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Abstract 

In the face of capacity disruptions (due, for example, to traffic incidents or poor 

weather), information provision and congestion pricing are alternative alleviating 

policies. A state-dependent toll equals the state-dependent marginal external cost 

(MEC), which is higher if traffic condition is in a bad state. This raises efficiency and 

thus welfare, but it may also be even more unpopular with the populace than state-

independent tolling. We study this using dynamic bottleneck congestion with an 

uncertain capacity that can have two states: high or low. We consider two congestion 

pricing regimes: responsive state-dependent congestion pricing and habitual state-

independent pricing, and three information provision regimes: no information, perfect 

information and imperfect information. We find that, without information provision, the 

habitual toll equals the expected MEC. With information provision, this is a weighted 

average of the MEC over all states; with weights depending on the capacity distribution, 

the price sensitivity of demand, the values of schedule delay and the quality of the 

information. Responsive pricing leads to higher welfare and a lower expected price than 

habitual pricing, but in our numerical model the differences tend to be small. When only 

one policy is implemented, information provision and congestion pricing both raise 

welfare. Information provision is preferable when uncertainty is high, as information is 

more valuable at this time.  
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1. Introduction 

Traffic congestion is a major problem around the world, especially at peak hours. 

The amount of congestion is uncertain due to such factors as accidents, rain, snow and 

demand fluctuations. Modern technology can reduce this uncertainty by providing 

information on traffic conditions. Congestion pricing can also improve matters by 

pricing congestion externalities. Tolls for most roads are usually constant or state-

independent. This form of pricing can be called habitual pricing. If traffic conditions 

vary unpredictably, an alternative is to adjust prices according to known traffic 

conditions. Following Arnott et al. (1991) this will be called responsive pricing, which 

is state-dependent.  

In face of traffic congestion, state-dependent ‘responsive tolls’ can improve the 

situation further: if traffic is bad, marginal external costs (MECs) are high and a 

responsive toll equals this higher externality (e.g., Daniel, 1995). This makes the system 

more efficient and raises welfare. However, such state-dependent tolls can be even more 

unpopular with the public than state-independent ‘habitual tolls’ and hence even harder 

to sell politically. For example, it means that if it is raining and traffic is heavy, you will 

also have to pay more in tolls if you want to drive.  

Hence, the questions this paper considers are as follows: What is the welfare loss 

from using habitual state-independent tolls? Are state-dependent tolls worth the hassle? 

How well off are consumers in the two settings? One might expect that the efficiency 

gain from responsive state-dependent tolling means that the expected cost and travel 

price will be lower. Therefore, there exists a trade-off between the efficiency gains of 

responsive state-dependent pricing and the simplicity and predictability of habitual 

state-independent pricing. We also study what happens if we do not charge a toll and 

only supply information. What are the effects on welfare and travelers? What role does 

information provision play under uncertainty and dynamic congestion? Finally, we 

consider imperfect information—as defined in Arnott et al. (1991)—whereby 

information reduces uncertainty but does not eliminate it.  

To do this, we use the Vickrey (1969) bottleneck model with the capacity being 

uncertain and having a binominal distribution with two possible states: high and low. 

The bottleneck model has been widely recognized as an important tool for modeling 

dynamic congestion.1 Researchers have proposed various tolling regimes to reduce the 

congestion externality in dynamic congestion, such as a fully time-varying toll (e.g., 

Arnott et al., 1993; Yang and Huang, 1997; Van den Berg and Verhoef, 2011a, b); a step 

toll (Arnott et al., 1990; Laih, 1994, 2004; Lindsey et al., 2012; Van den Berg, 2012), 

and a time-independent flat toll (Xiao et al., 2012; Silva et al., 2014; Fu et al., 2018).  

When traffic conditions are uncertain, departure time adaption appears to be one of 

                                                   
1 For comprehensive reviews of the bottleneck model, please see Small (2015) and Li et al. (2020). 
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the most important behavioral changes in attempting to arrive at work on time and to 

reduce the probability of arriving late (e.g., Siu and Lo, 2013; Li et al., 2016). Various 

stochastic bottleneck models have been proposed in order to investigate travelers’ travel 

behavior and regulators’ optimal tolling under uncertainty (e.g., Arnott et al., 1991, 

1996, 1999; Li et al., 2007; Fosgerau, 2008; Guo et al., 2018; Zhu et al., 2019). Studies 

have found that with a stochastic bottleneck system, uncertainty will lead to significant 

changes in departure time patterns and tolling designs. For instance, it will cause 

travelers to depart earlier and spread departure flows over a longer time period (e.g., Li 

et al., 2007; Xiao et al., 2015); it will also lead time-varying tolling to spread traffic 

more evenly over time, such that the queue length can be significantly reduced (e.g., 

Daniel, 1995; Lindsey, 1999; Yao et al., 2010; Xiao et al., 2015; Jiang et al., 2021). 

Nevertheless, to the best of our knowledge, little is known about the role of responsive 

state-dependent pricing and habitual state-independent pricing under dynamic 

congestion. In particular, it is widely demonstrated in the mode- and route-choice 

literature that uncertainty has considerable impacts on habitual decision making (e.g., 

Pinjari and Bhat, 2006; Liu et al., 2007; Small, 2015). Furthermore, innovative 

technologies now allow tolls to be varied dynamically and methods for developing and 

analyzing responsive pricing strategies must be applied. 

With respect to the effects of information provision, there have been numerous 

efforts during the last decade to study various aspects of information provision in 

isolation, including the evaluation of its impacts on travelers and on the transport system; 

see Chorus et al. (2006) and de Palma et al. (2012) for reviews. A majority of the studies 

concluded that information is likely to be socially beneficial, although some identified 

conditions under which adverse responses occur (e.g., Arnott et al., 1996, 1999; Lo and 

Szeto, 2004; Lindsey et al., 2014; Rapoport et al., 2014; Liu and Liu, 2018; Zhu et al., 

2019; Han et al., 2021; Yu et al., 2021). Recently, Engelson and Fosgerau (2020) 

established relationships between the accuracy of the travel time information and its 

value for an individual traveler. They found that a signal always increases the expected 

utility compared to the situation without any signal. Ye et al. (2021) investigated how 

the advanced traveler information affects the stability of the day-to-day flow evolution 

of a transportation system, and found that changing publishing information from 

historical information to predicted information will change the system stability. 

However, these studies mainly focus on information provision in isolation, such that 

they only consider that the regulator aims at disseminating travel information to the 

public but do not explore the congestion pricing issue when information is provided to 

travelers. 

There is a large body of literature on uncertainty and static congestion that also 

suggests the need to consider information provision and road pricing (e.g., Emmerink 

et al., 1996; Verhoef et al., 1996; de Palma and Lindsey, 1998; Yang, 1999; Gardner et 
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al., 2011) as measures to reduce congestion and uncertainty. The work of Verhoef et al. 

(1996) is most closely related to our paper: using static congestion and uncertain cost 

functions for two parallel roads. This study is, however, different from Verhoef et al. 

(1996) in the following major aspects. Obviously, we use a different and dynamic 

congestion technology, but there are also differences in the results: the second-best 

habitual toll rule is markedly different and numerically we see that information 

provision tends to lower the expected travel price and habitual pricing tends to raise it. 

When combined with information provision, habitual state-independent pricing leads 

to a lower expected toll and a higher travel price than responsive state-dependent 

pricing. Second, as perfect and accurate information is difficult to achieve in reality, we 

have studied imperfect information, which reduces uncertainty but does not remove it. 

Verhoef et al. (1996) only consider regimes of no information and perfect information. 

In addition to very pertinent policy questions, this paper also has strong 

methodological contributions to make to the literature on uncertainty and the bottleneck 

model. First, a joint departure time choice and tolling design model is presented. It 

enriches congestion pricing studies by including price-sensitive demand and proposing 

responsive state-dependent pricing and habitual state-independent pricing to deal with 

uncertainty. Thus, we move beyond prior studies that rely on state-independent time-

varying tolling with fixed demand. Second, we derive what the ‘second-best’ habitual 

toll would be. Without information provision, a habitual toll will equal the expected 

MEC; with perfect information, it equals the weighted average of the state i-dependent 

MECi’s with weights being a function of the price sensitivity of demand, the values of 

schedule delay and the capacity distribution. Although travelers are assumed to be risk-

neutral, the equilibrium travel demand still tends to fall with the degree of uncertainty, 

as the expected travel price is raised by the habitual toll. With imperfect information, 

the habitual toll equals the weighted average of the expected MEC under each signal, 

with the weights depending on the probability distribution of the capacity, and the 

expected MEC under a signal depends on the conditional probability distribution of the 

capacity. Finally, this paper enriches existing information studies by exploring the 

various interactions between information provision and congestion pricing. Using 

analytical and numerical methods, we analyze the welfare and price effects under 

different combinations of road pricing and information provision regulations.  

 The remainder of this paper is organized as follows. The next section describes the 

basic components of the model. Section 3 proposes a joint departure time choice and 

tolling design model and derives the optimal toll under different regimes. Section 4 

presents a numerical model and evaluates the welfare and price effects under zero 

information and perfect information. Section 5 considers the quality of information and 

investigates imperfect information. Section 6 concludes the paper. 

For ease of reference, Table 1 below summarizes the notations used throughput the 

paper. The notation will also be introduced in the text. 
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Table 1. Notation list. 

Parameters Definition 

t  Preferred arrival time 

s Capacity of the bottleneck 

  Probability of low capacity 

Hs  High capacity state 

Ls  Low capacity state 

  Bottleneck capacity degradation rate 

t  Arrival time 

( )iT t  Queuing time at arrival time t under capacity state i , ,  i H L=  

  Value of time 

  Value of schedule delay early 

  Value of schedule delay late 

  Compound preference parameter, with ( )   = +  

( )ic t  Travel cost at arrival time t  

[ ( )]E c t  Expected travel cost with respect to arrival time t  

[ ]E c  Expected travel cost in the equilibrium without information 

N  Total number of travelers  

D  Inverse demand function 

0d  Intercept of the inverse demand function 

1d  The inverse of the slope of the inverse demand function 

[ ]E W  Expected welfare 

  Optimal habitual tolling 

[ ]E MEC  Expected marginal external cost 

iN  Travel demand under capacity state i  

ic  Equilibrium travel cost under state i  

iW  Welfare under state i  

ip  Equilibrium travel price under state i  

[ ]E p  Expected travel price in the equilibrium 

iMEC  Marginal external cost under capacity state i 

  The weight of LMEC  under habitual pricing with information 

  Relative efficiency 

Q  Quality of information 

  Signal of the capacity 

( )   Conditional probability of low capacity                       
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2.  Model description 

Suppose that every morning, travelers travel from home to the workplace along a 

single road that has a bottleneck. Everyone wishes to arrive at their workplace at an 

identical preferred arrival time, t . Without loss of generality, the free-flow travel time 

is normalized to zero. Thus, a traveler arrives at the bottleneck immediately after 

leaving home and arrives at work immediately after leaving the bottleneck. When the 

arrival rate of the bottleneck exceeds the bottleneck’s capacity, a queue develops. Those 

who arrive early or late encounter a schedule delay cost. 

Unlike the deterministic bottleneck model, in this paper, we consider a bivariate 

distribution of capacity reflecting the effects of uncertainty on users’ travel cost. The 

capacity of the bottleneck, s, has two states: high capacity (H) and low capacity (L), 

varying from day to day because of bad weather, road accidents, etc. The probability of 

low capacity is denoted by   , which may range from 0 to 1 and describes the 

frequency of bottleneck capacity reductions. The capacity of the bottleneck thus follows: 

,  with probability 1-

,  with probability 

H

L H H

s
s

s s s



 


= 

= 
, (1) 

where Hs   and Ls   are bottleneck capacities in good and bad traffic conditions, 

respectively, and   (0 1  ) is the bottleneck capacity degradation rate, indicating 

the severity of capacity reductions. The above bivariate distribution of bottleneck 

capacity was also adopted by Arnott et al. (1991) and Yu et al. (2021).  

We consider homogeneous travelers. Travelers are assumed to be risk-neutral and 

to have rational expectations with respect to travel costs (e.g., Emmerink et al., 1998; 

Arnott et al., 1999; Zhang and Verhoef, 2006). Their perception of the distribution of 

capacity realizations are assumed to be accurate. All travelers are deemed to be rational 

self-optimizers and to seek to minimize their travel price, defined as the sum of the 

travel cost and any tolls charged by the regulator.  

For now, we consider two extreme information regimes: no information and 

perfect information. Later, we will also consider imperfect information, whereby the 

degree of information can range continuously from none to perfect. All travelers either 

have no information or they are fully informed. It is assumed that information is 

provided at zero cost. With perfect information, travelers are fully informed of the travel 

conditions before traveling. They choose their departure times to minimize the actual 

travel price under each capacity realization. The travel behavior and tolling thus depend 

on the actual capacity realization. Without information provision, travelers only know 

the probability distribution of the capacity and have no access to the actual capacity 

realization before departing. As a result, they minimize the expected travel price, based 

on the expected travel cost and tolls. 
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We now formulate the travel cost under different information regimes. With 

perfect information, the travel cost reduces to the deterministic case under the 

corresponding capacity realized on that day. Let ( )ic t   denote the travel cost for 

travelers arriving at t  under capacity state i , with ,  i H L= . The travel cost consists 

of two parts. The first part is the queuing time cost associated with waiting at the 

bottleneck, which equals the product of the value of time, denoted by  , and queuing 

time under capacity state i, denoted by ( )iT t . The second part is the schedule delay cost. 

For travelers arriving early, the cost is the product of how early they arrive, measured 

by t t− , and the schedule delay value of arriving early, denoted by  . The schedule 

delay cost is defined similarly for people arriving late, where   denotes the schedule 

delay value of arriving late. In sum, the travel cost for arriving at t , ( )ic t  is: 

( ),    if 
( ) ( )      ,

( ),    if  
i i

t t t t
c t T t i H L

t t t t






 

 

 − 
=  + =

− 
,                       (2) 

where the first term measures the queuing time cost and the second measures the 

schedule delay cost. 

Without information provision, the travel cost functions are replaced with a single 

function  ( )E c t , representing the expectation over all capacity realizations: 

   
( ) ,    

( ) ( )
( ) ,     

E t t if t t
E c t E T t

E t t if t t






 

 

  −   
=  + 

 −   

.                       (3) 

where [ ]E   is the expectation operator. 

Empirical research shows that transport demand varies with the travel price. Hence, 

we consider price-sensitive demand, such that, if the travel price falls, more travelers 

will travel and this increases congestion. To keep the presentation of results manageable 

and tractable, we have kept the model simple by assuming that demand is linear over 

the relevant ranges. The analysis can be easily extended to other elastic demand 

functions. 

This section compares two pricing regimes: habitual state-independent pricing and 

responsive state-dependent pricing. As we are focusing on whether and how tolls should 

vary over actual traffic conditions, both regimes investigate a time-independent toll. 

Time-varying tolling is not considered in this paper but will be explored in a subsequent 

study. 

The regulator aims at improving social welfare through setting tolls. In the habitual 

pricing case, the regulator sets a flat toll that does not vary over the realization of 

capacity. In the responsive pricing case, the regulator varies the flat toll in response to 

capacity realizations. The social welfare measure is total benefits, represented by the 
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area below the demand curve, minus total cost.2 

The two information regimes and two congestion pricing regimes result in five 

regulation scenarios: information provision only, habitual pricing only, responsive 

pricing only, the combination of information provision and habitual pricing, and the 

combination of information provision and responsive pricing. The travelers’ and the 

regulator’s decision objectives under these regulation regimes are summarized in Table 

2. The next section provides more precise definitions of traveler and regulator behavior. 

We also compare the results with an unregulated case, in which neither information 

provision nor congestion pricing exists.  

Note that when only implementing responsive pricing and not providing 

information, travelers receive no information on the actual capacity realization, neither 

is there any value in varying the toll accordingly as travelers cannot adapt their travel 

choice to the toll on that day. Thus, the travel demand will be constant from day to day, 

regardless of any toll variation attempting to account for capacity uncertainty; this 

scenario is a special case of habitual pricing only and can be solved as such. In the 

following, we ignore this case. 

 

Table 2. Decision objectives in different regulation regimes. 

Regulation regime Travelers Regulator 

Habitual pricing only 
Minimize expected  

travel price 

Maximize expected 

welfare 

Responsive pricing only 
Minimize expected  

travel price 

Maximize expected 

welfare 

Information provision only 
Minimize actual 

travel price 

Maximize actual 

welfare 

Information provision  

& Habitual pricing 

Minimize actual  

travel price 

Maximize expected 

welfare 

Information provision  

& Responsive pricing 

Minimize actual  

travel price 

Maximize actual 

welfare 

 

3. Theoretical results 

In this section, we study the travel equilibrium and optimal tolling under various 

regulation regimes. The properties of the model solutions are also analyzed and 

                                                   
2 With perfect information, the welfare under capacity state i, iW , is consumer surplus minus the total travel cost, 

where the consumer surplus is measured by the area below the demand curve. Without information, the expected 

welfare, [ ]E W , is the expected consumer surplus minus the expected total travel cost. For the exact equations per 

case, see below: 

0
= ( ) ( )

iN

i i i iW D n dn N C N−  , 
0

[ ]= ( ) [ ]
N

E W D n dn E c N−  . 
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compared. In particular, when proposing a regulation policy for society, a major concern 

is how travelers’ travel price will be affected because this has a strong impact on social 

and political feasibility. A policy is likely to meet resistance from travelers if they are 

made worse off. It is also important to conduct a full assessment and compare the 

welfare effects of different regulations before implementation. In the following analysis, 

we further investigate the effects of different regulation regimes on travelers’ travel 

price and welfare. 

 

3.1 Habitual pricing only and thus no information provision 

We first investigate the case of habitual pricing only. For this case, information is 

not available, and we seek a uniform toll that does not vary over the actual capacity 

realization. Travelers minimize the expected travel price by choosing departure times 

and whether to travel based on the expected travel cost and the expected toll. The 

regulator maximizes expected welfare by setting a uniform toll. 

According to Arnott et al. (1991) and Xiao et al. (2015), there are three departure 

time intervals to consider: travelers always arrive early; depending on the distribution 

of capacity, travelers may arrive early or late; and travelers always arrive late. 

Specifically, when 0 = , capacity is high with certainty: the last traveler arrives late 

but never encounters a queue. As    increases, the last traveler faces a growing 

probability of a longer trip and a greater degree of lateness. To keep equilibrium, 

departure times shift earlier, including that of the last traveler, which partially offsets 

that traveler’s increase in costs. This continues until the last traveler is departing at t . 

Further increases in   do not shift the last departure any earlier. The last traveler thus 

bears the full brunt of the increase in expected schedule delay cost, and the expected 

travel cost rises more rapidly with   . As    continues to increase, however, 

departures begin ever earlier, the increase in cost suffered by the last traveler when low 

capacity occurs becomes smaller, and the expected travel cost flattens out. 

Following the conventions, we use the following compound preference parameter: 

( )   = + . To facilitate the presentation, we introduce the following definitions: 

( )1 ( )(1 )    = + −   and 2 ( )   = +  . The expected travel cost in the 

equilibrium, [ ]E c , is (Arnott et al., 1991): 

1

1 2

2

(1 )( )
1 (1 ) ,     if  0

( )
[ ] ,           if 

( )

,               if 1

L

L

L

N

s

N
E c

s

N

s

   
   



   
  

   


 

  − + −
− −    

 
 +

=  
+ +


 



,              (4) 
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where N  is the total number of travelers. The expected travel price is the sum of the 

expected travel cost and the habitual toll. 

    The inverse demand function, ( )D N , which measures the willingness to pay in 

terms of the travel price, is assumed to be linear:3 

    0 1( )D N d d N= −  ,                                               (5) 

where 0d   is travelers’ maximum willingness to pay, and 1d   the slope. In user 

equilibrium, the inverse demand equals the expected travel price.  

The expected welfare, [ ]E W , is the consumer benefits minus the total expected 

travel cost. The associated welfare-maximization problem is: 

0,
 max   [ ]= ( ) [ ]

N

N
E W D n dn E c N


−  ,                                  (6) 

. .    ( ) [ ]s t D N E c = + ,                                          (7) 

where   is the toll under habitual pricing that is independent of the state. Eq. (7) is 

the user equilibrium condition: travelers’ willingness to pay equals the travel price, 

which is the sum of the travel cost and the toll. 

 

Proposition 1a. With habitual pricing only, the optimal toll: 

(i) equals the expected marginal external cost of travelers; 

(ii) is a linear increasing function of    if 1   , is an increasing and concave 

function of    if 1 2     , and is independent of    if the probability of low 

capacity exceeds 2 ;  

(iii) is between HN s   and LN s  . ppecifically, when 0 =  , the optimal toll is 

HN s ; when 1 = , the optimal toll is LN s . 

 

Proof. Substituting Eq. (4) into Eqs. (6)-(7) and solving the first-order conditions 

yields the following optimal toll: 

1

1 2

2

(1 )( )
1 (1 ) ,     if  0

( )
,                 if 

( )

,                                    if 1

L

L

L

N

s

N

s

N

s

   
   



   
   

   


 

  − + −
− −    

 
 +

=  
+ +


 



,                (8) 

implying that the optimal toll equals the expected travel cost of travelers. 

    According to Eq. (4), travelers’ expected marginal external cost, [ ]E MEC , is: 

                                                   
3 The use of linear functions is sufficient to serve the goal of the current paper: enhancing our insight into the 

welfare economic effects of information provision and congestion pricing on a dynamic congestion model. 
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[ ]
[ ] [ ]

dc dE c
E MEC E N N E c

dN dN

 
=  =  = 

 
.                            (9) 

Hence, the optimal toll in Eq. (8) equals travelers’ expected marginal external cost. 

    Taking the derivate of Eq. (8) with respect to   yields: 

    
( )

1

2

1 22

2

( )
(1 )          if  0

( )
           if 

( )

0                                       if 1

L

L

N

s

N

s

  
  



   
  

    

 

 +
−  


 +

=  
 + +

  



.                      (10) 

Combining Eq. (8) and Eq. (10), one can obtain the properties in Proposition 1a(ii) 

and 1a(iii). This completes the proof of Proposition 1a. ■ 

 

   

Proposition 1b. With habitual pricing only, the number of users N:  

(i) is non-increasing with  , i.e., 0
N







;  

(ii) 0 0

1 12

L H

L H

d s d s
N

d s d s 
 

+ +
  when 10     ; 0 0

1 12

L L

L L

d s d s
N

d s d s 
 

+ +
 when 

1 2    ; 0

12

L

L

d s
N

d s
=

+
 when 2 1   . 

 

Proof. Substituting Eq. (4) and Eq. (5) into Eq. (7) yields the number of travelers: 

( )

0
1

1

0

1 2

1 1

0
2

1

,   if  0
2 (1 )( ) (2 )

( )
,  if  

(2 )( )

,  if   1
2

L

L

L

L L

L

L

d s

d s

d s
N

d s d s

d s

d s


 

     

   
  

    

 



  − + + +


 + +

=  
+ + +


 

+

 .                 (11) 

To investigate how uncertainty affects travel demand, we take the derivative of  

Eq. (11) with respect to   and find 0N     always holds. This completes the 

proof of Proposition 1b (i). 0N     indicates that the travel demand decreases with 

the probability of low capacity. We can then further obtain the lower and upper bounds 

of the travel demand, which provide valuable information for the regulator in 

controlling traffic congestion, as presented in Proposition 1b (ii). ■ 

 

Combining Eqs. (4)-(6) and Eq. (11), we can find the expression of the expected 
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welfare: 

( )

( )

( )

2

0
1

1

2

0

1 2

1 1 1

2

0
2

1

,      if  0
4 (1 ) 4 (1 ) 2

( )
[ ] ,   if 

2 2 (2 )

,                                                       if 1
4 2

L

L

L

L L L

L

L

d s

d s

d s
E W

d s d s d s

d s

d s


 

      

   
  

    

 



 

− + + − +
 + +

=  
+ + + +


  

+

.     (12) 

Taking the derivative of Eq. (12) with respect to  , we can find [ ] 0E W     

always holds, meaning that the expected welfare is also non-increasing with   . 

Specifically, when 1   +  ( ) , [ ]E W  is independent of the probability of low 

capacity. 

To further explore the role of habitual pricing under uncertainty, we compare the 

results with the no congestion pricing case. When congestion is not priced, the travel 

equilibrium can be directly obtained by equalizing the inverse demand and the travel 

cost, where the travel cost is again given in Eq. (4). We mainly focus on the effects of 

habitual pricing on welfare, travel demand and travelers’ travel price. The findings are 

summarized in the following proposition.  

 

Proposition 1c. Compared to an unregulated regime, the introduction of habitual 

pricing will: (i) lower the number of travelers; (ii) raise the travel price for travelers; 

and (iii) improve welfare. 

 

Proof of Proposition 1c: See Appendix A. 

 

3.2 Information provision only and thus no tolling 

In equilibrium, no one can reduce the travel cost by altering the departure time. 

Hence, travel cost is constant over the rush hour, i.e., ( ) 0idc t dt = . Considering price-

sensitive demand, when capacity drops, some users may decide to use an alternative 

mode, to stay home or to go to a different destination. Therefore, in equilibrium, the 

travel demand may consist of two states: 

,   when 

,   when 

H H

L L

N s s
N

N s s

=
= 

=
,                                         (13) 

where HN   and LN   are the number of travelers in good and bad conditions, 

respectively. 

The equilibrium travel cost in each state i , ic , equals the travel cost when the 

capacity is deterministic at is : 
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,  with i
i

i

N
c

s

 


 
= =

+
,                                       (14) 

implying that equilibrium is independent of the capacity in the other state. 

Solving the associated user equilibrium ( )i i iD N c = +   yields the following 

number of travelers: 

0 0

1 1

,  H L
H L

H L

d s d s
N N

d s d s 
= =

+ +
.                                    (15) 

The welfare under each capacity realization is 
0

( )
iN

i i iW D n dn c N= −   . 

Combining Eq. (5) and Eq. (14)-(15), we can derive the expression of the actual 

welfare with information provision： 

    
2 2 2 2

0 1 0 1

2 2

1 1

,
2( ) 2( )

H L
H L

H L

d d s d d s
W W

d s d s 
= =

+ +
.                              (16) 

In order to analyze the effects of information provision, we again compare it to the 

unregulated regime in Proposition 2. 

 

Proposition 2. Introducing information will: 

(i) raise the number of users when the state of the bottleneck capacity is high, and lower 

the number of users when the state of the bottleneck capacity is low; 

(ii) lower the travel cost when the state of the bottleneck capacity is high, and raise the 

travel cost when the state of the bottleneck is low; 

(iii) improve the welfare when the state of the bottleneck capacity is high, and decrease 

the welfare when the state of the bottleneck capacity is low. 

 

Proof of Proposition 2. See Appendix B. 

 

3.3 Information provision and habitual pricing 

With perfect information and habitual pricing, travelers decide their travel 

behavior based on the actual price rather than the price expected. Hence, the travel 

demand again consists of two states, HN  and LN . In setting the habitual toll, which 

is independent of the actual capacity, the regulator can do no better than to maximize 

expected welfare. The regulator finds the optimal toll,  , by maximizing the expected 

welfare subject to user equilibrium condition based on the actual capacity realization. 

In this situation, the expected welfare, [ ]E W , is the probability-weighted average of 

the actual welfare over all capacity states. That is, we maximize: 

( ) ( )
0 0, ,

max  [ ] (1 ) ( ) ( ) (1 )
H L

H L

N N

H H L L
N N

E W D n dn D n dn c N c N


   = −  +  − −   +    ,(17) 
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. .   ( ) 0

       ( ) 0

H H

L L

s t D N c

D N c





− − =

− − =
,                                         (18) 

where Hc   and Lc   are given in Eq. (14), and for ease of presentation the inverse 

demand function is assumed to be 0 1( )i iD N d d N= − . The first term of Eq. (17) is the 

expected consumer benefits, and the last term is the expected total travel cost; that is, 

the average cost over all states. 

 

Proposition 3. Under habitual pricing with perfect information,  

(i) the optimal toll is the weighted average of the marginal external costs over all states, 

with weight    depending on the capacity distribution, the demand sensitivity 

parameter d1 and the schedule delay parameter δ: 

(1 )L HMEC MEC  =  + −  ,                                    (19) 

with i i iMEC N s= , and 

1

1 1(1 )( )

H

H H

d
s

d d
s s





 

 


 
 + 
 =

 
− + + + 

 

;                               (20) 

(ii) the weight   satisfies: 0








, 0









, and 

1

0
d





. 

 

Proof of Proposition 3. See Appendix C. 

 

Proposition 3 reveals that the weights are, in the first place, positively related to 

the probability of bad traffic conditions. Therefore, as    increases, the weight of 

LMEC  increases and the weight of HMEC  decreases. Specifically, when 0 = , the 

weight of LMEC  is zero and thus the optimal toll equals HMEC . In contrast, when 

1 = , the optimal toll equals LMEC . In addition, the weights are positively related to 

the slope of the inverse demand function: the flatter the demand curves, the smaller the 

weight of LMEC .  

 

Proposition 4a. Compared to information provision only, the combination of habitual 

pricing and information provision: (i) lowers the number of users; (ii) raises the travel 

price. 

 

Proof of Proposition 4a. With the combination of information provision and habitual 

pricing, the number of travelers under each state is: 
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0 0

1 1 1 1
1

1 1 1

,
( ) (2 )( ) ( )

(2 )
( ) ( ) ( )

H L
H L

H L H L H L
H

L H H

d s d s
N N

d s s d s d s d s s
d s

d s d s d s

   


  

= =
− + + −

+ + +
+ + +

.(21) 

The travel demand under information provision only is given in Eq. (15). Specifically, 

for the high-capacity case, because 1 1(2 ) ( )H Hd s d s +  +  and 1

1

( )
0

( )

H L

L

d s s

d s





−


+
, 

we can obtain that 0 0

1 1
1

1

( )
(2 )

( )

H H

H L H
H

L

d s d s

d s s d s
d s

d s

 



− +

+ +
+

  always holds. Similarly, 

for the low-capacity case, because  1 1(2 ) ( )H Hd s d s +  +  and 1

1

( )
0

( )

H L

H

d s s

d s





−


+
, 

we find 0 0

1 1 1 1

1 1

(2 )( ) ( )

( ) ( )

L L

H L H L L

H H

d s d s

d s d s d s s d s

d s d s

   

 


+ + − +

+
+ +

 holds.  

Therefore, compared to information only, the combination of information and 

habitual pricing lowers the travel demand. As a result of the user equilibrium conditions, 

the travel price is raised. ■ 

 

Proposition 4b. Compared to habitual pricing only, the combination of habitual pricing 

and information provision: (i) raises the number of travelers when the capacity state is 

high, and lowers the number of travelers when the capacity state is low; (ii) lowers the 

travel price when the capacity state is high, and lowers the travel price when the 

capacity state is low. 

 

To save space, no proof similar to Proposition 4a was made for Proposition 4b as 

the proofs are highly similar. Details are available upon request from the authors.  

 

3.4 Information provision and responsive pricing 

Responsive pricing means that the regulator can adjust tolls based on the actual 

capacity realization, enabling the regulator to use pricing as a response mechanism for 

managing traffic. The optimal tolls follow from maximizing social welfare under actual 

capacity subject to the user equilibrium constraint based on perfect information. That 

is, we maximize: 

0, , ,
max     = ( )

. .              ( ) 0

                  ( ) 0

i

H L H L

N

i i i
N N

H H H

L L L

W D n dn c N

s t D N c

D N c

 





− 

− − =

− − =


,                               (22) 

where iW  is the welfare under state i, and i  is the responsive toll under state i.    
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Solving the first-order condition of problem (20) gives the following tolls: 

,  H L
H L

H L

N N

s s

 
 = = ,                                          (23) 

implying that under perfect information provision, the toll equals the MEC under the 

actual capacity realization. 

 

Proposition 5. Compared to information only, the combination of information provision 

and responsive pricing tends to: (i) lower the travel demand; and (ii) raise the travel 

price. 

 

Proof of Proposition 5. Solving the first-order condition of problem (22) yields: 

0 0

1 1

,  
2 2

H L
H L

H L

d s d s
N N

d s d s 
= =

+ +
.                                       (24) 

2

0

1

,  
4 2

i i
i i

i i

N d s
W

s d s





= =

+
.                                             (25) 

The travel price under each state, i, is thus: 

  0

1

2 2

2

i
i

i i

N d
p

s d s

 


= =

+
.                                        (26) 

Comparing Eq. (24) and Eq. (21), because 1 12 i id s d s +  +  always holds, we 

can find the introduction of responsive pricing lowers the travel demand. From Eq. (14) 

and Eq. (15), under information only, the travel price is 0 1( )id d s  + . As a result of 

0 1 0 12 (2 ) ( )i id d s d d s   +  +  , we can derive that the introduction of responsive 

pricing raises the travel price. ■ 

 

Proposition 6. When combined with information provision, compared to habitual 

pricing, responsive pricing tends to: (i) raise the travel demand when the capacity is 

high and lower the travel demand when the capacity is low; and (ii) lower the travel 

price when the capacity is high and raise the travel price when the capacity is low. 

 

Proof of Proposition 6. (i). Comparing Eq. (24) and Eq. (21), when the capacity is 

high, 0 0

1 1
1

1

( ) (2 )
(2 )

( )

H H

H L H
H

L

d s d s

d s s d s
d s

d s

 



− +

+ +
+

  always holds. This implies that the 

travel demand under responsive pricing exceeds the travel demand under habitual 

pricing. In contrast, when the capacity is low, according to Eq. (21), because 1  , 

we have: 
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1 1 1 1 1 1

1 1 1 1

1 1
1

1

(2 )( ) ( ) (2 )( ) ( )

( ) ( ) ( ) ( )

(2 )( )
2

( )

H L H L H L H L

H H H H

L H
L

H

d s d s d s s d s d s d s s

d s d s d s d s

d s d s
d s

d s

     

   

 




+ + − + + −
+  +

+ + + +

+ +
= = +

+

.(27) 

Hence,  

0 0

1 1 1 1

1 1

(2 )( ) ( ) 2

( ) ( )

L L

H L H L L

H H

d s d s

d s d s d s s d s

d s d s

   

 


+ + − +

+
+ +

.                     (28) 

This implies that, when the capacity state is low, the travel demand under responsive 

pricing is lower than the travel demand under habitual pricing. 

(ii) In equilibrium, inverse demand equals the travel price. Hence, a higher travel 

demand corresponds to a lower travel price, as presented in Proposition 6(ii). ■ 

 

In sum, for controlling dynamic congestion under uncertainty, information 

provision and congestion pricing generate different travel equilibria for travelers. As a 

result, information provision and congestion pricing also have different implications for 

welfare that are interesting for both policy makers and regulators. It is difficult to 

analyze the relationship between welfare effects under different regimes, due to the 

complicated expressions of the welfare functions, especially for comparisons with and 

without information provision. We use simulation to examine them in the next section. 

We also examine the expected travel prices and optimal tolling. 

 

4. Numerical analysis 

In the previous sections, the closed-form solutions and solution properties were 

obtained. In this section, we present numerical results for the proposed models. The 

results are also compared with an unregulated regime in which there are no congestion 

pricing and no information provision.  

For the parameters, we set the value of time, the value of schedule delay early, and 

the value of schedule delay late as 10 =  , 6.09 =   and 23.77 =  , respectively. 

This ensures that the ratios between the cost parameters are as in Small (1982); 

following Van den Berg and Verhoef (2011b), the value of time is updated so that it is 

close to the current official Dutch value in order to work with current values4. In the 

base case, we set 0.8 =  and 0.2 = . For comparability, the expected capacity is 

3,600 cars per hour. This means that when traffic condition is good, the capacity of the 

bottleneck is 3750Hs =  ; when it is bad, the capacity is 3000Ls =  . The inverse 

demand function is constructed to ensure that under an unregulated regime with high 

                                                   
4 The currency used in this paper is Euro. 
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capacity, the price elasticity of demand is -0.35 and the number of users is 9,000. 

Therefore, 0 44.88d =  and 1 0.0037d =  are chosen.  

As we consider various combinations of information provision and congestion 

pricing regimes, the welfare implications of different regulations will be studied by 

relative efficiency,   , which is a performance indicator and measures the relative 

welfare improvement of a certain policy. The relative efficiency   is: 

Welfare Gain (policy considered)

Welfare Gain (Responsive pricing & information provision)

(policy considered) (no information & no pricing)
  

(information & responsive pricing) (no informatio

SW SW

SW SW

 =

−
=

− n & no pricing)

,(29) 

where ‘policy considered’ can refer to information only, habitual pricing only, 

information and habitual pricing. The relative efficiency indicates the welfare gain from 

a non-optimal policy as a proportion of the highest achievable welfare gain. By 

definition,   cannot exceed 1. 

Below, we first present the numerical results under the base case and study the 

effects of uncertainty by varying the probability distribution of capacity. The optimal 

tolling under different regimes is presented in Section 4.4. Section 4.5 investigates the 

effects of price elasticity. 

 

4.1 Base case equilibrium 

The numerical results are given in detail in Table 3. For each regime, we compute 

the actual travel demand under each state iN , the expected travel demand [ ]E N , the 

actual travel cost under each state ic  , the expected travel cost [ ]E c  , the optimal 

responsive toll i , the optimal habitual toll  , the travel price under each state ip , the 

expected travel price [ ]E p  , the welfare under each state iW  , the expected welfare 

[ ]E W , and the relative efficiency  . To reveal the relationship between the marginal 

external cost and the optimal toll, we also present the marginal external cost iMEC , 

and the expected marginal external cost, [ ]iE MEC . 

Compared to the unregulated regime, the introduction of information provision 

lowers the expected travel price for travelers, and the introduction of habitual pricing 

raises it. This is because information provision allows travelers to make decisions on 

whether to travel and departure time choices based on the actual capacity realization, 

thereby eliminating uncertainty from the traffic conditions. In contrast, habitual pricing 

reduces congestion by charging an additional congestion fee. As a result, although 

habitual pricing leads to a lower expected travel cost, the expected travel price is still 

higher than that under information provision. 
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Table 3. Outcomes for the base calibration. 

 No information Perfect information 

 No pricing Habitual pricing No pricing Habitual pricing Responsive pricing 

LN  - - 8,776 7,065 6,875 

HN  - - 9,290 7,478 7,527 

[ ]E N  9,138 7,330 9,187 7,395 7,397 

Lc  - - 12.41 9.99 9.72 

Hc  - - 10.51 8.46 8.52 

[ ]E c  11.07 8.88 10.89 8.77 8.76 

Lp  - - 12.41 18.74 19.44 

Hp  - - 10.51 17.21 17.03 

[ ]E p  11.07 17.76 10.89 17.52 17.51 

L  0 - 0 - 9.72 

H  0 - 0 - 8.52 

[ ]E   0 8.88 0 8.75 8.76 

LMEC  - - 12.41 9.99 9.72 

HMEC  - - 10.51 8.46 8.52 

[ ]E MEC  11.07 8.88  8.77 8.76 

LW  - - 142,482 - 154,276 

HW  - - 159,650 - 168,911 

[ ]E W  154,469 164,477 156,217 165,954 165,984 

  0 0.869 0.152 0.997 1 
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Under habitual pricing, the introduction of information lowers the toll from 8.88 

to 8.75. Indeed, without information provision, fewer users will choose to travel when 

the actual state is high, and more users will choose to travel when the actual state is low. 

The resulting welfare losses thus make it worthwhile to set a higher toll. This indicates 

that information provision reduces the loss caused by uncertainty. 

For the comparison of habitual pricing and responsive pricing, we find that when 

combined with information, the habitual toll is 8.75, which is higher than the responsive 

toll under a high-capacity state (8.52) and lower than the responsive toll of a low-

capacity state (9.72). According to our theoretical results, this is because the responsive 

toll equals the MEC under each state, whereas a habitual toll is a weighted average of 

the marginal external costs. Due to the higher toll, the travel price under responsive 

pricing is slightly lower than that under habitual pricing.   

It can be observed that compared to an unregulated regime, all regulations are 

welfare-improving. In particular, responsive pricing performs best since the toll can be 

adjusted responsively according to the actual capacity realization, which helps lower 

the welfare loss from uncertainty and congestion. When implementing regulations in 

isolation, habitual pricing performs better than information provision. 

 

4.2 Uncertainty and welfare effects 

What happens to the welfare effects of different regimes when the degree of 

uncertainty changes? It is important to carry out a full assessment and compare the 

effects before policies are implemented. In the following subsections, we first present 

the numerical results of the welfare effects by varying the ratio of low capacity to high  

capacity L Hs s  from 0 to 1, and then by varying the probability of low capacity   

from 0 to 1. 
 

4.2.1 Varying L Hs s  

We compare the results under 0.2 =   and 0.8 =  . As we keep the average 

capacity at 3600, a larger L Hs s  raises the capacity under bad traffic conditions and 

lowers the capacity under good traffic conditions.  

Fig. 1 shows that information provision only may perform better or worse than 

habitual pricing only in improving welfare. This is because information is more 

valuable when uncertainty is high and congestion pricing is more efficient when more 

travelers are on the road. Hence, a lower L Hs s  brings more uncertainty and makes 

information provision more efficient. When L Hs s  exceeds a certain value, habitual 

pricing performs better.  
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As L Hs s  increases, the relative efficiency of information provision decreases, 

and that of habitual pricing increases. Specifically, when 0L Hs s =  , information 

provision is at its most efficient, and the relative efficiency is 1. When 1L Hs s =  , 

information provision is completely useless and the relative efficiency is 0. For habitual 

pricing only, an increase in L Hs s   lowers the expected travel cost and raises the 

expected travel demand, thereby improving the relative efficiency. Specifically, when 

0L Hs s = , the expected travel cost becomes infinite and the expected travel demand is 

zero. Habitual pricing thus becomes useless. When 1L Hs s = , habitual pricing has the 

same performance as responsive pricing. 

 

 

(a) 0.2 =                             (b) 0.8 =  

Fig. 1. L Hs s  and welfare effects. 

Note: Relative efficiency measures the relative welfare improvement of a certain policy compared 

to the combination of information provision and responsive pricing. 

 

For the combination of information provision and habitual pricing, as L Hs s  

increases, the relative efficiency first decreases and then increases. This is caused by 

the interaction between information provision and habitual pricing: the former tends to 

lower efficiency and the latter tends to raise efficiency. The results indicate that when 

L Hs s  is low, the effects of information dominate and when L Hs s  exceeds a certain 

value, the effects of habitual pricing dominate. 

Comparing Fig. 1(a) and Fig. 1(b), we find that the relative efficiency changes at 

a faster rate under 0.8 =   than under 0.2 =  . This implies that uncertainty 

accelerates changes in relative efficiency. In addition, when combined with information 
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provision, habitual pricing and responsive pricing show very similar performance in 

terms of the welfare gain when L Hs s  exceeds 0.6. However, when L Hs s  is small, 

responsive pricing performs better than habitual pricing. Hence, responsive pricing is 

preferred when the capacity drop is large. 

Fig. 2 plots the percentage change in welfare difference between habitual and 

responsive pricing. Fig. 2 confirms that responsive pricing is slightly more efficient in 

improving welfare than habitual pricing. As L Hs s  increases, the welfare difference 

increases initially and then decreases. Specifically, when 0L Hs s =   and 1L Hs s =  , 

habitual pricing and responsive pricing have the same welfare. 

 

 

Fig. 2. L Hs s  and % welfare difference between habitual and responsive pricing. 

Note: % welfare difference is measured by 100 ( )res hab habSW SW SW − . 

4.2.2 Varying   

We compare the results under 0.2 =   and 0.8 =  . Fig. 3 shows that 

information provision and habitual pricing again show opposite patterns. Specifically, 

as   increases, the relative efficiency of information provision increases initially and 

then decreases, whereas the relative efficiency of habitual pricing decreases first and 

then increases. This indicates that information provision and habitual pricing are highly 

complementary instruments. When 0 =  or 1 = , the relative efficiency of habitual 

pricing is 1, implying that habitual pricing is as efficient as responsive pricing if the 

capacity applies with certainty. 

Comparing Fig. 3(a) and Fig. 3(b), we find that when the distribution of capacity 

change is small, the combination of information provision and habitual pricing yields 

an expected welfare that is almost as high as responsive pricing. Nevertheless, when 

the distribution of capacity change is large, habitual pricing becomes less efficient 

owing to the increasingly important shortcomings of fee adaptation. This indicates that 
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the advantage of responsive pricing is more obvious under a higher degree of 

uncertainty. 

 

 

(a) 0.2 =                                 (b) 0.8 =  

Fig. 3.   and welfare effects. 

Note: Relative efficiency measures the relative welfare improvement of a certain policy compared 

to the combination of information provision and responsive pricing. 

 

Fig. 4 plots the percentage change in welfare difference between habitual and 

responsive pricing. Fig. 4 shows that as    increases, the welfare difference first 

increases and then decreases. Specifically, when capacity is deterministic, i.e., 0 =

and 1 = , responsive pricing and habitual pricing result in the same welfare.  

 

 

Fig. 4. L Hs s  and % welfare difference between habitual and responsive pricing. 

Note: % welfare difference is measured by 100 ( )res hab habSW SW SW − . 
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4.3 Uncertainty and price effects 

In addition to social welfare concerns, policy makers and regulators are also 

interested in price effects. Section 4.3.1 investigates the impact of habitual pricing and 

responsive pricing on travel price under perfect information.  

 

4.3.1 Information provision vs habitual pricing 

Fig. 5 shows that information provision tends to lower the expected travel price 

for travelers, because travelers can change their travel decision according to the actual 

capacity realization. In contrast, habitual pricing tends to raise the expected travel price 

for travelers, since they need to pay a congestion toll. This implies that habitual pricing 

is likely to meet resistance from travelers unless the allocation of toll revenues 

convinces them otherwise.  

Second, with information only, the change in the expected travel price decreases 

with L Hs s , because information is more valuable when the capacity fluctuation is 

large. Nevertheless, under habitual pricing only, the change in the expected travel price 

does not vary monotonically, as it first increases and then slightly decreases. When 

L Hs s  reaches a certain value, information provision does not make sense. Habitual 

pricing and the combination of information and habitual pricing have the same expected 

price. 

Third, with information only, the change in the expected price does not vary 

monotonically with  , as it first decreases and then increases. This is because when 

  exceeds ( )  + , the expected travel cost does not vary with  , which lowers 

the role of information. Specifically, when 0 =  and 1 = , information provision is 

completely useless, and has the same expected travel price as the unregulated case. In 

contrast, the change in the expected price change of habitual pricing only increases 

monotonically with  , and increases more slowly when   exceeds ( )  + . The 

reason is that a higher probability of low capacity raises the travel cost and the toll by 

exacerbating the traffic congestion. 

Finally, with the combination of information provision and habitual pricing, the 

expected travel price may be raised or lowered, depending on how they interact. 

Specifically, when L Hs s  is low, the effects of information provision dominate, so that 

the expected travel price is lowered; when L Hs s   is high, the effects of habitual 

pricing dominate, so that the expected travel price is raised.  
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(a) 0.2 =                           (b) 0.8 =  

Fig. 5. Price effects: information provision vs habitual pricing. 

Note: Price difference is measured by the difference between the travel price of the considered 

policy and an unregulated regime. A positive value means the introduced policy raises the expected 

travel price, and a negative value means the introduced policy lowers the expected travel price. 

 

4.3.2 Habitual pricing vs responsive pricing 

 

 

(a) Varying /L Hs s                       (b) Varying   

Fig. 6. Price effects: habitual pricing vs responsive pricing. 

Note: In Fig. 6, price difference is measured by the difference in the expected travel price between 

responsive pricing and habitual pricing. A negative value means responsive pricing leads to a 

lower expected price than habitual pricing. 
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Fig. 6 shows that when combined with information provision, responsive pricing 

leads to a lower expected price than habitual pricing. This means that responsive pricing 

raises the travel price less than habitual pricing. This is intuitive because responsive 

pricing lowers the travel price more, as it allows regulators to adjust the toll according 

to the actual capacity realization, thereby lowering the welfare losses from congestion 

and uncertainty. In addition, responsive pricing is more conducive to lowering travel 

prices than habitual pricing. 

 

4.4 Uncertainty and optimal tolling 

This subsection examines the effects of uncertainty on optimal tolling. Subsection 

4.4.1 investigates the effects of /L Hs s  on optimal tolling by varying /L Hs s  from 0 

to 1, and subsection 4.4.2 investigates the effects of   on optimal tolling by varying 

  from 0 to 1.  

 

4.4.1 Varying /L Hs s  

The toll under habitual pricing only is the highest. Without information provision, 

more travelers will travel when there is low capacity. The resulting welfare losses are 

then considerable and make it apparently worthwhile to set the habitual toll relatively 

high. Consequently, travelers not only benefit from information because of its 

informational value; a secondary benefit is that tolls will be lower. 

In a comparison between responsive pricing and habitual pricing, Fig. 7 shows that 

when combined with information provision, the expected responsive toll, surprisingly, 

exceeds the habitual toll. This is because the habitual toll is a weighted average of the 

MEC, with the weight of LMEC  decreasing with /L Hs s , and the weight of HMEC  

increasing with /L Hs s  (see Proposition 3). Therefore, this toll is biased towards the 

congestion under a high-capacity state and is lower than the expected responsive toll. 

As /L Hs s   increases, the toll differences between different regimes become 

smaller. Indeed, a larger /L Hs s  lowers the value of information, thereby reducing the 

toll difference between habitual pricing only and the combination of information 

provision and habitual pricing. For responsive and habitual pricing, because LMEC  

becomes closer to HMEC  , the difference between the expected responsive toll and 

habitual toll also becomes smaller. 

Comparing Fig. 7a and Fig. 7b, we find that the toll changes more quickly under 

0.8 =  than 0.2 = , verifying that uncertainty plays an important role in deciding 

the optimal toll.  
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(a) 0.2 =                         (b) 0.8 =  

Fig. 7. /L Hs s  and optimal toll. 

 

4.4.2 Varying   

Fig. 8 shows that under all regimes, expected toll increases with the probability of 

low capacity,  . This is because a higher   raises the welfare losses from congestion, 

which makes it beneficial to set an increasing toll. Similar to the results in Section 4.4.1, 

the toll under habitual pricing only is the highest, followed by the combination of 

information provision and responsive pricing, and the toll under the combination of 

information provision and responsive pricing is the lowest. 

 

 

(a) 0.2 =                      (b) 0.8 =  

Fig. 8.   and optimal toll. 
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In the comparison of responsive pricing and habitual pricing, a responsive toll 

increases linearly with  , and a habitual toll increases non-linearly. This is because a 

habitual toll is a weighted average of the MEC, with the weight of LMEC  increasing 

with  , and the weight of HMEC decreasing with   (see Proposition 3). Therefore, 

as the probability of low capacity increases, the weight of LMEC  increases, which 

leads to an increasing toll. The toll difference between these two regimes first increases 

and then decreases. Specifically, when the capacity is deterministic (i.e., 0 =   or 

1 = ), habitual pricing and responsive pricing have the same tolling.  

With respect to the comparison between habitual pricing only and the combination 

of information provision and habitual pricing, the toll difference also first increases and 

then decreases. This is because without information, the habitual toll equals the 

expected travel price, which is an increasing function of    if H   , and is 

independent of   if the probability of low capacity exceeds H  (see Proposition 1a). 

Comparing Fig. 8(a) and Fig. 8(b), we observe that the toll varies more quickly 

under 0.2 =   than under 0.8 =  . Therefore, it is of great importance to take 

uncertainty into account when deciding a toll. 

 

4.5 Varying price elasticity 

We vary the price elasticity from 0 to 3. It can be observed from Fig. 9 that as 

travelers become more sensitive, the relative efficiency of information provision only 

decreases, and the relative efficiency of habitual pricing only increases. In contrast, for 

the combination of information provision and habitual pricing, relative efficiency first 

decreases and then increases. This is because when travelers’ price elasticity is small, 

the effects of information provision dominate. As price elasticity increases, travelers 

become more sensitive to the travel price and the effects of habitual pricing dominate. 

When demand is perfectly elastic, habitual pricing and responsive pricing have the same 

performance under perfect information, implying that marginal external cost equals 

expected external cost. 
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(a) 0.2 =                             (b) 0.8 =  

Fig. 9. Price elasticity and relative efficiency. 

 

5. Effects of imperfect information 

5.1 Analytics 

Although traffic information can be collected and disseminated, it may be difficult 

to receive high-quality information since traffic conditions may change in the morning 

peak period, and travelers may miss communication dispatches. Consequently, in 

practice, the information provided is usually imperfect (Arnott et al., 1991). In this 

section, we examine how imperfect information affects travelers.  

We characterize imperfect information about s  by a signal,  . A signal L =  

indicates that s  is likely to be low, and a signal H =  that it is likely high. It is 

assumed that travelers are informed of the signal of the capacity. The ex-post probability 

of low capacity, conditional on L  and H , is specified in Table 4, where ( )   is 

the probability of low capacity conditional on signal  , 1 ( ) −  is the probability of 

high capacity conditional on signal  , and [0,1]Q  is an index of signal quality. If 

0Q = , the signal conveys no information: the conditional probability distribution of 

capacity equals the unconditional distribution. At the other extreme, 1Q =  means the 

signal is perfectly accurate and that the information is accurate.  
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      Table 4. Conditional probability distribution of capacity 

Signal 
Probability of low capacity 

         ( )   

Probability of high capacity 

1 ( ) −  

None   1 −  

Indicates high capacity (1 )Q −  1 (1 )Q− −  

Indicates low capacity 1 (1 )(1 )Q− − −  (1 )(1 )Q− −  

     

For all values of iQ  , the signal is assumed to be unbiased in the sense that 

forecasts are made with the same frequency that they occur. From Table 4, the expected 

ex-post probability of low capacity is: 

( )(1 ) (1 ) 1 (1 )(1 )Q Q    −  − +  − − − = ,                          (30) 

and the expected ex-post probability of high capacity is: 

( ) ( )(1 ) 1 (1 ) (1 )(1 ) 1Q Q    −  − − +  − − = − .                      (31) 

After receiving L   and H  , travelers face the same problem as under zero 

information, but with the conditional probability distributions of capacity instead of 

unconditional ones. According to Eq. (4), the expected travel cost under signal i  ,  

( ( ))iEc   , is: 
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.  (32) 

Given the unbiased nature of the signals, the probability that signal i  is received 

is i . With expected information provision, the expected travel cost, [ ]E c , is thus: 

[ ] ( ( )) (1 ) ( ( ))L HE c Ec Ec     =  + −  .                         (33) 

The expected welfare is again the consumer benefits minus the total expected 

travel cost. The habitual toll now equals the weighted average of the expected MEC 

under each signal, with the weights depending on the probability distribution of the 

capacity. The expected MEC under a given signal depends on the conditional 

probability distribution of the capacity. 

  

5.2 Numerical model of the imperfect information setting 

We now return to our numerical model. We compare the results under imperfect 
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information only with the combination of imperfect information and habitual pricing, 

by varying the quality of information, Q , from 0 to 1. 

Fig. 10 shows that as the quality of information increases, the expected travel price 

decreases, especially when the capacity degradation is larger. The kinks are caused by 

the shift in the expected travel cost function. According to Eq. (32), the expected travel 

cost is a linear increasing function of ( )i    if 10 ( )i     , is an increasing and 

concave function of ( )i    if 1 2( )i      , and is independent of ( )i    if the 

probability of low capacity exceeds 2 ( ) 1i    .  

Fig. 11 shows that relative efficiency increases with the quality of the information. 

This demonstrates that although imperfect information may not be accurate, 

information provision still performs better than no information in reducing the expected 

travel price and improving welfare. We also see that adding a habitual toll to imperfect 

information raises welfare but also the expected price. These effects get stronger when 

the capacity degradation is larger.  

It can be observed from Fig. 12 that a higher quality of information tends to lower 

the optimal habitual toll. This is intuitive because more welfare loss caused by 

uncertainty is reduced by a higher quality of information provision. 

 

 

(a) =0.2                           (b) =0.8  

Fig. 10. Information quality and price effects. 
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(a) 0.2 =                         (b) 0.8 =  

Fig. 11. Information quality and relative efficiency. 

 

 

Fig. 12. Information quality and optimal toll. 

 

To conclude our analysis of imperfect information, we note that imperfect 

information always raises welfare and lowers the expected price. A habitual toll would 

be the weighted average of the expected MEC under each signal and adding it to 

imperfect information further raises welfare but also the expected price. Toll are 

lowered by a higher quality of information. 

 

6. Conclusion 

With travelers and regulators becoming increasingly concerned about the 
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uncertainty and congestion in transport systems, we have developed a joint departure 

time choice and tolling design model for solving travelers’ travel equilibrium and 

regulators’ regulatory decisions under uncertainty and dynamic congestion. The 

combination of information provision and congestion pricing is proposed to reduce 

uncertainty and congestion. We considered three information regimes (no information, 

perfect information and imperfect information) and two congestion pricing regimes: 

responsive state-dependent pricing and habitual state-independent pricing. We derived 

theoretical solutions and discussed the welfare and price effects under different 

regulation regimes, providing guidance to public agencies in developing toll policies 

and information provision decisions. 

Our study shows that the introduction of information provision lowers the habitual 

toll. In the absence of information provision, the habitual toll equals users’ expected 

MEC. With information provision, the habitual toll is a weighted average of the MECs 

over all states, with the weights depending on the probability distribution of capacity, 

travelers’ price sensitivity of demand and the value of schedule delay parameter. With 

imperfect information, the weights also depend on the quality of the signal.  

When only one policy is implemented, information provision and congestion 

pricing are both welfare-improving. Information provision is preferable when 

uncertainty is high, as information is more valuable at this time. Otherwise, congestion 

pricing performs better. With respect to the travel price, information provision tends to 

lower the expected travel price and congestion pricing tends to raise it. Hence, 

congestion pricing is more likely to meet resistance from travelers.  

When pricing and information provision are implemented together, responsive 

pricing performs better than habitual pricing. In our numerical model, however, 

differences tend to be very small unless the difference between the low and high 

capacity is very large. Although both policies will raise the expected price for travelers, 

habitual pricing raises it more. Hence, if the regulator aims at improving welfare, 

combining information provision and responsive pricing may be the best choice. 

However, habitual tolls tend to perform very similarly in our numerical model, so 

responsive tolls may not be worth the extra unpopularity they might entail. 

Various interesting and important extensions can be dealt with in the future.  

• First, we have assumed that all travelers either have no information, perfect 

information or imperfect information, and that the information is provided at no 

cost. It would be interesting to endogenize the choice of being informed and to 

allow for partial or sometimes incorrect information.5 

• Second, it would be interesting to study the impacts of information provision 

                                                   
5 See, e.g., Ben-Akiva and de Palma (1991), Arnott et al. (1996, 1999), Zhang and Verhoef (2006), Enrique 

Fernández et al. (2009),  Khan and Amin (2018) and Xie and Liu (2021). 
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and tolling when travelers are heterogeneous, for instance, in terms of varying 

the values of time, as in Xiao et al. (2014). 

• Third, extending the analysis to more general networks, for example, larger 

networks with many parallel competing routes and networks that allow for route 

diversion.6 

• Fourth, we assume that users have no risk aversion and attach the same weights 

to losses or gains, which is not in line with prospect theory. What changes when 

we allow for such factors, where people may even have different risk aversions 

and asymmetries for various considerations such as tolls, travel times and 

schedule delays?7 

• Fifth, we assume away toll collection cost, but such costs can be substantial. 

Such costs may very well be higher for the more complex state-dependent 

responsive tolls, if only because they need to be announced each day and this 

makes administration more complex.  

• Sixth, we only considered capacity uncertainty in which the realized level of 

capacity is the same for the entire day and only has two states. What changes if 

the capacity can fluctuate over the day due to, say, traffic incidents or rain 

showers? What changes if demand is also uncertain? What about more realistic 

capacity distributions? 

• Seventh, we only considered flat tolls that are constant for the day. How would 

the situation change if tolls were fully time variant or varied in steps, as in 

Singapore and Stockholm and with many US toll roads and bridges? Lindsey 

(1994, 1999), Xiao et al. (2015) and Jiang et al. (2021) show that uncertainty 

affects the design of such systems.8 Therefore, there is a need to incorporate 

time-varying tolling when analyzing information provision. 

 

 

Appendices 

Appendix A. Proof of Proposition 1c. 

Proof. (i) In an unregulated regime, solving 0 1( ) [ ]D N d d N E c= −  =  yields: 

                                                   
6 See, e.g., Emmerink et al. (1995), Verhoef et al. (1996), Emmerink et al. (1997), Yang (1999), and Xiao et al. 

(2017). 
7 See, e.g., de Borger and Fosgerau (2008), Börjesson et al. (2012), Kouwenhoven et al. (2014) and Beaud et al. 

(2016) for empirical studies on this, and de Palma and Picard (2006), Fosgerau and Karlström. (2010) and Liu and 

Liu (2018) for theoretical analyses. One could also add restrictions such as a travel cost budget, as in Liu et al. 

(2020). 
8 None of these papers looked at information provisions. Lindsey examined fully time-variant optimal pricing and 

the other authors looked at second-best time-variant pricing—where the toll is forced to be linear over time and 

keeps the generalized price unchanged—and at step tolling.  
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Comparing Eq. (A1) with Eq. (11), we can directly find the travel demand under 

habitual pricing is lower than that under the unregulated regime. 

(ii) In equilibrium, the marginal willingness to pay equals the travel price. 

According to the relationship between the travel demands under different regimes, we 

find that habitual pricing tends to raise the travel price. 

(iii) According to Eq. (12), when 0 =  , the expected welfare is 
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Since [ ] 0E W      always holds, we can obtain that under habitual pricing, the 
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In the unregulated regime, the expected welfare satisfies: 
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Taking the derivative of Eq. (A2) with respect to  , we find that 0EW     

still holds. Specifically, when 0 =  , 
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As the expected welfare is non-decreasing under both regimes, we only need to 

compare the relationship at the end points. More specifically, at 0 =  , we have:
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 . Therefore, introducing 

habitual pricing improves welfare. ■ 
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Appendix B. Proof of Proposition 2. 

Proof. (i) According to Eq. (A1), we find that under the unregulated regime, the number 

of users, N  , is non-increasing with   , i.e., 0N     . When 10     , 
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. Combining Eq. (13), we find that information tends to raise the number of 

users when the state of the bottleneck capacity is high, and lower the number of users 

when the state of the bottleneck is low, as presented in Proposition 1a. 

(ii) The property on the travel price can be obtained directly from (i). 

(iii) This is because in the unregulated regime, the expected welfare is between 
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 . After introducing information, welfare is 
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capacity is low. As a result, welfare is raised by information provision when the capacity 

is high, and lowered when the capacity is low. ■ 

 

Appendix C. Proof of Proposition 3. 

Proof. The associated Lagrangian of the maximization problem under Eq. (17) and Eq. 

(18) is: 
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Taking the derivative of Eq. (C1) with respect to HN  , LN  ,   , H   and L  
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Solving the above problem yields: 
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. Substituting Eq. (14) into Eq. (C4), 

the toll can be rewritten as: 

(1 )L HMEC MEC  =  + −  .                                    (C5) 

with  

1

1 1

1

(1 )( )

H

H H

d
s

d d
s s





 

 


 
 + 
 = 

 
− + + + 

 

.                            (C6) 

Taking the derivate of   with respect to   and 1d  yields: 
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Proposition 3 has been proved. ■ 
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