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Abstract: We investigate the asymptotic behavior of the WALS estima-

tor, a model-averaging estimator with attractive finite-sample and compu-

tational properties. WALS is closely related to the normal location model,

and hence much of the paper concerns the asymptotic behavior of the es-

timator of the unknown mean in the normal local model. Since we adopt

a frequentist-Bayesian approach, this specializes to the asymptotic behav-

ior of the posterior mean as a frequentist estimator of the normal location

parameter. We emphasize two challenging issues. First, our definition of

ignorance in the Bayesian step involves a prior on the t-ratio rather than

on the parameter itself. Second, instead of assuming a local misspecification

framework, we consider a standard asymptotic setup with fixed parameters.

We show that, under suitable conditions on the prior, the WALS estimator is?
n-consistent and its asymptotic distribution essentially coincides with that

of the unrestricted least-squares estimator. Monte Carlo simulations confirm

our theoretical results.

Keywords: Model averaging, normal location model, consistency, asymp-

totic normality, WALS

JEL classification: C11, C13, C51, C52



1 Introduction

Applied econometricians typically perform model selection and estimation

sequentially or iteratively, not jointly. Given the data, the econometrician

selects a model and then, within the chosen model, estimates the parameters

of interest and carries out inference ignoring the data-driven model selection

step. This is called ‘pretesting’, and it is not good (see, e.g., Pötscher 1991

and Leeb and Pötscher 2005).

There are various approaches to solving this problem. One is regulariza-

tion via an `1 penalty, such as the LASSO (Tibshirani 1996), resulting in

both shrinkage and selection. This approach tends to work well when there

is a large number of potential regressors, possibly larger than the sample size,

but the data-generation process (DGP) is ‘sparse’, i.e. most of its parameters

are zero and only a few of them are large in magnitude. Another approach is

regularization via an `2 penalty, such as ridge regression (Hoerl and Kennard

1970), resulting in shrinkage but no selection. This approach tends to work

well when the DGP is ‘dense’, i.e. most of its parameters are nonzero but

small in magnitude. The distinction between ‘sparse’ and ‘dense’ modeling is

not always easy, partly because sparsity is not invariant to transformations

of the regressors (Giannone et al. 2021). One may also consider hybrid cases,

such as the ‘sparse-plus-dense’ representation analyzed by Chernozhukov et

al. (2021).

Another approach is ‘model averaging’, which can be seen as the con-

tinuous version of pretesting, where the weights given to the various models

are not zero or one, but rather continuous functions of appropriate diagnos-

tics, such as t-ratios. In model averaging one does not select a single ‘best’

performing model out of the available set of models, but combines the infor-

mation from all models to improve inference, e.g. predictions of the outcome

of interest or estimation of the structural or ‘focus’ parameters in the model.

There are various model averaging methods, both Bayesian and frequen-

tist. In Bayesian model averaging (see, e.g., Steel 2020), model weights are

typically based on posterior model probabilities. In frequentist model aver-

aging (see, e.g., Claeskens and Hjort 2008), the weighting scheme is typically
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based on some optimality criterion. In either case, the key di�culty is how

to handle the complexity of the model space. For example, if there is uncer-

tainty about which of k regressors to include and there is no natural way of

ordering them, then the model space contains 2k submodels. Even with val-

ues of k well below the sample sizes now standard in economic applications,

e.g. with k “ 30 or 40, the model space becomes exceedingly large.

In the current paper we concentrate on the weighted-average least squares

(WALS) estimator developed by Magnus et al. (2010), a frequentist model

averaging method with an important Bayesian flavor. From its introduction

in 2010, the WALS approach has been studied, extended, and applied in a

number of papers; see inter alia Dardanoni et al. (2011), Amini and Parme-

ter (2012), Magnus and Wang (2014), Magnus and De Luca (2016), Magnus

et al. (2016), De Luca et al. (2018, 2021a, 2021b), Duval et al. (2021), and

Magkonis et al. (2021). WALS is attractive because it performs well in finite

samples, o↵ers a close-to-practice notion of prior ignorance (called ‘neutral-

ity’), and is not restricted to sequences of nested models. Equally important,

it is numerically stable and fast to compute because it employs a preliminary

transformation of the regressors which reduces the complexity of the model

space from 2k to k.

What is missing so far is a suitable asymptotic theory for WALS, and

our purpose in the current paper is to provide such a theory. We emphasize

two aspects of this asymptotic theory. First, we place our prior not on the

parameter of interest (as is common in Bayesian analysis) but on its t-ratio.

This is justified by the desire of using a proper notion of prior ignorance

which closely resembles the usual frequentist model selection methods, say

general-to-specific or specific-to-general, but it implies that the prior on the

parameter of interest now depends on the sample size n and this complicates

the analysis.

Second, instead of assuming a local misspecification framework (Hjort

and Claeskens 2003, Zhang and Liang 2011, Hansen 2014, De Luca et al.

2018), we consider a standard asymptotic setup with fixed parameters. The

local misspecification framework is convenient because it assumes that the

auxiliary (nuisance) regression parameters shrink to zero with the sample size
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n at the rate n´1{2, giving rise to a well-defined trade-o↵ between asymptotic

bias and variance, but it is unrealistic (Ishwaran and Rao 2003, Raftery and

Zheng 2003) because we expect to converge to the unrestricted model, not

to the restricted model. Our asymptotic theory for WALS is developed in

an M-closed environment where the unknown DGP is included in the model

space considered by the investigator. For simplicity, we also assume that the

model space does not expand with n, although this additional assumption

can easily be relaxed.

In line with the more recent literature on the asymptotic properties of

other frequentist model averaging estimators (Zhang and Liu 2019, Zhu et

al. 2019, Zhang et al. 2020), we show that, under suitable conditions on the

prior for the t-ratio, the WALS estimator is
?
n-consistent and its asymptotic

distribution essentially coincides with that of the unrestricted least-squares

estimator.

We begin by summarizing the WALS approach to linear regression in

Section 2. From this we see that an essential element in the theory is the

‘normal location model’, and that the asymptotic theory developed in this

model carries over, more or less straightforwardly, to the WALS estimator.

In Section 3 we distinguish between two Bayesian approaches to the normal

location problem: one places a prior on the unknown location parameter and

leads to Bayesian model averaging, the other places a prior on its ‘theoretical’

t-ratio and leads to WALS. In Section 4, we discuss two properties of the prior

on the t-ratio: robustness and neutrality. The asymptotic behavior of our

Bayesian estimator of the normal location parameter is studied in Sections 5

and 6. In Section 7 we return to WALS and show how the asymptotic

theory of the normal location model carries over to the original regression

model. Some Monte Carlo simulations are presented in Section 8, where we

investigate the speed of convergence in relation to the choice of prior and

the large-sample performance of the bias-correction strategy proposed in De

Luca et al. (2021a). Section 9 concludes. All proofs are in the Appendix.
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2 WALS and the normal location model

We assume a homoskedastic linear model, which we write as

y “ X1�1 ` X2�2 ` ✏, (1)

where X “ pX1 : X2q is an nˆ k matrix of full column-rank k “ k1 ` k2 † n

and ✏ is an n ˆ 1 vector of independent and identically distributed distur-

bances which we assume to be distributed as Np0, �2
Inq, where In denotes

the identity matrix of order n. The k1 components of �1 are the ‘focus’ pa-

rameters (the parameters of interest) and the k2 components of �2 are the

‘auxiliary’ (nuisance) parameters. The normality assumption plays a role in

finite samples, but in this paper we are interested in asymptotics and the

underlying normality is assumed for convenience only.

As in De Luca et al. (2018), we first implement the following one-to-one

transformations of the matrix X2 of auxiliary regressors and the vector �2 of

auxiliary parameters:

Z2 “ X2�2 
´1{2

, �2 “  1{2�´1
2 �2, (2)

where �2 is a diagonal k2 ˆ k2 matrix such that the diagonal elements of

the positive definite matrix  “ �2X
1
2M1X2�2{n are all equal to one and

M1 “ In ´ X1pX 1
1X1q´1

X
1
1.

Next, we rescale the matrix X1 of focus regressors and the vector �1 of

focus parameters:

Z1 “ X1�1, �1 “ �´1
1 �1, (3)

where �1 is a diagonal k1 ˆ k1 matrix such that the diagonal elements of

Z
1
1Z1{n are all equal to one. Since Z1�1 “ X1�1 and Z2�2 “ X2�2, we can

now write model (1) as

y “ Z1�1 ` Z2�2 ` ✏, (4)

where Z
1
2M1Z2{n “ Ik2

. The transformations in (2) ensure that the k2 com-

ponents of the least-squares (LS) estimator of �2 in model (4) are indepen-

dent, while the rescaling in (3) serves only to increase the numerical accuracy

of the inversion and eigenvalue routines.
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The WALS estimator is obtained by averaging the LS estimators �̂1j and

�̂2j of �1 and �2 over the J models in the model space:

�̃1 “
Jÿ

j“1

�j �̂1j, �̃2 “
Jÿ

j“1

�j �̂2j, (5)

where the �j are nonnegative data-dependent model weights that add up to

one.

Unlike some other model-averaging estimators, WALS is not restricted

to a sequence of nested models. Hence, the model space consists of the

J “ 2k2 models that contain all focus regressors and a subset of the auxiliary

regressors in (4). Using Z
1
2M1Z2{n “ Ik2

, we obtain

�̂1j “ �̂1r ´ QWj �̂2u, �̂2j “ Wj �̂2u pj “ 1, . . . , Jq, (6)

where �̂1r “ pZ 1
1Z1q´1

Z
1
1y is the LS estimator of �1 in the fully restricted

model (with �2 “ 0), �̂2u “ Z
1
2M1y{n is the LS estimator of �2 in the unre-

stricted model, Q “ pZ 1
1Z1q´1

Z
1
1Z2, Wj “ Ik2

´ RjR
1
j is a diagonal matrix

whose elements are equal to zero or one, and Rj is a k2 ˆ rj selection matrix

of rank 0 § rj § k2 representing the rj exclusion restrictions implied by

model j, that is, R1
j “ rIrj : 0s or a column-permutation thereof. The WALS

estimator can then be written as

�̃1 “ �̂1r ´ QW �̂2u, �̃2 “ W �̂2u, (7)

where

W “
Jÿ

j“1

�jWj “

¨

˚̊
˚̊
˝

w1 0 . . . 0

0 w2 . . . 0
...

...
...

0 0 . . . wk2

˛

‹‹‹‹‚
(8)

is a random diagonal matrix whose k2 diagonal elements wh (the ‘WALS

weights’) are partial sums of the model weights, and

�̂2u “ �2 ` Z
1
2M1✏

n
„ N

ˆ
�2,

�
2

n
Ik2

˙
, (9)
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using model (4) and the normality of ✏. If we relax the normality of ✏, then (9)

still holds asymptotically under the standard conditions of the central limit

theorem.

Since the WALS weights wh are bounded between zero and one, the com-

ponents of the WALS estimator �̃2 are shrinkage estimators of the compo-

nents of �2. We want to find a set of WALS weights such that the WALS

estimator has smallest mean squared error (MSE) matrix. The ‘equivalence

theorem’ of Magnus and Durbin (1999) implies that the MSE matrix of the

WALS estimator of �1 depends on the MSE matrix of the WALS estimator

of �2. Thus, it is enough to focus on the WALS estimator �̃2 of �2.

We know from (7) that �̃2 “ W �̂2u and that the components p�̂2uqh of �̂2u

are distributed independently as

p�̂2uqh „ N

ˆ
�2h,

�
2

n

˙
, (10)

where �2h is the hth component of �2. Equivalently, we can write

p�̂2uqh
�{?

n
„ N

ˆ
�2h

�{?
n
, 1

˙
, (11)

where (10) emphasizes the parameter estimate, while (11) emphasizes the

associated t-ratio (assuming that � is known).

Under the additional restriction that the hth WALS weight wh only de-

pends on the hth component of �̂2u, the individual components of the WALS

estimator �̃2 are independent and so the k2-dimensional problem of finding

an estimator of �2 with smallest MSE matrix reduces to k2 identical one-

dimensional problems of the following type: given data xn „ N p✓, �2{nq and
a shrinkage estimator mpxnq “ wp?

nxnqxn of the scalar location parameter

✓, find the shrinkage function wp¨q such that mpxnq has minimum MSE. This

stylized setting is known as the normal location problem. For theoretical

considerations on admissibility, bounded risk, robustness, near-optimality in

terms of minimax regret, and ignorance about ✓, we adopt a Bayesian ap-

proach to the normal location problem.

Many of the previous WALS studies have concentrated on the choice of a

suitable prior for this Bayesian step (Kumar and Magnus 2013, Magnus and
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De Luca 2016) and the finite-sample properties of the posterior mean of ✓

given xn as a frequentist estimator of ✓ (De Luca et al. 2021a). In the current

paper, we study the large sample properties of the posterior mean of ✓ given

xn, viewed as a frequentist estimator of ✓, and the development of a valid

asymptotic theory for WALS. Unlike the asymptotic analysis carried out by

De Luca et al. (2018) for WALS estimation of generalized linear models, we

derive the asymptotic properties of the WALS estimator without assuming

that the auxiliary parameters are in a shrinking neighborhood of zero (the

local misspecification framework).

3 The normal location model: two Bayesian

approaches

In the normal location model we aim to estimate a finite location parameter ✓

from one observation xn, distributed as

xn|✓ „ N

ˆ
✓,

�
2

n

˙
, (12)

where � is a finite and strictly positive scale parameter which we assume

(at first) to be known. The obvious estimator of ✓ is xn itself, which is

unbiased and consistent, and is sometimes called the ‘usual’ estimator. An-

other estimator, sometimes called the ‘silly’ estimator, is 0 (zero). Since

MSEpxnq “ �
2{n and MSEp0q “ ✓

2 we prefer the silly estimator (in the MSE

sense) if and only if |✓| † �{?
n.

Defining

x
˚
n “ xn

�{?
n
, ✓

˚
n “ ✓

�{?
n
, (13)

we can write (12) equivalently as

x
˚
n|✓˚

n „ Np✓˚
n, 1q. (14)

Equations (12) and (14) are the stylized versions of Equations (10) and (11)

from the previous section.
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The transformed random variable x˚
n is the t-ratio (when � is known) for

testing the hypothesis ✓ “ 0, while ✓˚
n may be called the ‘theoretical t-ratio’.

There is no di↵erence, at least no essential di↵erence, between the approach

via (12) and the approach via (14). If, however, we add a prior, then it does

make a di↵erence whether we place the prior on the parameter ✓ or on the

theoretical t-ratio ✓
˚
n.

The standard Bayesian approach places a prior on ✓ and this leads to

Bayesian model averaging (see e.g. Steel 2020). The prior does not depend

on the sample size and the posterior mean of ✓ given xn is a consistent

estimator of ✓ (van der Vaart 1998, Chapter 10) because, as the sample size

increases, the data information will become increasingly important and will

dominate the prior information which remains constant.

Since, as we have seen, MSEp0q † MSEpxnq if and only if |✓˚
n| † 1 and,

more generally, since model selection and model averaging typically depend

on diagnostics (such as t-ratios) rather than on parameter estimates, it makes

sense to place a prior on ✓
˚
n rather than on ✓, and this is indeed what we shall

do. This approach, which plays a key role in the Bayesian shrinkage step of

the WALS procedure, though intuitive, is not standard.1

Our approach does not guarantee that the posterior mean of ✓ is consistent

for ✓. Consider, for example, a normal prior ✓
˚
n „ Np0, ⌧˚2q, where ⌧

˚ is a

finite scale parameter which does not depend on n. Combining the prior with

the likelihood in (14), gives the posterior distribution

✓
˚
n|x˚

n „ Np�˚
x

˚
n,�

˚q, �
˚ “ ⌧

˚2

⌧˚2 ` 1
. (15)

The posterior mean Ep✓˚
n|x˚

nq “ �
˚
x

˚
n implies the posterior mean mn “

Ep✓|xnq “ �
˚
xn. Viewing mn as a (frequentist) estimator of ✓, its sampling

bias and variance are

Epmnq ´ ✓ “ p�˚ ´ 1q✓, Vpmnq “ �
˚2
�
2{n, (16)

so that mn is in general not consistent for ✓ because, although the variance

vanishes as n Ñ 8, the bias doesn’t. Consistency occurs only if ✓ “ 0 or if

1
A similar idea in a di↵erent context was advocated by Hjort (1986).
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we are willing to assume ‘local misspecification’:

✓ “ �{?
n p� ‰ 0q. (17)

Neither assumption is satisfactory because they imply, either exactly or

asymptotically, that the data are generated by the fully restricted model

rather than by the unrestricted model. In other words, in the local misspec-

ification framework the model space shrinks rather than expands when the

sample size increases.

Given thatmn is in general not consistent for ✓, what do we need to ensure

the asymptotic validity of the WALS procedure and how can we justify the

idea of putting a prior on the t-ratio rather than on the parameter itself? To

answer these questions, we begin with the likelihood (14) and a prior density

⇡
˚ for the theoretical t-ratio ✓

˚
n. Together they give the posterior density of

✓
˚
n|x˚

n and, in particular, the posterior mean

m
˚
n “ mpx˚

nq “ Ep✓˚
n|x˚

nq. (18)

Our interest is in the asymptotic properties of m˚
n as a frequentist estimator

of ✓˚
n and of mn “ p�{?

nqm˚
n as a frequentist estimator of ✓. The sampling

properties (bias and variance) of m˚
n in finite samples have recently been

studied by De Luca et al. (2021a).

As in Kumar and Magnus (2013), we impose the following conditions on

the prior density ⇡
˚:

(C1) ⇡˚ is symmetric around zero;

(C2) ⇡˚ is positive and non-increasing on p0,8q; and
(C3) ⇡˚ is di↵erentiable, except possibly at 0.

These are mild regularity conditions on the shape of the prior, allowing a

non-di↵erentiable peak at zero. Kumar and Magnus (2013) show that, under

these three conditions, the posterior mean function m satisfies the following

properties:

(P1) m is odd: mp´xq “ ´mpxq and mp0q “ 0;

(P2) m is strictly increasing: mpx1q † mpx2q if x1 † x2;

9



(P3) m is a shrinkage rule: 0 † mpxq † x for x ° 0; and

(P4) m is unbounded: mpxq Ñ 8 as x Ñ 8.

4 Robustness and neutrality

An important requirement for posterior inference is that, when the data

information is su�ciently strong, the prior should have bounded influence

on mpxq (Sansó and Pericchi 1992). Although mpxq is bounded from above

by x, conditions (C1)–(C3) are not su�cient to characterize this additional

property. To see this, let’s introduce the discrepancy function

gpxq “ x ´ mpxq. (19)

Under the normal prior ✓˚
n „ Np0, ⌧˚2q, we obtain the posterior (15), so that

mpxq “ �
˚
x and hence gpxq “ p1 ´ �

˚qx, which is not bounded. Let

!
˚p✓q “ ´d log ⇡˚p✓q

d✓
“ ´⇡

˚1p✓q
⇡˚p✓q . (20)

Then, under the normal prior, !˚p✓q “ ✓{⌧˚2, which does not converge to a

finite constant as ✓ Ñ 8.

Thus motivated, let’s impose two further conditions on the prior ⇡˚.

(C4) !˚p✓q Ñ !
˚
0 as ✓ Ñ 8, where !

˚
0 • 0 is some finite constant; and

(C5) ⇡˚ satisfies
≥1
0 ⇡

˚p✓q d✓ “
≥8
1 ⇡

˚p✓q d✓.

Condition (C4) is relevant for the prior to have bounded influence on

the posterior mean, while Condition (C5) is relevant for a notion of prior

ignorance, which we call ‘neutrality’.

Kumar and Magnus (2013, Theorem 4.1) showed that gpxq Ñ 0 if and

only if !˚
0 “ 0. The next result is in the same spirit and shows in addition

that the two functions have the same speed of convergence.

Proposition 1 Under conditions (C1)–(C4),

lim
xÑ8

gpxq
!˚pxq “ 1.

10



This proposition implies that, under (C1)–(C4), g is bounded and, in

fact, that gpxq converges to !
˚
0 as x Ñ 8, so that ⇡˚ has bounded influence

on the posterior mean. It also implies a stronger property called (Bayesian)

robustness, which requires the discrepancy between x and mpxq to vanish as

x Ñ 8, so that prior information is essentially ignored when x is su�ciently

large (Lindley 1968, Dawid 1973, Choy and Smith 1997). This follows from

the fact that, when !
˚
0 “ 0, gpxq converges to 0 as x Ñ 8.

Let us briefly discuss the concept of ‘neutrality’, which is important in

WALS although it only plays a minor role in the asymptotic theory. In a

Bayesian context one typically has to formalize the concept of prior ignorance.

A flat (improper) prior is often used, as it can be computationally convenient.

But a flat prior does not capture the idea of prior ignorance. In our context,

ignorance means that we are ignorant whether or not ✓˚
n is smaller than one

in absolute value, that is, whether or not the restricted LS estimator has

a lower MSE than the unrestricted LS estimator. Thus we say that ⇡
˚ is

‘neutral’ when it is symmetric around zero and

Prp|✓˚
n| † 1q “ 1

2
. (21)

Conditions (C1) and (C5) imply neutrality.

We can write (21) equivalently in terms of the original ✓ parameter:

Pr

ˆ
|✓| † �?

n

˙
“ 1

2
, (22)

from which we see that the prior distribution of ✓ is asymptotically of the

mixed discrete-continuous type with Prp✓ “ 0q “ 1{2 and Prp✓ ° 0q “
Prp✓ † 0q “ 1{4. This is similar to the ‘spike and slab’ prior originally

proposed by Mitchell and Beauchamp (1988), which is becoming increas-

ingly popular in the application of Bayesian regularization methods (see,

e.g., Abadie and Kasy 2019, Giannone et al. 2021).

A Bayesian interpretation of the local misspecification framework (17),

where ✓ “ �{?
n for some � ‰ 0, would correspond to a prior on ✓ of the

form

Pr

ˆ
|✓| † �?

n

˙
“ 1 ´ ↵n, (23)

11



where ↵n Ñ 0 as n Ñ 8. In this case, the prior probability that the theo-

retical t-ratio is less than one in absolute value approaches one as n Ñ 8,

which is the opposite of what we want. After all, in an M-closed environ-

ment with a fixed model space, more data lead to higher t-ratios, so that

including auxiliary variables becomes more profitable. In the end we wish

to converge to the unrestricted model, not to the fully restricted model as

under local misspecification.

As in previous WALS studies we assume that our prior on ✓
˚
n belongs to

the class of reflected generalized gamma distributions with density

⇡
˚p✓; a, b, cq “ cb

d

2�pdq |✓|´a exp p´b|✓|cq p´8 † ✓ † 8q, (24)

where 0 § a † 1, b ° 0, c ° 0, d “ p1 ´ aq{c, and �pdq is the gamma

function. This class of priors includes as special cases the one-parameter

family of normal distributions (a “ 0, c “ 2, d “ 1{2) with mean zero and

variance 1{p2bq, the one-parameter family of Laplace distributions (a “ 0,

c “ 1, d “ 1), and the two-parameter families of reflected Weibull (a “ 1´ c,

d “ 1) and Subbotin distributions (a “ 0, d “ 1{c). All these priors satisfy

regularity conditions (C1)–(C3).

As shown in Kumar and Magnus (2013) and Magnus and De Luca (2016),

a reflected generalized gamma prior is robust if and only if 0 † c † 1, and is

neutral if and only if

�pb, dq “ 1

�pdq

ª b

0

t
d´1

e
´t

dt “ 1{2, (25)

where �pb, dq is the (lower) incomplete gamma function. The Weibull and

Subbotin priors are robust, but the Laplace prior is not (although it has

bounded influence) since !
˚
0 “ b ‰ 0, and the normal prior has unbounded

influence since !
˚
0 Ñ 8.

Neutrality leads to b « 0.2275 for the normal prior and to b “ log 2 for

the Laplace and Weibull priors. For the Subbotin prior, neutrality restricts

b to be a nonlinear function of c given by �pb, 1{cq “ 1{2.
For the Weibull and Subbotin priors we also fix the free prior parameter

c by the minimax regret criterion for m
˚
n, where regret is defined as the

12



di↵erence between the MSE of m˚
n and the minimum MSE in estimating ✓

˚
n.

Based on this criterion, Magnus and De Luca (2016) find that the ‘optimal’

neutral and robust priors have c « 0.8876 for the Weibull distribution and

c « 0.7995 and b « 0.9377 for the Subbotin distribution.

5 Asymptotic behavior of gpx˚
n
q and mpx˚

n
q

For x ‰ 0 we define the function wpxq “ mpxq{x, so that we can write

mpxq “ wpxqx, (26)

where conditions (C1)–(C4) imply that wpxq is a symmetric shrinkage func-

tion, that is, it satisfies wp´xq “ wpxq and 0 † wpxq † 1. When the prior is

robust (i.e. when !
˚
0 “ 0), then wpxq Ñ 1 as x Ñ 8.

We have

m
˚
n “ mpx˚

nq “ wpx˚
nqx˚

n, g
˚
n “ gpx˚

nq “ x
˚
n ´ m

˚
n, (27)

so that the posterior mean m
˚
n may be regarded as a weighted sum of the t-

ratio x
˚
n and zero, the center of the prior distribution of ✓˚

n. Our first interest

is in characterizing the behavior of g˚
n as n Ñ 8.

Proposition 2 Under conditions (C1)–(C4) we have

$
’’’&

’’’%

g
˚
n

p›Ñ !
˚
0 if ✓ ° 0,

g
˚
n “ p1 ´ wpzqq z if ✓ “ 0,

g
˚
n

p›Ñ ´!
˚
0 if ✓ † 0,

where z „ Np0, 1q.

The asymptotic behavior of g˚
n thus depends on whether or not ✓ “ 0

and whether or not the prior ⇡
˚ is robust. In particular, for robust priors,

g
˚
n “ opp1q if ✓ ‰ 0 and g

˚
n “ Opp1q if ✓ “ 0.

Figure 1 illustrates the behavior of the discrepancy function g under the

neutral normal, Laplace, and ‘optimal’ (in the minimax regret sense) Weibull

and Subbotin priors. For small values of x (say, x § 5), the di↵erences

13



Figure 1: The discrepancy function gpxq under normal (N), Laplace (L),

and ‘optimal’ Weibull (W pc˚q) and Subbotin (Spc˚q) priors
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between the discrepancy functions of the four priors are small, but they

become larger when x increases. More specifically, g diverges to infinity for

the normal prior, it converges to a constant b “ log 2 for the Laplace prior,

and it converges to zero for the robust Weibull and Subbotin priors. This is

all in accordance to Proposition 2. The proposition does not, however, tell

us how fast gpxq converges to zero under the Weibull and Subbotin priors.

The answer is: rather slowly.

We investigate the slow convergence further in Figure 2, which plots the

discrepancy functions under the Weibull (left panel) and Subbotin (right

panel) priors for alternative values of the prior parameter c. In all cases,

the prior parameter b is chosen to satisfy the neutrality condition (25). The

figure shows that, if we choose a smaller value for c, then the discrepancy

14



Figure 2: The discrepancy function gpxq under Weibull and Subbotin priors

for alternative values of the prior parameter c
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functions of both priors become larger at small values of x but converge to

zero more rapidly as x increases. Thus, values of c below the minimax regret

choice c
˚ imply a higher speed at which gpxq Ñ 0 as x Ñ 8, but at the cost

of a larger finite-sample bias.

The asymptotic behavior of m˚
n as an estimator of ✓˚

n now follows easily.

Proposition 3 Under conditions (C1)–(C4) we have

$
’’’&

’’’%

m
˚
n ´ ✓

˚
n

d›Ñ Np´!
˚
0 , 1q if ✓ ° 0,

m
˚
n “ wpzq z if ✓ “ 0,

m
˚
n ´ ✓

˚
n

d›Ñ Np!˚
0 , 1q if ✓ † 0,

where z „ Np0, 1q.
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If ✓ ‰ 0, then ⇡
˚ is not correctly centered and estimating ✓

˚
n by m

˚
n su↵ers

from a finite-sample attenuation bias (De Luca et al. 2021a). However, as

the t-ratio x
˚
n increases with the sample size, conditions (C1)–(C4) ensure

that plim |g˚
n| “ !

˚
0 . Hence, the bias of m˚

n is asymptotically bounded and

converges to zero when ⇡
˚ is robust. This also implies that m˚

n and x
˚
n are

asymptotically equivalent except for a possible shift !˚
0 when ⇡

˚ is not robust.

If ✓ “ 0, then ⇡
˚ is correctly centered and m

˚
n “ wpzqz is unbiased and

more e�cient than x
˚
n “ z, no matter what the sample size is and whether the

prior is robust or not. The distribution of m˚
n at ✓ “ 0 thus does not depend

on n and is not standard-normal. It is symmetric around zero and hence all

odd moments are zero but, since Epm˚
nq2h “ Epwpzq2hz2hq † Epz2hq, the even

moments are all smaller than the corresponding moments of the standard-

normal distribution. In particular, setting h “ 1, we see that at ✓ “ 0 the

posterior mean m
˚
n is unbiased and more e�cient than the usual estimator

x
˚
n.

Propositions 2 and 3 can easily be extended to the case when � is unknown

and estimated consistently by sn. We only need to replace x
˚
n by

x
˚˚
n “ x

˚
n

sn{� “ xn

sn{?
n
. (28)

Specifically, if we redefine the posterior mean and the discrepancy function

in (27) as

m
˚˚
n “ mpx˚˚

n q “ wpx˚˚
n qx˚˚

n , g
˚˚
n “ gpx˚˚

n q “ x
˚˚
n ´ m

˚˚
n , (29)

then Propositions 2 and 3 remain valid for g
˚˚
n and m

˚˚
n , respectively. The

only di↵erence is that, for ✓ “ 0, we should replace z by zn
d›Ñ Np0, 1q.

6 A Bayesian shrinkage estimator of ✓

These preliminary results enable us to address the estimation of ✓ in (12).

Given a consistent estimator sn of �, our Bayesian shrinkage estimator of ✓

is

✓̂n “ sn?
n
m

˚˚
n “ sn?

n
wpx˚˚

n qx˚˚
n “ wpx˚˚

n qxn, (30)
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which deviates from the usual estimator xn by the shrinkage factor wpx˚˚
n q

evaluated at x˚˚
n .

Since
?
npxn ´ ✓̂nq{sn “ ?

npxn ´ wpx˚˚
n qxnq{sn “ x

˚˚
n ´ m

˚˚
n “ g

˚˚
n , (31)

we see from the extension of Proposition 2 that, under conditions (C1)–(C4),
$
’’’&

’’’%

?
npxn ´ ✓̂nq{sn p›Ñ !

˚
0 if ✓ ° 0,

?
npxn ´ ✓̂nq{sn “ p1 ´ wpznqq zn if ✓ “ 0,

?
npxn ´ ✓̂nq{sn p›Ñ ´!

˚
0 if ✓ † 0,

(32)

where plim zn “ z „ Np0, 1q. Thus we obtain

Proposition 4 Under conditions (C1)–(C4), the shrinkage estimator ✓̂n is

consistent for all ✓ and asymptotically normal for all ✓ ‰ 0. In particular,

?
np✓̂n ´ ✓q{sn d›Ñ

$
’’’&

’’’%

Np´!
˚
0 , 1q if ✓ ° 0,

wpzq z if ✓ “ 0,

Np!˚
0 , 1q if ✓ † 0,

where z „ Np0, 1q.
Under certain conditions, the first and second moments of

?
np✓̂n´✓q will

converge to finite limits, and indeed we have

Proposition 5 Under conditions (C1)–(C4),

?
nEp✓̂n ´ ✓q Ñ

$
’’’&

’’’%

´�!
˚
0 if ✓ ° 0,

0 if ✓ “ 0,

�!
˚
0 if ✓ † 0,

and

nVp✓̂nq Ñ

$
&

%
�
2

if ✓ ‰ 0,

�
2 Epwpzqzq2 if ✓ “ 0.

Our Bayesian shrinkage estimator is thus asymptotically unbiased only

when the prior is robust, and it is always more e�cient than the usual esti-

mator x˚˚
n at ✓ “ 0.

17



7 Implications for WALS

We now return to WALS, using the asymptotic results obtained for the nor-

mal location model. Our model is y “ X1�1 ` X2�2 ` ✏, as in (1), which we

transform to y “ Z1�1 ` Z2�2 ` ✏, as in (4). The key to this transformation

is that Z
1
2M1Z2{n “ Ik2 , so that the k2 components of the LS estimator of

�2 are independent.

Our purpose is to obtain the asymptotic distribution of the WALS es-

timator of � “ p�1
1, �

1
2q1 through the asymptotic distribution of the WALS

estimator of � “ p�1
1, �

1
2q1. To keep track of the sample size, we add an index

n to all relevant data-dependent parameters and random variables.

Let �̂2u,n be the LS estimator of �2 in the unrestricted model, and let

�̂1r,n be the LS estimator of �1 in the fully restricted model. Denoting the

hth component of �2 by �2h, and the hth component of �̂2u,n by p�̂2u,nqh, we
define

✓
˚
h,n “ �2h

�{?
n
, x

˚˚
h,n “ p�̂2u,nqh

sn{?
n
, (33)

as in (13) and (28), where s
2
n is the LS estimator of �2 in the unrestricted

model. Given a neutral prior on ✓
˚
h,n, such as the Laplace, Weibull or Sub-

botin priors discussed in Section 4, the Bayesian approach to the normal

location problem yields a consistent estimator

✓̂h,n “ sn?
n
m

˚˚
h,n (34)

of �2h, as in (30).

The WALS estimators of �1 and �2 can be written as

�̃1,n “ �̂1r,n ´ Qn�̃2,n, �̃2,n “ psn{?
nqm˚˚

n , (35)

where m
˚˚
n “ pm˚˚

1,n, . . . ,m
˚˚
k2,n

q1, and the WALS estimators of �1 and �2 as

�̃1,n “ �1,n�̃1,n, �̃2,n “ �2,n 
´1{2
n �̃2,n. (36)

The probability limits of these estimators follow from those of

⌃ “
˜
⌃11 ⌃12

⌃21 ⌃22

¸
“ 1

n

˜
X

1
1X1 X

1
1X2

X
1
2X1 X

1
2X2

¸
, (37)
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the continuity of eigenprojections and symmetric matrix functions (De Luca

et al. 2018, Appendix B), and the asymptotic results obtained for the normal

location model. Specifically, letting

plim⌃ “ s⌃ “
˜

s⌃11
s⌃12

s⌃21
s⌃22

¸
, (38)

we find that

plim�1,n “ s�1, plim
Z

1
1Z1

n
“ s�1

s⌃11
s�1 “ s⌃˚

11, (39)

where s�1 is a nonrandom diagonal matrix whose diagonal elements are equal

to the inverse of the square root of the corresponding diagonal element of
s⌃11, and s⌃˚

11 is a nonrandom matrix with diagonal elements equal to one.

Similarly, by the continuity of the inverse, we find that

plim�2,n “ s�2, plim n “ s�2ps⌃22q´1 s�2 “ s , (40)

where s�2 is a nonrandom diagonal matrix whose diagonal elements are

equal to the square root of the corresponding diagonal element of s⌃22 “
ps⌃22 ´ s⌃21

s⌃´1
11

s⌃12q´1 (the bottom-right block of the matrix s⌃´1), and s is

a nonrandom matrix with diagonal elements equal to one. The continuity of

 ´1{2
n also implies that

plim
Z

1
1Z2

n
“ s�1

s⌃12
s�2

s ´1{2 “ s⌃˚
12 (41)

and

plim
Z

1
2Z2

n
“ s ´1{2 s�2

s⌃22
s�2

s ´1{2 “ s⌃˚
22, (42)

so that plimQn “ s⌃˚´1
11

s⌃˚
12 “ sQ˚ and s⌃˚

22 ´ s⌃˚
21

sQ˚ “ Ik2
.

Now that the relationship between WALS and the normal location model

has been made precise, we can invoke Proposition 4 to obtain the asymptotic

distribution of the WALS estimator �̃2,n of �2.

Proposition 6 The WALS estimator �̃2,n is a consistent estimator of �2

and
?
np�̃2,n ´ �2q{sn d›Ñ Z2, where Z2 is a random k2 ˆ 1 vector of inde-
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pendent components with hth component

Z2h “

$
’’’&

’’’%

z ´ !
˚
0 if �2h ° 0,

wpzq z if �2h “ 0,

z ` !
˚
0 if �2h † 0,

where z „ Np0, 1q. In particular, when the prior is robust,

Z2h “

$
&

%
z if �2h ‰ 0,

wpzq z if �2h “ 0.

Recall that the WALS estimator �̃2,n depends only on the unrestricted

LS estimator �̂2u,n and is therefore independent of the fully restricted LS

estimator �̂1r,n. Since the latter may be written as

�̂1r,n “
ˆ
Z

1
1Z1

n

˙´1 ˆ
Z

1
1y

n

˙
“ �1 ` Qn�2 `

ˆ
Z

1
1Z1

n

˙´1 ˆ
Z

1
1✏

n

˙
, (43)

we have, using (35) and (43),

�̃1,n ´ �1 “ �̂1r,n ´ �1 ´ Qn�̃2,n “ pZ 1
1Z1{nq´1pZ 1

1✏{nq ´ Qnp�̃2,n ´ �2q, (44)

and hence, using (44) and Proposition 6,

?
n

˜
�̃1,n ´ �1

�̃2,n ´ �2

¸
d›Ñ �

˜
s⌃˚´1{2
11 ´ sQ˚

0 Ik2

¸ ˜
Z1

Z2

¸
, (45)

where Z1 „ Np0, Ik1q and Z2 is defined in Proposition 6. The asymptotic

distribution of the WALS estimator of �1 and �2 then follows.

Proposition 7 The WALS estimators �̃1,n and �̃2,n are consistent for �1

and �2, and

?
n

˜
�̃1,n ´ �1

�̃2,n ´ �2

¸
d›Ñ �

˜
s⌃´1{2
11 ´s⌃´1

11
s⌃12ps⌃22q1{2

0 ps⌃22q1{2

¸ ˜
Z1

Z2

¸

where Z1 „ Np0, Ik1q, Z2 is defined in Proposition 6, and Z1 and Z2 are

independent.
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If !˚
0 “ 0 (robust prior) and all components of �2 are nonzero, then the

asymptotic distribution of WALS equals that of the unrestricted LS estima-

tor. Under restrictions (C1)–(C4) on the prior, this agrees with the standard

Bayesian approach to model uncertainty. When �2 “ 0, corresponding to

the limiting case implied by the local misspecification framework, the WALS

estimator based on a robust prior is asymptotically more e�cient than the un-

restricted LS estimator. On the other hand, if !˚
0 is a nonzero finite constant,

as in the case of the Laplace prior, the WALS estimator is asymptotically bi-

ased and less e�cient, in the MSE sense, than the unrestricted LS estimator.

This is one reason why robust priors are preferred over non-robust priors.

Our results on the asymptotic properties of the WALS estimator are in

line with those of other frequentist model-averaging estimators, such as the

Mallows model-averaging estimator (Hansen 2007) and the jackknife model-

averaging estimator (Hansen and Racine 2012). Under a standard asymp-

totic setup with fixed parameters, Zhang and Liu (2019) have recently shown

that these two estimators asymptotically assign zero weight to all under-fitted

models. Similar results hold for other frequentist model-averaging estimators

based on smoothed information criteria (Wang et al. 2019). These results

imply that, when the DGP has a ‘sparse’ structure, the asymptotic distri-

bution of these estimators is nonstandard because of the random positive

weights assigned to just-fitted and over-fitted models. However, when the

DGP has a ‘dense’ structure, such estimators are asymptotically equivalent

to the unrestricted LS estimator. This is exactly what happens with the

WALS estimator based on a robust prior, as the underlying model (4) is

likely to be dense due to the transformations in (2).

Proposition 7 also provides useful insights on the issue of inference af-

ter WALS estimation. De Luca et al. (2021b) have recently proposed a

simulation-based approach that yields re-centered confidence and prediction

intervals using the bias-corrected posterior mean as a frequentist estimator

of the normal location parameter. This approach does not require asymp-

totic approximations and its intervals are not necessarily symmetric. The

extensive set of Monte Carlo experiments in De Luca et al. (2021b) suggests

that one can also construct valid intervals by a simpler ‘centered-and-naive’
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approach which corrects for the estimation bias and uses critical values from

the normal distribution. The Monte Carlo evidence in the next section shows

that this simpler approach is justified by the asymptotic approximations.

8 Monte Carlo evidence

So far we have developed the asymptotic theory, first for the normal location

model, then for WALS. Several questions remain which we can answer, with

appropriate caution, by Monte Carlo experimentation. How fast is the con-

vergence of the WALS estimator (especially the WALS estimator of the focus

parameters) to its asymptotic distribution? Is the convergence monotonic

in n? Can we increase the speed at which the finite-sample bias converges

to zero by using a robust prior with c smaller than the minimax regret so-

lution c
˚? And, what is the large-sample performance of the bias-correction

strategy proposed by De Luca et al. (2021a, 2021b)?

We address these questions by considering a homoskedastic linear regres-

sion model with k1 “ 2 focus regressors: the constant term x1,1 and x1,2; and

k2 “ 8 auxiliary regressors: x2,1, . . . , x2,8.2 For ´1{pk2 ´1q † ⇢ † 1 we define

the k2 ˆ k2 equicorrelation matrix

⌦k2p⇢q “

¨

˚̊
˚̊
˝

1 ⇢ . . . ⇢

⇢ 1 . . . ⇢

...
...

...

⇢ ⇢ . . . 1

˛

‹‹‹‹‚
“ ⌫1J ` ⌫2pIk2 ´ Jq, (46)

where

⌫1 “ 1 ` pk2 ´ 1q⇢, ⌫2 “ 1 ´ ⇢, J “ ıı
1{k2, (47)

and ı denotes the k2 ˆ1 vector of ones. The nine regressors x1,2, x2,1, . . . , x2,8

are drawn from a multivariate normal distribution with mean zero and vari-

ance �
2
x⌦k2`1p⇢q. We fix �1 “ p1, 1q1, �2 “ p⇠, ⇠2, ⇠3, ⇠4, 0, 0, 0, 0q1, �2

x “ 0.7,

2
In addition to simulation designs with k2 “ 8, we also considered designs with k2 “ 16

and k2 “ 32. The results obtained are very similar and are available from the authors

upon request.
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⇢ “ 0.7, and we set ⇠ “ 0.5. Then we consider eight simulation designs corre-

sponding to four choices of the sample size: n “ 100, n “ 400, n “ 1, 600, and

n “ 6, 400; and two distributions of the regression errors: standard-normal

and skewed-t, where the latter has zero mean, unit variance, five degrees of

freedom, and skewness parameter 0.8. Our parameter of interest is the focus

coe�cient �1,2 “ 1 associated with x1,2.

Based on 10,000 Monte Carlo replications for each design, we compare

the simulated density of
?
np�̃1,2 ´ �1,2q with the asymptotic normal density

given in Proposition 7. In all designs we have

s⌃ “
˜

s⌃11
s⌃12

s⌃21
s⌃22

¸
(48)

with s⌃11 “ diagp1, �2
xq, s⌃21 “ ⇢�

2
xp0 : ıq, and s⌃22 “ �

2
x⌦k2p⇢q. This implies

that the diagonal blocks of s⌃´1 are given by

s⌃22 “ ps⌃22 ´ s⌃21
s⌃´1
11

s⌃12q´1 “ p1{�2
xqp⌦k2p⇢q ´ ⇢

2
ıı

1q´1

“ p1{�2
xqp⌫1J ` ⌫2pIk2 ´ Jq ´ ⇢

2
ıı

1q´1

“ p1{�2
xqpp⌫1 ´ k2⇢

2qJ ` ⌫2pIk2 ´ Jqq´1

“ p1{�2
xqpp⌫1 ´ k2⇢

2q´1
J ` ⌫

´1
2 pIk2 ´ Jqq (49)

and

s⌃11 “ s⌃´1
11 ` s⌃´1

11
s⌃12

s⌃22s⌃21
s⌃´1
11

“ 1

�2
x

˜
�
2
x 01

0 1 ` ⇢
2
�
2
xı

1 s⌃22
ı

¸
“

˜
1 01

0 ⌫1{r�2
xp⌫1 ´ k2⇢

2qs

¸
. (50)

Since the regression errors have unit variance (that is, �2 “ 1), the asymp-

totic variance of all WALS estimators of �1,2 is equal to the second diagonal

element of s⌃11, so that �̄2
1,2 « 4.2569.

Figure 3 shows the asymptotic and the simulated density of the WALS

estimator based on a Weibull prior with tuning parameter c equal to the

minimax regret value c
˚ « 0.8876. The upper panels refer to simulation

designs with normal errors and the bottom panels to simulation designs with

skewed-t errors. Moving from left to right, the sample size n quadruples each
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Figure 3: Asymptotic and simulated densities of WALS and

bias-corrected WALS: Weibull prior with c « 0.8876 (minimax regret)
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time. Each panel plots three densities: the asymptotic density of �̃1,2 (that

is, a normal density with mean zero and variance �̄
2
1,2), a kernel density of

the Monte Carlo replications of
?
np�̃1,2 ´ �1,2q, and a third density to be

discussed shortly.

Since the Weibull prior is robust, the asymptotic distribution is centered

at zero. Comparing the asymptotic and the simulated distribution of WALS-

Wpc˚q, we see that the latter has a normal shape (even for small values of

n) but its location is o↵-centre. Formal tests of normality of the simulated

distribution based on its skewness and excess kurtosis (D’Agostino et al.

1990) reject normality when the errors are skewed-t and n “ 100 or n “ 400,

but don’t reject normality when the errors are normal or n is large. This

confirms convergence to normality and tells us something about the speed of
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convergence.

The impression that the simulated density converges to the wrong point

is of course wrong, because this would contradict our theory. But the con-

vergence is very slow, because of the fact that the bias converges to zero

very slowly. This, in turn, is a consequence of the slow convergence of gpxq
discussed in Section 5. This problem can be resolved by introducing a bias-

corrected WALS estimator

�̃
˚
1,2 “ �̃1,2 ´ b̃1,2, (51)

where b̃1,2 is the maximum likelihood plug-in estimator of the bias of �̃1,2

proposed in De Luca et al. (2021a). The Monte Carlo simulations in De Luca

et al. (2021b) suggest that bias-correction plays a key role in constructing

valid confidence and prediction intervals for WALS, and it plays a key role

again in speeding up the convergence.

The third curve plotted in Figure 3 is the density of the Monte Carlo

replications of
?
np�̃˚

1,2 ´ �1,2q. This density is now always correctly centered

at zero. In small samples, bias-correction leads to an increase of the sam-

pling variance but, as n increases, the bias-corrected estimator converges to

a normal distribution with mean zero and variance �̄
2
12.

Figure 4 illustrates the results of an analogous Monte Carlo experiment

based on the Weibull prior with c “ 0.5 instead of c “ c
˚ « 0.8876. As

predicted by our asymptotic theory, a lower value of c increases the speed

at which the finite-sample bias converges to zero, but the superiority of the

bias-corrected WALS estimator remains.

9 Conclusions

The purpose of this paper was to obtain the asymptotic properties of the

WALS estimator, a frequentist-Bayesian model-averaging estimator with at-

tractive finite-sample properties. The theory of WALS is strongly connected

to the theory of the normal location model, and therefore much of the current

paper concerns this model, which is also of interest outside WALS. At first,
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Figure 4: Asymptotic and simulated densities of WALS and

bias-corrected WALS: Weibull prior with c “ 0.5
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it may seem strange that there is an asymptotic theory at all, because in the

normal location model we ask how to estimate ✓ when we have one obser-

vation from a normal distribution with mean ✓ and known variance. This

known variance, however, depends on n and this is how n becomes relevant.

In a Bayesian context we can place a prior on the parameter ✓, but we

can also place a prior on the t-ratio associated with ✓. The former case

is more common, but the latter case leads to a more transparent notion of

prior ignorance. If prior knowledge is available, a Bayesian wishes to take

this into account. If there is no prior knowledge, we can still be a Bayesian

but we must define what we mean by ignorance. In WALS, ignorance about

a parameter ✓ is defined by its ‘theoretical’ t-ratio ✓
˚
n. From the MSE point

of view, it is better to include a regressor if the absolute value of its t-ratio
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is greater than one and exclude it otherwise. So, ignorance is defined by a

prior that places equal probability on |✓˚
n| ° 1 and |✓˚

n| † 1. This is called

neutrality.

In our Bayesian approach, based on a neutral prior for the t-ratio, the

asymptotic theory is not straightforward because the underlying prior on

✓ depends on n. We showed that the WALS estimator is consistent if the

chosen prior has bounded influence on the posterior mean, and that it has the

same asymptotic distribution as the unrestricted LS estimator if the prior is

also robust (and the DGP does not coincide with the fully restricted model).

In particular, the stronger condition of robustness prevents biases in the

asymptotic distribution of the WALS estimator. When the DGP coincides

with the fully restricted model, the WALS estimator is always asymptotically

more e�cient than the unrestricted LS estimator.

The paper also allows us to compare the asymptotic theory of WALS,

based on a fixed parameter setup, with the local misspecification framework.

The latter is much used because it puts variance and squared bias on the same

asymptotic scale, but it seems far removed from reality. In a model-averaging

framework, local misspecification implies that the DGP shrinks towards the

restricted model, while common sense suggests that it should expand to the

unrestricted model. This is precisely what happens to the WALS estimator

based on a neutral and robust prior: in an M-closed environment where

the model space does not expand with n, it converges to the unrestricted

estimator.

Our asymptotic theory for WALS assumes that the number k2 of auxiliary

coe�cients is fixed and imposes no restriction other than k “ k1 `k2 † n. It

is easy, however, to think of cases where k2 increases with n and our theory

can easily be extended to these cases provided the restrictions k “ k1 ` k2 †
n and k2{n Ñ 0 as n Ñ 8 are satisfied. The reason is that, after the

preliminary transformations in (2) and (3), k2 a↵ects the asymptotic results

for the normal location model only through the error variance �
2 (which is

likely to decrease with k2, though not necessarily monotonically). Requiring

k2{n Ñ 0 as n Ñ 8 thus ensures that �
2 can be estimated consistently by

its unbiased estimator s2n in the unrestricted model.
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In addition to confirming our theoretical results, Monte Carlo simulations

based on the neutral and ‘optimal’ (in the minimax regret sense) Weibull

prior suggest that the finite-sample bias of the WALS estimator converges

to zero slowly. More rapid convergence to the asymptotic distribution can

be achieved by using a prior parameter c smaller than the minimax regret

solution c
˚ or by applying the bias-correction strategy recently proposed in

De Luca et al. (2021a, 2021b).

Appendix: Proofs

Proof of Proposition 1: By the Brown–Tweedie formula (Robbins 1956,

Brown 1971, Pericchi and Smith 1992), we know that

mpxq “ x ` d logA0pxq
dx

,

where

A0pxq “
ª 8

´8
�px ´ ✓q⇡˚p✓q d✓ “

ª 8

´8
�puq⇡˚pu ` xq du.

Defining

A1pxq “
ª 8

´8
px ´ ✓q�px ´ ✓q⇡˚p✓q d✓ “ ´

ª 8

´8
u�puq⇡˚pu ` xq du “ ´A

1
0pxq,

we can then rewrite the discrepancy function as

gpxq “ x ´ mpxq “ A1pxq
A0pxq .

By the definition of !˚p✓q “ ´pd{d✓q log ⇡˚p✓q “ ´⇡
˚1p✓q{⇡˚p✓q in (C4), it

also follows that
A

1
0pxq

⇡˚1pxq “ A1pxq
!˚pxq⇡˚pxq .

Since A0pxq and ⇡
˚pxq both converge to zero as x Ñ 8, l’Hôpital’s rule gives

lim
xÑ8

A0pxq
⇡˚pxq “ lim

xÑ8
A

1
0pxq

⇡˚1pxq “ lim
xÑ8

A1pxq
!˚pxq⇡˚pxq ,

and hence

lim
xÑ8

gpxq
!˚pxq “ lim

xÑ8
A1pxq

A0pxq!˚pxq “ 1.
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Proof of Proposition 2: Let x˚
n “ ✓

˚
n ` z with z „ Np0, 1q. For ✓ ° 0 we have

Prpx˚
n ° Mq “ Prpz ° M ´ ✓

˚
nq Ñ 1 for every M ° 0,

which we write as plimx
˚
n “ 8. Then, by the (generalized) continuous

mapping theorem,

plimpx˚
n ´ m

˚
nq “ plim gpx˚

nq “ gpplim x
˚
nq “ gp8q “ !

˚
0 .

This is not completely trivial because the usual continuous mapping theorem,

which says that plimx
˚
n “ x implies plim gpx˚

nq “ gpxq, does not apply here

since x “ 8. Hence a generalization is required; see van der Vaart (1998,

Theorem 18.11 and Example 18.4) and Billingsley (1999, Theorem 2.7).

Similarly, for ✓ † 0,

Prpx˚
n † ´Mq “ Prpz † ´M ´ ✓

˚
nq Ñ 1 for every M ° 0,

which we write as plimx
˚
n “ ´8. Then also plimpx˚

n ´ m
˚
nq “ ´!

˚
0 using

property (P1).

For ✓ “ 0, we have x
˚
n “ z so that m˚

n “ wpzq z and g
˚
n “ p1 ´ wpzqq z.

Proof of Proposition 3: We write

m
˚
n ´ ✓

˚
n “ px˚

n ´ ✓
˚
nq ´ gpx˚

nq.

Since x
˚
n ´ ✓

˚
n „ Np0, 1q, the result follows from Proposition 2.

Proof of Proposition 4: When ✓ ‰ 0, the asymptotic normality follows from

Proposition 3 and the fact that sn is a consistent estimator of �, while con-

sistency follows from the asymptotic normality (van der Vaart, 1998, Chap-

ter 2, Problem 18). When ✓ “ 0, we have ✓̂n ´ ✓ “ Oppn´1{2q and hence

✓̂n ´ ✓ “ opp1q.

Proof of Proposition 5: The first and second moments of
?
np✓̂n ´ ✓q will

converge to a finite limit if and only if the sequence of random variables g˚˚
n

is asymptotically uniformly integrable (Van der Vaart, 1998, Section 2.5). A

su�cient condition for this is that

lim sup
nÑ8

E |gpx˚˚
n q|2`� † 8
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for some � ° 0, and this is guaranteed by the fact that g is a bounded

function, which is a consequence of Proposition 1. The asymptotic mean

and variance of
?
np✓̂n ´ ✓q then follow.

Proof of Proposition 6: This follows directly from Proposition 4.

Proof of Proposition 7: Using (45) we have

?
n

˜
�̃1,n ´ �1

�̃2,n ´ �2

¸
“

˜
�1,n 0

0 �2,n 
´1{2
n

¸
?
n

˜
�̃1,n ´ �1

�̃2,n ´ �2

¸

d›Ñ �

˜
s�1

s⌃˚´1{2
11 ´ s�1

sQ˚

0 s�2
s ´1{2

¸ ˜
Z1

Z2

¸

“ �

˜
s⌃´1{2
11 ´s⌃´1

11
s⌃12ps⌃22q1{2

0 ps⌃22q1{2

¸ ˜
Z1

Z2

¸
.
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Magnus, J. R., Powell, O., and Prüfer, P. (2010). A comparison of two

averaging techniques with an application to growth empirics. Journal

of Econometrics, 154, 139–153.

Magnus, J. R., and Wang, W. (2014). Concept-based Bayesian model aver-

aging and growth empirics. Oxford Bulletin of Economics and Statis-

tics, 76, 874–897.

Magnus, J. R., Wang, W., and Zhang, X. (2016). Weighted-average least

squares prediction. Econometric Reviews, 35, 1040–1074.

Mitchell, T. J., and Beauchamp, J. J. (1988). Bayesian variable selection in

linear regression. Journal of the American Statistical Association, 83,

1023–1032.

Pericchi, L. R., and Smith, A. F. M. (1992). Exact and approximate pos-

terior moments for a normal location parameter. Journal of the Royal

Statistical Society (Series B), 54, 793–804.

Pötscher B. M. (1991). E↵ects of model selection on inference. Econometric

Theory, 7, 163–185.

Raftery, A. E., and Zheng, Y. (2003). Discussion: Performance of Bayesian

model averaging. Journal of the American Statistical Association, 98,

931–938.

Robbins, H. (1956). An empirical Bayes approach to statistics. Proceedings

of the Third Berkeley Symposium on Mathematical Statistics and Prob-

ability, vol. I, pp. 157–163. University of California Press, Berkeley and

Los Angeles, CA.
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