Cremer, Helmuth; de Donder, Philippe; Maldonado, Darío; Pestieau, Pierre

Working Paper

Habit formation and labor supply

CESifo Working Paper, No. 2351

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Cremer, Helmuth; de Donder, Philippe; Maldonado, Darío; Pestieau, Pierre (2008) : Habit formation and labor supply, CESifo Working Paper, No. 2351, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/26396

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Habit Formation and Labor Supply

HELMUTH CREMER
PHILIPPE DE DONDER
DARIO MALDONADO
PIERRE PESTIEAU

CESifo Working Paper No. 2351
Category 1: Public Finance
July 2008

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Habit Formation and Labor Supply

Abstract

This paper shows that the combination of habit formation - present consumption creating additional consumption needs in the future - and myopia may explain why some retirees are forced to ‘unretire’, i.e., unexpectedly return to work. It also shows that when myopia about habit formation leads to unretirement there is a case for government's intervention. In a first-best setting the optimal solution can be decentralized by a simple ‘Pigouvian’ (paternalistic) consumption tax (along with suitable lump-sum taxes). In a second-best setting, when personalized lump-sum transfers are not available, consumption taxes may have conflicting paternalistic and redistributive effects. We study the design of consumption taxes in such a setting when myopic individuals differ in productivity.

JEL Code: D91, H21, H55.

Keywords: habit formation, myopia, unretiring.
1 Introduction

Over the last decade, most of the discussion over the rate of labor participation of elderly workers and over the retirement decision has focused on the decline in activity resulting from generous and distorting social security schemes.\(^1\) The fact that at the same time some workers, admittedly a minority, could have some regrets and could try to get out of retirement was neglected. And yet, there is an increasing number of workers who decide to work for pay after they retire. This number is clearly more important in countries where earnings tests are not enacted. In a recent survey conducted in the US, 77% of workers expect to work after retirement and among the retirees, 12% do work for pay.\(^2\) In the same survey, two-third do work after retirement because they want to and one third because they have to. Not surprisingly, people’s attitudes vary according to how much they earn and the kind of work they perform. Maestas (2007) studies this behavior known as “unretirement” and tries to explain it. She also explores two hypotheses: unretirement is unexpected resulting from failures in planning and financial shocks or unretirement is expected but reflects a complex retirement process. She shows that for the majority unretirement is anticipated. It remains that one out of five retirees unexpectedly returns to work.

In this paper, we provide a theoretical explanation for such a behavior and look for its consequences for optimal taxation design. It relies on two concepts, habit formation and myopia, that are introduced in a two period model. Individuals work during the entire first period and for part of the second period. In other words, labor supply is fixed and unitary in the first period; in the second one it is endogenous and can be viewed as the age of retirement. In the first period, individuals consume a certain fraction of their earnings, which brings some utility but creates some needs or habits in the second period. However we assume that out of myopia or ignorance, individuals underestimate the extent of this habit formation. Consequently, when they reach the second period, they face unexpected consumption needs along with insufficient saving, which forces them to work longer than expected; concretely they postpone retirement or they are

\(^1\)Gruber and Wise (1999).
forced to unretire. The myopic habit formation model is capable of explaining the prolonged activity or the unretirement patterns discussed above. There is other recent evidence that support the use of this model: Fehr and Sych (2006) ask whether myopic of farsighted habit formation fits better observed behavior and argue that individuals tend to behave as the myopic habit formation model predicts.

To the best of our knowledge, the combination of habit formation and myopia has not been studied previously in the literature, with the exception of Diamond and Mirrlees (2000). Our approach differs from theirs in two ways: they focus on saving and not on labor supply and they do not look for the tax policy implications of habit formation.

As it is standard in behavioral economics, myopia calls for government’s intervention aimed at avoiding that individuals are forced to unretire. With identical individuals, it suffices for the government to induce more saving or to tax first period consumption. With individuals differing in earnings, and in the absence of lump sum transfers, our linear tax instruments play two roles: correction for myopia and redistribution. The rest of the paper is organized as follows. In Section 2 the basic model along with the market and the first-best solutions are presented. Section 3 is devoted to the second-best.

2 The model

2.1 Market solution

We consider an individual with wage w. He works one unit of time in the first period of his life and thus earns w. This earning is divided into current consumption c and saving s. In the second period, he works an amount of time $\ell \leq 1$, and earns $w\ell$. Total second period income is then equal to $w\ell + s$ and devoted to second period consumption, d.

Individual utility is given by

$$U(c, d, \ell) = u(c) + v(d, c) - h(\ell),$$

where $v(d, c)$ is the utility for second period consumption that depends on first period consumption.

We assume that u is strictly concave and h strictly convex. As for $v(d, c)$ it is also strictly concave and increasing in d. Our habit formation assumption implies that
$v_c < 0$ and $v_{dc} > 0$; namely previous period consumption generates additional needs and reduces second period’s utility.\footnote{An alternative specification is to assume $v_c > 0$, which implies that previous consumption brings status and hence additional utility.}

Myopia is represented by the fact that in the first period of their life, individuals do not see this delayed effect of consumption and thus in their choice of saving and in their expected retirement age they use $v(d, 0)$. A farsighted individual would have a correct perception of such an habit formation, that is $v(d, c)$.

To keep the analysis simple, we adopt a simple form for the function v:

$$v(d, c) = u(d - \alpha c),$$

where $\alpha = 0$ for myopic individuals in the first period of their life, and $\alpha = \bar{\alpha}$ as the true value of the parameter (used by myopic individuals in the second period, and by farsighted in both periods).

We first study the impact of myopic behavior on consumption and retirement decisions. With this formulation and using the budget constraint, the individual problem in the first period can be written as

$$\max_{s, \ell^p} u(w - s) + u(w \ell^p - \alpha w + (1 + \alpha)s) - h(\ell^p)$$

where ℓ^p is the amount of labor that the individual plans to supply in the second period, and where the myopic individual mistakenly uses $\alpha = 0$ while the farsighted uses the correct value of $\alpha = \bar{\alpha}$. The FOCs are given by

$$[s] : -u'(w - s) + (1 + \alpha)u'(w \ell^p - \alpha w + (1 + \alpha)s) = 0 \quad (1)$$

$$[\ell^p] : wu'(w \ell^p - \alpha w + (1 + \alpha)s) - h'(\ell^p) = 0. \quad (2)$$

The appendix shows that the equilibrium amount of saving increases with α, so that a myopic individual saves less and consumes more in the first period than a farsighted individual. This is intuitive, since the myopic individual under-estimates the needs that first period consumption creates later on. On the other hand, the sign of the derivative of ℓ^p with respect to α is ambiguous. On the one hand, the myopic individual under-estimating his needs calls for a smaller planned labor than for the farsighted individual.
On the other hand, the myopic individual over-estimates the benefits from working longer, since part of any additional labor income is consumed in the first period, and since he does not anticipate the negative impact of such consumption later on. Formally, solving simultaneously the FOCs (1) and (2), we obtain that

\[\frac{u'(c)}{1 + \alpha} w = h'(\ell^p). \]

(3)

For a given \(\ell^p \), the numerator of the left-hand side of (3) increases with \(\alpha \) (as \(c \) decreases) while the denominator is also increasing in \(\alpha \), so that it is not possible to sign the derivative of \(\ell^p \) with respect to \(\alpha \).

In the second period, individuals choose their (realized) labor supply by solving

\[
\max_{\ell} u\left[w\ell - \alpha w + (1 + \alpha) s \right] - h(\ell),
\]

which yields the following first-order condition

\[wu' \left[w\ell - \alpha w + (1 + \alpha) s \right] = h'(\ell). \]

(4)

Observe that condition (4) is identical to (2) for farsighted individuals: their realized labor supply is identical to their planned one. As for myopic agents, they differ since they realize in second period that the true value of \(\alpha \) is \(\bar{\alpha} \) and also realize they have saved too little in the first period.

From (4), it is easy to see that the optimal value of \(\ell \) decreases with \(s \). As we know that a myopic individual saves less than a farsighted one, we obtain that the realized labor supply of a myopic individual is larger than the one of a farsighted individual. The intuition for this result is that a myopic individual under-estimates his second period needs and does not save enough in the first period, so he is obliged to work more than planned, and also more than a far sighted individual. In other words, myopia leads to prolonged activity or even to unretiring.

From now on we shall assume that all individuals are myopic and have \(\alpha = 0 \). The farsighted who are mentioned are merely used as a benchmark.
2.2 First-best

We now turn to the first-best solution assuming that the social planner observes the productivity of each individual and their degree of myopia, but imposes its own view by inducing individuals to behave as if they were farsighted. We assume that the social planner adopts an objective function with $\alpha = \bar{\alpha}$.

We take w to be continuously distributed on $[w^-, w^+]$ according to $F(w)$. The social planner’s problem is

$$\max_{c,d,\ell} E \{u(c) + u(d - \bar{\alpha}c) - h(\ell) + \lambda (w + w\ell - c - d)\}.$$

This leads to the FOCs:

- $[c] : u'(c) - \bar{\alpha}u'(d - \bar{\alpha}c) = \lambda, (5)$
- $[d] : u'(d - \bar{\alpha}c) = \lambda, (6)$
- $[\ell] : h'(\ell) = \lambda w. (7)$

The planner equalizes marginal utility of consumption across periods and across individuals; separability guarantees that the consumption (in the same period) of individuals of different productivities will be the same. Habit formation implies that consumption in the second period will be higher than in the first period. Labor supply increases with productivity; this means that more productive individuals will retire later than less productive ones.

To discuss the possibility of decentralizing such an optimum, we introduce the tax instruments that we will use below: a tax on first period consumption, τ_c, a tax on second period consumption, τ_d and a lumps sum transfer $T(w)$ that, for the time being, may depend on wage.

The first period problem of our myopic individual is to maximize:

$$u(c) + u(d^p) - h(\ell^p) - \mu[p \{c (1 + \tau_c) + d^p (1 + \tau_d) - w (1 + \ell^p) - T(w)\}.$$

4Throughout the paper E denotes the expectation operator. For any expression x we have

$$E(x) = \int_{w^-}^{w^+} x(w)dF(w).$$
where d^p is the planned second period consumption and μ_1 is the Lagrange multiplier associated with the budget constraint. We thus have:

\[
[c] : u'(c) = \mu_1 (1 + \tau_c), \quad (8)
\]

\[
[d^p] : u'(d^p) = \mu_1 (1 + \tau_d), \quad (9)
\]

\[
[\ell^p] : h'(\ell^p) = \mu_1 w. \quad (10)
\]

In the second period, the problem is to maximize

\[
u (d - \bar{\alpha}c) - h (\ell) - \mu_2 [d (1 + \tau_d) - s - T(w) - w\ell],
\]

where μ_2 is the Lagrange multiplier (which is different from μ_1) associated with the second period budget constraint. The corresponding FOCs are given by

\[
[d] : u'(d - \bar{\alpha}c) = \mu_2 (1 + \tau_d), \quad (11)
\]

\[
[\ell] : h'(\ell) = \mu_2 w. \quad (12)
\]

To achieve the first-best one needs to induce the myopic individuals to save the appropriate amount. From there on, the choice of retirement age will be optimal. To obtain the “right” (first-best) level of saving we combine (5), (6),(8) and (9):

\[
\frac{1 + \tau_c}{1 + \tau_d} = \frac{(1 + \bar{\alpha}) u'(d^* - \bar{\alpha}c^*)}{u'(d^*)},
\]

where the * denotes the first-best solution. Interestingly, one only needs one of the two tax instruments supplemented by the lump sum transfer $T(w)$. More specifically one needs

\[
\tau_c = \frac{(1 + \bar{\alpha}) u'(d^* - \bar{\alpha}c^*) - u'(d^*)}{u'(d^*)} > 0 \quad \text{with } \tau_d = 0, \quad (13)
\]

or

\[
\tau_d = \frac{u'(d^*) - (1 + \alpha) u'(d^* - \bar{\alpha}c^*)}{(1 + \bar{\alpha}) u'(d^* - \bar{\alpha}c^*)} < 0 \quad \text{with } \tau_c = 0. \quad (14)
\]

In words, to decentralize the first-best solution, one needs a Pigouvian tax on first period consumption or a Pigouvian subsidy on second period consumption (that is equivalent to a subsidy on saving). With heterogenous individuals, decentralization also calls for individualized transfers $T(w)$.
3 Second-best

As we have just seen with taxes \(\tau_c, \tau_d \) and individualized transfers \(T(w) \), one can achieve the first-best optimum. Let us assume that such transfers are not available and that the transfer is constrained to be the same for all. It is denoted by \(T \) which now represents the demogrant and is determined by the (government) budget constraint

\[
T = \tau_c Ec + \tau_d Ed.
\]

In such a setting, we expect that the two taxes will play two roles: a corrective Pigouvian role (positive for \(\tau_c \), negative for \(\tau_d \)) and a redistribution role (the taxes are used to finance the demogrant).

In the first period an individual with productivity \(w \) maximizes:

\[
u(c) + u\left[\frac{1}{1 + \tau_d} (w + w\ell + T) - \left(1 + \tau_c \right) c\right] - h(\ell),
\]

where \(\alpha = 0 \). This yields the effective level of \(c \) and a planned value of second period labor supply \(\ell^p \). Both are functions of tax instruments and yield a planned value for \(d, d^p \). Ex post, given \(c \), they maximize (15) with \(\alpha = \bar{\alpha} \) to determine the effective levels of \(d \) and \(\ell \) which are different from the planned one \(d^p \) and \(\ell^p \).

The social planner will choose the tax instruments \(\tau_c, \tau_d \) and \(T \) on the basis of the preferences of (hypothetical) farsighted individuals (but based on the behavior of the myopics). As a consequence, in solving the social optimization problem we cannot use the envelope theorem for the choice of saving. The Lagrangian expression associated with the problem of the social planner is given by

\[
\mathcal{L} = E \left\{ u(c) + u\left[\frac{1}{1 + \tau_d} (w + w\ell + T) - \left(1 + \tau_c \right) c - \lambda (T - \tau_c c - \tau_d d)\right]\right\},
\]

where \(\lambda \) is the multiplier associated with the revenue constraint and \(c, d \) and \(\ell \) now represent the optimal choices of the individuals for the policy instruments.

We first focus on the choice of \(T \). The FOC is given by

\[
\frac{\partial \mathcal{L}}{\partial T} = E \left\{\left[u'(c) - u'(d - \bar{\alpha}c) \left(1 + \tau_c \right) \left(1 + \tau_d + \bar{\alpha}\right)\right] \frac{\partial c}{\partial T} + u'(d - \bar{\alpha}c) \frac{1}{1 + \tau_d} \right. \\
\left. - \lambda \left(1 - \tau_c \frac{\partial c}{\partial T} - \tau_d \frac{\partial d}{\partial T}\right)\right\} = 0.
\]
Using (8) and (9) we obtain:

\[
\frac{\partial L}{\partial T} = E \left[1 + \frac{1}{1 + \tau_c} u' (d - \bar{\alpha} c) - \Delta \frac{\partial c}{\partial T} - \lambda \left(1 \tau_c \frac{\partial c}{\partial T} - \tau_d \frac{\partial d}{\partial T} \right) \right],
\]

where

\[
\Delta \equiv \left(1 + \frac{\tau_c}{1 + \tau_d} + \bar{\alpha} \right) u' (d - \bar{\alpha} c) - \frac{1 + \tau_c}{1 + \tau_d} u' (d') > 0,
\]

and

\[
b = \frac{1}{\lambda} \left(1 + \frac{\tau_c}{1 + \tau_d} u' (d - \bar{\alpha} c) - \Delta \frac{\partial c}{\partial T} \right) + \tau_c \frac{\partial c}{\partial T} + \tau_d \frac{\partial d}{\partial T}.
\]

The term \(\Delta \) reflects the cost of myopia in terms of ex post utility. It tends to 0 when \(\bar{\alpha} \) tends to zero. The term \(b \) is quite standard in the linear taxation literature; it is what Atkinson and Stiglitz (1980) call the net social marginal valuation of income. It is measured in terms of government revenue. It is net in the sense that the effect of a lump sum transfer includes the direct effect on individual utility but also the indirect effect on tax revenue.

Using this notation, we can get the two other FOCs:

\[
\frac{\partial L}{\partial \tau_c} = E \left[-\frac{c}{1 + \tau_d} u' (d - \bar{\alpha} c) - \Delta \frac{\partial c}{\partial \tau_c} + \lambda \left(c + \tau_c \frac{\partial c}{\partial \tau_c} + \tau_d \frac{\partial d}{\partial \tau_c} \right) \right] = 0,
\]

and

\[
\frac{\partial L}{\partial \tau_d} = E \left[-\frac{d}{1 + \tau_d} u' (d - \bar{\alpha} c) - \Delta \frac{\partial c}{\partial \tau_d} + \lambda \left(d + \tau_c \frac{\partial c}{\partial \tau_d} + \tau_d \frac{\partial d}{\partial \tau_d} \right) \right] = 0.
\]

Using the traditional procedure of replacing all Marshallian price effects by its equivalent decomposition in Hicksian price effects and income effects (the Slutsky equation) in the previous FOCs and rearranging we obtain:

\[
- \text{cov} (b, c) - E \left[\frac{\Delta}{\lambda} \frac{\partial \tilde{c}}{\partial \tau_c} - \tau_c \frac{\partial \tilde{c}}{\partial \tau_c} - \tau_d \frac{\partial \tilde{d}}{\partial \tau_c} \right] = 0
\]

\[
- \text{cov} (b, d) - E \left[\frac{\Delta}{\lambda} \frac{\partial \tilde{c}}{\partial \tau_d} - \tau_c \frac{\partial \tilde{c}}{\partial \tau_d} - \tau_d \frac{\partial \tilde{d}}{\partial \tau_d} \right] = 0
\]

where \(\tilde{c} \) and \(\tilde{d} \) are the compensated demand functions. To get more intuition let us first consider the case when only one of the consumption taxes (either \(\tau_c \) or \(\tau_b \)) is available.
Then we obtain either
\[\tau_c = \frac{\text{cov} (b, c)}{E \frac{\partial c}{\partial \tau_c}} + \frac{E \frac{\Delta \partial c}{\partial \tau_c}}{E \frac{\partial \tilde{c}}{\partial \tau_c}} \text{ with } \tau_d = 0, \]
(16)
or
\[\tau_d = \frac{\text{cov} (b, d)}{E \frac{\partial d}{\partial \tau_d}} + \frac{E \frac{\Delta \partial c}{\partial \tau_d}}{E \frac{\partial \tilde{d}}{\partial \tau_d}} \text{ with } \tau_c = 0. \]
(17)

First of all, if \(\Delta = 0 \), namely if there is no myopia, we only have the first part of these formulas, that is standard in optimal consumption tax with heterogeneous individuals. The numerator reflects the redistributive objective; it is negative as the covariance between the marginal utility of income and consumption is negative. This term would be zero with identical individuals or without concern for redistribution (linear utility). The denominator is also negative and reflects the efficiency effect (deadweight loss). The tax and thus redistribution will be larger if the (compensated) demand for \(c \) or \(d \) is inelastic.

Note that if the first part of (16) and (17) were equal to zero, we would end up with expressions very similar to (13) and (14). That is:
\[\tau_c = \frac{\Delta}{\lambda} > 0 \quad \text{and} \quad \tau_d = \frac{\Delta}{\lambda} \frac{\partial \tilde{c}}{\partial \tau_d} < 0. \]

If we assume that \(c \) and \(d \) have the same redistributive pattern (same covariance between marginal utility of income and consumption) and the same price elasticity, two reasonable assumptions, one can state that \(\tau_d < \tau_c \) if the two taxes are used alone.

Let us now turn to the case when the two taxes are used together. Then we have:
\[\tau_c = \frac{\text{cov} (b, c) E \frac{\partial \tilde{d}}{\partial \tau_d} - \text{cov} (b, d) E \frac{\partial \tilde{c}}{\partial \tau_c}}{E \frac{\partial c}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} - E \frac{\partial \tilde{c}}{\partial \tau_d} E \frac{\partial \tilde{d}}{\partial \tau_c}} + \frac{E \frac{\Delta \partial c}{\partial \tau_c}}{E \frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} - E \frac{\partial \tilde{c}}{\partial \tau_d} E \frac{\partial \tilde{d}}{\partial \tau_c}} \left[\frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} - \frac{\partial \tilde{c}}{\partial \tau_d} E \frac{\partial \tilde{d}}{\partial \tau_c} \right], \]
(18)
and
\[\tau_d = \frac{\text{cov} (b, d) E \frac{\partial \tilde{c}}{\partial \tau_c} - \text{cov} (b, c) E \frac{\partial \tilde{c}}{\partial \tau_d}}{E \frac{\partial c}{\partial \tau_d} E \frac{\partial \tilde{c}}{\partial \tau_d} - E \frac{\partial \tilde{c}}{\partial \tau_d} E \frac{\partial \tilde{c}}{\partial \tau_c}} - \frac{E \frac{\Delta \partial c}{\partial \tau_d}}{E \frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} - E \frac{\partial \tilde{c}}{\partial \tau_d} E \frac{\partial \tilde{d}}{\partial \tau_c}} \left[\frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} - \frac{\partial \tilde{c}}{\partial \tau_d} E \frac{\partial \tilde{d}}{\partial \tau_c} \right]. \]
(19)

These are very complex formulas. Note that in the case where cross derivatives \(\partial \tilde{d}/\partial \tau_c \) and \(\partial \tilde{c}/\partial \tau_d \) are negligible, we end up with the above formulas (16) and (17). In other
words, what makes these formulas (18) and (19) different is the set of cross effects. We know little about the size of these cross effects.

Note that the expressions for τ_c and τ_d have the same denominator which measures the inefficiencies introduced by the tax system. Also note that the denominator is equal to the determinant of the Slutsky matrix and consequently we can expect it to be positive. Focusing on the numerators, they include a positive equity effect (the numerator of the first fraction) and a corrective effect (the numerator of the second fraction). Both effects are intuitive and very similar to what happens when only one of the taxes is present. The first effect (positive for both τ_c and τ_d) is related to equity since the covariances measure inequality in consumption. With cross-price effects, we have to take into account covariances between marginal utility of income and consumption in both periods for both taxes. The second effect is related to myopia since it is proportional to Δ. The presence of cross-price effects makes it difficult to sign this term.

An interesting case emerges when the form of the utility function implies demand functions which exhibit multiplicative separability. Suppose (compensated) demand functions can be written as

$$\tilde{c} = \gamma_c(w) \times \beta_c(\tau_c, \tau_d) \quad \text{and} \quad \tilde{d} = \gamma_d(w) \times \beta_d(\tau_c, \tau_d).$$

In this case

$$\tau_c = \frac{\text{cov} (b, c) E \frac{\partial \tilde{d}}{\partial \tau_c} - \text{cov} (b, d) E \frac{\partial \tilde{d}}{\partial \tau_d} - E \frac{\partial \tilde{d}}{\partial \tau_c} E \frac{\partial \tilde{c}}{\partial \tau_c}}{E \frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} - E \frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d} + E \frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{c}}{\partial \tau_c}},$$

and

$$\tau_d = -\frac{\text{cov} (b, c) E \frac{\partial \tilde{c}}{\partial \tau_c} - \text{cov} (b, d) E \frac{\partial \tilde{c}}{\partial \tau_d}}{E \frac{\partial \tilde{c}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_c} - E \frac{\partial \tilde{d}}{\partial \tau_c} E \frac{\partial \tilde{d}}{\partial \tau_d}}.$$
be included only in the taxes of the goods that generate the externality and not in other goods. One can see myopic behavior as generating an externality from one incarnation to another incarnation of the same individual. The reason that the principle of targeting found by Sandmo does not hold in the general model in this paper is that it applies only to atmosphere externalities. When externalities are not of the atmosphere type, the principle of targeting does not apply as happens in the general formulation in this paper (unless we have multiplicative compensated demand functions as specified by (20)).

4 Conclusion

This paper analyzes the pattern of consumption taxes in a two period model with individuals who have in the second period needs that are related to their first period consumption but who don’t see this habit formation relation when they make their saving decision. In a identical individuals setting, the first-best can be achieved by taxing first period consumption or subsidizing second period consumption. When individuals have different wages, both consumption taxes are needed not only to correct for individual myopia, but also to finance redistribution. Under plausible assumption, we expect first period tax to be higher than second period tax.

The idea that taxation should vary with age is not new. Banks et al. (2007) following what is called the new dynamic public finance argue in favor of an age-dependent taxation. Lozachmeur (2006) reaches the same conclusion but showing that elderly workers should be subject to a lower tax than the others because they are exposed to both intensive (how many hours a week?) and extensive (when to retire?) labor supply choice. In this paper, we also reach the conclusion that second period consumption should be taxed at a lower rate than first period work. The reason is that one has to correct for a myopic behavior which leads individuals to save too little and forces them to work longer than initially expected.
Appendix

A Impact of α on savings and labor supply

Differentiating the FOCs (1) and (2) with respect to α, and denoting the derivatives of s and ℓ^p with respect to α by s_α and ℓ^p_α, we obtain

$$
\begin{align*}
&u''(c)s_\alpha + (1 + \alpha)u''(d - \alpha)c[w\ell^p_\alpha + (1 + \alpha)s_\alpha] + u'(d - \alpha) \\
&
- (1 + \alpha)u''(d - \alpha)[w - s] = 0, \\
&wu''(d - \alpha)c[w\ell^p_\alpha + (1 + \alpha)s_\alpha] - wu''(d - \alpha)c[w - s] - h''(\ell^p)\ell^p_\alpha = 0,
\end{align*}
$$

which we express in matrix form as follows:

$$
\begin{bmatrix}
s_\alpha \\
\ell^p_\alpha
\end{bmatrix}
\begin{bmatrix}
u''(c) + (1 + \alpha)^2u''(d - \alpha)c \\
(1 + \alpha)wu''(d - \alpha)c
\end{bmatrix}
\begin{bmatrix}
(1 + \alpha)u''(d - \alpha)c \\
w^2u''(d - \alpha)c - h''(\ell^p)
\end{bmatrix}
= \begin{bmatrix}
-u'(d - \alpha)c + (1 + \alpha)u''(d - \alpha)c[w - s] \\
wu''(d - \alpha)c[w - s]
\end{bmatrix}
$$

Using Cramer’s rule we get the expressions

$$
\begin{align*}
s_\alpha &= \frac{R[w^2u''(d - \alpha)c - h''(\ell^p)] - (1 + \alpha)w^2u''(d - \alpha)c^2[w - s]}{D}, \\
\ell^p_\alpha &= \frac{D[(1 + \alpha)wu''(d - \alpha)c - h''(\ell^p)\ell^p_\alpha]}{D + D}.
\end{align*}
$$

where

$$
D = [u''(c) + (1 + \alpha)^2u''(d - \alpha)c][w^2u''(d - \alpha)c - h''(\ell^p)]
- [(1 + \alpha)wu''(d - \alpha)c][(1 + \alpha)wu''(d - \alpha)c] > 0
$$

and

$$
R = -u'(d - \alpha)c + (1 + \alpha)u''(d - \alpha)c[w - s] < 0.
$$

From there, it is easy to show that $s_\alpha > 0$, since its numerator is equal to
\[-u'(d - \alpha c) + (1 + \alpha)u''(d - \alpha c)[w - s][w^2u''(d - \alpha c) - h''(\ell^p)]
\]
\[- (1 + \alpha)w^2(u''(d - \alpha c))^2[w - s] =
\]
\[- u'(d - \alpha c)w^2u''(d - \alpha c) + (1 + \alpha)w^2(u''(d - \alpha c))^2[w - s]
\]
\[- Rh''(\ell^p) - (1 + \alpha)w^2(u''(d - \alpha c))^2[w - s] =
\]
\[- u'(d - \alpha c)w^2u''(d - \alpha c) - [-u'(d - \alpha c) + (1 + \alpha)u''(d - \alpha c)[w - s]]h''(\ell^p) =
\]
\[- u'(d - \alpha c)w^2u''(d - \alpha c) - Rh''(\ell^p) > 0.\]
References

CESifo Working Paper Series

for full list see www.cesifo-group.org/wp
(address: Poschingerstr. 5, 81679 Munich, Germany, office@cesifo.de)

2290 Marianna Belloc and Daniela Federici, A Two-Country NATREX Model for the Euro/Dollar, April 2008

2291 Nicolas Treich, The Value of a Statistical Life under Ambiguity Aversion, April 2008

2292 J. Atsu Amegashie, Socially-Tolerable Discrimination, April 2008

2293 M. Hashem Pesaran and Andreas Pick, Forecasting Random Walks Under Drift Instability, April 2008

2294 Steven Brakman, Gus Garita, Harry Garretsen and Charles van Marrewijk, Unlocking the Value of Cross-Border Mergers and Acquisitions, May 2008

2296 Claudia M. Buch and Martin Schlotter, Regional Origins of Employment Volatility: Evidence from German States, May 2008

2297 Helmuth Cremer, Philippe De Donder, Dario Maldonado and Pierre Pestieau, Taxing Sin Goods and Subsidizing Health Care, May 2008

2298 Reinilde Veugelers and Frederick van der Ploeg, Reforming European Universities: Scope for an Evidence-Based Process, May 2008

2299 Jon H. Fiva and Lars J. Kirkeboen, Does the Housing Market React to New Information on School Quality?, May 2008

2302 Jan K. Brueckner, Slot-Based Approaches to Airport Congestion Management, May 2008

2304 Dan Anderberg and Alessandro Balestrino, The Political Economy of Post-Compulsory Education Policy with Endogenous Credit Constraints, May 2008
2305 Tomer Blumkin, Yoram Margalioth and Efraim Sadka, The Role of Stigma in the Design of Welfare Programs, May 2008

2306 Vesa Kanniainen and Paolo M. Panteghini, Tax Neutrality: Illusion or Reality? The Case of Entrepreneurship, May 2008

2307 Thomas Dohmen, Armin Falk, David Huffman and Uwe Sunde, The Intergenerational Transmission of Risk and Trust Attitudes, May 2008

2308 Guglielmo Maria Caporale and Mario Cerrato, Using Chebyshev Polynomials to Approximate Partial Differential Equations, May 2008

2309 Peter Egger and Doina Maria Radulescu, Labour Taxation and Foreign Direct Investment, May 2008

2310 Laurent Linnemer, Dissipative Advertising Signals Quality even without Repeat Purchases, May 2008

2311 Jordi Jofre-Monseny and Albert Solé-Ollé, Which Communities should be afraid of Mobility? The Effects of Agglomeration Economies on the Sensitivity of Firm Location to Local Taxes, May 2008

2312 Andreas Haufler and Ferdinand Mittermaier, Unionisation Triggers Tax Incentives to Attract Foreign Direct Investment, May 2008

2313 Ronel Elul and Piero Gottardi, Bankruptcy: Is it enough to Forgive or must we also Forget?, May 2008

2314 Andreas Irmen and Johanna Kuehnel, Productive Government Expenditure and Economic Growth, May 2008

2315 Beate Henschel, Carsten Pohl and Marcel Thum, Demographic Change and Regional Labour Markets: The Case of Eastern Germany, May 2008

2316 Gabriel Felbermayr, Wido Geis and Wilhelm Kohler, Restrictive Immigration Policy in Germany: Pains and Gains Foregone?, May 2008

2317 Michael Hofmann, Gerhard Kempkes and Helmut Seitz, Demographic Change and Public Sector Budgets in a Federal System, May 2008

2318 Paul De Grauwe, Macroeconomic Modeling when Agents are Imperfectly Informed, June 2008

2319 Johann K. Brunner and Susanne Pech, Optimum Taxation of Inheritances, June 2008

2320 Thomas Eichner and Marco Runkel, Corporate Income Taxation of Multinationals in a General Equilibrium Model, June 2008

2321 Rainald Borck and Matthias Wrede, Subsidies for Intracity and Intercity Commuting, June 2008
2322 Patricia Apps and Ray Rees, Testing the Pareto Efficiency of Household Resource Allocations, June 2008

2323 Amihai Glazer, Vesa Kanninen and Panu Poutvaara, Firms’ Ethics, Consumer Boycotts, and Signalling, June 2008

2324 Claudia M. Buch, Jörg Döpke and Kerstin Stahn, Great Moderation at the Firm Level? Unconditional vs. Conditional Output Volatility, June 2008

2325 Helmuth Cremer, Philippe De Donder, Dario Maldonado and Pierre Pestieau, Forced Saving, Redistribution and Nonlinear Social Security Schemes, June 2008

2326 M. Hashem Pesaran and Paolo Zaffaroni, Optimal Asset Allocation with Factor Models for Large Portfolios, June 2008

2327 Harald Badinger and Peter Egger, Horizontal versus Vertical Interdependence in Multinational Activity, June 2008

2328 Jan K. Brueckner and Harris Selod, A Theory of Urban Squatting and Land-Tenure Formalization in Developing Countries, June 2008

2329 Paolo M. Panteghini, Corporate Debt, Hybrid Securities and the Effective Tax Rate, June 2008

2330 Guglielmo Maria Caporale, Juncal Cuñado and Luis A. Gil-Alana, Modelling Long-Run Trends and Cycles in Financial Time Series Data, June 2008

2331 Avi Ben-Bassat and Momi Dahan, Social Identity and Voter Turnout, June 2008

2332 Martin R. West and Ludger Wößmann, “Every Catholic Child in a Catholic School”: Historical Resistance to State Schooling, Contemporary Private Competition, and Student Achievement across Countries, June 2008

2333 Erkki Koskela and Panu Poutvaara, Outsourcing and Labor Taxation in Dual Labor Markets, June 2008

2334 Philippe Choné and Laurent Linnemer, Optimal Litigation Strategies with Signaling and Screening, June 2008

2335 Albert Solé-Ollé and Pilar Sorribas-Navarro, Does Partisan Alignment Affect the Electoral Reward of Intergovernmental Transfers?, June 2008

2336 Antonio Cabrales and Piero Gottardi, Markets for Information: Of Inefficient Firewalls and Efficient Monopolies, June 2008

2338 Ulrich Hange, Tax Competition, Elastic Labor Supply, and Growth, June 2008
2339 Guy Laroque and Bernard Salanié, Does Fertility Respond to Financial Incentives?, June 2008

2340 Adriano Paggiaro, Enrico Rettore and Ugo Trivellato, The Effect of Extending the Duration of Eligibility in an Italian Labour Market Programme for Dismissed Workers, June 2008

2341 Helmut Seitz, Minimum Standards, Fixed Costs and Taxing Autonomy of Subnational Governments, June 2008

2343 Wolfgang Leininger, Evolutionarily Stable Preferences in Contests, July 2008

2344 Hartmut Egger and Udo Kreickemeier, Fairness, Trade, and Inequality, July 2008

2345 Ngo Van Long and Bodhisattva Sengupta, Yardstick Competition, Corruption, and Electoral Incentives, July 2008

2346 Florian Baumann, Employment Protection: The Case of Limited Enforceability, July 2008

2347 Alessandro Balestrino, Cinzia Ciardi and Claudio Mammini, On the Causes and Consequences of Divorce, July 2008

2349 Lammertjan Dam and Ben J. Heijdra, The Environmental and Macroeconomic Effects of Socially Responsible Investment, July 2008

2350 Avner Greif, Contract Enforcement and Institutions among the Maghribi Traders: Refuting Edwards and Ogilvie, July 2008