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Abstract 

Autonomous cars allow safe driving with a smaller headway than that required for normal 

human-driven cars, thereby potentially improving road capacity. To attain this capacity benefit, 

cooperation among autonomous cars is vital. However, the future market may have multiple 

car brands and the incentive for them to cooperate is unknown. This paper investigates the 

competition and cooperation between multiple car brands that, may provide both autonomous 

and normal vehicles. We develop a two-stage game-theoretic model to investigate brands’ 

strategic interactions and evaluate, from both policy and organizational perspectives, the 

implications of their cooperation incentives and pricing competition. We compare four market 

structures: duopoly competition, perfect competition, a public welfare-maximizing monopoly, 

and a private profit-maximizing monopoly. Various parameters are evaluated, including 

factors such as the capacity benefits from cooperation, cooperation cost and price elasticity. 

This evaluation provides policy insights into actions that could be considered by regulators 

and organizations for the operation of autonomous cars. 
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1. Introduction 

With the development of vehicle automation, car manufacturers and software companies 

have presented prototypes of autonomous cars and announced that these vehicles, with their 

advanced self-driving capabilities, are anticipated to be available to the consumer mass 

market in the near future (e.g., Burns, 2013; Fagnant and Kockelman, 2015; Wadud et al., 

2016; Nieuwenhuijsen et al., 2018; Krueger et al., 2019). This innovative transportation 

technology will undoubtedly alter the way that travelers travel and vehicle ownership, as well 

as when autonomous vehicles and normal cars coexist on the roads. 

By their use of sensors and mutual information-exchange technology, autonomous cars 

can sense and may even be able to anticipate the braking and acceleration decisions of the 

cars on front, thereby reducing reaction time and vehicle spacing in comparison to manually 

driven vehicles. The smaller headway and intervehicle spacing will allow autonomous cars to 

increase the capacity of the existing roads, contributing to reducing travel time losses and 

potential schedule delays in peak periods. It is widely demonstrated in the literature that 

predictions of possible effects on road capacity vary, from almost no effect to a quintupling of 

capacity (e.g., Fernandes and Nunes, 2012; Shladover et al., 2012). To amplify this 

capacity-improvement benefit, employing cooperation through vehicle-to-vehicle cooperative 

technology is vital.  

There may, however, be multiple autonomous car brands in future vehicle markets. They 

may include traditional automakers, such as Audi, Toyota, Ford, and Volvo, which are not 

interested in becoming hardware suppliers for the navigational intelligence incorporated in 

their vehicles, as well as information technology (IT) companies, such as Google and Baidu, 

for whom information technology, connectivity, and automotive engineering are an integrated 

development. There is a strong incentive for policy makers to encourage different car brands 

to cooperate due to the potential benefits of capacity improvement. Not all brands, however, 

have an incentive to cooperate: even though cooperation with another brand may raise the 

efficiency of road use and reduce travel time for their own car users, the same is true for 

competing brands, so competitors are strengthened. As cooperation with another brand would 

also raise competitors’ attractiveness, it would be more profitable to prevent cooperation with 

another brand.  

Research on aspects of the impact of autonomous driving is still in its infancy. Existing 

studies regarding the operation of autonomous cars have assumed a single system and 

implicitly focused on one single car brand (e.g., Van den Berg and Verhoef, 2016; Yu et al., 

2022; Sun and Yin, 2021), thereby ignoring the competition and cooperation between 

different brands. We instead investigate the cooperation incentives and pricing competition 

between multiple brands and evaluate the associated welfare effects. These questions become 

particularly complex when travelers perceive different brands and car types as imperfect 

substitutes, for reasons of such unobservable characteristics as brand loyalty, post-sale 
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services, and traveler preferences for particular aspects of vehicles. Our model accommodates 

this. 

In addition, compared to normal human-driven cars, autonomous cars allow travelers to 

free up the time traditionally spent in driving-related tasks and enable them to perform 

leisure- or work-related activities in the vehicle (Haboucha et al., 2017; Pudāne et al., 2018). 

This can be expected to loosen scheduling constraints that travelers face at home and at work, 

allowing them to avoid the heaviest traffic more easily. Hence, departure time change appears 

to be one of the most important alterations in behavior once autonomous cars are introduced 

and it is of great importance to take travelers’ departure time choices into account when 

studying the effects of these vehicles.   

Several earlier studies have investigated travel equilibria involving autonomous cars. 

Regarding the dynamic congestion setting, previous studies mainly built on the bottleneck 

model to investigate morning commute dynamics in single- or multi-modal transportation 

systems, in which autonomous cars were supplied by a single brand. For instance, Van den 

Berg and Verhoef (2016) investigated travelers’ departure time and travel mode choices when 

autonomous cars and normal cars both exist, taking the effects of autonomous cars on the 

capacity, value of time, and preference heterogeneity into consideration. As a result of the 

reduced value of time caused by autonomous cars, their users travel in the center of the peak 

period, and normal car users travel in the shoulders of the period. By differentiating travelers’ 

home- and work-related activities in autonomous cars, Yu et al. (2022) and Pudāne (2020) 

developed models of dynamic bottleneck congestion to investigate the impacts of travelers’ 

different activity choices in autonomous cars on aggregate travel patterns. They found that 

autonomous and normal cars always travel separately, and the specific travel orders depended 

heavily on utility functions. In their work, Lamotte et al. (2017) investigated how capacity 

should be allocated to autonomous and normal cars by assuming that autonomous car users 

are separated from conventional users in their use of road capacity and need to book their trip 

in advance. Liu (2018) and Zhang et al. (2019) studied the joint equilibrium of departure time 

and parking location choices when all travelers travel with autonomous cars. Considering the 

interaction between normal cars and shared autonomous cars, Tian et al. (2019) investigated 

dynamic departure patterns and endogenous penetration rates of shared autonomous cars 

under a parking space constraint. Tang et al. (2021) further examined how to regulate the 

market in the presence of parking space constraints and shared autonomous cars in a 

multi-modal transportation system, in which travelers could choose among shared 

autonomous cars, private regular cars, and public transit.  

With respect to the network equilibrium problem, studies have proposed various network 

equilibrium models to take the effects of autonomous cars on capacity into account (e.g., 

Chen et al., 2016; Chen et al., 2017; Liu and Song, 2019; Zheng et al., 2020). Wu et al. (2020) 

discussed the traffic flow patterns under a linear traffic corridor with expressways for 

autonomous cars running alongside streets for manually driven cars, whereby a trip can 
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consist of both self-driving on an express way and self-driving on a non-autonomous street. 

However, these studies only focused on a single brand of autonomous car, such that they 

acknowledge the impacts of autonomous cars on road capacity but do not explore the 

cooperation incentives among multiple brands.  

In this paper, we use a bottleneck framework to investigate travelers’ travel behavior, in 

which travelers choose departure times and travel modes to minimize their generalized price. 

To understand the incentives for different brands to cooperate, we then adopt a two-stage 

game-theoretic framework, in which brands choose cooperation strategies and pricing 

decisions to maximize their own profits. In the first stage, brands decide their cooperation 

strategies, taking the impact of the second, price-setting stage into account. Cooperation with 

another brand also makes competitors’ autonomous cars more effective; a duopoly sees this as 

a downside, whereas a private or public monopolist owning both brands would regard this as 

an advantage. We therefore compare four types of market structure: duopoly competition, 

perfect competition, a public welfare-maximizing monopoly, and a private profit-maximizing 

monopoly. All have multiple product variants. 

Our research is, from a methodological viewpoint, closely related to the growing body of 

literature on externality regulation in aviation and private roads when firms have market 

power (e.g., Daniel, 1995; de Palma and Lindsey, 2000; Brueckner, 2002; Pels and Verhoef, 

2004; Van Dender, 2005; Zhang and Zhang, 2006; Silva and Verhoef, 2013; Van den Berg, 

2013; Fu et al., 2018; Kuang et al., 2020). Although some of the results of social and 

monopolistic supply pricing that we draw upon reflect insights from earlier works, there are 

important differences. In particular, because in previous networks operators did not need to 

decide whether to employ within- or cross-brand cooperation to make full use of the capacity 

benefits, the nature of the interaction between congestion and market power in these earlier 

studies is different from that in our setting (where brands’ cooperation strategies and the share 

of autonomous cars have an extensive impact on capacity). In addition, to the best of our 

knowledge, this paper is the first study to investigate the competition and cooperation 

between multiple car brands involving autonomous cars. 

The main contribution of this study is an in-depth investigation of strategic interactions 

between different car brands and understanding of the incentives for different brands to 

cooperate, using a joint theoretical game model and dynamic congestion model. This study 

moves beyond prior studies that simply consider a single car brand in the market. It is found 

that a duopoly can have multiple equilibria in a cooperation strategy. Unless cooperation costs 

are too high, cross-brand cooperation is one of them, with the highest profits and highest 

welfare; but it is by no means certain that it is the Nash equilibrium that will prevail.  

Second, by exploring the roles of different market structures, we compare the proposed 

duopoly model with a public welfare-maximizing monopoly model and a private 

profit-maximizing monopoly model. Duopolistic pricing only partly internalizes the 

externalities that each duopoly’s car users impose upon one another, whereas a public 
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monopolist and a private monopolist both fully internalize the congestion externalities on all 

users. Different from the multiple equilibria for duopoly markets, with a public monopolist or 

a private monopolist, the equilibrium is always unique: either cooperation across “brands” 

(both variants, then provided by one monopolist) or no cooperation at all (when the 

cooperation cost is high). 

Third, in addition to presenting a model and solving for the equilibrium conditions, we 

provide exemplary and illustrative results of the effects of change on important organizational 

and travel parameters. These parameter scenario analyses provide additional insights for 

organizational and regulatory policy issues that can then be used for evaluation and 

justification of alternative decisions for regulators seeking to regulate car supply and traffic 

congestion to improve welfare.  

The remainder of this paper is organized as follows. Section 2 presents the modelling 

framework, which includes travelers’ travel decisions in dynamic congestion, and the brands’ 

two-stage game model. Section 3 analyzes the strategic interactions between two brands, 

mainly discussing Bertrand pricing competition for imperfect substitutes and solving the 

equilibria for the brands’ cooperation decisions. Section 4 compares other market structures, 

considering perfect competition, a public welfare-maximizing monopoly, and a private 

profit-maximizing monopoly. Section 5 presents numerical illustrations and sensitivity 

analysis. Section 6 concludes the paper. 

2. Problem description and model formulation 

We consider the situation in which, each morning, travelers travel from home to a 

workplace. They use the same, single road, which is subject to bottleneck congestion. 

Everybody travels by car, either in an autonomous or in a normal vehicle. This paper focuses 

on privately owned autonomous cars; shared autonomous cars are thus not considered. 

Despite shared autonomous cars being considered as more environmentally sustainable, 

privately owned autonomous cars may turn out to be preferred by consumers (Zhang et al., 

2018) based on several recent autonomous vehicle preference survey results (Bansal et al., 

2016; Krueger et al., 2016; Haboucha et al., 2017). We consider price-sensitive demand: if 

autonomous cars lower costs, demand will increase. 

For the model development, we first consider a duopoly model with horizontally 

differentiated products. In this duopoly game, two competing brands in the market, denoted 

by 1 and 2, provide both autonomous and normal cars to potential travelers.1 Travelers regard 

these cars as imperfect substitutes since there are other factors involved, such as loyalty, 

service levels, and consumer preferences.  

Autonomous cars are expected to increase road capacity, especially when 

 
1 We use car types to distinguish autonomous cars and normal cars, and brands to denote cars from different brand firms. 
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vehicle-to-vehicle cooperative technology is employed. Nevertheless, as cooperation with 

another brand would also raise the competitor’s attractiveness, not all brands have an 

incentive to cooperate. This paper focuses on brands’ cooperation decisions for autonomous 

cars; cooperative communication between normal cars is thus ignored. 

We consider that each brand has three cooperation options for its autonomous cars: not to 

cooperate at all, to cooperate only within own brand, and to cooperate across brands. That is, 

the set of the cooperation strategies for each brand is {not cooperate, cooperate within brand, 

cooperate across brands}. Within-brand cooperation means autonomous cars can only 

communicate with vehicles of their own brand. Cross-brand cooperation includes cooperation 

within own brand and cooperation between different brands, which means that autonomous 

cars can communicate with vehicles of their own brand and with vehicles of the competitor’s 

brand. It is assumed that only when both brands want their vehicles to cooperate with the cars 

in the other brand do they cooperate successfully across brands. Brands’ cooperation decisions 

have a significant impact on bottleneck capacity, and hence affect travelers’ travel behavior. 

Travelers’ behavior is characterized by the dynamic congestion model: travelers are 

rational utility maximizers, who seek to minimize their generalized travel price by choosing 

their departure time and travel mode (autonomous versus normal manual driving). Brands’ 

behaviors are characterized in a two-stage game-theoretic model. Both brands are 

profit-maximizing decision makers. In the first stage, they make their cooperation decisions 

separately and simultaneously. In the second stage, they compete for supply quantity and 

pricing to maximize their own profit, taking the decisions in the first stage into account. 

Section 4 will investigate other market structures. 

For ease of reference, Table 1 below summarizes the notation used in this paper. The 

notation will also be introduced in the text. 

2.1 Modelling travelers’ travel decisions under imperfect substitutes 

Travelers’ departure time choices are characterized by Vickrey’s (1969) bottleneck model, 

and travel mode choices by the Wardrop user equilibrium with imperfect substitutes.  

The bottleneck model assumes that travelers dislike waiting in traffic congestion, and 

dislike arriving either earlier or later than the preferred arrival time, t  . A traveler’s travel 

cost consists of schedule delay cost and travel time cost.2 Schedule delay cost is the cost due 

to arriving at a time different from the most preferred arrival time t  . For travelers arriving 

early, the schedule delay cost is the product of how early they arrive, measured by t t − , and 

the schedule delay value of arriving early, denoted by  . For travelers arriving late, the 

schedule delay cost is the product of how late they arrive, measured by t t− , and the 

schedule delay value of arriving late, denoted by  . 

 
 

2 For a complete review, see Arnott et al. (1993), Small (2015), and Li et al. (2020). 
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Table 1. Notation list. 

Notations for brands’ possible cooperation strategies 
 

NN Neither brand 1 nor brand 2 employs cooperation between vehicles 

YN Brand 1 employs cooperation within own brand; brand 2 does not employ cooperation 

NY Brand 1 does not employ cooperation; brand 2 employs cooperation within own brand 

YY Brands 1 and 2 both employ cooperation, but only within own brand 

YXYX Brands 1 and 2 both employ cooperation across brands 

Notations in the model 

t   Preferred arrival time 

t  Arrival time 

  Value of scheduling delay early: the cost of arriving an hour earlier than t    

  Value of scheduling delay late: the cost of arriving an hour later than t   

  Value of time (VOT) for normal car users: the cost of an hour of travel time 

  VOT reduction parameter for autonomous car users 

[ ]TT t  Travel time for travelers arriving at time t 

[ ]ic t  Travel cost for car type i  users arriving at time t, { , }i a n  

  Equilibrium travel cost for users with car type i  

ic  Equilibrium travel cost for users with car type i  

ijN  Number of users with car type i  of brand j , { , }i a n , {1,2}j  

s  Bottleneck capacity for normal cars 

as  Bottleneck capacity for autonomous cars 

( )a ms  Averaged bottleneck capacity for autonomous cars under strategy profile m 

fT  Free-flow travel time 

ijD  Inverse demand function for car type i  of brand j  

ijA  Maximum willingness to pay for car type i  of brand j  

ijb  Parameters in the inverse demand functions 

ijMU  Per trip mark-up on car type i  of brand j  

ijMC  Marginal automobile cost of car type i  of brand j  

copMC  Extra cost for within-brand or cross-brand cooperation 

jcop  Dummy variable: 0 denotes not cooperating, and 1 denotes cooperating 

ijf  Proportion of product i  of brand j  in all products i  

1[ ]m aR f

 

Function determining capacity effects under strategy profile m 

j  Profit of brand j  

ij  Lagrangian multipliers referring to the travel equilibrium condition 
r

ijMU  Brand j ’s best response function on the mark-up of car type i  

NE

ijMU  Bertrand-Nash equilibrium solutions for the mark up 

,j m  Profit of brand j  under strategy profile m   

W  Social welfare 

B  Consumer benefit 

  Relative efficiency 
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Travel time cost is the sum of the cost of queuing at the bottleneck and the free-flow 

travel cost. The cost of queuing equals the value of time (VOT) multiplied by the delay 

caused by queuing. As autonomous cars can drive themselves, the travel time can be used for 

other activities, which will lower the VOT for autonomous car users. Suppose the value of 

time for normal car users is  , and is    for autonomous car users, where 0 1   is 

the VOT reduction parameter. The queuing delay at the bottleneck equals the number of cars 

in the queue divided by the capacity of the bottleneck. 

Let [ ]TT t  denote the travel time of arriving at time t, which is the sum of the delay 

from queuing at the bottleneck and the free-flow travel time. The travel cost for arriving at 

time t  with car type i , [ ]ic t , can thus be expressed as: 

   

( ),   if  
[ ] [ ]   with  a normal car

( ),    if 

( ),   if  
[ ] [ ]  with an autonomous car

( ),    if 

n

a

t t t t
c t TT t

t t t t

t t t t
c t TT t

t t t t











 

 

 

 

 − 
=  + 

− 

 − 
=  + 

− 

,               (1) 

where subscript ‘n’ denotes a normal car and ‘a’ an autonomous car. 

In equilibrium, the queueing time of normal car users grows at a rate of    for early 

arrivals and  −  for late arrivals. For autonomous car users, the queuing time grows at a 

rate of ( )   for early arrivals and ( ) −  for late arrivals. Following Arnott et al. 

(1989), Lindsey (2004), and Van den Berg and Verhoef (2011a, b, 2016), autonomous cars and 

normal cars will travel separately over time; that is, autonomous car users travel in the center 

of the peak period and normal car users travel in the shoulders of the peak period.  

As autonomous cars and normal cars self-select to travel separately in time, the increase 

in the capacity of autonomous cars does not affect the capacity when normal cars pass the 

bottleneck. Note that the cooperation pattern of an autonomous car does not affect the users’ 

VOT and schedule delays, so there is no temporal separation of sub-groups of autonomous car 

users. In line with convention, we define the following compound preference parameter 

( )   = + . Following Van den Berg and Verhoef (2011a, b), the equilibrium travel cost, 

ic , can be shown to be: 

1 2 1 2

1 2 1 2

( ) ( )
,

( ) ( )
,

n n a a
n f

a

n n a a
a f

a

N N N N
c T

s s

N N N N
c T

s s

 


 
 

+ +
= + +

+ +
= + + 

                                 (2) 

where ijN  denotes the number of users with car type i  of brand j ( { , },  {1,2})i a n j  , s  

denotes the capacity of the bottleneck when normal cars pass, as  is the capacity of the 
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bottleneck when autonomous cars pass, and fT  is the free-flow travel time. The bottleneck 

capacity for autonomous cars depends on brands’ cooperation strategies, which will be 

defined as ( )a ms  later (see Eq. (5)), with m  representing a given strategy profile.  

For the car brands’ market, we consider the differentiated duopoly proposed by Dixit 

(1979), assuming that demands arise from the quadratic utility function. We consider all car 

types as imperfect substitutes to account for the fact that not all travelers choose the car with 

the most attractive generalized price, therefore allowing cars with different generalized prices 

to have travelers in equilibrium. The quadratic utility function gives rise to a linear demand 

structure, with equivalent inverse and direct demands, ijD , which is a function of a brand’s 

own choice of outputs, as well as the competitor’s outputs: 

1 1 1 1 1 2 1 2

1 1 2 2 1 2 1 2

1 2 1 2 2 2 2 2

1 2 1 2 2 2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

a a a n a a a n
a a a

a n a a n a n nn n n

a a a a n a a a a n a

n n na n n n a n n n

b b b bD A N

b b b bD A N

D A b b b b N

D A Nb b b b

      
      
      = −       
                  

.                              (3) 

Where the inverse demand ijD  measures the marginal willingness to pay for car type i  of 

brand j  in terms of the generalized price. The coefficients ( { , },  {1,2})ijA i a n j   and 

1 1 2 2 1 1 2 2( { , , , },  { , , , })klb k a n a n l a n a n   are both positive parameters: ijA  is the intercept or the 

maximum marginal willingness to pay for car type i  of brand j ; and klb  measures how 

much the inverse demand decreases when the number of corresponding car users increases, 

where ( )klb l k=  measures the own effect (i.e., how much the marginal willingness to pay for 

product i  of brand j  decreases if there are more users of this product), and ( )klb l k  

measures the cross effect (i.e., how much the marginal willingness to pay for product i  of 

brand j  decreases if there are more users of the substitutes).3   

As travelers have idiosyncratic preferences for car brands and car types, they would have 

different preferences for competing cars when these have an equal generalized price. Travel 

equilibrium requires that the marginal willingness to pay for car type  ( { , })i i a n  of brand 

 ( {1, 2})j j  equals the associated generalized price. The generalized price per trip consists 

of the travel cost, the mark-up on cars (over marginal cost), the automobile cost (i.e., the 

marginal resource cost of making a car trip), and the possible cost of employing cooperation 

between cars. The mark-up is determined by the brand firms and is expressed in a per-trip 

equivalent. It is assumed that within-brand cooperation and cross-brand cooperation have the 

 
3 For 1 1 2 2( , , , )kl ii i a n a n  = , the corresponding cars are perfect substitutes if kl iib b= , imperfect substitutes if 

kl iib b , and independent if 0klb = . If klb  were negative, the products would be complements, a possibility that we shall 

ignore. 
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same cooperation cost, copMC , which is constant per trip.4 The Wardrop user equilibrium 

conditions can thus be expressed as: 

,     {1,2}.

,       {1,2}.

1,       

0,  

aj a aj aj cop j

nj n nj nj

j

D c MU MC MC cop j

D c MU MC j

cooperate within brand or across brands
cop

otherwise

= + + +  

= + + 


= 


,                       (4) 

where ajMU  and njMU  denote the mark-ups on autonomous cars and normal cars of brand 

j , respectively; ajMC  and njMC  denote the marginal automobile cost of autonomous cars 

and normal cars produced by brand j , respectively; and jcop  is a dummy variable to 

characterize brand j’s cooperation strategy, where 1 means cooperation between cars and the 

dummy is 0 otherwise.  

2.2 Brands’ possible cooperation strategies 

Each brand decides its cooperation strategy separately and simultaneously. This decision 

carries a trade-off in the sense that cooperation not only reduces travel times for a brand’s 

own autonomous car users, but also for the competing brand’s autonomous car users, through 

increasing the road capacity and at the expense of an extra cooperation cost. Therefore, brands 

choose their cooperation strategies by carefully balancing these factors. As we assume that 

only when both brands want their vehicles to cooperate with the cars in the other brand they 

can cooperate successfully across brands, the theoretical possibility of cooperation with the 

other brand’s vehicles, but not within own brand, is discarded. Consequently, five possible 

Nash equilibria of brands’ cooperation strategies can be reached: 

(not cooperate, not cooperate), in which neither brand 1 nor brand 2 employs cooperation 

between vehicles. For presentation purposes, we use NN to denote this case. 

(cooperate within brand, not cooperate), in which brand 1 employs cooperation within its 

own brand and brand 2 does not employ cooperation. We use YN to denote this case.  

(not cooperate, cooperate within brand), in which brand 1 does not employ cooperation, 

and brand 2 employs cooperation within its own brand. We use NY to denote this case. 

(cooperate within brand, cooperate within brand), in which brands 1 and 2 both employ 

cooperation, but only within their own brand. We use YY to denote this case. 

(cooperate across brands, cooperate across brands), in which brands 1 and 2 both employ 

cooperation within own brand and between the brands. We use YXYX to denote this case. 

More detailed analysis of these equilibria is carried out in section 3.2. As we discuss later, 

brands’ cooperation strategies have a significant impact on travelers’ travel cost and marginal 

willingness to pay, through changing the effective capacity of the road. 
 

4 Cooperation cost is similar to the economics term of “transaction cost”, which can be understood as a transaction cost 

specific to employing cooperation between vehicles. 
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2.3 Impact of brands’ cooperation strategies on capacity  

We now introduce the impacts of autonomous cars on road capacity under different 

cooperation strategies. As all autonomous cars travel jointly in a mixed flow, and the order of 

autonomous car drivers is random and independent of the cooperation regimes between the 

cars, it is reasonable and intuitive to assume that there is a constant averaged capacity for 

autonomous cars that increases with the market share of cooperative autonomous cars. 

Incorporation of capacity interaction among driving orders of heterogeneous autonomous cars 

can be made in a further model extension.  

Given a certain strategy profile m ( { , , , , })X Xm NN YN NY YY Y Y , let ( )a ms  denote the 

averaged capacity for autonomous cars under m . Compared to normal cars, autonomous cars 

can drive with shorter headways. Hence, for any m , ( )a ms s  always holds.  

Let ijf  denote the market share of i-type cars of brand j  in all i-type cars, which 

satisfies 1 2( )ij ij i if N N N= + . Given the share of brand 1’s autonomous cars, 1af , and brands’ 

strategy profile, m , we use 11/ [ ]m aR f  to characterize the capacity effects of autonomous 

cars (so that 2 11a af f= −  need not be defined separately).5  The averaged capacity for 

autonomous cars satisfies ( ) 1/ [ ]a m m as s R f= , which can be specified as:6  

1

1

( ) 1

1

1

/ [ ],       if  ,

/ [ ],              if  ,

/ [ ],              if  ,

/ [ ],             if  ,

/ [ ],      if  
X X

NN a

YN a

a m NY a

YY a

Y Y a X X

s R f m NN

s R f m YN

s s R f m NY

s R f m YY

s R f m Y Y

 =


=


= =
 =

 = .

                                (5) 

It should be noted that the expression of 1[ ]m aR f  does not impact the formulation of the 

theoretical model. For ease of understanding, the theoretical properties of the averaged 

capacity proposed in this paper are summarized as follows.  

Under no cooperation at all (NN) or cross-brand cooperation (YXYX), all autonomous cars 

are homogeneous in terms of facing the same capacity. Therefore, we assume a fixed increase 

in capacity compared to normal cars. Let 1[ ]
X X X XY Y a Y YR f k=  and 1[ ]NN a NNR f k= , where 

X XY Yk  

and NNk  are positive constants not exceeding 1. As a result, the road capacity for 

autonomous cars without cooperation, is ( ) /a NN NNs s k= , and for autonomous cars with 

cross-brand cooperation, is ( ) /
X X X Xa Y Y Y Ys s k= , with / /

X XY Y NNs k s k . 

Under YN or NY, the vehicles of one brand cooperate with those within its own brand 

 
5 1 1 1 2/ ( )a a a af N N N= + . Since 

1 2 1a af f+ = , the function of 2af  can always be transferred to the function of 1af .  
6 We use 1/R to characterize the capacity effects because s is the denominator in the travel cost function (see Eq. (2)). 
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and the vehicles of the other brand do not. When there is mixing of autonomous cars with 

different cooperation regimes, the capacity effects may be less beneficial, as the strongest 

gains are likely to be realized when achieving a situation with exclusively fully cooperative 

autonomous cars. The literature demonstrates that autonomous cars increases the road 

capacity more when cooperative autonomous cars form the larger fraction of the fleet of 

vehicles (Tientrakool et al., 2011; Fernandes and Nunes, 2012; Shladover et al., 2012). This 

would make the averaged capacity for autonomous cars a convexly increasing function of the 

share of cooperative autonomous cars, i.e., ( ) 1 1[ ] 0a YN a as f f    and 2 2

( ) 1 1[ ] 0a YN a as f f   . 

Therefore, following Van den Berg and Verhoef (2016), we assume that 1[ ]YN aR f  is a 

concavely decreasing function of 1af , which we ensure by using 1 1[ ] 0YN a aR f f    and 

2 2

1 1[ ] 0YN a aR f f   . Capacity under strategy profile NY , 1/ [ ]NY as R f , follows directly from 

symmetry. 

Under YY, the two brands both apply within-brand cooperation. From the symmetry 

between the brands, the averaged capacity depends on which brand of autonomous cars has a 

larger share. Note that 1 2 1a af f+ = , the increase in 1af  also means a reduction in 2af . 

Accordingly, when 1 0.5af  , the decrease in 2af  dominates, which leads to a decreasing 

averaged capacity. When 1 0.5af  , the increase in 1af  dominates, which leads to an 

increasing averaged capacity. That is, as 1af  increases, the averaged capacity first decreases 

and then increases. Specifically, 1/ [ ]YY as R f  is at its maximum when 1 0af =  and 1 1af = , 

and at its minimum when 1 0.5af = . Therefore, we assume 1 1[ ] 0YY a aR f f    for 1 0.5af  , 

and 1 1[ ] 0YY a aR f f    for 1 0.5af  . 

As a result of the limited information, more detailed expressions for 1[ ]m aR f  are 

calibrated using simulation approach in the numerical model in Section 5. 

2.4 Modelling brands’ two-stage game  

Each brand aims at maximizing its own profit by determining the mark-ups on its own 

autonomous and normal cars and deciding the cooperation strategy for its autonomous 

vehicles. The per-trip profit from a specific car type equals the number of cars multiplied by 

the mark-up. We consider that the two brands (1 and 2) compete for travelers in terms of 

pricing, keeping the other brands’ prices fixed; i.e., there is Bertrand competition with 

imperfect substitutes. Brands’ duopolistic behavior can then be characterized by the following 

two-stage game model. 

    Stage one: Each brand decides its cooperation strategy separately and simultaneously to 

maximize its own profit, while considering the effects on the second stage and the other 

brand’s cooperation strategy as given. 
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Stage two: Each brand decides its mark-ups to maximize its profit, under the constraints 

of the Wardrop user equilibrium conditions in Eq. (4), and given the pre-committed 

cooperation strategy.  

 

Given the pre-committed cooperation strategy, brand j’s profit, j , is the sum of the 

profit from its autonomous cars and normal cars, which can be represented as:7 

j aj aj nj njMU N MU N =  +  .                                               (6) 

Using backward induction, we first find the second-stage Bertrand-Nash equilibrium for 

the static pricing (i.e., mark-up) competition game, taking the brands’ cooperation strategies 

as given. By calculating the equilibrium mark-ups, we can obtain the brands’ reduced-form 

profit functions, conditional on their cooperation strategies. The first stage then examines the 

brands’ cooperation decisions, whereby they consider the effects on the outcome of the second, 

pricing stage, particularly in terms of profits.  

3. Solving for equilibrium of the two-stage game 

As we consider four alternative types and brands of car and the measurement of capacity 

effects is complicated, it is hard to obtain specific expressions for the travel equilibrium 

solutions analytically. In the following, we explore the analytical properties of the decisions in 

the two stages. 

3.1 Stage two: pricing competition 

In stage two, we take the brands’ cooperation strategies as given, and as determined in 

stage one, and look for the Bertrand-Nash equilibrium in the mark-ups. This means that each 

brand takes the competitor’s mark-ups as fixed, but recognizes that quantities will adjust to 

maintain equilibrium. Namely, given the pre-committed cooperation strategy, each brand, j , 

maximizes its own profit by setting the mark-ups ( , )aj njMU MU . This profit maximization 

problem under constraint (4) is equivalent to solving the following Lagrangian: 

( )

( )

2

1 1 2 2 1 1 2 2

1

2

1 1 2 2 1 1 2 2

1

[ , , , ] [ , , , ]

[ , , , ] [ , , , ]

j aj aj nj nj

aj aj a n a n a a n a n aj aj cop j

j

nj nj a n a n n a n a n nj nj

j

MU N MU N

D N N N N c N N N N MU MC MC cop

D N N N N c N N N N MU MC





=

=

 =  + 

−  − − − − 

−  − − −





,  (7) 

 
7 

For presentation purpose, here we omit the strategy indicator in the profit function in stage two, and will take it into 

account in stage one. 
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where aj  and nj  are Lagrangian multipliers referring to the Wardrop user equilibrium 

conditions in Eq. (4). 

To find the best response of brand j to any action of the other brand (-j), we fix ,( )i jMU −  

and take the derivatives of j  with respect to ajMU , njMU , 1aN , 1nN , 2aN , and 2nN . 

Thus, brand j’s best response function for the mark-up on car type i, r

ijMU , is given by (see 

Appendix A):8 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

,

             

i ij i jr i
ij a j n j ij i j ij i j

ij ij ij ij

i j i i ji
i j i j

ij ij ij ij

c D Dc
MU MU MU N N N N

N N N N

D c Dc

N N N N
 

− −

− − − −

− − − −

− − −

  
  = + − −     

     
−  − −  −            

        (8) 

( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )

   

i ij i ji
ij i j i j i j ij i j

ij ij ij ij

i j i j

i j i j

ij ij

c D Dc
N N N N

N N N N

D D

N N

 

 

− −

− − − − −

− − −

− − −

  
=  − +  − − −
   

 
+ +

 

,           (9) 

with 

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )(

( )( )

( ) ( )

( )( ) ( )( )

( )( ) (

i j i j i i j i j ii i
i j

ij ij i j i j i j i j ij ij

i j i i j i i

i j

ij ij i j i j

ij

D D c D D cc c
N

N N N N N N N N

D c D c D
N

N N N N

− − − − − −

−

− − − −

− − − − − − −

− −

− −

       
 − − − − −          

    
+  − − −

   
 =

) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

)( )

( )( ) ( )( )

j i i j i

i j i j ij ij

ij i j i ij i j ii i

ij ij i j i j i j i j ij ij

c D c

N N N N

D D c D D cc c

N N N N N N N N

− − −

− −

− − − −

− − − −

 
 
 
 

    
− −        

      
− − − − −

       

,   (10) 

where superscript ‘r’ represents the best response.  

Here, ( )i−  denotes a car type other than i , and ( )j−  denotes a brand other than j . 

Eqs. (8) and (9) implicitly define the best-response function for the mark-ups. The first two 

terms in Eq. (8) are the marginal external costs on users of brand j  (including autonomous 

and normal cars), imposed by brand j ’s car type i  users.9 The sum of the last four terms 

gives the duopolistic mark-up. The third and fourth terms are the mark-ups for a private 

monopolist to supply a single autonomous car ( i a= ) or a normal car ( )i n= , respectively. 

The last two terms capture a correction for the competition from the competitor’s imperfect 

substitutes. These effects are more complicated. As in Van den Berg (2013), who consider two 

parallel facilities, the closer the substitutes, the larger this correction: stronger competition 

leads to lower prices. With independent demands, the price is at its highest; with perfect 

 
8 In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, 

taking other players' strategies as given. 
9 Marginal external cost is the marginal social cost external to the user’s choice, i.e., the derivative of total cost minus the 

user’s own usage cost. 
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substitutes, the price is at its lowest. The numerical example in section 5 illustrates that these 

insights also apply in the current context. 

Eq. (9) implies that duopolistic pricing only partly internalizes the congestion 

externalities on own brand car users. Cournot competition would result in full internalization 

of congestion externalities among a brand’s own customers, a result that is well known from 

the aviation literature (Brueckner, 2002; Pels and Verhoef, 2004). With Bertrand competition, 

an operator takes into account that pricing for marginal external congestion costs within the 

group of its own customers becomes less effective, as some of the customers will switch to 

the competitor, which would again increase congestion (e.g., Silva and Verhoef, 2013). 

However, in contrast to the standard Bertrand duopoly, both brands can now ask positive 

mark-ups, for two reasons. The first is that they internalize the congestion externality on their 

own brand and collect the revenue from the associated mark-up. The second is that they 

provide imperfect substitutes, which softens competition. This result corresponds with the 

findings of Small and Verhoef (2007) for private toll roads with imperfect substitutes, and 

Silva and Verhoef (2013) for duopolistic airlines. 

It can be seen that one brand’s optimal mark-up decision depends on the mark-up 

decision of the other brand. Given the best-response functions, the Nash-Bertrand equilibrium 

for the mark-ups, ( , )NE NE

aj njMU MU , is at the intersection of these best response functions, 

which can be implicitly expressed as: 

( ) ( )

( ) ( )

[( , )]
, {1,2}

[( , )]

NE r NE NE

aj aj a j n j

NE r NE NE

nj nj a j n j

MU MU MU MU
j

MU MU MU MU

− −

− −

   
   = 
   
   

,                           (11) 

where superscript ‘NE’ denotes the Nash-Bertrand equilibrium solution. 

Once the capacity function, ( )a ms , and inverse demand function, ajD , are given, we can 

determine the solutions for 
NE

ijMU  through Eqs. (8)-(11). The corresponding profits can be 

directly solved through Eq. (7). Due to the complex capacity effects, closed-form solutions 

and economic interpretations are hard to obtain. We use the simulation method to solve them 

in the numerical examples in section 5, and provide intuitive interpretations there. 

3.2 Stage one: Nash equilibrium for brands’ cooperation strategies 

In this stage, we turn to the brands’ decisions on cooperation strategy. Recall that each 

brand’s strategy set is {not cooperate, cooperate within brand, cooperate across brands}. In a 

Nash equilibrium, each brand is assumed to know the equilibrium strategies of the other brand, 

and no one has anything to gain by changing only one’s own strategy. 

Let ,j m  denote the profit of brand j  under strategy profile m, which equals the sum 

of the profit of autonomous cars and the profit of normal cars (see Eq. (6)). Because it is only 
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when two brands both choose to cooperate across brands that all autonomous cars can be 

cooperative successfully, the situations (not cooperate, cooperate across brands), (cooperate 

within brand, cooperate across brands), (cooperate across brands, not cooperate), and 

(cooperate across brands, cooperate within brand) will never be the Nash equilibrium in 

practice, but they are helpful in determining the equilibrium of the game. For presentation 

purposes, we use NB to denote brand 1 not cooperating and brand 2 wishing to cooperate 

across brands; WB for brand 1 cooperating within own brand and brand 2 wishing to 

cooperate across brands; and conversely for BN and BW. Consider that when only one brand 

wants vehicles to cooperate across brands, that brand will instead choose the remaining 

strategy that has the higher profit. The payoffs under these strategy profiles thus satisfy: 

1, 2, 2, 2, 1, 2, 2, 2,

1, 2, 1, 2,

1, 2, 1, 2,

1, 2, 1, 1,

1, 2,

1, 2,

( , ) ( , )
( , ) , ( , ) ,

( , ) ( , )

( , )
( , )

( , )

NY NY NY NN YY YY YY YN

NB NB WB WB

NN NN YN YN

YN YN YN NN

BN BN

NN NN

if if

otherwise otherwise

if

otherwise

           
  =   = 

     

    
  = 

 

1, 2, 1, 1,

1, 2,

1, 2,

( , )   
, ( , ) .

( , )

YY YY YY NY

BW BW

NY NY

if

otherwise

     
  = 

   

  (12) 

The accompanying payoff matrix for the proposed game is given in Table 2, in which the 

appropriate cell of the matrix represents the profits to the brand firm when a particular pair of 

strategies is chosen. The pricing stage, stage two as described above, follows next.  

            Table 2. Payoff matrix for the first-stage of the game. 

         Brand 2 

  Not cooperate Within brand Across brands 

 

Brand 1 

Not cooperate 1, 2,( , )NN NN   
1, 2,( , )NY NY   

1, 2,( , )NB NB   

Within brand 1, 2,( , )YN YN   
1, 2,( , )YY YY   

1, 2,( , )WB WB   

Across brands 1, 2,( , )BN BN   
1, 2,( , )BW BW   

1, 2,( , )
X X X XY Y Y Y   

 

To find the Nash equilibria, we substitute the profits obtained from stage two into Table 2, 

and check each strategy pair to see if it has the property that each brand's strategy maximizes 

its payoff given the other brand's strategies. If neither brand can increase its payoff by 

choosing a strategy different from its current one, the corresponding strategy profile is a Nash 

equilibrium. Through examining each strategy profile in turn, we can find the following 

possible equilibrium outcomes. 

• If 1, 1, 1,max[ , ]
X XY Y NB WB     and 2, 2, 2,max[ , ]

X XY Y BN BW    , (cooperate across 

brands, cooperate across brands) is a Nash equilibrium. 

• If 1, 1,NN YN    and 2, 2,NN NY   , (not cooperate, not cooperate) is a Nash 

equilibrium. 

• If 1, 1,NY YY    and 2, 2,NY NN   , (not cooperate, cooperate within brand) is a 

Nash equilibrium. 
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• If 1, 1,YN NN    and 2, 2,YN YY   , (cooperate within brand, not cooperate) is a 

Nash equilibrium. 

• If 1, 1,YY NY    and 2, 2,YY YN   , (cooperate within brand, cooperate within brand) 

is a Nash equilibrium. 

 

It should be noted that a duopoly may have multiple Nash equilibria for this two-stage 

game, which is illustrated in the numerical examples in section 5. For ease of understanding, 

the interrelationship between the two stages is summarized in Fig. 1.  

 

 

Fig. 1. A diagrammatical representation of the two-stage model. 

4. Other market structures 

To investigate further how competition and market power work for brand firms, travelers 

and society, this section turns to three other market structures: perfect competition, a public 

welfare-maximizing monopoly, and a private profit-maximizing monopoly. The public and 

private monopolists each own two brands but coordinate these brands’ strategies to maximize 

a composite objective (aggregate welfare, or aggregate profits). The two “brands” are, 

therefore, still offered as imperfect substitute goods on the market.  

4.1 Perfect competition 

With two brands and two car types, one would not normally expect to see perfect 
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competition in general, but we still consider this case as the absence of monopolistic 

demand-related mark-ups and congestion charges provides an important and natural 

benchmark. The best way to imagine the conditions under which perfect competition would 

prevail is when each of the four brand-type combinations could be supplied by large numbers 

of small firms.  

Perfect competition leads to marginal cost pricing and thus zero mark-ups. The demands 

are determined by the following Wardrop user equilibrium conditions: 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

[ , , , ] [ , , , ] , {1,2},

[ , , , ] [ , , , ] , {1,2}.

aj a n a n a a n a n aj cop j

nj a n a n n a n a n nj

D N N N N c N N N N MC MC cop j

D N N N N c N N N N MC j

= + +  

= + 
,    (13) 

where ijD  is given by Eq. (3). As capacity effects do not affect the cost difference between 

driving autonomous cars and normal cars (see Eq. (2)), travelers will ignore these effects 

when choosing car types under perfect competition. Given the expression of the inverse 

demand function, one can obtain closed-form solutions for 1aN , 1nN , 2aN , and 2nN .  

4.2 Public welfare-maximizing monopoly 

Under public welfare-maximizing monopoly, the public monopolist maximizes aggregate 

welfare by setting the mark-ups and quantities for the four types of car. Social welfare, W, is 

operationalized as a social surplus and is defined as the consumer benefit, 

1 1 2 2[ , , , ]a n a nB N N N N , minus total usage cost (or, equivalently, consumer surplus plus profit). 

Assuming that there are no income effects, consumer benefit is the line integral of the four 

inverse demand functions and is independent of the path used for the integration. 

The associated social welfare maximization problem is: 

1 1 2 2
     ,

{ , }; {1,2}.

2 2

1 1 2 2

{ , } 1 1

max [ , , , ]

      ( [ , , , ]) ( )

ij ij

a n a n
MU N

i a n j

ij a n a n ij aj cop j aj

i a n j j

W B N N N N

c N N N N N MC MC cop N

 

 = =

=

−  − +    
.     (14) 

Combining the user equilibrium conditions and solving the above welfare maximization 

problem yields the following mark-ups (see Appendix B): 

2 2

( )

1 1

pub i i
ij ij i j ij

j jij ij

c c
MU N N MEC

N N

−
−

= =

 
=  +  =
 

  .                            (15) 

The superscript ‘pub’ denotes public welfare-maximizing pricing. Eq. (15) implies that the 

welfare-maximizing public mark-up on cars of type i  and brand j  equals the marginal 

external costs imposed by these car users, ijMEC . It is isomorphic to the conventional 

Pigouvian congestion toll (see Pigou, 1920; Small and Verhoef, 2007). The public monopolist 
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thus fully internalizes the externalities caused by all car users, as one might expect. 

In terms of the cooperation strategy, as public welfare-maximizing pricing fully 

internalizes the congestion externality, the public monopolist is more likely to have an 

incentive to apply cross-brand cooperation. This is because the increase in the congestion 

costs for users with substitutes depresses their willingness to pay, and hence the welfare that 

the monopolist can extract from them for a given level of demand, on a dollar-by-dollar basis. 

The social planner would find it beneficial to apply cross-brand cooperation to reduce 

congestion more fully. 

4.3 Private profit-maximizing monopoly 

Private monopoly is at the other extreme of private supply. Under a private 

profit-maximizing monopoly, a private monopolist would maximize the aggregate profit in 

the market by setting all mark-ups and quantities for all cars: 

2

       , ,
{ , } 1

  { , }, {1,2}

max
ij ij

ij ij
MU N

i a n j
i a n j

MU N
 =

 

 =   .                                     (16) 

Solving the above profit maximization problem yields the following monopolistic 

mark-up: 

2 2

( )

1 1

( )
ij ijmon i i

ij ij i j ij ij ij ij

j jij ij ij ij

D Dc c
MU N N N A D N

N N N N

−
−

= =

  
=  +  − + − +
   

  ,        (17) 

where the superscript ‘mon’ denotes the private monopoly. Here, the first two terms are the 

marginal external costs. The third term is the monopolistic mark-up from users with car type 

i  of brand j . The fourth term is the mark-up due to the other three substitutes: it measures 

the effect that a higher price on ij  has on increasing the demand for ( )ij− , which raises the 

profit in these sub-markets. The closer the car type and brand substitutes (i.e., the closer 

( )ij ijD N−   gets to ij ijD N  ), the higher the mark-ups, since this increases the strength 

of the third effect. 

Private monopolistic mark-up is generally higher than the duopolistic mark-up in Eq. (8). 

The monopolist not only charges a higher demand-related mark-up, as consumers switching to 

other product variants does not mean losing them in terms of revenue, but also fully 

internalizes congestion externalities. This is, in the first place, due to congestion externalities 

imposed on all travelers now being considered, not just on the subset served by the duopolies. 

In the second place, duopolies do not internalize the full externalities that customers impose 

upon one another, since customers switching to the other brand would still create congestion 

for the brand’s remaining customers. A private monopolist may, furthermore, lead to a 

suboptimal cooperation strategy due to the distortion in mark-ups, especially when the 
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cooperation cost is high. 

5. Numerical simulations 

To understand the mechanism of cooperation and competition between brands and the 

equilibrium results from the proposed game, we execute some numerical analyses using a 

simulation method. In the following, we first calibrate the parameter values for the base 

case and complete our base case numerical model, then carry out extensive sensitivity 

analyses. The model outcomes are sensitive to parameterization, underlining the importance 

of presenting these results. 

5.1 Parameter specifications 

In the base calibration, we consider two ex-ante symmetric brands.10 Following Van den 

Berg and Verhoef (2016), we focus on petrol autonomous and normal cars. The schedule 

delay parameters are based on the ratios β/α=39/64 and γ/α=1521/640 established by Small 

(1982), as these are common in the literature. We consider a trip length of 20 km, with a 

free-flow travel time of 20 minutes. We use a VOT (α) of €10/h (van den Berg and Verhoef, 

2011b) and assume a base value of θ of 0.8. The automobile cost of normal cars is normalized 

to zero and we use an an MCa at €1.51 (van den Berg and Verhoef, 2016). It is assumed that 

cooperation will increase the automobile cost by 10%, which means that the cooperation cost 

per trip, MCcop, is €0.151.  

5.1.1 Calibration of the capacity effect functions 

Although several studies have used experiments or simulation to estimate the effective 

capacity when autonomous cars and normal cars both exist, the evidence for how the effective 

capacity varies by cooperation regimes is still limited. This poses challenges for the 

calibration of the capacity effect functions. We approach this task by approximating the 

expression of the capacity functions applying some of the values predicted in the literature.11  

As is well established in the literature, the increase in road capacity is a non-linear 

function of the share of the autonomous cars that cooperate (Tientrakool et al., 2011; 

Fernandes and Nunes, 2012; Shladover et al., 2012). For example, it can be as low as 1% for 

autonomous cars that do not cooperate (Shladover et al., 2012) and as high as 414% with very 

efficient cooperation (Fernandes and Nunes, 2012). To distinguish the effects of different 

cooperation regimes, we assume that if all autonomous cars are non-cooperative, the averaged 

capacity is sa(NN)=1.35s; if all autonomous cars are cooperative across brands, the averaged 

capacity is ( ) 3
X Xa Y Ys s= ; if brand 1 applies cooperation within its own brand and brand 2 does 

 
10 This assumption is not vital to the results; it simply helps the interpretation. 
11 In this paper, we ignore the patterns of the vehicle following and only consider the averaged capacity for all autonomous 

cars. 
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not, the averaged capacity for autonomous cars satisfies sa(YN)[0.8] = 1.62s and sa(YN)[0.5] = 

1.43s; and if both brands cooperate within their own brand, sa(YY)[0.8] = sa(YY)[0.2] = 2s is 

satisfied. Fitting these values with polynomial functions leads to the following relationship:  

2.41 0.04

1 1

2.41 0.04

1 1 1

1.70 1.70

1 1

1/1.35,                                  ,
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                       (18) 

This relationship is illustrated in Fig. 2. It can be seen that as 1af  increases, ( ) 1[ ]a YN as f  

increases convexly, ( ) 1[ ]a NY as f  decreases convexly, and ( ) 1[ ]a YY as f  decreases first and then 

increases, which is at its minimum when 1 0.5af = . This implies that the choice of  1[ ]m aR f   

appears to be reasonably in line with the theoretical properties in section 2.3. Because there is 

limited information about the expressions of 1[ ]m aR f , extensive sensitivity analysis is carried 

out in section 5.3.1. 

 

 
     (a) The 1[ ]m aR f  function                 (b) The ( ) 1[ ]a m as f  function 

Fig. 2. Capacity effects of autonomous cars for the numerical model. 

5.1.2 Calibration of travel cost and inverse demand functions 

To calibrate the inverse demand functions, we consider perfect competition with normal 

cars and non-cooperative autonomous cars as the base case. For the base calibration, there are 

9,000 users. The elasticity with respect to own generalized price is -0.35; with substitutes 

from the same brand or the same type of car, the cross-price elasticity is 0.2. For substitutes 

with different car types and brands, the cross-price elasticity is 0.1.12 Under this calibration, 

the travel cost in the equilibrium with autonomous cars is €12.00, and with normal cars is 

 
12 The inverse demand functions are: 

1 1 1 2 2 2 1 1 2 2103.6 0.0154 0.0085 0.0083 0.0077 , 103.6 0.0083 0.0077 0.0154 0.0085 ,a a n a n a a n a nD N N N N D N N N N= − − − − = − − − −

1 1 1 2 2 2 1 1 2 2106.31 0.0085 0.0162 0.0077 0.0088 , 106.31 0.0077 0.0088 0.0085 0.0162 .n a n a n n a n a nD N N N N D N N N N= − − − − = − − − −  
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€13.87. In the following analysis, the currency unit used is also €. 

5.2 Base case analysis 

Table 3 present the outcomes13 of the base calibrations. We compare the outcomes under 

four market structures: perfect competition (MC), duopoly competition (Duopoly), public 

monopolist (Public), and private monopolist (Private). Under the base calibration, a public 

welfare-maximizing monopolist and a private profit-maximizing monopolist will choose 

cross-brand cooperation (YXYX).14 We therefore only present the outcomes with YXYX for these 

two regimes. Relative efficiency,  , is defined as the welfare gain of a policy from the case 

without cooperation under perfect competition, divided by the gain from welfare-maximizing 

public pricing with cross-brand cooperation. A negative value thus reflects that welfare is 

below that under perfect competition without cooperation. As the two brands are ex-ante 

symmetric, outcomes under YN and NY are also symmetric, as presented in the fourth and 

fifth columns of Table 3. The payoff matrix for this two-stage game is shown in Table 4. 

Some main insights are summarized as follows.  

Compared to non-cooperation, within-brand cooperation (YY) and cross-brand 

cooperation (YXYX) both raise the mark-ups on all cars, and more so for cross-brand 

cooperation. The reason is that cooperation lowers the travel cost for all travelers. As we 

consider price-sensitive demand, the decrease in the travel cost will, in turn, attract more car 

users and soften the competition. In contrast, if only one brand cooperates and the other does 

not (YN and NY), the cooperating brand tends to set a lower mark-up to compensate for the 

possible loss of customers to alternatives when the cooperation cost is added to the price and 

thus to attract more autonomous car users. Meanwhile, the non-cooperating brand benefits 

from the cooperating brand’s cooperation without paying any cooperation cost and sets a 

higher mark-up on its autonomous cars. As a result, the mark-up on cooperative autonomous 

cars decreases, whereas that on non-cooperative autonomous cars rises.  

According to the payoff matrix of this game in Table 4, there exist two pure Nash 

equilibria: (within brand, within brand) and (across brands, across brands). Cross-brand 

cooperation may seem the most likely to occur, as it has the highest profits and offers the 

greatest welfare, but it is by no means certain that it is the Nash equilibrium that will prevail, 

as it requires a simultaneous move. Indeed, if brand 1 does not cooperate at all, brand 2’s best 

response is to cooperate within its own brand; if brand 1 cooperates within its own brand, 

brand 2’s best response is to cooperate within its own brand; if brand 1 cooperates across 

brands, brand 2’s best response is to cooperate across brands. By symmetry, the same best 

responses hold for brand 2. Consequently, within-brand cooperation and cross-brand 

cooperation are the two Nash equilibria. Cross-brand cooperation is more attractive and hence 

 
13 The results of interest are: the mark-ups ( ijMU ), number of users ( ijN ), travel cost ( ic ), profit of each brand ( j ), 

consumer benefit ( B ), welfare ( W ), and relative efficiency ( ). 
14 This is because cross-brand cooperation can reduce the congestion the most. Congestion is internal to welfare-maximizing 

and profit-maximizing monopolists, thereby improving the welfare or industry profit, respectively. 
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the dominating equilibrium.  

In terms of relative efficiency, despite the high congestion levels, perfect competition 

performs best (apart from the welfare-maximizing public monopoly with YXYX), followed by 

duopoly competition, and worst performing is the private monopoly. This is because duopoly 

competition and private monopoly lead to marker power distortion, especially for private 

monopoly power. Under duopoly competition, cooperation across brands performs best, as it 

reduces congestion the most. With respect to the profit, Table 3 shows that duopolistic brands 

cannot capture as much surplus generated by high quality as a private monopolist, since the 

benefit partly goes to the competitor. 

 

Table 3. Outcomes of the pricing competition stage 

 NN  YN NY YY  YXYX 

 MC Duopoly  Duopoly  MC Duopoly Public Private 

MUa1 0 23.29  23.17 23.41 23.33  0 23.49 3.88 48.97 

MUa2 0 23.29  23.41 23.17 23.33  0 23.49 3.88 48.97 

MUn1 0 24.09  24.14 24.16 24.30  0 24.63 10.27 52.28 

MUn2 0 24.09  24.16 24.14 24.30  0 24.63 10.27 52.28 

Na1 2,279 1,744  1,753 1,740 1,758  2,331 1,793 2,553 1,255 

Na2 2,279 1,744  1,740 1,753 1,758  2,331 1,793 2,553 1,255 

Nn1 2,221 1,703  1,707 1,705 1,712  2,279 1,722 1,770 1,056 

Nn2 2,221 1,703  1,705 1,707 1,712  2,279 1,722 1,770 1,056 

ac  12.00 9.82  9.63 9.63 9.14  9.67 7.99 8.78 6.07 

nc  13.87 11.40  11.22 11.22 10.13  11.57 9.58 10.40 7.30 

1  0 81,628  81,804 81,936 82,616  0 84,533 28,104 116,654 

2  0 81,628  81,936 81,804 82,616  0 84,533 28,104 116,654 

B  533,812 482,475  482,879 482,879 484,099  536,586 487,136 525,882 376,328 

W  410,625 404,139  405,430 405,430 409,385  431,011 419,530 435,773 341,499 

  0.00 -0.26  -0.21 -0.21 -0.05  0.81 0.35 1.00 -2.75 

 

 

          Table 4. Payoff matrix of the first stage of the game. 

 Brand 2 

  Not cooperate Within brand Across brands 

 

Brand 1 

Not cooperate (81628,81628) (81936,81804) (81936,81804) 

Within brand (81804,81936) (82616,82616) (82616,82616) 

Across brands (81804,81936) (82616,82616) (84533,84533) 
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5.3 Sensitivity analysis 

There is a very wide range of predictions for the capacity effects of autonomous cars in 

the literature. There is also little guidance in respect of the values of cooperation cost, 

copMC  , the VOT reduction parameter,  , and users’ price elasticity. Therefore, it is vital to 

perform extensive sensitivity analyses with respect to these values.15  

5.3.1 Varying the capacity effects of autonomous cars 

There are conceptually two different channels via which the cooperation regimes affect 

the eventual impact of autonomous driving on bottleneck capacity: the benefits from 

cooperating across brands and the benefits from cooperating within brand. It is instructive to 

set up the sensitivity analysis such that these two channels can be clearly distinguished. To 

that end, we investigate through a sensitivity analysis of ( )X Xa Y Ys  and via a sensitivity analysis 

of ( )a YYs , respectively.16 

First, we look at the impact of the maximum increase in capacity due to cooperation by 

varying ( )X Xa Y Ys  from 2.5s  to 4.5s . In the base case, the maximum capacity was 3s .17 Fig. 

3a depicts the profit of each brand under different cooperation strategies under duopoly 

competition. It can be seen that the profit is highest under cross-brand cooperation, followed 

by within-brand cooperation. According to the resulting payoff matrixes, there always exist 

two Nash equilibria: (cooperate within brand, cooperate within brand) and (cooperate across 

brands, cooperate across brands). This means that the variation of the maximum capacity does 

not affect the Nash equilibria of brands’ cooperation decisions. In Fig. 3a, the cooperation 

strategies under Nash equilibrium are depicted with solid curves, and the dotted curves 

represent the non-equilibrium strategies. Due to the highest profit, cross-brand cooperation is 

the dominating equilibrium and achieves social optimality; but again, it is by no means certain 

that it will prevail. 

Fig. 3b compares the performances of different market structures. Relative efficiencies 

under duopoly competition with cross-brand cooperation, private monopoly, and perfect 

competition all increase with the maximum capacity.18 Indeed, a higher maximum capacity 

improves the welfare gains for all regimes by reducing congestion, which lowers the welfare 

gain from optimal pricing in the denominator of the relative efficiencies. Conversely, when 

the two duopolies cooperate only within own brand, the relative efficiency declines, due to the 

decreasing capacity gains from within-brand cooperation.  

The effects of ( )X Xa Y Ys  on the pricing competition are given in Appendix C. 

 
15 The effects of other parameters are in line with the theoretical discussion. Moreover, for these parameters, we have much 
more guidance from the literature. Hence, these parameters will not be discussed further here.  
16 The capacity effects under NN and YN (or NY) are less beneficial and less interesting. 
17 Maximum capacity refers to the capacity for autonomous cars when both brands choose to cooperate across brands, i.e., 

( )X Xa Y Ys . 

18 Public and private monopolists both choose cross-brand cooperation. 
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(a) Profit of each brand under duopoly               (b) Relative efficiency 

Fig. 3. Effects of ( )X Xa Y Ys  on the profit and relative efficiency. 

Note: In Fig. 3a, solid curves represent the Nash equilibrium for the cooperation strategies, and dotted 

curves represent the non-equilibrium strategies. 

 

Next, we investigate the impact of the relative capacity benefit of within-brand 

cooperation under duopoly competition, by varying ( )[0.8]a YYs  from 1.65s  to 3s .19 The 

capacity functions under other cooperation strategies remain the same as the base case. Fig. 4a 

shows that ( )[0.8]a YYs s  below 1.8 leads to three Nash equilibria: (cooperate within brand, 

not cooperate), (not cooperate, cooperate within brand), and (cooperate across brands, 

cooperate across brands). When ( )[0.8]a YYs s  exceeds 1.8, (cooperate within brand, 

cooperate within brand) and (cooperate across brands, cooperate across brands) become the 

two equilibria. This implies that the capacity benefit of within-brand cooperation has a 

significant impact on the Nash equilibrium of the cooperation decisions. Specifically, when 

( )[0.8]a YYs s  is low, brands have no incentive to apply within-brand cooperation. As 

( )[0.8]a YYs s  increases, the benefits of within-brand cooperation are strengthened.  

The effects on equilibrium mark-ups are shown in Fig. 4b and 4c. As ( )[0.8]a YYs  

increases, the mark-up on autonomous cars and normal cars under within-brand cooperation 

both increase and approach those under cross-brand cooperation. The reason is that a higher 

( )[0.8]a YYs  reduces competition through lowering the travel cost and attracting more car users. 

Specifically, when ( )[0.8]a YYs  approaches 3s, within-brand cooperation becomes similar to 

cross-brand cooperation. 

 
 

 
19Note that ( )[0.8]a YYs  is between 1.65s  and 3s . Specifically, ( )[0.8] 1.65a YYs s=  means the effect of within-brand 

cooperation is more similar to non-cooperation, whereas ( )[0.8] 3a YYs s=  means it is more similar to cross-brand 

cooperation. The effects on the relative efficiency is not investigated, since the results under other strategies are the same as 
the base case. 
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(a) Profit of each brand  
Note: Solid curves represent Nash equilibrium strategies and dashed curves 

represent non-equilibrium strategies. 

 
(b) Mark-up on autonomous cars            (c) Mark-up on normal cars 

Fig. 4. Effects of ( )[0.8]a YYs  on the profit and mark-ups under duopoly competition. 

5.3.2 Varying the cooperation cost 

We vary the cooperation cost from 0 to 4. Fig. 5a compares brands’ profits with 

alternative cooperation strategies under duopoly competition. It can be seen that when only 

one brand applies cooperation and the other does not, a larger cooperation cost lowers the 

profit of the cooperating brand and raises that of the non-cooperating brand. Typically, this 

duopoly game has multiple Nash equilibria. Unless the cooperation cost is very high, 

cross-brand cooperation is one of these equilibria; but again, it is by no means certain that it 

will prevail. Specifically, when the cooperation cost exceeds 3.59, cross-brand cooperation 

stops being the Nash equilibrium. Nevertheless, the social welfare depicted in Fig. 5b shows 

that cross-brand cooperation will still be socially optimal until the cooperation cost exceeds 

3.68. This suggests that profit-maximizing duopolistic firms may lead to below-optimal 

cooperation. 

Fig. 5c and 5d depict the social welfare and industry profit under public monopoly and 

private monopoly, respectively. As cooperation cost increases, social welfare and industry 
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profit both decrease. The public monopolist always chooses cross-brand cooperation, whereas 

the private monopolist stops cooperation when the cooperation cost exceeds 2.48. This 

indicates that compared to a social optimum cooperation strategy, duopoly competition and 

private monopoly both lead to too little cooperation, especially for the private monopolist. 

 

 
 (a) Profit per brand under duopoly           (b) Social welfare under duopoly 

   
(c) Social welfare under public monopoly   (d) Industry profit under private monopoly 

Fig. 5. Effects of cooperation cost on the profit and social welfare. 

Note: In Fig. 5a, 5b and 5d, solid curves represent the Nash equilibrium for the cooperation strategies, and 

dotted curves represent the non-equilibrium strategies. 

 

Fig. 6 shows the interactions of the pricing competition between different car types and 

brands under the resultant equilibrium strategies. Fig. 6a shows that the public monopolist 

slightly reduces the mark-up on all cars, and overall congestion becomes lower as the 

cooperation cost increases. In contrast, with cross-brand cooperation, the private monopolist 

lowers the mark-up on autonomous cars as a result of the reduction in private monopolistic 

power, and slightly decreases that on normal cars because of the reduction in congestion. A 

jump occurs when the private monopolist changes from cross-brand cooperation to 

non-cooperation, as shown in Fig. 6b. Fig. 6c shows that for duopoly competition, a higher 

cooperation cost lowers the mark-up on autonomous cars and raises that on normal cars. This 

is because a higher cooperation cost makes autonomous cars less attractive and normal cars 



 28 

more appealing. Meanwhile, the reduction in congestion tends to lower the mark-up on all 

cars. The first effect remains dominant. 

Fig. 7 depicts the relative efficiencies of equilibrium strategies under different market 

structures. It can be seen that the relative efficiency decreases with the cooperation cost for all 

market structures. This is because a higher cooperation cost leads to less cooperation between 

cars, a possible societal benefit of a private supply, making demand-related mark-ups, a 

societal disadvantage, relatively more important. The relative efficiency under private 

monopoly decreases most, due to private monopolistic power. For the different equilibrium 

strategies under duopoly competition, the welfare loss is the smallest when the two brands 

both choose cross-brand cooperation, followed by both choosing within-brand cooperation, 

and the largest when neither of them cooperates. 

 

 
(a) Public monopoly                     (b) Private monopoly 

 

(c) Duopoly 

Fig. 6. Effects of cooperation cost on mark-ups under different market structures. 

Note: Solid curves represent autonomous cars and dotted curves represent normal cars. 

 



 29 

 

Fig. 7. Effects of cooperation cost on relative efficiencies. 

5.3.3 Varying the VOT reduction parameter 

We vary the VOT reduction parameter,  , from its theoretical minimum of /   to 1. 

Fig. 8 shows that as   increases, the profit per brand and the social welfare both decrease, 

due to the increasing cost of travelling. Brands benefit most from cross-brand cooperation, 

followed by solely within-brand cooperation, only one-brand cooperation, and lastly by no 

cooperation at all, as shown in Fig. 8a. This implies that   does not affect the Nash 

equilibria for the cooperation strategies, (cooperate within brand, cooperate within brand) and 

(cooperate across brands, cooperate across brands), where cross-brand cooperation is more 

attractive and is the dominating equilibrium. Fig. 8b shows that cross-brand cooperation is 

also the social optimum given a duopoly. 

For the pricing decisions under different market structures, Fig. 9 shows that, as θ 

increases, all suppliers tend to reduce the mark-up on autonomous cars and raise that on 

normal cars, because a larger θ means a lower willingness to pay for autonomous cars and a 

higher willingness to pay for normal cars. With a public monopolist, the mark-up on normal 

cars changes more than that on autonomous cars, implying that the increase in congestion 

imposed by normal cars is stronger than its reduction by the use of autonomous cars. In 

contrast, for private monopolistic pricing and duopolistic pricing, the mark-up on autonomous 

cars changes more, owing to competition and substitutional effects between different cars, 

which affects autonomous cars more.  

Fig. 10 compares the changes in relative efficiencies. In this sensitivity, as θ increases, 

the performance of duopoly competition and private monopoly both become modestly better, 

owing to the increasing competition and reducing market power. Cross-brand cooperation also 

naturally performs better than within-brand cooperation. Under perfect competition, a higher 

θ leads more drivers to switch to normal cars and raises congestion. As a result, the relative 

efficiency decreases. It is clear from Fig. 10 that the impact of varying θ on relative efficiency 

is modest: the curves are all fairly flat. 
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(a) Profit per brand                         (b) Social welfare 

Fig. 8. Effects of   on profit and social welfare under duopoly competition. 

 

 

 

(a) Public monopoly                      (b) Private monopoly 

 

(c) Duopoly 

Fig. 9. Effects of   on mark-ups under different market structures. 
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Fig. 10. Effects of   on relative efficiencies. 

5.3.4 Varying the price elasticity of demand 

To investigate the effects of price elasticity on duopoly decisions, we increase and 

decrease the own-price elasticity and cross-price elasticities by the same percentage at the 

same time. In the base case, own-price elasticity was -0.35, and cross-price elasticities were 

0.2 and 0.1. We now increase these elasticities to twice and three times the size, compared to 

the base case, as well as decreasing them to 1/3 and 1/2. To calibrate the inverse demand 

functions for each price elasticity, we make the demand curve tilt around the equilibrium in 

the base equilibrium without autonomous cars. Higher price elasticities thus lead to larger 

coefficients in the inverse demand function, which also means lower consumer benefit and 

social welfare. 

The profit under cross-brand cooperation is again the highest, followed by within-brand 

cooperation. Consequently, elasticities do not change brands’ equilibria for their cooperation 

strategies: (cooperate within brand, cooperate within brand) and (cooperate across brands, 

cooperate across brands). The equilibrium outcomes are summarized in Table 5.  

Table 5 shows that greater price elasticity tends to lower the mark-up on all cars. Indeed, 

as travelers become more price-sensitive, a slight drop in the mark-up will lead to an increase 

in the demand for corresponding cars. Brands hence find it more beneficial to charge lower 

mark-ups to attract more car users and this softens the price and mark-ups.  

In terms of relative efficiency, Table 5 shows that as demand becomes more sensitive, 

duopoly competition becomes more efficient, despite the declining welfare. This is because an 

increase in price elasticity raises the number of autonomous cars and normal cars, which, on 

the one hand, increases congestion and, on the other, lowers the marginal willingness to pay. 

The former effect implies that the societal benefit from private pricing increases and the latter 

that its downsides decrease. Relative efficiency thus increases with the price elasticity of 

demand. 
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Table 5. Outcomes with different price elasticities. 

 1/3*base case  1/2*base case  2*base case  3*base case 

 YY  X XY Y   YY  X XY Y   YY  X XY Y   YY  X XY Y  

ajMU  68.40 68.56  45.87 46.03  12.02 12.19  8.23 8.40 

njMU  70.57 70.90  47.45 47.78  12.68 13.01  8.77 9.09 

ajN  1,726 1,738  1,734 1,752  1,800 1,869  1,838 1,939 

njN  1,682 1,685  1,690 1,695  1,753 1,772  1,790 1,818 

j  236,770 238,654  159,734 161,628  43,881 45,836  30,827 32,810 

SW  1,180,089 1,190,138  794,928 805,003  215,811 226,057  150,645 160,949 

  -2.25 -1.81  -1.11 -0.69  0.38 0.75  0.46 0.81 

 

5.3.5 Asymmetric cooperation cost 

The final sensitivity analysis considers asymmetric cooperation cost. We normalize the 

cooperation cost of brand 2 to zero, and vary the cooperation cost for brand 1, MCcop,1, from 0 

to 4. 

The Nash equilibria for the two-stage game is summarized in Table 6. It can be seen that 

when MCcop,1 is between 0.57 and 1.75, in addition to cross-brand cooperation, (not cooperate, 

cooperate within brand) is also a Nash equilibrium. This indicates that under asymmetric 

cooperation cost, a higher cooperation cost tends to reduce brands’ incentive to cooperate. 

Specifically, when MCcop,1 exceeds 1.75, (not cooperate, cooperate within brand) becomes the 

unique Nash equilibrium, and cross-brand cooperation stops being the Nash equilibrium. 

Fig. 11 shows the effects of cooperation cost on relative efficiency. Under duopoly 

competition, relative efficiencies under YXYX and YY both decrease with brand 1’s cooperation 

cost, and the relative efficiency under NY is constant at -0.19. As a result, when brand 1’s 

cooperation cost is low, cross-brand cooperation performs best; when brand 1’s cooperation 

cost is high, NY performs best. Therefore, asymmetry of cooperation cost tends to reduce the 

efficiency of cooperation. 

 

Table 6. Nash equilibria under asymmetric cooperation cost. 

NE 
,1 0.57copMC   ,10.57 1.75copMC   ,1 1.75copMC   

(Not, not) × × × 

(Within, not) × × × 

(Not, within) × √ √ 

(Within, within) √ × × 

(Across, across) √ √ × 

Number of NE 2 2 1 
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Fig. 11. Effects of asymmetric cooperation cost on relative efficiencies. 

6. Conclusion 

This paper investigated the strategic interactions of multiple car brands—which may 

provide both autonomous cars and normal cars—focusing on the question of whether brands 

will want their autonomous cars to cooperate within and/or across brands. This is an important 

question, as cooperation is what ensures that road capacity increases with the use of 

autonomous cars. In our paper, each brand has three options for its autonomous cars: 

cooperation within own brand only, cooperation across brands, or no cooperation between 

vehicles. We considered four market structures: duopoly competition, perfect competition, a 

public welfare-maximizing monopoly, and a private profit-maximizing monopoly. For 

duopoly competition, we built a two-stage game model, first with a choice of cooperation 

strategy and then Bertrand competition with imperfect substitutes. 

Some important findings and new insights are obtained. First, duopoly competition or a 

private monopoly may lead to too little cooperation. Indeed, cooperation with another brand 

may lower the travel times of its own autonomous car users; but it also does the same for the 

competing brand, thereby strengthening the element of competition. A duopoly sees this as a 

downside, whereas a public monopolist owning all brands regards this as an advantage. A 

private monopoly may also lead to below-optimal cooperation, due to monopolistic market 

power. Second, a duopoly may, furthermore, have multiple equilibria in the cooperation 

strategy. Unless cooperation costs are very high, cross-brand cooperation is one of these 

equilibria; but it is by no means certain that it will prevail. No cooperation, and solely 

within-brand cooperation, are also often Nash equilibria. It is only when cooperation costs are 

too high that a unique Nash equilibrium obtains for (1) no cooperation at all (for symmetric 

brands) or (2) for one brand cooperating within its own brand and the other brand not 

cooperating (for asymmetric brands). In contrast, for the public welfare-maximizing 

monopolist and the private profit-maximizing monopolist, the equilibrium is always unique: 
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either cooperation across brands or no cooperation at all (when the cooperation cost is high). 

Third, the relative benefits of within-brand cooperation also have significant impact on the 

Nash-equilibrium of brands’ cooperation strategies. Specifically, when within-brand 

cooperation increases capacity slightly, in addition to cross-brand cooperation, one firm 

cooperating within its own brand and the other not cooperating is also a Nash equilibrium. As 

road capacity is improved more effectively, within-brand cooperation and cross-brand 

cooperation become the Nash equilibria. Finally, in contrast to the standard Bertrand duopoly, 

in this paper both brands can ask positive mark-ups, since they internalize the congestion 

externality on their own users and provide imperfect substitutes to soften the competition. 

The proposed model can serve as a useful tool for analyzing the impacts of competition 

between multiple car brands, and technical cooperation while driving between the 

autonomous vehicles they supply. Based on our findings, product differentiation and market 

characteristics play an important role in evaluating the welfare impacts of suppliers’ 

cooperation and pricing strategies. Despite the advantages that vehicle-to-vehicle cooperative 

technology may bring for the product quality of a firm’s own clientele, a potential rise in the 

competitors' attractiveness may lower the benefits from cooperation as perceived by firms. 

Our analysis has shown that the collective result of firms’ trade-offs in deciding about 

cooperation between autonomous vehicles within and between brands will not perfectly 

overlap with the benefits and costs that should be traded off from a societal perspective. 

Required market corrections depend on aspects such as the level of cooperation cost, 

a-symmetries in cooperation costs, and the relative benefit of within-brand cooperation. The 

regulator should thus not blindly encourage cross-brand cooperation, but instead make 

informed trade-offs that take such effects into consideration. As far as pricing is concerned, 

we found that large car suppliers may find it advantageous to take at least part of the 

congestion externality and the substitution effects between different car types into account 

when making their supply decisions. 

Although our study sheds light on the joint application of game-theoretic modelling and 

dynamic congestion modelling in analyzing a transport system with a mix of autonomous and 

normal human-driven cars, it can be further extended in several directions. First, this paper 

considered capacity effects in a general way by ignoring the different headways in mixed 

traffic and only investigated the averaged capacity of autonomous cars with different brands. 

In order to make use of the proposed model for practical applications in reality, there is a need 

to use traffic flow theory or stochastic process theory to take the capacity interaction between 

different headways into account (e.g., Van Wee et al., 2013; Zhou et al., 2020). Second, the 

proposed model only considered private autonomous cars. However, with the development of 

vehicle automation and the sharing economy, a mix of normal human-driven cars, 

autonomous cars, and shared autonomous cars can be expected to coexist in the next few 

decades, affecting the way of travel (e.g., Haboucha et al., 2017; Tian et al., 2021). 

Autonomous cars, especially when combined with shared use, may contribute to reducing or 
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solving some of the most intractable urban problems, such as traffic congestion, road traffic 

accidents, and inefficient use of urban spaces. It would be interesting to investigate the 

cooperation and competition among private autonomous cars, shared autonomous cars, and 

normal human-driven cars. Third, in this paper, all users are assumed to be ex-ante identical, 

and users with an autonomous car have the same scheduling preference. Hence, all 

autonomous car users travel jointly in a mixed flow and have the same departure rate and 

equilibrium travel cost. It seems plausible that the extent to which using an autonomous car 

would reduce the VOT will vary by brands, such as a cheaper brand vehicle would reduce the 

VOT less than a more costly brand vehicle. This would mean that brands will have a 

significant impact on travelers’ departure time choices and travel costs. Therefore, it would be 

interesting and necessary to consider the heterogeneity caused by brand differences into 

account in a future study. Finally, the choice of where to park an autonomous car and the 

option of renting it out when not using it (for instance, via Uber or Lyft) are interesting topics. 

References 

Arnott, R., de Palma, A., & Lindsey, R. (1989). Schedule delay and departure time decisions with 

heterogeneous commuters. Transportation Research Record, 1197, 57-67. 

Arnott, R., de Palma, A., & Lindsey, R. (1993). A structural model of peak-period congestion: A traffic 

bottleneck with elastic demand. The American Economic Review, 83(1), 161-179. 

Bansal, P., Kockelman, K. M., & Singh, A. (2016). Assessing public opinions of and interest in new vehicle 

technologies: An Austin perspective. Transportation Research Part C: Emerging Technologies, 67, 

1-14. 

Brueckner, J. K. (2002). Airport congestion when carriers have market power. American Economic Review, 

92(5), 1357-1375. 

Burns, L. D. (2013). A vision of our transport future. Nature, 497(7448), 181-182. 

Chen, Z., He, F., Yin, Y., & Du, Y. (2017). Optimal design of autonomous vehicle zones in transportation 

networks. Transportation Research Part B: Methodological, 99, 44-61. 

Chen, Z., He, F., Zhang, L., & Yin, Y. (2016). Optimal deployment of autonomous vehicle lanes with 

endogenous market penetration. Transportation Research Part C: Emerging Technologies, 72, 

143-156. 

Daniel, J. I. (1995). Congestion pricing and capacity of large hub airports: A bottleneck model with 

stochastic queues. Econometrica: Journal of the Econometric Society, 63(2), 327-370. 

de Palma, A., & Lindsey, R. (2000). Private toll roads: Competition under various ownership regimes. The 

Annals of Regional Science, 34(1), 13-35. 

Dixit, A. (1979). A model of duopoly suggesting a theory of entry barriers. The Bell Journal of Economics, 

10(1), 20-32. 

Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, 

barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 

167-181. 

Fernandes, P., & Nunes, U. (2012). Platooning with IVC-enabled autonomous vehicles: Strategies to 

mitigate communication delays, improve safety and traffic flow. IEEE Transactions on Intelligent 

Transportation Systems, 13(1), 91-106. 



 36 

Fu, X., van den Berg, V. A.C., & Verhoef, E. T. (2018). Private road networks with uncertain demand. 

Research in Transportation Economics, 70, 57-68. 

Haboucha, C. J., Ishaq, R., & Shiftan, Y. (2017). User preferences regarding autonomous vehicles. 

Transportation Research Part C: Emerging Technologies, 78, 37-49. 

Krueger, R., Rashidi, T. H., & Dixit, V. V. (2019). Autonomous driving and residential location preferences: 

Evidence from a stated choice survey. Transportation Research Part C: Emerging Technologies, 108, 

255-268. 

Krueger, R., Rashidi, T. H., & Rose, J. M. (2016). Preferences for shared autonomous vehicles. 

Transportation Research Part C: Emerging Technologies, 69, 343-355. 

Kuang, Z., Lian, Z., Lien, J. W., & Zheng, J. (2020). Serial and parallel duopoly competition in 

multi-segment transportation routes. Transportation Research Part E: Logistics and Transportation 

Review, 133, 101821. 

Lamotte, R., de Palma, A., & Geroliminis, N. (2017). On the use of reservation-based autonomous vehicles 

for demand management. Transportation Research Part B: Methodological, 99, 205-227. 

Li, Z. C., Huang, H. J., & Yang, H. (2020). Fifty years of the bottleneck model: A bibliometric review and 

future research directions. Transportation Research Part B: Methodological, 139, 311-342. 

Lindsey, R. (2004). Existence, uniqueness, and trip cost function properties of user equilibrium in the 

bottleneck model with multiple user classes. Transportation Science, 38(3), 293-314. 

Liu, W. (2018). An equilibrium analysis of commuter parking in the era of autonomous vehicles. 

Transportation Research Part C: Emerging Technologies, 92, 191-207. 

Liu, Z., & Song, Z. (2019). Strategic planning of dedicated autonomous vehicle lanes and autonomous 

vehicle/toll lanes in transportation networks. Transportation Research Part C: Emerging Technologies, 

106, 381-403. 

Nieuwenhuijsen, J., de Almeida Correia, G. H., Milakis, D., van Arem, B., & van Daalen, E. (2018). 

Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles 

technology using system dynamics. Transportation Research Part C: Emerging Technologies, 86, 

300-327. 

Pels, E., & Verhoef, E. T. (2004). The economics of airport congestion pricing. Journal of Urban 

Economics, 55(2), 257-277. 

Pigou, A. C. (1920). The Economics of Welfare. Macmillan, London. 

Pudāne, B. (2020). Departure time choice and bottleneck congestion with automated vehicles: Role of 

on-board activities. European Journal of Transport and Infrastructure Research, 20(4), 306-334. 

Pudāne, B., Molin, E. J. E., Arentze, T. A., Maknoon, Y., & Chorus, C. G. (2018). A time-use model for 

the automated vehicle-era. Transportation Research Part C: Emerging Technologies, 93, 102-114. 

Shladover, S. E., Su, D., & Lu, X.-Y. (2012). Impacts of cooperative adaptive cruise control on freeway 

traffic flow. Transportation Research Record, 2324(1), 63-70.  

Silva, H. E., & Verhoef, E. T. (2013). Optimal pricing of flights and passengers at congested airports and 

the efficiency of atomistic charges. Journal of Public Economics, 106, 1-13.  

Small, K. A. (1982). The scheduling of consumer activities: Work trips. The American Economic Review, 

72(3), 467-479. 

Small, K. A. (2015). The bottleneck model: An assessment and interpretation. Economics of Transportation, 

4(1-2), 110-117.  

Small, K. A., & Verhoef, E. T. (2007). The Economics of Urban Transportation. Routledge. 

Sun, X., & Yin, Y. (2021). An auction mechanism for platoon leader determination in single-brand 



 37 

cooperative vehicle platooning. Economics of Transportation, 28, 100233. 

Tang, Z. Y., Tian, L. J., & Wang, D. Z. W. (2021). Multi-modal morning commute with endogenous shared 

autonomous vehicle penetration considering parking space constraint. Transportation Research Part 

E: Logistics and Transportation Review, 151, 102354. 

Tian, L. J., Sheu, J. B., & Huang, H. J. (2019). The morning commute problem with endogenous shared 

autonomous vehicle penetration and parking space constraint. Transportation Research Part B: 

Methodological, 123, 258-278.  

Tian, Z., Feng, T., Timmermans, H. J. P., & Yao, B. (2021). Using autonomous vehicles or shared cars? 

Results of a stated choice experiment. Transportation Research Part C: Emerging Technologies, 128, 

103117. 

Tientrakool, P., Ho, Y. C., & Maxemchuk, N. F. (2011). Highway capacity benefits from using 

vehicle-to-vehicle communication and sensors for collision avoidance. 2011 IEEE Vehicular 

Technology Conference (VTC Fall). 

van den Berg, V. A. C. (2013). Serial private infrastructures. Transportation Research Part B: 

Methodological, 56, 186-202.  

van den Berg, V. A. C., & Verhoef, E. T. (2011a). Congestion tolling in the bottleneck model with 

heterogeneous values of time. Transportation Research Part B: Methodological, 45(1), 60-78.  

van den Berg, V. A. C., & Verhoef, E. T. (2011b). Winning or losing from dynamic bottleneck congestion 

pricing? The distributional effects of road pricing with heterogeneity in values of time and schedule 

delay. Journal of Public Economics, 95(7-8), 983-992.  

van den Berg, V. A. C., & Verhoef, E. T. (2016). Autonomous cars and dynamic bottleneck congestion: 

The effects on capacity, value of time and preference heterogeneity. Transportation Research Part B: 

Methodological, 94, 43-60.  

Van Dender, K. (2005). Duopoly prices under congested access. Journal of Regional Science, 45(2), 

343-362. 

van Wee, B., Annema, J. A., & Banister, D. (Eds.). (2013). The Transport System and Transport Policy: An 

Introduction. Edward Elgar Publishing, Cheltenham, UK, pp. 125-159. 

Vickrey, W. (1969). Congestion theory and transport investment. The American Economic Review, 59(2), 

251–260. 

Wadud, Z., MacKenzie, D., & Leiby, P. (2016). Help or hindrance? The travel, energy and carbon impacts 

of highly automated vehicles. Transportation Research Part A: Policy and Practice, 86, 1-18.  

Wu, W., Zhang, F., Liu, W., & Lodewijks, G. (2020). Modelling the traffic in a mixed network with 

autonomous-driving expressways and non-autonomous local streets. Transportation Research Part E: 

Logistics and Transportation Review, 134, 101855. 

Yu, X., van den Berg, V. A. C., & Verhoef, E. T. (2022). Autonomous cars and activity-based bottleneck 

model: How do in-vehicle activities determine aggregate travel patterns?. Transportation research 

part C: Emerging Technologies, 139, 103641. 

Zhang, A., & Zhang, Y. (2006). Airport capacity and congestion when carriers have market power. Journal 

of Urban Economics, 60(2), 229-247.  

Zhang, W., Zhao, H., & Jiang, R. (2018). Impact of capacity drop on commuting systems under uncertainty. 

Journal of Advanced Transportation, 2018, 6809304. 

Zhang, X., Liu, W., Waller, S. T., & Yin, Y. (2019). Modelling and managing the integrated 

morning-evening commuting and parking patterns under the fully autonomous vehicle environment. 

Transportation Research Part B: Methodological, 128, 380-407.  



 38 

Zheng, F., Liu, C., Liu, X., Jabari, S. E., & Lu, L. (2020). Analyzing the impact of automated vehicles on 

uncertainty and stability of the mixed traffic flow. Transportation Research Part C: Emerging 

Technologies, 112, 203-219. 

Zhou, Y., Ahn, S., Wang, M., & Hoogendoorn, S. (2020). Stabilizing mixed vehicular platoons with 

connected automated vehicles: An H-infinity approach. Transportation Research Part B: 

Methodological, 132, 152-170. 

 

Acknowledgments 

The work described in this paper was jointly supported by grants from the National Key 

Research and Development Program of China (2018YFB1600900), the National Natural 

Science Foundation of China (71525003, 71890970/71890974), and the NSFC-EU joint 

research project (71961137001). Any remaining errors are ours. 

Appendix A. Pricing rule under duopoly competition. 

We illustrate with brand 1. According to Eq. (7), the associated Lagrangian is: 
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Taking the derivatives of Eq. (A1) with respect to 1aMU , 1nMU , 1aN , 1nN , 2aN  and 

2nN  yields: 
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From Eq. (A4) and Eq. (A6), we can obtain: 
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Substituting Eq. (A2) and Eq. (A3) into Eq. (A5) and Eq. (A7) yields: 

1 1 2 2

1 1 2 2

2 2 2 2 2 2 2 2

1 1 2 2

1 1 2 2

2 2 2 2 2 2

,a a n n a a n n

a n a n

a a a a a a a a

a a n n a a n

a n a n

n n n n n n n

D c D c D c D c
N N

N N N N N N N N

D c D c D c D
N N

N N N N N N N

              
 − +  − =   − +   −       
              

           
 − +  − =   − +       
            2 2

.n

n

c

N

 
− 
 

    (A9) 

Solving Eq. (A9) yields: 
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   Substituting Eqs. (A10) and (A11) into Eq. (A8), we can obtain the mark-up of brand 1 on 

autonomous cars and normal cars, as expressed in Eqs. (8)-(10). Similarly, we can derive 1a , 

1n , 2

r

aMU  and 2

r

nMU . 

 

Appendix B. Pricing rule under a public welfare-maximizing monopoly 

The consumer benefit can be expressed as: 
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   

, (B1) 

implying that ij ijB N D  = . 

The associated Lagrangian is: 
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( )

2 2

1 1 2 2 1 1 2 2

{ , } 1 1

1 1 1 1 2 2 1 1 2 2 1 1 1

2 2 1 1 2 2 1 1 2 2

[ , , , ] ( [ , , , ] )

[ , , , ] [ , , , ]

[ , , , ] [ , , , ]

a n a n ij a n a n ij ij cop j aj

i a n j j

a a a n a n a a n a n a a cop

a a a n a n a a n a n a

W B N N N N c N N N N MC N MC cop N

D N N N N c N N N N MU MC MC cop

D N N N N c N N N N MU





 = =

= − +  −  

−  − − − − 

−  − −

  

( )
( )

( )

2 2 2

1 1 1 1 2 2 1 1 2 2 1 1

2 2 1 1 2 2 1 1 2 2 2 2

[ , , , ] [ , , , ]

[ , , , ] [ , , , ]

a cop

n n a n a n n a n a n n n

n n a n a n n a n a n n n

MC MC cop

D N N N N c N N N N MU MC

D N N N N c N N N N MU MC





− − 

−  − − −

−  − − −

. 

(B2) 

Substituting Eq. (B1) into Eq. (B2) and taking the derivatives of Eq. (B2) with respect to 

ijMU , ijN , and ij  ( { , }, {1,2}i a n j  ) yields: 

1 2 1 2

1 2 1 2

0; 0; 0; 0;a a n n

a a n n

W W W W

MU MU MU MU
   

   
= = = = = = = =

   
          (B3) 

( ) ( ) 1 1
a a n n

ij aj a j n j nj a cop

ij ij ij ij ij

c c c cW
D N N N N MC MC cop

N N N N N
− −

   
= − − − − − − 

    
.     (B4) 

Substituting the user equilibrium conditions in Eq. (4) into Eq. (B4) yields: 

( ) ( )

pub a a n n
ij aj a j n j nj

ij ij ij ij

c c c c
MU N N N N

N N N N
− −

   
= + + +
   

,                        (B5) 

as shown in Eq. (15). 

Appendix C. Effects of the maximum capacity on the pricing competition 

Fig. 12 depicts the effects of ( )X Xa Y Ys  on equilibrium mark-ups. Fig.12a shows that with 

cross brand cooperation, the mark-ups on autonomous cars and normal cars both increase with 

the maximum capacity, whereas when two brands cooperate solely within own brand, the 

mark-ups decrease. For cross-brand cooperation this is because a larger maximum capacity 

reduces the travel costs more and attracts a greater number of car users, which softens the 

competition between brands. For cooperation within own brand, due to symmetry, the demand 

for autonomous cars of different brands is the same, which causes the eventual capacity of 

autonomous cars to achieve the lowest value of the parabolas (see Fig. 2b). A higher 

maximum capacity thus means a lower equilibrium capacity for autonomous cars, which leads 

to opposite outcomes compared to the case of cross brand cooperation. Fig 12 (b-c) suggests 

that public monopolist and private monopolist structures also tend to lower the mark up on 

autonomous cars, and slightly raise that on normal cars, due to the resulting congestion 

effects. 
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(a) Duopoly competition 
 

 

(b) Public monopoly                       (c) Private monopoly 

Fig. 12. Effects of ( )X Xa Y Ys  on mark-ups under different market structures. 


