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Abstract

Cooperative games with a permission structure are useful tools for analyzing the impact of
hierarchical structures on allocation problems in Economics and Operations Research. In
this paper, we propose a generalization of the local disjunctive and the local conjunctive
permission approaches called the k-local permission approach. In this approach, every player
needs permission from a certain number of its predecessors to cooperate in a coalition. The
special case where every player needs permission from at least one of, respectively all, its
predecessors coincides with the local disjunctive, respectively local conjunctive, approach in
the literature. We define and characterize a corresponding k-local permission value. After
that, we apply this value to define a new class of power measures for directed graphs. We
axiomatize these power measures, and apply some of them to two classical networks in the
literature.
Keywords: TU-game; Hierarchical structure; Shapley value; Axiomatization; Digraph;
Power measure.

1 Introduction

In this paper, we consider games with a permission structure where players in a cooperative

transferable utility (TU) game belong to a hierarchical structure that restricts the possibilities

of coalition formation. There are many applications of games with a permission structure.

Examples are the polluted river sharing problems of Ni and Wang (2007), see also van den

Brink et al. (2018), the hierarchy revenue sharing problems of Hougaard et al. (2017), and the

joint liability sharing problems of Dehez and Ferey (2013), see also Oishi et al. (2022). There are

two major approaches to permission restriction: conjunctive and disjunctive. In the conjunctive

approach, as developed in Gilles et al. (1992) and van den Brink and Gilles (1996), each player

∗Corresponding author: wuhao9305@gmail.com
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needs permission from all of its predecessors before it is allowed to cooperate or give permission

to others. Essentially, the conjunctive approach is a tool for portraying the power to veto. In

the disjunctive approach as developed in Gilles and Owen (1994) and van den Brink (1997), each

player needs permission from at least one of its predecessors (if it has any) before it is allowed

to cooperate or give permission to its own successors. Whereas in both approaches mentioned

above a player needs permission (either from all or at least one) of its predecessors to cooperate

and to give permission to its successors, van den Brink and Dietz (2014) and Wu et al. (2022)

weaken these two approaches by assuming that a player needs permission from its predecessors

to cooperate, but does not need approval to give permission to its own successors to cooperate.

These weakened approaches are called the local conjunctive and local disjunctive approaches.

In the underlying work, we generalize these two local approaches by assuming that every

player needs permission from at least a certain number of its predecessors to cooperate in a

coalition if the player has more predecessors than this given number. The special case where

this number is one, respectively the total number of players minus one, coincides with the local

disjunctive, respectively local conjunctive, approach. Associated to each approval level, we

define a value for games with a permission structure in the usual way. Given a game with a

permission structure, we define a restricted game that takes the cooperation restrictions into

account and consider its Shapley value. This methodology gives a new class of values for games

with a permission structure which we name the k-local permission values. Besides, we provide

an axiomatization for every k-local permission value.

As an application, we consider the k-local permission value on additive games with a

digraph as permission structure. In this way, we obtain a new class of power measures for

directed networks, called k-local permission measures. Two special cases are obtained by taking

k equal to at least the total number of players minus one, yielding the reflexive β-measure

(van den Brink and Borm (2002)), and taking k equal to one, yielding the local disjunctive

permission measure. We provide axiomatizations of the k-local permission measures, showing

that these new power measures have the equal share feature of the reflexive β-measure and the

equal loss feature of the local disjunctive permission measure. Finally, we extend these measures

to weighted digraphs and apply the generalized measures to two classical data sets of directed

networks, illustrating how they can be used to identify the key nodes in those networks.

This paper is organized as follows. Section 2 contains preliminaries. Section 3 introduces

games with a k-local permission structure and provides an axiomatization of the k-local permis-

sion value for these games. Section 4 applies games with a k-local permission structure and the

associated k-local permission value to additive games, obtaining power measures for digraphs.

Section 5 applies the power measures to two classical examples of directed networks. Finally,

section 6 provides concluding remarks. All proofs of propositions, theorems, and corollaries are

postponed to the appendix, including logical independence of the axioms in each axiomatization.
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2 Preliminaries

2.1 Cooperative TU-games and permission structures

A situation in which a finite set of players N ⊆ N can generate certain payoffs by cooperation can

be described by a cooperative game with transferable utility , simply a TU-game. A TU-game is

defined as a pair (N, ν) where ν : 2N → R is a characteristic function on N satisfying ν(∅) = 0.

For every coalition E ⊆ N , ν(E) ∈ R is the worth of coalition E. Since we take the player set N

to be fixed, we often write a TU game (N, ν) simply by its characteristic function ν. We denote

the collection of all TU-games on N by GN .

A payoff vector for ν ∈ GN is an |N |-dimensional vector x ∈ RN assigning a payoff xi ∈ R
to any player i ∈ N . A solution for TU-games is a function f : GN → RN , which maps each TU-

game into a payoff vector. One of the most famous solutions for TU-games is the Shapley value,

Shapley (1953), given by Shi(ν) =
∑

E⊆N
E3i

p(E)(ν(E)−ν(E\{i})) where p(E) = (|N |−|E|)!(|E|−1)!
|N |! .

For every T ⊆ N , T 6= ∅, the unanimity game on coalition T is given by uT (E) = 1 if T ⊆ E,

and uT (E) = 0 otherwise. It is well known that unanimity games form a basis for GN , specifically,

for every ν ∈ GN it holds that ν =
∑

T⊆N
T 6=∅

∆ν(T )uT , where ∆ν(T ) =
∑

E⊆T (−1)|T |−|E|ν(E) is

the Harsanyi dividend of coalition T ⊆ N , T 6= ∅, see Harsanyi (1959).

A game with a permission structure describes a situation where some players are granted

the right to permit other players to join cooperation. This interactive relationship can be

characterized by a permission structure, which can be described by a digraph. A digraph is a

pair (N,D) where N ⊆ N is a finite set of nodes (which corresponds to the set of players in this

paper) and D ⊆ N × N is a binary relation on N . Since we take the player set to be fixed,

a digraph (N,D) is simplified to D. The set SD(i) = {j ∈ N | (i, j) ∈ D} is called the set of

successors of i. The set PD(i) = {j ∈ N | (j, i) ∈ D} is called the set of predecessors of i. The

set HN
D = {i ∈ N | PD(i) = ∅} is called the set of top players. For a coalition E ⊆ N , we define

SD(E) =
⋃
i∈E SD(i) and PD(E) =

⋃
i∈E PD(i).

In this paper, we only consider irreflexive digraphs, meaning that (i, i) 6∈ D for all i ∈ N .

We denote the collection of irreflexive digraphs on N by DN . A triple (N, ν,D) with N ⊆ N a

finite set of players, ν ∈ GN a TU-game, and D ∈ DN an irreflexive digraph, is called a game

with a permission structure. Because the player set is fixed in this paper, we often write a game

with a permission structure simply as a pair (ν,D). Given a player set N , a solution for games

with a permission structure, f : GN ×DN → RN , assigns a payoff vector in RN to each ν ∈ GN

and D ∈ DN .

2.2 The local disjunctive and conjunctive permission values

There is a large number of solutions for games with a permission structure in the literature, as

mentioned in the introduction. The new solutions discussed in this paper are general forms of the
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local conjunctive permission value and the local disjunctive permission value. For completeness,

we first briefly review these two solutions.

The local conjunctive permission value is based on the local conjunctive approach (see

van den Brink and Dietz, 2014), which assumes that each player needs permission from all

of its predecessors before cooperation. Thus, the permission approach limits the possibilities

of coalition formation. The largest local conjunctive feasible subset of a coalition E ⊆ N is

σlcD(E) = {i ∈ E | PD(i) ⊆ E} and consists of those players in E whose predecessors all belong

to E. The set of local conjunctive feasible coalitions is given by Ψlc
D = {σlcD(E) | E ⊆ N}.1 The

local conjunctive permission value is the solution ψlc given by ψlc(ν,D) = Sh(rlcν,D) where the

game rlcν,D is given by rlcν,D(E) = ν
(
σlcD(E)

)
for all E ⊆ N , and thus assigns to every coalition

the worth of its largest local conjunctive feasible subset.2

Before recalling an axiomatization of ψlc, we remind the following definitions. Player i ∈ N
is a null player in game ν if ν(E) = ν(E\{i}) for all E ⊆ N . Player i ∈ N is a necessary

player in ν if ν(E) = 0 for every E ⊆ N\{i}. Game ν ∈ GN is monotone if ν(E) ≤ ν(F ) for all

E ⊆ F ⊆ N . We denote the collection of all monotone TU-games on N by GNM .

Efficiency: For every ν ∈ GN and D ∈ DN ,
∑

i∈N fi(ν,D) = ν(N).

Additivity: For every ν, ω ∈ GN and D ∈ DN , f(ν + ω,D) = f(ν,D) + f(ω,D).

Necessary player property: For every ν ∈ GNM and D ∈ DN , if i ∈ N is a necessary player

in ν, then fi(ν,D) ≥ fj(ν,D) for all j ∈ N .

Local inessential player property: For every ν ∈ GN and D ∈ DN , if i ∈ N is such that

every player j ∈ SD(i) ∪ {i} is a null player in ν, then fi(ν,D) = 0.

Local structural monotonicity: For every ν ∈ GNM , D ∈ DN , and i ∈ N such that at least

one player in SD(i) is a necessary player in ν, we have fi(ν,D) ≥ fj(ν,D) for all j ∈ SD(i).

Notice that the necessary player property and local structural monotonicity consider mono-

tone games.

Theorem 2.1. (van den Brink and Dietz, 2014) A solution is equal to the local conjunctive

permission value ψlc if and only if it satisfies efficiency, additivity, the necessary player property,

the local inessential player property, and local structural monotonicity.

In the local disjunctive approach to games with a permission structure, each non-top player

needs permission from at least one of its predecessors before it is allowed to cooperate. Therefore,

1The set of local conjunctive feasible coalitions is also defined as Ψlc
D = {E ⊆ N | PD(i) ⊆ E for every i ∈ E}.

2The fact that every coalition has a unique largest feasible subset follows from the set Ψlc
D being union closed,

i.e. the union of every pair of feasible coalitions is also feasible.
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for every coalition E ⊆ N , the largest local disjunctive feasible subset in D ∈ DN is given by

σldD(E) = {i ∈ E | PD(i)∩E 6= ∅}∪(E∩HN
D ) and consists of all top players in E and all players in

E with at least one predecessor in E. The set of local disjunctive feasible coalitions in D is given

by Ψld
D = {σldD(E) | E ⊆ N}.3 The local disjunctive permission value is the solution ψld given

by ψld(ν,D) = Sh(rldν,D) where the game rldν,D is given by rldν,D(E) = ν
(
σldD(E)

)
for all E ⊆ N

and thus assigns to every coalition the worth of its largest local disjunctive feasible subset. An

axiomatization of ψld is provided by Wu et al. (2022) using the following weaker version of local

structural monotonicity and local fairness to replace local structural monotonicity.

Weak local structural monotonicity: For every ν ∈ GNM and D ∈ DN , if j ∈ N is a necessary

player in ν with PD(j) = {i}, then fi(ν,D) ≥ fj(ν,D).

Local fairness4: For every ν ∈ GN , D ∈ DN , i ∈ N and j ∈ SD(i) with |PD(j)| ≥ 2,

fi(ν,D)− fi(ν,D\{(i, j)}) = fj(ν,D)− fj(ν,D\{(i, j)}).

Theorem 2.2. (Wu et al., 2022) A solution is equal to the local disjunctive permission value ψld

if and only if it satisfies efficiency, additivity, the necessary player property, the local inessential

player property, weak local structural monotonicity, and local fairness.

3 The k-local permission value

This section is divided into two parts. First, we introduce the k-local permission approach to

cooperative games with a permission structure and explore relationships among their feasible

coalitions. Second, we introduce and characterize the k-local permission value.

3.1 The k-local permission approach

In this subsection, we introduce the k-local permission approach, which is an extension of the

local disjunctive and the local conjunctive approaches described in Section 2. In the k-local

permission approach, given a number k ∈ N, a player can cooperate only in the following two

cases: (i) The player has permission from at least k of its predecessors (if the player has more

than k predecessors), or (ii) the player has permission from all of its predecessors (if the player

has at most k predecessors). Therefore, for every coalition E ⊆ N , the largest k-local permission

feasible subset in D ∈ DN is given by

σlkD(E) =
{
i ∈ E | |PD(i) ∩ E| ≥ min{k, |PD(i)|}

}
,

3The set of local disjunctive feasible coalitions is also defined as Ψld
D = {E ⊆ N | PD(i) ∩ E 6= ∅ for every i ∈

E \HN
D }.

4Notice that this axiom is similar to fairness for (undirected) communication graph games in Myerson (1977).
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and the set of k-local permission feasible coalitions in D is given by5

Ψlk
D = {σlkD(E) | E ⊆ N}.

The k-local permission restricted game induced by the game with a permission structure (ν,D)

is the game rlkν,D that assigns to every coalition E ⊆ N the worth of its largest k-local permission

feasible subset, i.e.

rlkν,D(E) = ν
(
σlkD(E)

)
for all E ⊆ N.

Then, we define the k-local permission value ψlk as the solution that assigns to every game with

a permission structure (ν,D) the Shapley value of the k-local permission restricted game, i.e.

ψlk(ν,D) = Sh(rlkν,D) for all ν ∈ GN and D ∈ DN .

Obviously, the local disjunctive and the local conjunctive permission approaches are special

cases of the k-local permission approach by taking k = 1 and k ≥ |N | − 1, respectively.

Example 3.1. Let k = 2 and N = {1, 2, 3, 4}. Consider the game with a permission structure

(ν,D) with ν = u{4} and D = {(1, 4), (2, 4), (3, 4)}, see Figure 1.

Figure 1: The digraph of Example 3.1.

We have Ψlk
D =

{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, N

}
and

rlkν,D(E) =

{
1 if E ∈

{
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, N

}
,

0 otherwise.

Thus, ψlk(ν,D) = (16 ,
1
6 ,

1
6 ,

1
2). �

For every D ∈ DN and E ⊆ N , it is obvious that σlcD(E) ⊆ σldD(E). The following result

provides statements relating different k-local permission feasible coalitions.

Proposition 3.1. Let k ∈ N, D ∈ DN , and E ⊆ N .

(i) For every F ⊆ E, σlkD(F ) ⊆ σlkD(E).

(ii) For every t ∈ N with t ≤ k, σlkD(E) ⊆ σltD(E).

5The set of k-local permission feasible coalitions is also defined as Ψlk
D = {E ⊆ N | |PD(i) ∩ E| ≥

min{k, |PD(i)|} for every i ∈ E}.
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Based on Proposition 3.1, we obtain similar results for the set of k-local permission feasible

coalitions to those for the locally conjunctive or disjunctive feasible coalitions in van den Brink

and Dietz (2014), respectively Wu et al. (2022).

Proposition 3.2. Let k ∈ N, D ∈ DN , and E ⊆ N .

(i) For every F ⊆ E with σlkD(E) ∪ PD
(
σlkD(E)

)
⊆ F , σlkD(F ) = σlkD(E).

(ii) For every F ⊆ E\σlkD(E), σlkD(F ) = ∅.

Proposition 3.3. For every k ∈ N, D ∈ DN , and E,F ⊆ N ,

(i) σlkD(E) ∪ σlkD(F ) ⊆ σlkD(E ∪ F ).

(ii) σlkD(E ∩ F ) ⊆ σlkD(E) ∩ σlkD(F ).

We conclude this subsection with an illustrative example.

Example 3.2. Let k = 2, N = {1, 2, 3, 4, 5, 6, 7}, and D = {(1, 2), (2, 4), (3, 4), (4, 7), (5, 7), (6, 7)},
see Figure 2. Consider the two coalitions E = {2, 3, 5, 6, 7} (the coalition of all triangle points)

and F = {4, 5, 7} (the coalition of all square points). We have σlkD(E) = {3, 5, 6, 7}, σlkD(F ) =

{5, 7}, σlkD(E ∪ F ) = σlk({2, 3, 4, 5, 6, 7}) = {3, 4, 5, 6, 7}, and σlkD(E ∩ F ) = σlk({5, 7}) = {5}.
Thus, σlkD(E) ∪ σlkD(F ) = {3, 5, 6, 7} $ {3, 4, 5, 6, 7} = σlkD(E ∪ F ) and σlkD(E ∩ F ) = {5} $
{5, 7} = σlkD(E) ∩ σlkD(F ).6 �

Figure 2: The digraph of Example 3.2.

Remark 3.1. Although we defined the k-local permission value only for k ∈ N, notice that taking

k = 0, σlkD(E) = E for all E ⊆ N and D ∈ DN . Thus, when k = 0, the k-local permission value

boils down to the Shapley value. Since not all results in the remainder of the paper hold for

k = 0, we restrict to k ∈ N.

3.2 An axiomatization of the k-local permission value

In this subsection, we characterize the k-local permission value inspired by Theorems 2.1 and

2.2. Since ψlk(ν,D) is obtained by applying the Shapley value to a modified game, the k-local

6From van den Brink and Dietz (2014), we have σlc
D(E) ∩ σlc

D(F ) = σlc
D(E ∩ F ). However, from Example 3.2,

the equality does not hold for arbitrary k.
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permission value satisfies efficiency and additivity since σlkD(N) = N and rlkν+ω,D = rlkν,D + rlkω,D

for every ν, ω ∈ GN . Besides, the k-local permission value satisfies the local inessential player

property, see the proof of Theorem 3.1. However, the k-local permission value does not satisfy

local fairness, as shown in the following example.

Example 3.3. Let N = {1, 2, 3, 4}. Consider the game with permission structure (ν,D) with

ν = u{4} and D = {(1, 4), (2, 4), (3, 4)}, see Figure 3.

Figure 3: The digraph of Example 3.3.

We have

ψlk(ν,D) =


( 1
12 ,

1
12 ,

1
12 ,

3
4) if k = 1,

(16 ,
1
6 ,

1
6 ,

1
2) if k = 2,

(14 ,
1
4 ,

1
4 ,

1
4) if k = 3,

and ψlk
(
ν,D\{(3, 4)}

)
=


(16 ,

1
6 , 0,

2
3) if k = 1,

(13 ,
1
3 , 0,

1
3) if k = 2,

(13 ,
1
3 , 0,

1
3) if k = 3.

Notice that

ψlk3 (ν,D)− ψlk3
(
ν,D \ {(3, 4)}

)
= ψlk4 (ν,D)− ψlk4

(
ν,D \ {(3, 4)}

)
for every k < 3 = |PD(4)|,

but

ψlk3 (ν,D)− ψlk3
(
ν,D \ {(3, 4)}

)
6= ψlk4 (ν,D)− ψlk4

(
ν,D \ {(3, 4)}

)
if k = 3 = |PD(4)|.

�

As hinted in Example 3.3, the fairness equalities hold when deleting an arc where the

successor on the arc has more than k predecessors. Let k ∈ N. k-fairness is defined as follows.

k-fairness: For every ν ∈ GN , D ∈ DN , i ∈ N , and j ∈ SD(i) with |PD(j)| > k, fi(ν,D) −
fi
(
ν,D \ {(i, j)}

)
= fj(ν,D)− fj

(
ν,D \ {(i, j)}

)
.

This weaker version of local fairness expresses the “equal treatment” with respect to the

benefits (or loss) that are obtained from creating (or deleting) an arc only in case the number

of predecessors of the successor on the arc exceeds a certain threshold.

In order to characterize the k-local permission value, we also need a “k-version” of structural

monotonicity. Let k ∈ N. k-structural monotonicity is defined as follows.

8



k-structural monotonicity: For every ν ∈ GNM , D ∈ DN , and j ∈ N a necessary player in ν

with 0 < |PD(j)| ≤ k, fi(ν,D) ≥ fj(ν,D) for every i ∈ PD(j).

The k-local permission value is characterized by replacing local fairness and weak local

structural monotonicity in Theorem 2.2 by the corresponding k-fairness and k-structural mono-

tonicity axioms.

Theorem 3.1. Let k ∈ N. A solution is equal to the k-local permission value ψlk if and only if it

satisfies efficiency, additivity, the necessary player property, the local inessential player property,

k-fairness, and k-structural monotonicity.

Remark 3.2. When k = 1, k-fairness boils down to local fairness, and k-structural monotonicity

becomes weak local structural monotonicity. The corresponding solution is the local disjunctive

permission value: ψlk(ν,D) = ψld(ν,D). When k ≥ |N | − 1, k-fairness has no meaning, and

k-structural monotonicity turns into local structural monotonicity. The corresponding solution

is the local conjunctive permission value: ψlk(ν,D) = ψlc(ν,D).

Remark 3.3. Notice that for D = ∅, the k-local permission value boils down to the Shapley

value (ψlk(ν,D) = Sh(ν)) since rlkν,D = ν. In that case, the axioms of Theorem 3.1 boil down

to axioms characterizing the Shapley value for TU-games. Efficiency and additivity are already

the classic axioms, the necessary player property implies symmetry for unanimity games, and

the local inessential player property is reduced to the classical null player property. Further,

k-fairness and k-structural monotonicity have no meaning.

4 Additive games with a permission structure: locally partial
permission power measures for directed networks

Digraphs are often used to describe networks with asymmetric relationships, such as buying

and selling relationships in exchange networks, asymmetric relationships in social networks, and

winning or losing matches in sports competitions. There is an extensive literature that studies

these digraphs and defines related measures, such as Kondratev and Mazalov (2002), Kinne

(2012), and Riquelme et al. (2018). In this section, we aim to apply the k-local permission value

to define a new class of power or dominance measures for digraphs.

4.1 The k-local permission measure

A power measure for digraphs is a function m : DN → RN that assigns a real number to

every node in a digraph. These numbers can be seen as measures of ‘power’, ‘importance’, or

‘dominance’ of the nodes in the digraph. Examples of power measures can be found in, e.g.

Bonacich (1987), van den Brink and Gilles (2000), and Boldi and Vigna (2014). Based on the

k-local permission value, we introduce a new class of power measures that have some similarity
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with the reflexive β-measure (van den Brink and Borm (2002)). Therefore, we first recall this

measure.

The reflexive β-measure, βrefl : DN → RN , shares the power over a node equally among

itself and its predecessors, and is given by

βrefli (D) =
∑

j∈SD(i)∪{i}

1

|PD(j)|+ 1
for all i ∈ N.

It is worth mentioning that the reflexive β-measure can also be seen as the local conjunctive

permission value of the game with a permission structure (ν1, D), where D ∈ DN and ν1 is the

additive game given by

ν1(E) = |E| for all E ⊆ N,

i.e. βrefli (D) = ψlc(ν1, D).

We can define a new measure, called the local disjunctive permission measure l : DN → RN ,

in a similar way by applying the local disjunctive permission value to the game with a permission

structure (ν1, D), and thus is given by

li(D) = ψldi (ν1, D) =

1 +
∑

j∈SD(i)
1

|PD(j)|(̇|PD(j)|+1)
if PD(i) = ∅,

|PD(i)|
|PD(i)|+1 +

∑
j∈SD(i)

1

|PD(j)|(̇|PD(j)|+1)
otherwise.

Analogously, we define a class of power measures containing the above two measures by

applying the k-local permission value to the game with a permission structure (ν1, D).

Definition 4.1. The k-local permission measure on N is the function pk : DN → RN given by

pk(D) = ψlk(ν1, D).

The k-local permission measure can be expressed as in the next result.

Proposition 4.1. For every D ∈ DN ,

pki (D) =
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
+

∑
j∈SD(i)

min{k, |PD(j)|}
|PD(j)|

(
|PD(j)|+ 1

) for all i ∈ N.

Following the relationships between the k-local permission value and the local conjunctive

or disjunctive permission values, we can easily verify the following proposition.

Proposition 4.2. For every D ∈ DN , p1(D) = l(D), and pt(D) = βrefl(D) for t ≥ |N | − 1.

Next, we want to characterize the k-local permission value. The first three axioms intro-

duced are efficiency norm, local determinateness and symmetry, which are also satisfied by the

reflexive β-measure.

Efficiency norm: If D ∈ DN , then
∑

i∈N mi(D) = |N |.

10



Local determinateness: If D,D′ ∈ DN and i ∈ N are such that SD(i) = SD′(i) and PD(j) =

PD′(j) for every j ∈ {i} ∪ SD(i), then mi(D) = mi(D
′).

Symmetry: If D ∈ DN and i, j ∈ N are such that SD(i) = SD(j) and PD(i) = PD(j), then

mi(D) = mj(D).

The above axioms commonly appear in the literature. Next, we state the following two

axioms. The first one is the k-equal loss property which considers the power change when an

arc is broken and the related successor has more than k predecessors.

k-equal loss property: If D ∈ DN , i ∈ N , and j ∈ SD(i) with |PD(j)| > k, then mi(D) −
mi

(
D\{(i, j)}

)
= mj(D)−mj

(
D\{(i, j)}

)
.

The k-equal loss property is obtained by applying k-fairness to the (additive) game ν1 with

a permission structure associated to the digraph.

The next axiom is called k-equal sharing property, and requires that deleting an arc has

the same effect on the power of the predecessor and successor on the arc in case the successor

on the arc has at most k predecessors.

k-equal sharing property: If D ∈ DN and i ∈ N with 0 < |PD(i)| ≤ k, then mi

(
D \ {(i, j) |

j ∈ SD(i)}
)

= mh(D)−mh

(
D \ {(h, i)}

)
for every h ∈ PD(i).

Next, we can state an axiomatization of the k-local permission measure.

Theorem 4.1. Let k ∈ N. A power measure is equal to the k-local permission measure pk if and

only if it satisfies efficiency norm, local determinateness, symmetry, the k-equal loss property,

and the k-equal sharing property.

4.2 Extending k-local permission measures to node-weighted digraphs

Since nodes are not equally important in many applications, in this section, we consider extend-

ing k-local permission measures to node-weighted digraphs (simply weighted digraphs). Denote

the set of weight vectors WN = {ω ∈ RN |
∑
i∈N

ωi = 1, and 0 ≤ ωi ≤ 1}. For every ω ∈ WN ,

denote the game νω =
∑
i∈N

ωiu{i}. Notice that these are additive games. A generalized power

measure for weighted digraphs is a function gm : DN ×WN → RN that assigns a real number to

every node in a weighted digraph. In a straightforward manner, we extend the k-local permission

measure to weighted digraphs by applying the k-local permission value to the game νω.

Definition 4.2. The generalized k-local permission measure on N is the function gpk : DN ×
WN → RN given by gpk(D,ω) = ψlk(νω, D).
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Based on Proposition 4.1, the expression of the generalized measures can be obtained as

follows by multiplying the terms in this expression by the relevant node weights.

Proposition 4.3. For every D ∈ DN and w ∈ WN ,

gpki (D,ω) =
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
ωi +

∑
j∈SD(i)

min{k, |PD(j)|}
|PD(j)|(̇|PD(j)|+ 1)

ωj for all i ∈ N.

Also, we can generalize the axioms of Theorem 4.1 to weighted digraphs as expected.

Generalized efficiency norm: If D ∈ DN and ω ∈ WN , then
∑

i∈N gmi(D,ω) =
∑

i∈N wi.

Generalized local determinateness: If D,D′ ∈ DN , ω ∈ WN and i ∈ N are such that

SD(i) = SD′(i) and PD(j) = PD′(j) for every j ∈ {i} ∪ SD(i), then gmi(D,ω) = gmi(D
′, ω).

Generalized symmetry: If D ∈ DN , ω ∈ WN , and i, j ∈ N are such that SD(i) = SD(j) = ∅
and PD(i) = PD(j) = ∅, then ωj · gmi(D,ω) = ωi · gmj(D,ω).

Generalized k-equal loss property: If D ∈ DN , ω ∈ WN , i ∈ N , and j ∈ SD(i) with

|PD(j)| > k, then gmi(D,ω)− gmi(D\{(i, j)}, ω) = gmj(D,ω)− gmj(D\{(i, j)}, ω).

Generalized k-equal sharing property: If D ∈ DN , ω ∈ WN and i ∈ N with 0 < |PD(i)| ≤
k, then gmi(D \ {(i, j) | j ∈ SD(i)}, ω) = gmh(D,ω)− gmh(D \ {(h, i)}, ω) for every h ∈ PD(i).

Theorem 4.2. Let k ∈ N. A power measure for weighted digraphs is equal to the generalized

k-local permission measure gpk if and only if it satisfies generalized efficiency norm, general-

ized local determinateness, generalized symmetry, the generalized k-equal loss property, and the

generalized k-equal sharing property.

5 Applications

In this section, we apply the (generalized) k-local permission measures to find key nodes in two

classical weighted digraphs. To illustrate these measures, we compare them with two classical

local measures, outdegree7 and Copeland score8.

First, we apply these locally partial measures on the Countries Trade Network collected by

Wasserman and Faust (1994) to estimate trade powers, where the directed network is constructed

based on the relations of imports of minerals, fuels, and other petroleum products, and the

weights of nodes (countries) are the proportions of each country’s energy consumption in 19809.

The network is shown in Figure 4, and the values of the trade power of these 24 countries based

on some of our local measures for weighted digraphs are given in Table 1.

7For every D ∈ DN and w ∈ WN , the outdegree of node i is defined by outi(D,ω) =
∑

j∈SD(i) wj .
8For every D ∈ DN and w ∈ WN , the Copeland score of node i is defined by copi(D,ω) =

∑
j∈SD(i) wj −∑

j∈PD(i) wj .
9The sample consists of 24 countries, the details can be seen in Wasserman and Faust (1994).
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Table 1: Scores of 24 countries in the trade network based on various measures

Nation ω gp1 gp2 gp5 gp10 gpn−1 out cop

N01 0.0132 0.0197 0.0263 0.0459 0.0591 0.0626 0.5641 0.1100
N02 0.0351 0.0299 0.0247 0.0161 0.0235 0.0270 0.2543 -0.0754
N03 0.0179 0.0200 0.0222 0.0264 0.0332 0.0363 0.3417 -0.0661
N04 0.0100 0.0195 0.0290 0.0572 0.0669 0.0704 0.5357 0.1863
N05 0.1111 0.0867 0.0623 0.0446 0.0462 0.0462 0.1237 -0.0854
N06 0.0112 0.0100 0.0088 0.0074 0.0126 0.0157 0.1886 -0.1787
N07 0.0097 0.0131 0.0165 0.0269 0.0379 0.0414 0.4362 -0.0380
N08 0.0004 0.0003 0.0001 0.0001 0.0001 0.0001 0.0000 -0.2740
N09 0.1031 0.0861 0.0692 0.0391 0.0500 0.0534 0.3674 0.0356
N10 0.0047 0.0032 0.0016 0.0016 0.0016 0.0016 0.0000 -0.2641
N11 0.0043 0.0103 0.0163 0.0343 0.0471 0.0506 0.4814 0.0371
N12 0.0456 0.0382 0.0307 0.0083 0.0087 0.0087 0.0097 -0.4911
N13 0.0754 0.0747 0.0739 0.0652 0.0666 0.0701 0.5157 0.2117
N14 0.0081 0.0075 0.0068 0.0047 0.0068 0.0068 0.0486 -0.3758
N15 0.0012 0.0010 0.0007 0.0002 0.0002 0.0002 0.0000 -0.2524
N16 0.0781 0.0669 0.0557 0.0220 0.0238 0.0238 0.0754 -0.2884
N17 0.0036 0.0032 0.0027 0.0013 0.0015 0.0015 0.0060 -0.4012
N18 0.0478 0.0545 0.0612 0.0743 0.0658 0.0649 0.5026 -0.0768
N19 0.0847 0.0831 0.0815 0.0582 0.0637 0.0637 0.2936 -0.1437
N20 0.0156 0.0142 0.0127 0.0083 0.0140 0.0143 0.1331 -0.2408
N21 0.0060 0.0062 0.0065 0.0071 0.0115 0.0146 0.1898 -0.1776
N22 0.0854 0.1045 0.1235 0.1547 0.1258 0.1292 0.7982 0.2379
N23 0.1886 0.1969 0.2051 0.2181 0.1611 0.1211 0.7003 0.2423
N24 0.0390 0.0505 0.0620 0.0780 0.0723 0.0758 0.5067 -0.0419
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Figure 4: Trade of minerals, fuels, and other petroleum products between countries.

In each column of Table 1, the three highest scores are marked in bold. As we see from

Table 1, N23 (the United States) and N22 (the United Kingdom) get the two highest scores

in all these measures, which suggests that the (generalized) k-local permission measure can

identify the key nodes, similar as the classical measures. Since each measure has a different

attitude towards relatives (predecessors and successors), the node with the third-highest score is

different for different measures10. Coincidentally, most of these countries with bold high scores

are classified into the core block of the interaction network in Snyder and Kick (1979).

Second, we apply the two measures to Freeman’s EIES network collected by Freeman and

Freeman (1979). It is a classical network widely used in the literature to illustrate the usefulness

of new measures. Here, we focus on the network representing a message-sending relation among

32 researchers who participated in an early study on the Electronic Information Exchange Sys-

tem. The weight of a node (researcher) is defined as the proportion of messages he/she sent. The

network is shown in Figure 5. The scores of these 32 researchers based on our local measures

are given in Table 2.

In each column of Table 2, the two highest scores are marked in bold. As we see from

Table 2, R01 (Lin Freeman) and R29 (Barry Wellman) get the two highest scores, except in the

outdegree and Copeland score measures. One fact that has been confirmed by the literature,

such as Opsahl et al. (2010), Qi et al. (2012), Wei et al. (2013), is that these two researchers

are the most active in the network, which is also successfully identified by the local permission

10These nodes include N01 (Algeria), N05 (Czechoslovakia), N13 (Japan), N19 (Switzerland), and N24 (Yu-
goslavia).
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Table 2: Scores of 32 researchers of Freeman’s EIES network based on various measures

No. ω gp1 gp2 gp5 gp10 gpn−1 out cop

R01 0.2059 0.2022 0.1984 0.1870 0.1669 0.0549 1.0000 0.0060
R02 0.0726 0.0724 0.0722 0.0715 0.0692 0.0469 0.9355 -0.0307
R03 0.0009 0.0014 0.0019 0.0033 0.0057 0.0142 0.3821 -0.2988
R04 0.0216 0.0226 0.0236 0.0266 0.0317 0.0427 0.9341 -0.0083
R05 0.0100 0.0115 0.0130 0.0176 0.0267 0.0475 0.9834 0.2480
R06 0.0176 0.0183 0.0190 0.0211 0.0244 0.0381 0.8412 0.0960
R07 0.0013 0.0014 0.0016 0.0021 0.0033 0.0093 0.2732 -0.2844
R08 0.1035 0.1012 0.0989 0.0921 0.0801 0.0492 0.9632 0.0144
R09 0.0131 0.0137 0.0142 0.0157 0.0182 0.0342 0.8009 -0.0364
R10 0.0235 0.0244 0.0253 0.0281 0.0325 0.0424 0.9255 -0.0073
R11 0.0559 0.0553 0.0547 0.0530 0.0494 0.0446 0.9252 0.0034
R12 0.0055 0.0060 0.0066 0.0082 0.0109 0.0207 0.4787 -0.3303
R13 0.0010 0.0013 0.0017 0.0028 0.0047 0.0120 0.3291 -0.3005
R14 0.0054 0.0056 0.0058 0.0064 0.0074 0.0166 0.4404 -0.1468
R15 0.0197 0.0186 0.0176 0.0144 0.0109 0.0210 0.4783 -0.1195
R16 0.0137 0.0143 0.0149 0.0168 0.0198 0.0328 0.7710 -0.0276
R17 0.0150 0.0159 0.0167 0.0193 0.0236 0.0376 0.8586 -0.0518
R18 0.0124 0.0128 0.0132 0.0144 0.0163 0.0312 0.7444 -0.0279
R19 0.0045 0.0050 0.0055 0.0069 0.0092 0.0192 0.4846 -0.1514
R20 0.0005 0.0007 0.0008 0.0013 0.0022 0.0055 0.1441 -0.5289
R21 0.0014 0.0019 0.0024 0.0039 0.0064 0.0157 0.4183 -0.2078
R22 0.0045 0.0049 0.0054 0.0067 0.0088 0.0193 0.4735 -0.2846
R23 0.0037 0.0041 0.0045 0.0055 0.0077 0.0192 0.5175 -0.1550
R24 0.0423 0.0426 0.0428 0.0434 0.0433 0.0509 1.0000 0.1815
R25 0.0077 0.0076 0.0076 0.0074 0.0096 0.0185 0.4241 -0.0376
R26 0.0044 0.0046 0.0048 0.0054 0.0074 0.0189 0.5121 -0.2018
R27 0.0197 0.0206 0.0215 0.0242 0.0286 0.0401 0.8809 -0.0433
R28 0.0017 0.0022 0.0027 0.0043 0.0069 0.0153 0.3804 -0.1509
R29 0.1427 0.1401 0.1375 0.1297 0.1160 0.0523 0.9893 0.0064
R30 0.0184 0.0190 0.0196 0.0214 0.0241 0.0364 0.8182 -0.0249
R31 0.0673 0.0676 0.0678 0.0686 0.0688 0.0483 0.9327 0.0091
R32 0.0825 0.0802 0.0779 0.0710 0.0593 0.0445 0.9059 0.0000
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Figure 5: Freeman’s EIES network.

measures.

6 Concluding remarks

To end this paper, we first summarize the axioms used in the characterizations of the local

conjunctive, local disjunctive, and k-local permission values. We take k with 1 < k < |N | − 1

since for k = 1 and k = |N |−1, the k-local permission value coincides with the local disjunctive,

respectively local conjunctive, value. In Table 3, we provide the summary, where a “+” means

that the permission value satisfies the axiom, a ‘−’ has the converse meaning, and a ‘⊕’ indicates

the axiom is used in the characterization of a permission value in this paper.

Table 3: Characterizing properties of permission values

Properties ψld ψlk ψlc

Efficiency ⊕ ⊕ ⊕
Additvity ⊕ ⊕ ⊕

Necessary player property ⊕ ⊕ ⊕
Local inessential player property ⊕ ⊕ ⊕

k-structural monotonicity − ⊕ +
Local structural monotonicity − − ⊕

Weak local structural monotonicity ⊕ + +

k-fairness + ⊕ −
Local fairness ⊕ − −
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An advantageous feature of the k-local permission approach is that results hold for arbitrary

permission structures, also for permission structures with cycles. This is not the case for the

“global” disjunctive approach, where most results in the literature are stated only for acyclic

permission structures.

As future research, we propose a variant of the k-local permission approach, which requires

that every player needs to get permission from at least a fraction α of its predecessors before

cooperation. We call this approach the α-permission approach. The α-permission approach

seems appropriate in situations where the necessary number of approving predecessors of a

player depends on the total number of his predecessors. For instance, for k = 2 and D = {(i, 1) |
i = 3, 4} ∪ {(j, 2) | j = 5, . . . , 9}, in the k-local permission approach, player 1 needs to get

permission from all its predecessors. However, player 2 can cooperate even if more than half of

its predecessors do not agree. This may seem unreasonable in some situations.

In the α-permission approach for α ∈ [0, 1], the largest α-permission feasible subset in

D ∈ DN is given by

σαD(E) = {i ∈ E | |PD(i) ∩ E| ≥ α|PD(i)|} for every E ⊆ N,

The α-permission restricted game of (ν,D) is the game rαν,D that assigns to every coalition E ⊆ N
the worth of its largest α-permission feasible subset, i.e. rαν,D(E) = ν

(
σαD(E)

)
for all E ⊆ N .

Applying the Shapley value to the α-permission restricted game, we obtain the α-permission

value ψα given by ψα(ν,D) = Sh(rαν,D) for all ν ∈ GN and D ∈ DN . Future studies can address

the axiomatization and applications of the α-permission values.

Appendix: Proofs and logical independence

Proposition 3.1. Let k ∈ N, D ∈ DN , and E ⊆ N .

(i) For every F ⊆ E, σlkD(F ) ⊆ σlkD(E).

(ii) For every t ∈ N with t ≤ k, σlkD(E) ⊆ σltD(E).

Proof. Let k ∈ N, D ∈ DN , and E ⊆ N .

(i) For every i ∈ σlkD(F ), we have |PD(i) ∩ F | ≥ min{k, |PD(i)|}. Since F ⊆ E, we have

PD(i)∩F ⊆ PD(i)∩E and, thus, |PD(i)∩E| ≥ |PD(i)∩F | ≥ min{k, |PD(i)|}. Hence, i ∈ σlkD(E).

Thus, σlkD(F ) ⊆ σlkD(E).

(ii) For every i ∈ σlkD(E) and k ≥ t, we have |PD(i) ∩ E| ≥ min{k, |PD(i)|} ≥ min{t, |PD(i)|}.
Hence, i ∈ σltD(E). Thus, σlkD(E) ⊆ σltD(E). �

Proposition 3.2. Let k ∈ N, D ∈ DN , and E ⊆ N .

(i) For every F ⊆ E with σlkD(E) ∪ PD
(
σlkD(E)

)
⊆ F , σlkD(F ) = σlkD(E).

(ii) For every F ⊆ E\σlkD(E), σlkD(F ) = ∅.
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Proof. Let k ∈ N, D ∈ DN , and E ⊆ N .

(i) By Proposition 3.1 (i), we know that

σlkD(E) ∪ PD
(
σlkD(E)

)
⊆ F ⊆ E implies σlkD

(
σlkD(E) ∪ PD

(
σlkD(E)

))
⊆ σlkD(F ) ⊆ σlkD(E).

By definition of the largest k-local permission feasible subset, we have

σlkD

(
σlkD(E) ∪ PD

(
σlkD(E)

))
=

{
i ∈ σlkD(E) ∪ PD

(
σlkD(E)

)
| |PD(i) ∩

(
σlkD(E) ∪ PD

(
σlkD(E)

))
| ≥ min{k, |PD(i)|}

}
⊇

{
i ∈ σlkD(E) ∪ PD

(
σlkD(E)

)
| |PD(i) ∩ PD

(
σlkD(E)

)
| ≥ min{k, |PD(i)|}

}
⊇

{
i ∈ σlkD(E) | |PD(i) ∩ PD

(
σlkD(E)

)
| ≥ min{k, |PD(i)|}

}
=

{
i ∈ σlkD(E) | |PD(i)| ≥ min{k, |PD(i)|}

}
= σlkD(E),

where the second equality follows since i ∈ σlkD(E) implies PD(i) ⊆ PD(σlkD(E)).

Thus, we have σlkD(E) ⊆ σlkD

(
σlkD(E) ∪ PD

(
σlkD(E)

))
⊆ σlkD(F ) ⊆ σlkD(E) and thus all inclu-

sions are equalities.

(ii) For i ∈ E \ σlkD(E), we have |PD(i) ∩ E| < min{k, |PD(i)|}. Since F ⊆ E \ σlkD(E) ⊆ E,

we have |PD(i) ∩ F | ≤ |PD(i) ∩ E| < min{k, |PD(i)|} for all i ∈ F . Therefore, σlkD(F ) = ∅. �

Proposition 3.3. For every k ∈ N, D ∈ DN , and E,F ⊆ N ,

(i) σlkD(E) ∪ σlkD(F ) ⊆ σlkD(E ∪ F ).

(ii) σlkD(E ∩ F ) ⊆ σlkD(E) ∩ σlkD(F ).

Proof. Let k ∈ N, D ∈ DN , and E,F ⊆ N .

(i) The first statement follows since

σlkD(E ∪F )

=
{
i ∈ E ∪ F | |PD(i) ∩ (E ∪ F )| ≥ min{k, |PD(i)|}

}
=

{
i ∈ E ∪ F | |

(
PD(i) ∩ E

)
∪
(
PD(i) ∩ F

)
| ≥ min{k, |PD(i)|}

}
⊇

{
i ∈ E ∪ F | |PD(i) ∩ E| ≥ min{k, |PD(i)|}

}
∪
{
i ∈ E ∪ F | |PD(i) ∩ F | ≥ min{k, |PD(i)|}

}
⊇

{
i ∈ E | |PD(i) ∩ E| ≥ min{k, |PD(i)|}

}
∪
{
i ∈ F | |PD(i) ∩ F | ≥ min{k, |PD(i)|}

}
= σlkD(E)∪σlkD(F )

(ii) For every i ∈ σlkD(E ∩F ), we have |E ∩F ∩PD(i)| ≥ min{k, |PD(i)|}. Since E ∩F ∩PD(i) ⊆
E ∩ PD(i), we have |E ∩ PD(i)| ≥ |E ∩ F ∩ PD(i)| ≥ min{k, |PD(i)|}. Similarly, we have

|F ∩ PD(i)| ≥ |E ∩ F ∩ PD(i)| ≥ min{k, |PD(i)|}. Thus, i ∈ σlkD(E) and i ∈ σlkD(F ). Therefore,

σlkD(E ∩ F ) ⊆ σlkD(E) ∩ σlkD(F ). �
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Theorem 3.1. Let k ∈ N. A solution is equal to the k-local permission value ψlk if and only if it

satisfies efficiency, additivity, the necessary player property, the local inessential player property,

k-fairness, and k-structural monotonicity.

Proof. Let k ∈ N. First, we prove that ψlk satisfies the six axioms.

Efficiency of ψlk directly follows from efficiency of the Shapley value and the fact that

σlkD(N) = N for all D ∈ DN .

Additivity of ψlk directly follows from additivity of the Shapley value and rlkν,D + rlkω,D =

rlkν+ω,D for all ν, ω ∈ GN and D ∈ DN .

To show that ψlk satisfies the necessary player property, let ν ∈ GNM , and D ∈ DN . It

follows:

(i) For every E ⊆ N and i ∈ N , by irreflexivity of D, we have i /∈ σlkD(E \ {i}). This implies

that rlkν,D(E \ {i}) = ν
(
σlkD(E \ {i})

)
= 0 if i is a necessary player in ν.

(ii) For every E ⊆ N , we have rlkν,D(E) = ν
(
σlkD(E)

)
≥ ν(∅) = 0 since ν ∈ GNM .

Let i ∈ N be a necessary player in monotone game ν. Then, for every j ∈ N ,

ψlki (ν,D) = Shi(r
lk
ν,D)

=
∑
E⊆N
E3i

p(E)
(
rlkν,D(E)− rlkν,D(E \ {i})

)

=
∑
E⊆N
E3i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {i})

)
+
∑
E⊆N
E3i
E 63j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {i})

)

=
∑
E⊆N
E3i
E3j

p(E)rlkν,D(E) +
∑
E⊆N
E3i
E 63j

p(E)rlkν,D(E)

≥
∑
E⊆N
E3i
E3j

p(E)rlkν,D(E)

≥
∑
E⊆N
E3i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)

=
∑
E⊆N
E3i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)
+
∑
E⊆N
E 63i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)

=
∑
E⊆N
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)
= Shj(r

lk
ν,D) = ψlkj (ν,D) for every j ∈ N,
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where the fourth equality follows from (i), the inequalities follow from (ii), and the fifth equality

from (i). Thus, ψlk satisfies the necessary player property.

The local inessential player property of ψlk directly follows from the null player property of

the Shapley value, and the fact that if a player i ∈ N is such that every player j ∈ SD(i) ∪ {i}
is a null player in ν, then i is a null player in rlkν,D.

To show that ψlk satisfies k-fairness, let ν ∈ GN , D ∈ DN , i ∈ N , and j ∈ SD(i) with

|PD(j)| > k. We have

ψlki (ν,D)− ψlki
(
ν,D \ {(i, j)}

)
= Shi(rlkν,D)− Shi(rlkν,D\{(i,j)})

=
∑
E⊆N
E3i

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD(E \ {i})

)
]−

∑
E⊆N
E3i

p(E)[ν
(
σlkD\{(i,j)}(E)

)
− ν
(
σlkD\{(i,j)}(E \ {i})

)
]

=
∑
E⊆N
E3i

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]−

∑
E⊆N
E3i

p(E)[ν
(
σlkD(E \ {i})

)
− ν
(
σlkD\{(i,j)}(E \ {i})

)
]

=
∑
E⊆N
E3i
E3j

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]−

∑
E⊆N
E3i
E3j

p(E)[ν
(
σlkD(E \ {i})

)
− ν
(
σlkD\{(i,j)}(E \ {i})

)
]

+
∑
E⊆N
E3i
E 63j

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]−

∑
E⊆N
E3i
E 63j

p(E)[ν
(
σlkD(E \ {i})

)
− ν
(
σlkD\{(i,j)}(E \ {i})

)
]

=
∑
E⊆N
E3i
E3j

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]−

∑
E⊆N
E 63i
E3j

p(E ∪ {i})[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]

+
∑
E⊆N
E3i
E 63j

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]−

∑
E⊆N
E 63i
E 63j

p(E ∪ {i})[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
]

=
∑
E⊆N
E3i
E3j

p(E)[ν
(
σlkD(E)

)
− ν
(
σlkD\{(i,j)}(E)

)
].

where the last equality follows since σlkD(E) = σlkD\{(i,j)}(E) for every E ⊆ N with {i, j} 6⊆ E.

Analogously, we have

ψlkj (ν,D)− ψlkj
(
ν,D \ {(i, j)}

)
=

∑
E⊆N
E3i
E3j

p(E)[ν(σlkD(E))− ν
(
σlkD\{(i,j)}(E)

)
]

= ψlkj (ν,D)− ψlkj
(
ν,D\{(i, j)}

)
.

Thus, ψlk satisfies k-fairness.

To show that ψlk satisfies k-structural monotonicity, let ν ∈ GNM , and D ∈ DN . It follows:

(i) For every E ⊆ N and j a necessary player in ν, rlkν,D(E) = 0 if E 63 j.
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(ii) For every E ⊆ N , and i ∈ N , if there is a necessary player j ∈ SD(i) in ν such that

0 < |PD(j)| ≤ k, then rlkν,D(E \ {i}) = 0.

(iii) For every E ⊆ N , we have rlkν,D(E) = ν
(
σlkD(E)

)
≥ ν(∅) = 0.

Let j ∈ N be a necessary player in ν with 0 < |PD(j)| ≤ k, and let i ∈ PD(j). Then,

ψlki (ν,D) = Shi(r
lk
ν,D)

=
∑
E⊆N
E3i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {i})

)
+
∑
E⊆N
E3i
E 63j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {i})

)

=
∑
E⊆N
E3i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {i})

)

=
∑
E⊆N
E3i
E3j

p(E)rlkν,D(E)

≥
∑
E⊆N
E3i
E3j

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)

=
∑
E⊆N
E3j
E3i

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)
+
∑
E⊆N
E3j
E 63i

p(E)
(
rlkν,D(E)− rlkν,D(E \ {j})

)

= Shj(r
lk
ν,D) = ψlkj (ν,D),

where the third equality follows from (i), the fourth equality follows from (ii), the inequal-

ity follows from (iii), and the fifth equality follows from (ii). Thus, ψlk satisfies k-structural

monotonicity.

Therefore, we conclude that ψlk satisfies the six axioms for every k ∈ N.

Second, we prove uniqueness. Let k ∈ N. Assume that a solution f satisfies the six axioms.

Consider the permission structure D ∈ DN and game wT = cTuT , where uT is the unanimity

game of T ⊆ N and cT ≥ 0. We define

α(T ) = PD(T ) \ T,

and

βk(T ) = {i ∈ α(T ) | there exists j ∈ SD(i) ∩ T with |PD(j)| ≤ k}.

Notice that
∑
i∈N
|PD(i)| + |HN

D | ≥ |N | for all D ∈ DN . We proceed by induction on∑
i∈N
|PD(i)|+ |HN

D |.

First, if
∑
i∈N
|PD(i)| + |HN

D | = |N |, then |PD(i)| = 1 for all i ∈ N \ HN
D . In this case,

α(T ) = βk(T ). Moreover, α(T ) ∪ T and N \
(
α(T ) ∪ T

)
form a partition of N . Since all
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j ∈ SD(i) ∪ {i} with i ∈ N \ (α(T ) ∪ T ) are null players in wT , by the local inessential player

property, we have

fi(wT , D) = 0 for every i ∈ N \
(
α(T ) ∪ T

)
. (1)

Besides, for i ∈ T and j ∈ α(T ), (i) the necessary player property implies fi(wT , D) ≥ fj(wT , D),

and (ii) k-structural monotonicity implies fi(wT , D) ≤ fj(wT , D) since |PD(i)| = 1 ≤ k for all

i ∈ N \HN
D . Thus, for a given j ∈ α(T ) ∪ T , we have

fi(wT , D) = fj(wT , D) for every i ∈ (α(T ) ∪ T ) \ {j}.

With efficiency, this gives 1 + (|α(T ) ∪ T | − 1) = |α(T ) ∪ T | independent linear equations in

the |α(T ) ∪ T | unknown payoffs fi(wT , D), i ∈ α(T ) ∪ T . Thus, with (1) f(wT , D) is uniquely

determined.

Proceeding by induction, assume that f(wT , D
′
) is uniquely determined for all D

′ ∈ DN

with
∑
i∈N
|PD′(i)|+ |HN

D′ | <
∑
i∈N
|PD(i)|+ |HN

D |.

If
∑
i∈N
|PD(i)| + |HN

D | > |N | with α(T ) = βk(T ), then uniqueness follows in the same way

as when
∑
i∈N
|PD(i)| + |HN

D | = |N |. Therefore, we only consider
∑
i∈N
|PD(i)| + |HN

D | > |N | with

α(T ) 6= βk(T ). In this case, N \
(
α(T ) ∪ T

)
, βk(T ) ∪ T , and α(T ) \ βk(T ) form a partition of

N . Let i ∈ N . We consider three cases depending on the set to which i belongs.

Case 1: If i ∈ N \
(
α(T ) ∪ T

)
, by the local inessential player property, fi(wT , D) = 0.

Case 2: If i ∈ βk(T ) ∪ T , by the necessary player property and k-structural monotonicity,

we have,

fj(wT , D) = fi(wT , D) for every j ∈ (βk(T ) ∪ T ) \ {i},

similar as in the case
∑
i∈N
|PD(i)|+ |HN

D | = |N | above.

Case 3: If i ∈ α(T ) \ βk(T ), there exists a j ∈ SD(i) such that j ∈ T and |PD(j)| > k. In

that case, k-fairness implies that

fi(wT , D)− fi
(
wT , D \ {(i, j)}

)
= fj(wT , D)− fj

(
wT , D \ {(i, j)}

)
,

where fi
(
wT , D \ {(i, j)}

)
and fj

(
wT , D \ {(i, j)}

)
are determined by the induction hy-

pothesis.

Based on Cases 2 and 3, and using efficiency, we get (|βk(T )∪T | − 1) + (|α(T )| − |βk(T )|) + 1 =

|α(T )∪T | independent linear equations in the |α(T )∪T | unkown payoffs fi(wT , D), i ∈ α(T )∪T ,

which are uniquely determined. Thus, with Case 1, f(wT , D) is uniquely determined.

Next, we consider cT < 0 and game wT = cTuT where uT is the unanimity game of T ⊆ N .

Since−cT > 0, f(−wT , D) is uniquely determined for everyD ∈ DN as above. Additivity implies
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f(−wT , D) + f(wT , D) = f(−wT + wT , D). Since all players are null players in −wT + wT , by

the local inessential player property, f(−wT + wT , D) = 0. Thus, f(wT , D) = −f(−wT , D) is

uniquely determined.

Since every game ν ∈ GN can be expressed as a linear combination of unanimity games in

a unique way, it follows by additivity that f(ν,D) is uniquely determined for every ν ∈ GN and

D ∈ DN . Since ψlk satisfies the axioms, it must hold that f(ν,D) = ψlk(ν,D) for every ν ∈ GN

and D ∈ DN . �

We show logical independence of the axioms stated in Theorem 3.1 by presenting six alter-

native solutions.

1. Let f1 : GN ×DN → RN be given by f1(ν,D) = Sh(ν) for all ν ∈ GN and D ∈ DN . This

solution satisfies all axioms in Theorem 3.1 except k-structural monotonicity.

2. For, 1 ≤ k < |N | − 1, the local (k + 1)-permission value satisfies all axioms in Theorem

3.1 except k-fairness. Notice that for k = |N | − 1, k-fairness has no meaning.

3. Let f2 : GN × DN → RN be given by f2i (ν,D) = ν(N)
|N | for all i ∈ N , ν ∈ GN , and

D ∈ DN . This solution satisfies all axioms in Theorem 3.1 except the local inessential

player property.

4. Let f3 : GN ×DN → RN be given by, for all D ∈ DN ,

f3(ν,D) =
∑
T⊆N
T 6=∅

∆v(T )g(uT , D),

where uT is the unanimity game of T ⊆ N , T 6= ∅, and g is defined as follows. If

T ∩HN
D 6= ∅,

gi(uT , D) =

{
1

|T∩HN
D |

if i ∈ T ∩HN
D ,

0 if i ∈ N \ (T ∩HN
D ).

If T ∩HN
D = ∅

gi(uT , D) = ψkdi (uT , D) for every i ∈ N.

f3 satisfies all axioms in Theorem 3.1 except the necessary player property.

5. For T ⊆ N , consider zT ∈ GN given by

zT (E) =

{
1 if E ∩ T 6= ∅,
0 otherwise.

Let f4 : GN ×DN → RN be given by

f4(ν,D) =

{
f3(ν,D) if ν = zT with |T | ≥ 2,

ψlk(ν,D) otherwise.

f4 satisfies all axioms in Theorem 3.1 except additivity.
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6. Let f5 : GN × DN → RN be given by f5i (ν,D) = 0 for all i ∈ N , ν ∈ GN , and D ∈ DN .

This solution satisfies all axioms in Theorem 3.1 except efficiency.

Proposition 4.1. For every D ∈ DN ,

pki (D) =
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
+

∑
j∈SD(i)

min{k, |PD(j)|}
|PD(j)|

(
|PD(j)|+ 1

) for all i ∈ N.

Proof. According to Definition 4.1, we have pk(D) = ψlk(ν1, D). By additivity of ψlk, and

ν1 =
∑

i∈N u{i}, ψ
lk
j (ν1, D) =

∑
i∈N ψ

lk
j (u{i}, D). Fix i ∈ N .

(i) For every j ∈ N \
(
{i} ∪ PD(i)

)
, we have that every t ∈ {j} ∪ SD(j) is a null player in

u{i}. Then, ψlkj (u{i}, D) = 0, by the local inessential property.

(ii) For every j ∈ PD(i), we have

rlku{i},D(E ∪ {j})− rlku{i},D(E) =

{
1 if E 3 i and |PD(i) ∩ E| = min{k, |PD(i)|} − 1,

0 otherwise.

Next, we determine the proportion of coalitions E ⊆ N with rlku{i},D(E ∪ {j})− rlku{i},D(E) = 1.

If |PD(i)| ≤ k, we have |PD(i)| = min{k, |PD(i)|}, and thus this proportion is

|(PD(i) \ {j}) ∪ {i}|!
|PD(i) ∪ {i}|!

=
|PD(i)|!

(|PD(i)|+ 1)!
=

1

|PD(i)|+ 1
=

min{k, |PD(i)|}
|PD(i)|

(
|PD(i)|+ 1

) .
If |PD(i)| ≥ k, we have k = min{k, |PD(i)|}, and thus this proportion is(

|PD(i)| − 1

k − 1

)
·
k!
(
|PD(i)| − k

)
!(

|PD(i)|+ 1
)
!

=

(
|PD(i)| − 1

)
!

(k − 1)!
(
|PD(i)| − k

)
!
·
k!
(
|PD(i)| − k

)
!(

|PD(i)|+ 1
)
!

=
k

|PD(i)|
(
|PD(i)|+ 1

)
=

min{k, |PD(i)|}
|PD(i)|

(
|PD(i)|+ 1

) .
Thus, ψlkj (u{i}, D) = min{k,|PD(i)|}

|PD(i)|
(
|PD(i)|+1

) for every j ∈ PD(i).

(iii) Finally, by efficiency,

ψlki (u{i}, D) = 1−
∑

j∈N\{i}

ψlkj (u{i}, D)

= 1−
∑

j∈PD(i)

min{k, |PD(i)|}
|PD(i)|

(
|PD(i)|+ 1

)
= 1− min{k, |PD(i)|}

|PD(i)|+ 1
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=
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
.

From (i)-(iii), we conclude that

pki (D) =
∑
j∈N

ψlki (u{j}, D)

= ψlki (u{i}, D) +
∑

j∈SD(i)

ψlki (u{j}, D)

=
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
+

∑
j∈SD(i)

min{k, |PD(j)|}
|PD(j)|

(
|PD(j)|+ 1

) .
�

Theorem 4.1. Let k ∈ N. A power measure is equal to the k-local permission measure pk if and

only if it satisfies efficiency norm, local determinateness, symmetry, the k-equal loss property,

and the k-equal sharing property.

Proof. Let k ∈ N. First, we prove that pk satisfies the five axioms.

To show that pk satisfies efficiency norm, let D ∈ DN . Then,∑
i∈N

pki (D) =
∑
i∈N

ψlki (ν1, D) = ν1(N) = |N |,

where the second equality follows from efficiency of ψlk. Thus, pk satisfies efficiency norm.

Local determinateness and symmetry directly follow since for every i ∈ N , pki (D) only

depends on |PD(i)| and |PD(j)|, j ∈ SD(i).

To show that pk satisfies the k-equal loss property, let D ∈ DN , i ∈ N , and j ∈ SD(i) with

|PD(j)| > k. By definition of pk,

pki (D)− pki
(
D \ {(i, j)}

)
= ψlki (ν1, D)− ψlki

(
ν1, D \ {(i, j)}

)
= ψlkj (ν1, D)− ψlkj

(
ν1, D \ {(i, j)}

)
= pkj (D)− pkj

(
D \ {(i, j)}

)
,

where the second equality follows from k-fairness of ψlk. Thus, pk satisfies the k-equal loss

property.

To show that pk satisfies the k-equal sharing property, let D ∈ DN , i ∈ N with 0 <

|PD(i)| ≤ k, and h ∈ PD(i). By Proposition 4.1,

pki
(
D \ {(i, j) | j ∈ SD(i)}

)
=
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
=

1

|PD(i)|+ 1

and

pkh(D)− pkh
(
D \ {(h, i)}

)
=

min{k, PD(i)}
|PD(i)|

(
|PD(i)|+ 1

) =
1

|PD(i)|+ 1
.

Thus, pk satisfies the k-equal sharing property.
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Therefore, we conclude that pk satisfies the five axioms.

Second, we prove uniqueness. Assume that a measure m satisfies the five axioms. Let D ∈ DN

and k ∈ N. We proceed by induction on |D|.
If |D| = 0, then D = ∅. By the efficiency norm and symmetry, we have mi(∅) = 1 for all

i ∈ N . Thus, m(D) is uniquely determined.

Proceeding by induction, assume m(D′) is uniquely determined for all D′ ∈ DN with

|D′| < |D|.
Since |D| > 0, there is a j ∈ N with |PD(j)| ≥ 1. Denote D∗ = D \ {(h, j)} for some

h ∈ PD(j).

First, let i ∈ N \ ({j} ∪ PD(j)). By local determinateness,

mi(D) = mi(D
∗), (2)

which is determined by the induction hypothesis.

To determine the values for i ∈ {j}∪PD(j), we distinguish two possible cases: (i) |PD(j)| >
k, and (ii) 0 < |PD(j)| ≤ k.

Case 1: Let |PD(j)| > k, and consider i ∈ PD(j).

By the k-equal loss property,

mi(D)−mi

(
D \ {(i, j)}

)
= mj(D)−mj

(
D \ {(i, j)}

)
(3)

where mi

(
D \ {(i, j)}

)
and mj

(
D \ {(i, j)}

)
are determined by the induction hypothesis. With

the efficiency norm, we have∑
i∈{j}∪PD(j)

mi(D) = |N | −
∑

i∈N\({j}∪PD(j))

mi(D), (4)

where the last term is determined by (2). Thus, (3) and (4) give |PD(j)|+ 1 independent linear

equations with the same number of unknowns, mj(D) and mi(D), i ∈ PD(j), which thus are

determined.

Case 2: Let 0 < |PD(j)| ≤ k, and consider i ∈ PD(j).

By the k-equal sharing property,

mj

(
D \ {(j, t) | t ∈ SD(j)}

)
= mi(D)−mi

(
D \ {(i, j)}

)
(5)

If SD(j) 6= ∅, mj

(
D \ {(j, t) | t ∈ SD(j)}

)
and mi

(
D \ {(i, j)}

)
are determined by the induction

hypothesis. Thus, mi(D) is uniquely determined by equation (5). By the efficiency norm and

(2), mj(D) = |N | −
∑

i∈PD(j)

mi(D)−
∑

i∈N\(PD(j)∪{j})
mi(D

∗) is determined.
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If SD(j) = ∅, mj

(
D \ {(j, t) | t ∈ SD(j)}

)
= mj(D). With the efficiency norm, we have∑

i∈{j}∪PD(j)

mi(D) = |N | −
∑

i∈N\({j}∪PD(j))

mi(D) = |N | −
∑

i∈N\({j}∪PD(j))

mi(D
∗), (6)

where the last term is determined by (2). Thus, with (5) and (6), we also get |PD(j)| + 1

independent linear equations with the same number of unknowns, mj(D) and mi(D), i ∈ PD(j),

which thus are determined.

Therefore, m(D) is uniquely determined. Since pk satisfies the five axioms, it must hold

that m(D) = pk(D). �

Proposition 4.3. For every D ∈ DN and w ∈ WN ,

gpki (D,ω) =
|PD(i)|+ 1−min{k, |PD(i)|}

|PD(i)|+ 1
ωi +

∑
j∈SD(i)

min{k, |PD(j)|}
|PD(j)|

(
|PD(j)|+ 1

)ωj for all i ∈ N.

The proof of this proposition follows the same lines as that of Proposition 4.1, and is

therefore omitted. The only difference is that, the marginal contributions in the restricted game

rlkωiu{i},D
are either ωi or 0 (instead of 1 and 0).

Theorem 4.2. Let k ∈ N. A measure for weighted digraphs is equal to the generalized k-local

permission measure gpk if and only if it satisfies the generalized efficiency norm, generalized local

determinateness, generalized symmetry, the generalized k-equal loss property, and the generalized

k-equal sharing property.

The proof of this theorem follows the same lines as that of Theorem 4.1, and is therefore

omitted. The only difference is in replacing 1 by ωi at several places. Notice that generalized

symmetry is satisfied by the generalized k-permission measure since gpki (D,ω) = ωi for every

i ∈ N with PD(i) = SD(i) = ∅. In the proof of uniqueness, similar independent equations are

derived as in the proof of Theorem 4.1. At the beginning of the uniqueness proof, applying

generalized symmetry to the empty graph gives gmi(∅, ω) = ωi for all i ∈ N .
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