginal external cost (MEC) at all moments. Then, 

the first-best optimal capacity minimizes the total cost from (5) and is set by the following first-

best condition: −∑ Ni ∙ ∂ci/∂s = k. 

 

Proof: The social optimal toll optimizes the number of users of each type, even if the toll is flat or has a 

single step. Therefore, maximizing welfare to capacity, s, is equivalent minimizing total cost, as consumer 

benefit is solely determined by the numbers of users. The f.o.c. of minimizing total cost to s is k+∑ Ni ∙ 

∂ci/∂s = 0. At this optimum, the second-order conditions also hold. □ 

 

Remark 1: The first-best capacity rule only holds when the toll optimizes the number of users of 

each type. When the toll does not equal the (potentially heterogeneous) MECs at all moments, 

the capacity rule will have a second-best adjustment. This we will show for ratio heterogeneity 

later on. Although we do not study this, without tolling, the capacity rule is adjusted downward 

to limit latent demand, as Small and Verhoef (2007) show for static congestion.  
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Lemma 2: Self-financing 

With a total cost minimizing capacity,8 a sufficient condition for exact self-financing—i.e. that 

toll revenue equals road capacity cost—is that the (coarse) toll equals the marginal external cost 

(MECi) of a type i at each moment that a type i user travels.    

 

Proof: See Kraus and Arnott (1995, p. 279-280), who proof this for any dynamic congestion model with 

total cost that are homogeneous to the degree zero in number of users of each type and s, which is true 

with bottleneck congestion.9 □ 

 

 Even if a second-best optimal toll differs from the marginal external cost at some point in 

time, a scheme with optimized capacity could still have a zero profit if the profits at some 

moments happen to cancel out the losses at others. However, this occurs only for unique 

combinations of parameters and, as we will see, losses are likely to occur.  

 In conclusion, Section 3 presented our model set-up as used throughout this paper. It also 

presented previous results in our notation which will prove useful for comparison and 

understanding. 

4. Two-type ratio heterogeneity  

4.1 Flat toll and ratio heterogeneity 

This section considers ‘ratio heterogeneity’ where the value of time (αi) varies over two types of 

users, while the values of schedule delay are fixed. The equations for toll and capacity setting 

will turn out very complex. Adding more realism with many types or multiple dimension of 

heterogeneity would make analytical analysis difficult if not impossible.10 With flat tolling and 

without any tolling, the travel costs, MECs and MSCs are constant over  time. 

With a flat toll, the toll equals μ throughout the peak:  

τ[t]=μ.  

A flat toll leads to the same user equilibrium as no toll at all. So we can use the cost functions 

from Arnott et al. (1988) and Van den Berg and Verhoef (2011a,b):  

,

L
L H

F L
L

α
N N

α
c δ

s

+ 

=  (6a) 

;F L H
H

N N
c δ

s

+
=   (6b) 

 
8 As noted, throughout this paper, we focus on bottleneck congestion and capacity costs that follow  k∙s.  
9 To directly see this in their proof, remember that a toll that equals MECi means that a typei’s inverse demand, Di, equals their marginal social 

cost. 
10 Of course, numerical analysis for specific parameters would still be possible, but this would not give general insights. 
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with δ=(β+γ)/(β∙γ) being a compound preference parameter. A subscript L indicates the Low-

VOT type who has the lower value of time. The H is for the High-VOT type who cares relative 

more about travel time than schedule delay. Hence, the High-VOT users choose to travel at the 

edges of the peak, where travel times are short and schedule delays are high. The Low-VOT 

users choose to travel in the centre peak. This leads to a total cost of 

( )
2

1 ,
L HF F F L H L

L L H H

H

N N N N α
TC c N c N k s δ δ k s

s s α

+  
=  +  +  =  −  − +  

 
 (7) 

where superscript F indicates the flat toll equilibrium.  

Marginal external cost,11 MECi, of type i equals its marginal social cost, F

iMSC =∂TCF/∂Ni, 

minus its travel cost, F

ic . Under ratio heterogeneity, the MECL of the Low-VOT users exceeds 

the MECH of the High-VOT users:  

( ) ,

.

F F F

L L L L H

F F F L
H H H L H

H

δ
MEC MSC c N N

s

αδ
MEC MSC c N N

s α

= − = +

 
= − = + 

 

  (8) 

The difference in MECs depends on the ratio of values of time, and increases with the degree of 

heterogeneity.  

Maximizing welfare under user-equilibrium constraint (3) and a flat toll, μ, is equivalent to 

maximizing the following Lagrangian: 

( ) ( ) ( ).F F F F F F F

L H H H L L L L L H H HL B B c N c N k s λ c μ D λ c μ D= + −  +  +  +  + − +  + −  (9) 

The F

iλ  is the user-equilibrium multiplier for type i. It can be interpreted as the welfare change 

if we were to add a marginal toll for only type i. As we will see, type L is underpriced and type 

H is overpriced, so 0F

Lλ  and 0.F

Hλ   

 

Lemma 3: Ratio heterogeneity & the flat toll 

With ratio heterogeneity, the second-best flat toll does not equal the average marginal external 

cost, as it is:  

1

(1 ) 1 ,

1

L L

L HF F F F F

L L H L H L

L H L

L H H

D α

N αδ δ
μ MEC w MEC w N N

s s D D αδ

N N s α

  
− −  
   =  +  − = + −

   
− − + −       

 (10) 

with the Low-VOT type’s weight, 𝑤𝐿
𝐹, depending on the derivatives of the demand and cost 

functions:  

 
11 Users are assumed to be selfish and hence only consider their own travel cost. 
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1

.

1

H LH L H

H HF H H H
L

H L H L H L L H L

H H H L L L L H H

D αδD c c

N s αN N N
w

D c c D c c D D αδ

N N N N N N N N s α

   
− + −− − +  
    

= =
            
− − + + − − + − − + −     
              (11) 

With the unique exception when the weights, 𝑤𝑖
𝐹,  happen to equal frequencies or shares (fi=Ni/  ∑𝑁𝑗) 

of the types.  

 

Proof of Lemma 3. See Appendix A.□ 

 

When αL/αH  decreases, we have more diverse values of time. This does not affect the MECL, but 

lowers the MECH and thus the average MEC. The optimal flat toll decreases less than the average 

MEC when the VOTs become more diverse, as this also raises the weight of the Low-VOT type 

in the toll rule and this type has the higher MEC. In optimum, F

Lλ = ,F

Hλ−  and so the optimal toll 

is set to balance the underpricing of the Low-VOT type with the overpricing of the High-VOT 

type. When ∂Di/∂Ni is smaller in absolute sense, type i is more price sensitive, and its weight in 

the coarse toll setting is larger and the toll is closer to its MECi. If one type has a fixed demand, 

the coarse toll equals the MECj of the other type. 

 

Proposition 1: Optimal capacity with a flat toll and two-type ratio heterogeneity 

With a flat toll, the capacity rule has a second-best correction and follows:  

−∑ Ni ∙ 𝜕𝑐𝑖
𝐹/∂s = k − 𝜆𝐿

𝐹 (
𝜕𝑐𝐿

𝐹

𝜕𝑠
−

𝜕𝑐𝐻
𝐹

𝜕𝑠
) (12) 

where 𝜆𝐿
𝐹 > 0 is the multiplier for the Low-VOT user-equilibrium in (10). Since 𝜆𝐿

𝐹 > 0 

𝑎𝑛𝑑 (
𝜕𝑐𝐿

𝐹

𝜕𝑠
−

𝜕𝑐𝐻
𝐹

𝜕𝑠
) > 0, for given number of users, the capacity with a flat toll is set higher than 

following the first-best capacity rule (which is −∑ Ni ∙ 𝜕𝑐𝑖
𝐹/∂s = k). 

 
 

Proposition 2: Self-financing with a flat toll and two-type ratio heterogeneity 

With a second-best flat toll and capacity, the profit is 

 

( )

( ) ( ) ( )( )
1

1 1 1 1 ;

F F
F F F L H

i i L

i

F FL L L
L H L L L L

LH H

L

c c
μ MEC N s λ

s s

N α αδ
δ N N w f w f

Ds α s α
N

   
 = − −   −  

    

 
    

= − + − − − − −         −
 



 (13) 

where 𝑤L
𝐹 is the weight of the Low-VOT users in the toll rule of Proposition 1 and fL=NL/(NL+NH) 

their frequency. For there not to be a loss, the toll must exceed the average externality (weighted 

by frequency). For this to happen the weight, 𝑤L
𝐹 of Low-VOT type—with the high externality—

must be well above its frequency, fL.   

 

Proofs of Proposition 1 and 2. To be done and then in Appendix A.□ 
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Proposition 1 implies that the volume-capacity ratio with flat tolling is higher than with first-

best fully-time-variant tolling due to the addition of the second-best correction 𝜆𝐿
𝐹 (

𝜕𝑐𝐿
𝐹

𝜕𝑠
−

𝜕𝑐𝐻
𝐹

𝜕𝑠
) to 

the capacity rule. This lowers the welfare distortion from over pricing the High-VOT users—as 

they see a toll above their MECi—but raises distortion from underpricing Low-VOT users. 

Nevertheless, the second-best addition raises welfare as the first effect is stronger. 

With ratio heterogeneity, it is impossible to say explicitly when there will be a profit and when 

a loss. In eq. (13), ( )F

i i

i

μ MEC N−  gives how much the toll revenue deviates from the total 

external cost of 
i i

i

MEC N . The deviation is proportional to the term ( )F

L Lw f−  between the curly 

brackets in the second line of (13). So if F

L Lw f= , the toll would equal the average MEC and 

( )F

i i

i

μ MEC N−  would be zero. However, then there would be a loss, as 
F F

F L H

L

c c
s λ

s s

  
  − 

  
 is 

positive.12  Hence, with the second-best capacity, the flat toll must well exceed the average MEC 

for there not to be a loss. So, for there not to be a loss, the Low-VOT type must be weighted 

more strongly in the toll setting than its frequency, 𝑤L
𝐹>>fL, and the flat toll must exceed the 

average MEC of fL∙MECL+(1−fL)∙MECH. If Low-VOT users are more price sensitive, 𝜕𝐷𝐿/𝑁𝐿 is 

closer to zero and the profit increases (or loss decreases).13 When the High-VOT users are more 

price sensitive, the profit falls. The degree of ratio heterogeneity has an uncertain effect on the 

profit. It increases the second-best capacity, lowering profit. But it also increases the weight of 

the Low-VOT users, which raises the toll and thus profit.  

To conclude, under flat tolling and ratio heterogeneity, the MECs differ over types and an 

anonymous coarse toll cannot equal the MECs. Moreover, the second-best capacity is set higher 

than following the first best rule. Typically, the flat toll system will make a loss, unless the Low-

VOT type is much more price sensitive than the High-VOT type and thus the toll well exceeds 

the average MEC. Accordingly, a loss is most likely to occur. 

4.2. Single-step Laih toll  

Now we turn to step tolling where the toll has a single step in it.  Of type i, Vi≥0 users travel 

in the centre period when the toll equals μ+ρ. In the shoulder periods there are Ni−Vi≥0 users and 

the toll is μ. Hence, μ is the flat part of the toll, and ρ is the step part: 

  2               if
.

                     

μ ρ t t t

μ otherwise
τ t

− +  
= 
  

 
12 The volume-capacity ratio is the total number of users, NL+NH, divided by the capacity s. For a given number of users, the second-best 

capacity with flat tolling exceeds the first best capacity. Accordingly, the volume-capacity ratio is lower with the flat toll, and the difference 

increases with the degree of heterogeneity in the values of time.  
13 In the profit equation there is a direct effect of −𝜕𝐷𝐿/𝑁𝐿, but a smaller  −𝜕𝐷𝐿/𝑁𝐿   also raises the Low-VOT type’s weight, which raises the 

toll and thereby further raises profit 
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With single-step tolling, we find that travel costs and MECs are constant with a period, but differ 

between periods. Travel costs are lower in the centre peak period, whereas MECs are higher.

  For simplicity, we only consider a single step in the toll and use the Laih (1994) 

equilibrium model. Obvious extensions would be multiple steps and alternative equilibrium 

models. See Lindsey et al. (2012) for an overview. The analysis would be more complicated in 

these models, as the exact distribution of user types over time is uncertain and costs depend on 

the preferences and number of users of each type (Van den Berg, 2014). Nevertheless, also in 

these models, the results would be similar as here, since costs would be similar in magnitude, 

and depend in a similar way on the preferences, capacity and numbers of users of each type.  

 The peak starts at ts when the first arrival occurs, and ends at te when the last arrival occurs. 

The early shoulder period last from ts until t+ at which time the toll is increased. The late shoulder 

period lasts from t-  to te. The below results follow from Van den Berg (2014). Therefore in text, 

we will only summarise the results, Appendix B gives a detailed derivation under two-type 

heterogeneity.  

 High-VOT users are less willing to queue since they value travel time more. Hence, both in 

the shoulder periods as in the centre period, the High-VOT users will arrive further from t* when 

travel times are lower So self-separation over time occurs. Of each type a fraction γ/(γ+β) arrives 

early and the remainder late. This is true both in the centre as in the shoulder periods. The optimal 

step part of the toll minimizes the total travel cost for given numbers of users. For this, its level, 

ρ, equates the generalized prices in the centre and shoulder periods, whilst its timings are such 

that the queue reaches zero size at t+ and t-.  

Total cost is minimized when, of each type, half the users travel in the centre period: Vi=Ni/2. 

This allows us to write total cost as  

𝑇𝐶𝑆𝑆 =
3

4

𝛿

𝑠
(𝑁𝐿 + 𝑁𝐻)(𝑁𝐿 + 𝑁𝐻) −

𝛿𝑁𝐿 𝑁𝐻

2 𝑠
(1 −

𝛼𝐿

𝛼𝐻
) + 𝑘 𝑠, (14) 

where superscript SS indicates the single-step toll equilibrium. The costs per trip simplify to 

1
                                                        if

2

1 1
c =               if  or 

2 2

L
L H

cp H
L

SS
L

L
L H

sh H L H
L s e

N N

c t t t
s

c

N N
N N

t t t t t t
s s









 

− +

− +


+ 

 =  


= 
 + 
 +

+    


             (15a) 

1
c   =                                                            if

2

c   =                                                    if  or 

cp H L
H

SS
H

sh H L
H s e

N N
t t t

s
c

N N
t t t t t t

s

− +

− +

+
 

= 
+    







            (15b) 

Here, superscript cp indicates the centre peak period and sh the shoulder periods.14  

 
14 Van den Berg (2014) found basically the same for M-type ratio heterogeneity in the Laih step toll model. For the ADL and braking model, 

the Vi is different for each type and is a function of the Ni and preference parameters. 
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The marginal external cost of the Low-VOT users exceeds that of the High-VOT users in each 

period. The differences in MECs between the centre peak and shoulder periods are the same for 

both types: 

𝑀𝐸𝐶𝐿
𝑠ℎ = 𝑀𝑆𝐶𝐿 − 𝑐𝐿

𝑠ℎ =
𝛿

𝑠

𝑁𝐿+𝑁𝐻

2
, (16a) 

𝑀𝐸𝐶𝐻
𝑠ℎ = 𝑀𝑆𝐶𝐻 − 𝑐𝐻

𝑠ℎ =
𝛿

𝑠
 

𝛼𝐿
𝛼𝐻

 𝑁𝐿+𝑁𝐻

2
, (16b) 

𝑀𝐸𝐶𝑖
𝑐𝑝

= 𝑀𝑆𝐶𝑖 − 𝑐𝑖
𝑐𝑝

= 𝑀𝐸𝐶𝑖
𝑠ℎ +

𝛿

𝑠

𝑁𝐿+𝑁𝐻

2
. (16c) 

The ρ equals the difference in cost between the centre peak and shoulder period, and this turns 

out to also be the difference in MEC between these periods:  

1
 .

2

cp shL H
ii

N N
MEC MEC

s

+
= = −   (17) 

Using all this, we can show that maximizing welfare is equivalent to maximizing the 

following Lagrangian: 

LSS = BL + BH − 𝑇𝐶𝑆𝑆+ 𝜆𝐿
𝑠ℎ ∙ (𝑐𝐿

𝑠ℎ + 𝜇 − 𝐷𝐿) + 𝜆𝐻
𝑠ℎ ∙ (𝑐𝐻

𝑠ℎ + 𝜇 − 𝐷𝐻). (18) 

The user-equilibrium multiplier, 𝜆𝑖
𝑠ℎ, ensures that type i's sum of travel cost and toll equals its 

inverse demand, Di. Problem (18) is akin to problem (13) for the flat toll as we already optimized 

VL, VH and ρ. The difference is that the step toll, compared to the flat toll, leads to lower costs by 

halving the queuing times for the same number of users.15  

 

Lemma 4: Step toll and ratio heterogeneity 

Under a Laih single-step toll and two-type ratio heterogeneity, within each period the marginal 

external cost (MECL) of the Low-VOT users exceeds that of the High-VOT users. The step part 

of the toll, ρ, equals the difference in MECs between the centre peak and shoulder periods of 

both types. The flat part of the toll, μ, balances the underpricing of Low-VOT users with the 

overpricing of High-VOT users: 

( )1SS sh SS sh SS

L L H Hμ MEC w MEC w=  +  − =
𝛿

2 𝑠
𝑁𝐻 +

𝛿

2 𝑠
𝑁𝐿 (

𝛼𝐿

𝛼𝐻
+ (1 −

𝛼𝐿

𝛼𝐻
)

−
𝜕𝐷𝐿
𝜕𝑁𝐿

+
𝛿

2 𝑠
(1−

𝛼𝐿
𝛼𝐻

)

−
𝜕𝐷𝐿
𝜕𝑁𝐿

−
𝜕𝐷𝐻
𝜕𝑁𝐻

+
𝛿

2 𝑠
(1−

𝛼𝐿
𝛼𝐻

)

)     (19) 

where the weight of type L is smaller than in the flat toll case: 

 1
2

.

1
2

cp cp

H L H H L

H H H H HSS

L cp cp cp cp

H L H L H L L H L

H H H L L L L H H

D c c D αδ

N N N N s α
w

D c c D c c D D αδ

N N N N N N N N s α

      
− − + − + −   
       

= =
            
− − + + − − + − − + −     
             

 (20) 

 

 Just as with the flat toll, the step toll balances the overpricing of the High-VOT users, with 

the underpricing of the Low-VOT users. The toll generally differs from the average MEC 

 
15 We get the same analytical results if we do the full problem at once. Moreover, for the numerical model, we dirictly maximized welfare to s, 

NL, NH, VL, VH, ρ, and μ with user equilibrium constraints for both the shoulder and peak periods. However, the presented two step 

optimization method is easier to follow. 
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(weighted by the number of users of each type). The deviation from the average MEC will tend 

to be smaller than with the flat toll because travel costs are lower. The more price sensitive a 

type i is, the closer the toll is to its MECi.  

  

Proposition 3: Optimal capacity with a step toll 

With two-type ratio heterogeneity and a single-step Laih toll, the capacity rule has a second-best 

correction and follows:  

−∑Ni ∙ ∂E[ci]/∂s = k−𝜆𝐿
𝑠ℎ (

𝜕𝑐𝐿
𝑠ℎ

𝜕𝑠
−

𝜕𝑐𝐻
𝑠ℎ

𝜕𝑠
), (21) 

where E[ci] is the average cost for type i averaged over time16 and 𝜆𝐿
𝑠ℎ > 0 is the Low-VOT 

type’s multiplier in (18). For given numbers of users, the capacity is set higher than following 

the first-best rule, but lower than with a flat toll.  

 

Proposition 4: Self-financing with a step toll 

Under two-type ratio heterogeneity, the profit of a single-step Laih toll is:   

 

( )

( ) ( ) ( )( )
1

1 1 1 1
2 2

sh sh
SS SS sh sh L H

i i L

i

SS SSL L L
L H L L L L

LH H

L

c c
μ MEC N s λ

s s

N α αδ
δ N N w f w f

Ds α s α
N

  
 = − −   − 

  

 
    

= − + − − − − −          −
 


, (22) 

where 𝜆𝐿
𝑠ℎ>0 is the Low-VOT type’s multiplier from (18), 𝑤𝐿

𝑆𝑆 its weight in the toll rule from 

(20) and fL=NL/(NL+NH). 17 

 

Proofs of Lemma 4 and Proposition 3 and 4. As problem (18) is so similar to problem (13) for the flat 

after we already optimized the step part of the toll (i.e. VL, VH and ρ), we will skip these proofs as they 

are almost identical to before. The only noticeable difference is that we now have slightly different cost 

function. □ 

4.3. Comparing the profit under flat and single-step tolling. 

 The ratio of flat-toll  to step-toll profit or loss is 

( ) ( )
( ) ( )

1
2 ,

1

F F

L H
F F F F FFF
L L L L L

SS SSSS SS SS SS SS SS
L H L L L L L

SS

N N

N w f λ fs

N N N w f λ f

s

+

 − −  −
=  

+  − −  −

 (23) 

where use superscripts F and SS to indicate the schemes for clarity. Accordingly—if the weights, 

capacities, multipliers and number of users were the same in both cases—the profit or loss would 

be twice as large with the flat toll (F) as with the step toll (SS). However, we will see that the 

difference will tend to be somewhat smaller. The second term in (23) will be somewhat smaller 

 
16 E[ci]=(𝑐𝑖

𝑠ℎ ∙ (𝑁𝑖 − 𝑉𝑖) + 𝑐𝑖
𝑐𝑝

∙ 𝑉𝑖)/(𝑁𝑖), such that total cost is 𝑇𝐶𝑆𝑆 = E[c𝐿]N𝐿 + E[c𝐻]N𝐻 + 𝑘 ∙ 𝑠. 
17 Again, the volume-capacity ratio, (NL+NH)/s, is smaller than with the first-best rule, but it will be larger than with the flat toll as the second-

best capacity correction is smaller.  
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than 1. This is because: the volume capacity-ratio, (𝑁𝐿
𝑗

+ 𝑁𝐻
𝑗
/𝑠𝑗) will be higher with the step 

toll due to the smaller second-best capacity correction with step tolling compared to flat tolling. 

The third term will tend to be close to 1.18  Hence, the profit or loss with a step toll will tend to 

be somewhat more than half that of the flat toll.  

Eq. (23) also indicates that the two tolling forms will attain a zero profit at similar 

combinations of parameters, but not identical ones. For both, the profit is larger (or loss smaller) 

if the Low-VOT users are more price sensitive—meaning that the derivative 𝜕𝐷𝐿/𝑁𝐿 is closer to 

zero—and when the High-VOT users are less price sensitive. The profit or loss goes towards 

zero as the degree of heterogeneity goes to zero and thus αL approaches αH. As the step toll has 

the smaller second-best capacity expansion, it is slightly more likely not to have a loss. 

Finally, for flat and step tolling, a deficit seems most likely: the extra capacity due to the 

second-best capacity rule is expensive, so the second-best toll would need to be much higher 

than the average externality for there not to be a loss.   

 

4.4. Conclusions on the analytical ratio heterogeneity model 

This section studied second-best flat or step tolling and capacity setting under ratio 

heterogeneity in the ratio of value of time to value of schedule delay. This heterogeneity has also 

been called flexibility heterogeneity. With a flat toll, the toll is a constant throughout the peak. 

With a step toll, the toll is μ in the early and late parts of the peak; in the centre peak, it is higher 

and is μ + ρ.  

Both the flat toll as the flat part of the step toll are a weighted average of the marginal external 

costs (MECs) of the types, with weights depending on demand and travel cost derivatives and 

not directly on the number of users of a type. The general formulas of the two tolls are the same, 

but, as equilibrium cost functions differ, they will result in different tolls. The step toll lowers 

travel costs and MECs for the same numbers of users by reducing queuing, and hence also the 

flat part of the toll is lowered.  

For given numbers of users, the capacity is set higher with the flat toll than the step toll, which 

in turn has a higher capacity than under the first-best fully-time-variant toll. This is done to limit 

the welfare reducing effects of overpricing High-VOT users, where this issue is most severe with 

the flat toll. 

The step and flat tolling attain a zero profit at similar combinations of parameters, but not 

identical ones. For both, the profit is larger (or loss smaller) if the Low-VOT users are more price 

 
18 This follows from three points.  

Point 1, /   /F F SS SS

L LN s vs N s   is uncertain, as ( ) ( )/ /F F F SS SS SS

L H L HN N s N N s+  +   and F SS

L Lf f  as step tolling is relatively more 

detrimental for Low-VOT users. But on the whole, we the two ratios will be similar.  

Point 2. /   /F F SS SS

H HN s N s , as the step-toll will tend to have the higher volume-capacity ratio,  ( ) ( )/ /F F F SS SS SS

L H L HN N s N N s+  + , and  

F SS

L Lf f . However, 
F

Lλ >
SS

Lλ , as the flat toll underprices low-VOT users more. Therefore, these two effects work in opposite direction and 

mostly cancel out.  

Point 3. Finally, F SS

L Lw w  and 
F SS

L Lf f , so again these two effects on the relative profit work in oppositive directions and will mostly 

cancel out. 
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sensitive or the High-VOT users are less price sensitive. The profit or loss goes towards zero as 

the degree of heterogeneity goes to zero. As the step toll has the smaller second-best capacity 

expansion than the flat toll, it is less likely to make a loss. The flat toll’s profit or loss tends to 

be over twice that of the step toll. 

5. Numerical model for ratio heterogeneity 

Now we turn to our numerical model. It will illustrate our analytical model. It also studies the 

effects of imposing self-financing, which we cannot do with pure analytics. The sensitivity 

analysis studies: (i) How likely it is that there will be a loss?  (ii) How important is the potential 

lack of self-financing? (iii) How sensitive is the outcome to parameter values? (iv) What is the 

effect on welfare if we impose that a flat or step toll has to be self-financing?  

For comparison and calibration, the numerical model will also look at the outcome with no 

tolling and with a first-best toll that is fully time variant. This allows us to put the effects of flat 

and step tolling into perspective.  

5.1 Base case calibration 

We aim to keep the set-up comparable with Van den Berg and Verhoef (2011a,b) and Van 

den Berg (2014). The numeral model thus also consider fuel costs of €7.30 and a free-flow travel 

time of 30 minutes, but these other travel costs are not included in the results in Table 1. We use 

the following linear inverse demand that is type specific:  

 i i i iD d0 d1 N= −
   

The demand parameters d0i and d1i are such that the no-toll equilibrium has 6000 Low-VOT 

users, 3000 High-VOT users, and an average fuel-cost elasticity of  0.4. This elasticity is close 

to the average in Brons et al. (2008).19 The marginal capacity cost parameter, k, is set such that 

the first-best capacity is s=3600, which is the fixed capacity in Van den Berg and Verhoef 

(2011a,b) and Van den Berg (2014). The capacity in the no-toll equilibrium is by assumption 

also 3600. The VOTs are αL=€7.50/h and αH=€15.00/h. This ensures that the no-toll average 

value of time is €10.00/hour, which is close to the official Dutch average (Kouwenhoven et al., 

2014). The values of schedule delay are β=€6.09/h and γ=€23.76/h, and follow from the ratios 

of the value of time to values of schedule delay in Small (1982) and Arnott et al. (1993). Most 

of the bottleneck literature has used these ratios.  

Finally, we assume that the slope of the inverse demand of the Low-VOT type is 1.5 that of 

the High-VOT type, implying that the Low-VOT type is less price sensitive. One of the things 

the sensitivity analysis will look at is the changing this ratio of demand slopes.20   

 
19 We use fuel cost for the elasticity as there is large empirical literature on this, while little is known for toll payments. We assume that people 

do not care where they spend money on.   
20 The remaining parameters are k=14.436, d0L=45.889, d0H=24.053, d1L=0.0059641, d1H=0.00397603 and δ=β∙γ/(β+γ)= 4.8501.  
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5.2 Results for the base calibration  

Table 1 presents the results for the base calibration. The most important results are that both 

coarse toll schemes have a large loss. The flat toll has a loss of 480 or 12% of capacity cost; the 

step toll has a loss of 260 or 6.8% of capacity cost. This is consistent with the analytical section, 

which discussed that the ratio of profit or loss with flat tolling tends to be almost twice that of 

with step tolling. With the first-best toll, the toll equals the time-variant MEC, and there is a zero 

profit. With the flat toll, the average MEC is €7.91 and the toll is €7.01. So the flat toll is below 

the average MEC, while for a zero profit it would need to exceed it. The flat toll is €1.79 lower 

than the Low-VOT type’s MECL, and €1.37 higher than the MECH. With the single-step toll, the 

toll is also below the average MEC and the MECL, and it exceeds the MECH. However, the 

differences are smaller as travel costs and MECs are lower with the step toll.  

Imposing self-financing does little harm to welfare. When adding the constraint that the flat 

toll revenue has to equals capacity cost, the welfare is only 0.25% lower while the generalized 

price increases by 7% for the Low-VOT users and 6% for the High-VOT users. With a step toll, 

the effect of self-financing is minute: it causes a 0.05% fall in welfare and the prices increase 

3.4% and 3.7%.  

The flat toll is a blunt instrument that can only limit the number of users, without affecting 

queuing delays otherwise. With fixed demand, it would have a welfare gain of zero. Now it 

attains 24.8% of the first-best welfare gain relative to the no-toll case, but both types face very 

large price increases.21  

The single-step toll removes—for given number of users—halve the queuing compared to the 

no-toll case. It is a more precise instrument and is less harmful for consumers. Still, both types 

see an increase in the price, and this increase is smaller for the High-VOT type. The single-step 

toll attains 58.4% of the first-best gain in our numerical base case. With fixed demand, this 

percentage would be 50%, both with homogeneity as with ratio heterogeneity (Laih, 2004; Van 

den Berg, 2014). 

 
21 For a given numbers of users, the price with a flat toll would be twice that of the no-toll case; but, off course, the flat toll also reduces the 

number of users tremendously.  



17 

 

Table 1: Results for the different policies under the base case calibration  
No-

toll 

First-

best 

Flat toll Self-financing 

flat toll 

Step toll Self-financing step toll 

     
Centre 

period 

Shoulder 

period 

Combined Centre 

period 

Shoulder 

period 

Combined 

Number of Low-VOT users, NL 6000 5710.1 5251.5 5080.3 2737.2 2737.2 5474.3 2696.0 2696.0 5391.9 

Number of High-VOT users, NH 3000 3073.4 2072.5 1836.0 1260.6 1260.6 2521.1 1201.1 1201.1 2402.2 

Travel cost for the Low-VOT typee  10.10 5.92a 7.55 7.60 4.22 9.23 6.72a 4.23 9.24 6.74a 

Travel cost for the High-VOT typee  12.13 5.92 a 8.80 8.77 5.01 10.02 7.51a  5.00 10.01 7.51a 

(Average) MECL 12.13 5.92a 8.80 8.77 10.02 5.01 7.51a 10.01 5.00 7.51a 

(Average) MECH 8.08 5.92a  5.64 5.55 8.30 3.29 5.80a 8.27 3.27 5.78a 

(Average) toll x 5.92a 7.01 7.99 9.02 4.01 6.52a 9.50 4.49 7.00 

Step part of the toll x x x x 5.01 5.00 

Flat part of the toll x 0 7.01 7.99 4.01 4.49 

Toll revenue x 51970 51372 55232 52098 54524 

Capacity cost of k∙s 51970 51970 58279 55232 55882 54524 

Profit x 0 -480.41 0 -263.23 0 

Profit as percentage of capacity cost x 0% -11.9% 0% -6.8% 0% 

Capacity, s 3600c 3600 4037.1c 3826.0c 3871.0c 3776.9c 

(NL+NH)/s: volume-capacity ratio  2.50 2.44 1.81 1.81 2.07 2.06 

Total travel cost coste  97003 51970 57907 54727 71451 69694 

Welfare, W 73275 116007 83872 83665 98218 98169 

Relative efficiency b 0b 1b 0.248b 0.243b 0.584b 0.583b 

Notes: a This is an average over time.  

b The relative efficiency of a policy is its welfare gain from the no-toll equilibrium divided by the corresponding welfare gain of the first-best social optimum.  
c The NT capacity is assumed to be 3600 in the no-toll equilibrium, whereas for the other cases the capacity is set at the optimized level. For the no-toll case, one could also optimize the capacity. The second-best capacity 

would, with 4516.3, be much higher than the in the first-best case, but using this level would complicate comparison with previous papers who used a fixed capacity. The second-best capacity is higher because the no-toll 

case has slightly more users and mostly because, for a given NL and NH, the no-tolling user costs are almost twice that of in the FB case, making capacity building more attractive. Finally, the no-toll case would have a 

second-best capacity reduction, which corrects for latent demand due to the unpriced congestion (see also Small and Verhoef (2007)). The flat and step toll settings have a small second-best capacity increase compared to 

the first-best rule, so that they have a slightly lower volume-capacity ratio.   
e This excludes the costs only added in the numerical model from fuel, free-flow travel time and operation costs.  
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5.3 Sensitivity analysis 

We now turn to our sensitivity analysis. The most important one is to the relative demand 

sensitivities of the two types, d1L vs d1H, which allows us to see when the system is self-financing 

and how likely a non-negative profit is. We also look at the degree of ratio heterogeneity and the 

average elasticity to the fuel cost. 

5.3.1. Difference in the slopes of the demand functions of the two types: d1L vs d1H 

We start with looking at the ratio of demands d1L/d1H. In the base calibration, this ratio was 1.5, 

and so the Low-VOT type was less price sensitive than the High-VOT type. Fig. 1 shows that, as 

the Low-VOT users become relatively more price sensitive, the profit falls for both schemes. For 

both of them, the Low-VOT users would need to be about twice as price sensitive as the High-VOT 

users in order for there not a loss. As we argued using eq. (23), the flat toll’s profit or loss is almost 

twice that of the step toll. Although this is not clearly visible, the step toll is a bit more likely not 

to make a loss. 

Fig 1: Profit as a percentage of capacity cost over the ratio, d1L/d1H, of function demand slopes.  

  

 

Now we turn to the welfare effects in the left panel of Fig. 2. The step toll has a relative 

efficiency of around 0.6, and thus attains about 60% of the welfare again from the no-toll case that 

the first-best policy attains. The relative efficiency for the flat toll is between 0.25 and 0.30. As the 

Low-VOT type becomes relatively less price sensitive, the relative efficiency of both policies 

perform decreases slightly. This probably occurs because both policies do not remove all queueing 

and partly reduce congestion by reducing consumption, which is more difficult when the Low-

VOT type—which is more numerous—is less price sensitive.      

Fig. 2(right) looks at the effects on welfare of imposing self-financing, assuming that a positive 

profit is also impossible (for instance, because toll revenue is earmarked to be used on roads). So 

if there would be a loss, the flat part of the toll is raised to get self-financing; if there would be a 

profit, it is lowered. The welfare loss of imposing self-financing is a minute 0% to 0.4% for the flat 

toll and  0% to 0.1% for the step toll. This suggests that we can attain self-financing with little harm 

to society. The self-financing has a more noticeable effect on prices, number of users and consumer 

surplus. For instance, the number of users can fall by up to 10%. 

d1L/d1H 
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Fig 2: Welfare effects and the ratio d1L/d1H of demand slopes: Left panel relative efficiency, right panel: 

welfare loss due to imposing self-financing 

 
Note: The relative efficiency of a policy is its welfare gain from the no-toll equilibrium divided by the corresponding welfare gain of the first-best 

social optimum. 

 

Finally, Fig. 3 looks at the capacity and the volume-capacity ratio. As the analytics showed, the 

flat toll has a lower-volume capacity ratio, (NH+NL)/s, than the step toll, which in turn has a lower 

ratio than the first-best case. First-best toll removes all queuing, and step tolling halves the queueing 

for given usage numbers. So the travel costs is much higher with the flat toll than with the step toll, 

who in turn has higher travel costs than the first-best toll. Higher travel costs, for given usage, is a 

second reason for more capacity and thus a lower volume-capacity ratio.   

Fig 3: The effect of the ratio of demand slopes on capacity (left panel) and volume capacity ratio (right 

panel)  

 

5.3.2. Degree of heterogeneity in the value of time  

Now we turn to the degree of ratio heterogeneity, which we measure by the percentage 

difference in values of time: %∆α. With homogeneity, the coarse toll equals the homogenous MEC 

and, as Fig. 4 shows, profit is exactly zero. As the degree of heterogeneity rises, the MEC becomes 

more heterogeneous and the loss increases.  

The degree of heterogeneity has little to no effect on the welfare effect of the step toll. With 

fixed demand in Van den Berg (2014), the single step toll always attains 50% of the first best gain. 

Here, the step toll’s gain is slightly higher as with price-sensitive demand it also reduces 

overconsumption caused by the externality. For the flat toll, the relative efficiency is much lower 

and falls with the degree of heterogeneity. This mostly a scale effect as no-toll welfare increases 

with this degree by lowering the no-toll travel cost for the Low-VOT type. 

d1L/d1H 

(NH+NL)/s 
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Since, the loss with a coarse toll increases with the %∆α, the welfare loss from imposing self-

financing increases with %∆α. Still, for the maximum amount of heterogeneity at which the αL is 

only just above β,22 the welfare loss is still only 0.5%.  

Fig 4: The effect of the degree of heterogeneity (%∆α) on profit (as a percentage of capacity cost)  

 

 

Fig 5: Welfare effects and the degree of heterogeneity (%∆α)   

 
Note: The relative efficiency of a policy is its welfare gain from the no-toll equilibrium divided by the corresponding welfare gain of the first-best 

social optimum. 

5.3.3. Average elasticity   

Finally, we look at the average elasticity to the fuel cost. We use the fuel cost elasticity, as there 

is large empirical literature on this, while less is known for toll payments. Fig. 6 indicates that as 

demand becomes more elastic, losses are larger in percentage terms and per passenger; although 

total losses are smaller. With the larger loss in percentage terms and per traveller, self-financing 

thus needs a larger toll increase, which makes it more harmful for welfare. 

Fig 6: The effect of the average fuel cost elasticity on profit (as a percentage of capacity cost)  

   
Note: we use the absolute of the elasticity, so that a larger number implies more elastic demand 

 
22 Which must be so for the regular equilibria to hold in the bottleneck model or any other dynamic congestion model (Arnot et al, 1993). 
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Fig 7: Welfare effects and the average fuel cost elasticity  

 

 

This concludes, our sensitivity analysis. Appendix C gives some further analysis. To summarise, 

it is most likely that a coarse toll will make a loss. The Low-VOT users need to be much more price 

sensitive than the High-VOT users, for the coarse toll to be far enough above the average MEC, so 

that the toll covers the extra capacity cost due to the second-best capacity rule. As overall demand 

becomes more price sensitive or the degree of ratio heterogeneity increase, the deficit with a coarse 

toll rises, and the welfare decrease due to imposing self-financing also rises.   

6. Proportional heterogeneity  

Ratio heterogeneity is the most interesting heterogeneity as it means that the self-financing 

theorem does not hold, and the toll and capacity rules need second-best adjustments. With 

proportional heterogeneity, the values of time and schedule delay vary over types in fixed 

proportions. As Vickrey (1973) and Van den Berg (2011a) argued, this heterogeneity could stem 

from income differences. This section studies proportional heterogeneity with two user types: a 

low-values type and a high-values type, where all values are an arbitrary percentage higher for the 

high type. Again, there are separate demands for each type.  

6.1 Flat toll 

We again first turn to the flat toll. We will not go into details as the equilibrium is the same as the 

no-toll equilibrium in Van den Berg and Verhoef (2011a). The flat toll cannot remove queueing; it 

can only remove the persons from the road who have a value of the trip that is below the marginal 

social cost. 

 

Proposition 5: Proportional heterogeneity and flat tolling 

With proportional heterogeneity, the marginal external costs (MEC’s) are the same for both 

user types. So the optimal toll equals the MEC throughout the peak, μ=MEC, and the system is 

self-financing. 

 

Proof:  We will look at the more general case with M discrete type. Using Van den Berg and Verhoef 

(2011a), total cost with M types of users is:  
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As the toll equals the homogeneous MEC with proportional heterogeneity, Lemmas 1 tells us 

that the capacity will follow the first-best rule and minimize total cost. Lemma 2 implies that the 

flat toll will have toll revenue that exactly equals capacity costs. 

6.2. Laih single-step tolling under two-type proportional heterogeneity 

 The Laih (1994, 2004) single-step toll under proportional heterogeneity was first studied by 

Xiao et al. (2011) and Van den Berg (2014). The analysis proves to be a bit more difficult as there 

are three possible equilibria depending on the relative sizes of the high-values and low-values types. 

However, these equilibria only differ in whether they are fully or partially separated. We assume 

that each type is of positive size, NH>0 and NL>0, as otherwise there would be no heterogeneity.  

The toll again is μ in the shoulders of the peak and is μ+ρ in the centre peak. Off each type, Vi≥0 

users travel in the centre peak and the remaining Ni−Vi in the shoulder periods. In the fully 

separated equilibrium, all high-values users travel in the centre peak and all low-values users in the 

shoulder periods. In the two partially separated equilibria, one type travels in both the centre period 

and the shoulder period, while the other type uses only one.  

 

Lemma 5. Possible user equilibria with proportional heterogeneity and single step tolling 

With two-type proportional heterogeneity, the Laih-single step toll has three possible user 

equilibria depending on the relative sizes of the user types. The equilibria differ in which type uses 

which period(s): 

 i. Partially separated equilibrium with NL>VL>0 and VH=NH. This occurs if  𝛿𝐿𝑁𝐿 > 𝛿𝐻𝑁𝐻. 

 ii. Fully separated equilibrium with VL=0 and VH=NH. This occurs if  𝛿𝐻𝑁𝐻 ≥ 𝛿𝐿𝐻𝐿 and 𝑁𝐿 ≥ 𝑁𝐿. 

iii. Partially separated with VL=0 and NH>VH>0. This occurs if  𝛿𝐻𝑁𝐻 ≥ 𝛿𝐿𝐻𝐿  & 𝑁𝐻 > 𝑁𝐿. 

 

Proposition 6: Self-financing of step tolling under proportional heterogeneity  

With two-type proportional heterogeneity and single-step tolling, for all three possible user 

equilibria, the toll τ[t] equals the MECi[t] when type i travels. Consequently, following Lemmas 1-

2, the system is self-financing with the toll revenue equaling the cost of the optimal capacity. 

 

Proofs of Lemma 5 and Proposition 6:  Lemma 5 follows directly from Van den Berg (2014). The MECi 

is constant within travel period and the same for all type, but now does differ between the shoulder periods 

and the centre peak. Just as with ratio heterogeneity, the difference in toll between the toll in the shoulders 
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and the centre equals the difference in MECi. So, as the MEC is the same for all, the toll equals the MEC 

throughout the peak, and thus following Lemma 1-2 the scheme is self-financing,  

 

To conclude, with proportional heterogeneity, flat and coarse tolling lead to marginal external cost 

pricing and therefore self-financing of capacity that follows the first-best rule. Van den Berg (2014) 

considered continuous heterogeneity, which turns out to be easier as there is only one possible 

equilibrium. Again, the MEC in the centre period is the same for all types and the shoulder periods’ 

MEC is also the same for all types. When there are many types m, multiple equilibria are possible, 

but also then the higher values types use the centre period and there will be at most one type that 

uses the centre and shoulders.   

7. Other forms of heterogeneity 

Having looked at ratio and proportional heterogeneity, we now briefly discuss the two other 

possible dimensions of heterogeneity in preferences in a dynamic congestion model with linear 

scheduling costs. These dimensions are in the preferred arrival time (𝑡𝑖
∗) and between the value of 

schedule delay early and late (β/γi).  

Heterogeneity in β/γi means that also α/γi varies, so there will effectively be ratio heterogeneity 

for late arrivals if the high-γ type also arrives late in user equilibrium. So using our earlier results 

this means that self-financing is not ensured.  

 Following Arnott et al. (1989) heterogeneity in 𝑡𝑖
∗ means that user separate over arrival time 

into periods around their preferred arrival time. However, as long as the value of time and schedule 

delay are homogeneous the MEC will also be the same for all types, so one can expect self-

financing to hold as the toll will equal the MEC.  

We do not look at general heterogeneity in multiple dimensions.23 Such heterogeneity is off 

course present in really, but complicates analytical analysis of step tolling tremendously due to the 

explosion of the number of possible equilibria. Yet, using the results of van den Berg (2011a) and 

Hall (2018, 2021ab), it seems plausible that as long as t* is homogeneous, the effects of the different 

dimensions of heterogeneity are qualitatively the same under more general heterogeneity. If t* is 

heterogeneous, we add the extra complication of versus marginal vs infra-marginal users, where 

infra-marginal users can only arrive at one moment and time but their preferences do not affect the 

equilibrium. Then the marginal users would probably determine the toll, while one would expect 

the capacity to depend on the average users; this would imply a second-reason why self-financing 

may not hold.  

8. Conclusion  

We studied whether a road with bottleneck congestion is self-financing under flat or step tolling; 

that is whether the toll revenue cover the bottleneck capacity costs. Self-financing will always hold 

if the toll can equal the marginal external cost (MEC) throughout the peak. But, with ratio 

 
23 We do not consider time-variant values of time or schedule delay and possible heterogeneity therein. 
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heterogeneity between value of time (VOT) and values of schedule delay, the MEC is 

heterogeneous and hence the toll cannot equal the MEC at all moments. Accordingly, the system 

is only exactly self-financing for very specific parameter combinations. For this result, we derived 

explicit formulas for toll and capacity setting under ratio heterogeneity with two discrete types of 

users. We find that the capacity rule has a second-best correction: the capacity is set higher than 

following the first-best rule as this lessens the distortion from overpricing the drivers with high 

values of time. Users with a lower VOT cause higher MECs. The toll is the weighted average of 

the MECs, where weights depend on cost and demand derivatives and not on the frequency of the 

types. The more price sensitive a type is, the closer the toll is to its MEC.  

The scheme can only be self-financing if the users with low value of time are much more price 

sensitive than those with high values, and a deficit is most likely to occur. In our numerical model, 

the users with a low value of time must be almost twice as price sensitive for there not to be loss; 

and, typically, the loss is 5-15% of capacity costs. Nevertheless, imposing self-financing by adding 

an extra constraint that toll revenue equals capacity costs only causes a small welfare loss of 0% to 

1.5%. Other dimensions of preference heterogeneity do not in themselves lead to a violation of the 

self-financing result.  

All this shows that in reality it unlikely that coarse tolling systems will be exactly self-financing. 

This unfortunate for the acceptability of congestion pricing. Still, we find that the effect on welfare 

of adding a self-financing constraint are small, and even minute with a step toll.  

An obvious follow-up question is how a multi-step toll—as used in Singapore and Stockholm—

would perform. Building on the results of Lindsey et al. (2012) for homogeneous users, we would 

expect the step toll to approach the time-variant MEC as the number of steps goes to infinity. This 

is true for the Laih and ADL step toll models, but not for the braking model. Another interesting 

follow up area is considering multiple dimensions of heterogeneity or different congestion models. 

In particular, Hall (2021ab) has shown that adding heterogeneity in the preferred arrival time to 

heterogeneity in values of time and schedule delay can massively change the effects of fully-time-

variant tolling. Finally, for any dynamic model, the system will always be self-financing if the toll 

can always equal the MEC. But this is not the case with ratio heterogeneity, and then how does the 

congestion model affect the welfare and distributional effects of step tolling, the lack of self-

financing and the effects of imposing self-financing? 
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Appendix: 

A. Detailed derivations for the flat toll under with ratio heterogeneity 

A.1 Proof of Lemma 3 

As noted maximizing welfare is equivalent to maximizing the below Lagrangian to NH, NL, μF, 

𝑠, 𝜆𝐿
𝐹 and 𝜆𝐻

𝐹  : 

( ) ( ) ( ).F F F F F F F F F

L H H H L L L L L H H HL B B c N c N k s λ c μ D λ c μ D= + −  +  +  +  + − +  + −  (9) 

The first order conditions to the choice variables are: 
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Applying (A.3), we get: 

F F

L Hλ λ= −  (A.8) 

Using this and (A.2) and (A.7), we can then solve for F

Lλ : 
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Combining (A.1), (A.7) and (A.8), we find  

 ( )0
F F

F F L L H
L L
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c D c
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N N N
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.  

And then using (A.9), we get:   
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                                             (A.10) 

 

From which we get, the general equation of Lemma 3: 

(1 )F F F F F

L L H Lμ MEC w MEC w=  +  −  (A.11) 

H L H

F H H H
L

H L H L H L

H H H L L L

D c c

N N N
w

D c c D c c

N N N N N N

  
− − +
  

=
        
− − + + − − +   
          (A.12) 

Finally, the bottleneck specific equations are found by using the travel cost equations. Using 

these, you can also show that the second order conditions also hold. This completes the proof of 

Lemma 3. 

A.2 Proof of Proposition 1 

The eq. (12) of the proposition follows directly from the f.o.c. in (A.4). That 𝜆𝐿
𝐹 > 0 is visible in 

(A.9). Finally, using the cost equation in  (6), we see that the High-VOT type’s cost decreases faster 

with s than that of the Low-VOT type, as it has the larger cost. So this implies (
𝜕𝑐𝐿

𝐹

𝜕𝑠
−

𝜕𝑐𝐻
𝐹

𝜕𝑠
) > 0.  

Hence, the capacity rule with flat tolling of −∑ Ni ∙ 𝜕𝑐𝑖
𝐹/∂s = k − 𝜆𝐿

𝐹 (
𝜕𝑐𝐿

𝐹

𝜕𝑠
−

𝜕𝑐𝐻
𝐹

𝜕𝑠
) must imply a higher 

capacity s for given NL and NH than the first-best rule that is −∑ Ni ∙ 𝜕𝑐𝑖
𝐹/∂s = k. This in turn means 

that the flat toll has the higher Volume-Capacity ratio, (NL+NH)/s. This completes the proof of 

Proposition 1. 

A.3 Proof of Proposition 2 

The profit equals toll revenue minus capacity cost, where the second line follow from flogging 

what the capacity condition from proposition 1 implies k must equal: 

( )

( )

F F

L H

F F F F
F FL H L H

L H L H L

μ N N s k

c c c c
μ N N N N s s λ

s s s s

 =  + − 

      
=  + +  +   −   −   

      
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By plugging in the functional forms, one can shows that with the linear travel cost of the bottleneck 

model:
F

i
i

c
s MEC

s


 =


. This makes profit: 

( ) ( )
F F

F F F L H
L H L L H H L

c c
μ N N MEC N MEC N s λ

s s

  
 =  + +  +  −   − 

  
  (A.13) 

 ( )
F F

F F L H
i i L

i

c c
μ MEC N s λ

s s

   
= − −   −  

    
      (A.14) 

Eq. (A.14) is the general profit equation given in the proposition, by plugging in the functional 

forms we get the second line. As 
F F

F L H
L

c c
s λ

s s

  
−   − 

  
 must be negative, the first term of (A.14) 

must be negative which only happens when the average toll exceeds the average MEC.  This 

completes the proof of Proposition 2. 

B. Timings of the peak with a single-step Laih toll under with ratio heterogeneity 

For the (generalized) price not to be higher in the centre period when the toll is ρ higher, the 

travel time at the start of the centre period, must be lower than for arrival just before is. Therefore, 

at some moment departures stop, and the queue starts shrinking. To maximize the reduction in 

queuing time, t+ and ρ are chosen so that the queue reaches zero at t+. If, for instance, there were 

still some queueing at t+, then starting the centre period a bit earlier would reduce travel time of all 

centre peak users, whilst all users that initially travelled in the shoulders would equal off, thereby 

lowering total cost. Having a period without arrivals just before t+ would only raise costs, so the 

queuing of early shoulder period ends exactly at t+.   

The question then arises how t- is set. Arrivals just after t- pay a much lower toll than arrivals 

just before it. So for a constant price, the travel time must be much higher for arrivals just after t-. 

In the Laih model, this is attained by having the users who arrive after t- wait besides the road just 

before the bottleneck without impeding other drivers. There are hence separate queues. The t- is 

then set such that the last centre peak user arrives exactly at t-. Accordingly, in equilibrium the 

periods are defined by:  

L H

L H

V Vβ
t

β γ s

V Vγ
t

β γ s

+

−

+
= −

+

+
=

+

 

 

The early shoulder period before t+ will automatically have the same price as the late shoulder 

period as in user equilibrium a fraction β/(β+γ) of the shoulder users travels early. For users to be 

willing to travel in the centre and shoulders, the step part of the toll, ρ, must equal the difference in 

cost between centre period and shoulders of the peak (from ts to t+ and from t- to te).  

Using the results of van den Berg (2014) this makes the travel costs for both types:  
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c  =  +                  if  or 
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1
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cp L H
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sh L H
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V V
t t t

s
c

N N
t t t t t t
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
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+ −

+ −

+
 

= 
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Under two-type ratio heterogeneity and a Laih single step toll, it is optimal that of each type halve 

of its users travel when the step toll is turned on and the other halve when it is off. Still, within each 

periods, the types travel separated with the Low-VOT users arriving closer to the preferred arrival 

time.  As the queue reaches zero at the start and end of the centre peak period, total cost can be 

shown to be:  

    𝑇𝐶𝑠𝑠 = 𝑘 ∙ 𝑠 +
((N𝐿+N𝐻)(N𝐻−V𝐻)+V𝐻(V𝐿+V𝐻))𝛿

𝑠
+

((N𝐿−V𝐿)(N𝐿+V𝐻+
(N𝐻−V𝐻)α𝐿

α𝐻
)+V𝐿(V𝐿+

α𝐿
α𝐻

V𝐻))𝛿

𝑠
 

and it is globally convex in VL and VH. Taking derivatives we find that the minimum is at VL=NL/2 

and VH=NH/2. 

C. More sensitivity analyses for the numerical model for ratio heterogeneity 

Figures C.1, C.2, C.3, C.4 and C.5 extend the sensitivity analysis by looking at some effects that 

were omitted in the main text. 

 Fig. C.1: Effects of the policies on usages over the average elasticity  

   

 

 Fig. C.2: Relative efficiencies and the average elasticity  

  

 

Fig. C.3: The effect of the average fuel cost elasticity on the optimal capacities  

%∆NL %∆NH 
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Note: we use the absolute of the elasticity, so that a larger number implies more elastic demand 

Fig. C.4: Effects of the policies on usages over the degree of heterogeneity 

    

 

 

Fig. C.5: Profit and welfare change due to imposing self-financing as the first-best (FB) capacity changes 

due to changes in the marginal capacity cost.  
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