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Abstract: We present a weekly structural Vector Autoregressive (VAR) model of the US crude

oil market. Exploiting weekly data we can explain short-run crude oil price dynamics, including

those related with the COVID-19 pandemic and with the Russia’s invasion of Ukraine. The model

is set identified with a Bayesian approach that allows to impose restrictions directly on structural

parameters of interest, such as supply and demand elasticises. Our model incorporates both the

futures-spot price spread to capture shocks to the real price of crude oil driven by changes in

expectations and US inventories to describe price fluctuations due to unexpected of variations of

above-ground stocks. Including the futures-spot price spread is key for accounting for feedback

effects from the financial to the physical market for crude oil and for identifying a new structural

shock that we label expectational shock. This shock plays a crucial role when describing the series

of events that have led to the spike in the price of crude oil recorded in the aftermath of Russia’s

invasion of Ukraine.
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1 Introduction

Understanding and forecasting changes in the real price of crude oil is an important but

challenging task. Oil price dynamics are closely tracked by authorities in charge of monetary

and fiscal policies (Yellen, 2015; CEA - Council of Economic Advisers, 2019; Schnabel, 2020).

Scholars have carefully scrutinized the functioning of crude oil markets and their relationship

with the macroeconomy (Hamilton, 2019a; Baumeister and Kilian, 2016). Moreover, in

recent years there has been growing interest in crude oil futures markets as an attractive

venue for investors to benefit from portfolio diversification and inflation hedging (Erb and

Campbell, 2006; Gorton et al., 2013a; Cheng and Xiong, 2014). Lastly, understanding the

relationship between spot and futures oil prices is key for companies in the transportation

and energy sectors whose assets and liabilities might be affected by oil price fluctuations (see

e.g. Alizadeh et al., 2004; Chun et al., 2019).

We develop a weekly structural Vector Autoregressive (VAR) model of the US market for

crude oil that can can be used to analyse short-run price fluctuations driven by shocks hitting

the spot price of West Texas Intermediate (WTI). We exploit weekly data to disentangle

the combination of structural shocks that have caused the price responses observed after the

outbreak of the COVID-19 pandemic and in the aftermath of the Russia’s invasion of the

Ukraine. Our methodology for decomposing the WTI spot price into its structural drivers

relies on the Bayesian approach due to Baumeister and Hamilton (2019). Bayesian inference

allows to incorporate uncertainty about the restrictions used to identify the structural shocks

of VAR model.

Our work is related with different strands of the literature. First, we contribute to the

literature on structural models of the crude oil market where the price of oil is endogenous

with respect to macroeconomic aggregates (see e.g. Alquist et al., 2019; Baumeister and

Hamilton, 2019; Bodenstein et al., 2012; Kilian, 2009; Kilian and Murphy, 2014). Moreover,

our study can also be cast in the literature dealing with the relationship between the physical

and financial markets for commodities (see e.g. Alquist and Kilian, 2010; Alquist and Gervais,

2013; Alquist et al., 2014; Juvenal and Petrella, 2015; Knittel and Pindyck, 2016; Pindyck,

2001; Singleton, 2014; Smith, 2009). Lastly, we contribute to the burgeoning literature on
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the economic impacts of the coronavirus pandemic (Bartik et al., 2020; Brinca et al., 2020;

Cesa-Bianchi et al., 2020; Lenza and Primiceri, 2020; Ludvigson et al., 2020; Chudik et al.,

2021; Sharif et al., 2020). This paper has three distinguishing features. Our structural model

of the US crude oil market exploits data sampled at weekly frequency. On the contrary, most

previous analyses relied on monthly or quarterly data. A notable recent exception is Venditti

and Veronese (2020). Moreover, we draw on the theory of competitive storage to model the

speculative component of the real price of oil with data on WTI futures prices. Specifically, in

our model the interest-adjusted spread between the futures and spot prices of WTI crude oil

proxies for the negative of the convenience yield of crude oil inventories. Thus, this variable

reflects the perceived relative value of the amount of inventories that is available in the near

future as conveyed by the oil futures market. Moreover, the sign of the interest-adjusted

spread is highly informative about the slope of the term structure of the oil futures curve

and represents valuable information for all traders participating to the futures oil market

(Nikitopoulos et al., 2017). Lastly, we exploit the Bayesian approach of Baumeister and

Hamilton (2015, 2019) to set identify the structural shocks in our weekly VAR model. The

peculiarity of this approach is that it allows to summarize our beliefs about the value of key

structural parameters – such as oil supply and oil demand elasticities – while incorporating

uncertainty about such identifying assumptions. The rest of the paper is organized as follows.

Section 2 discusses the data and the methodology underlying our weekly structural VAR

model. The identification assumptions are presented in Section 3. Empirical results are

discussed in Section 4, while Section 5 concludes. An Appendix completes the paper.

2 Data and Methods

2.1 Data

We describe the US market for crude oil with a structural VAR model that includes n = 5

endogenous variables sampled at weekly frequency over the period spanning 1/1/1988 –

29/4/2022 for a total of T = 1972 observations. The vector of observable variables is

yt ≡ [∆qt, yt, st, ∆it, ∆pt]
′. These variables are: (i) the growth rate of US crude oil

2



production, ∆qt; (ii) a proxy for the global real economic activity, yt; (iii) the interest-

adjusted spread (IAS), st (iv) the change in US oil inventories, ∆it; (v) the percent growth

of the WTI real spot price, ∆pt.

Following Hamilton (2019b), we rely on a proxy for the global business cycle based on the

Baltic Dry Index (BDIt), deflated using the interpolated value of U.S. Consumer Price Index

(CPIt). We define such proxy as yt = log (BDIt/CPIt) − log
(
BDIt−(2×52)/CPIt−(2×52)

)
.

Note that we take a 2 years difference and hence we interpret yt a cyclical indicator. The use

of a proxy for global economic activity derived from shipping costs is not without shortcom-

ings and has been largely debated in the literature (e.g. Baumeister et al., 2020; Hamilton,

2019b; Kilian and Zhou, 2018; Kilian, 2019). Alternative measures of business cycle fluctu-

ations at weekly sampling frequency do exist (e.g. Aruoba et al., 2009; Baumeister et al.,

2022; Lewis et al., 2021), however such indices are representative of the US economy and

hence not suited to capture oil price changes driven by global economic conditions.

The IAS is defined as: st = 100 × log(F
(3mo)
t /Pt) − rft where Pt is the WTI spot price,

F
(3mo)
t is the corresponding 3 month futures price and rft is the 3-Month Treasury Bill

rate. The construction of the IAS requires selecting the maturity of the underlying futures

contracts. We choose a maturity of three-months because short-term contracts are more

tightly linked to crude oil market fundamentals than long-term contracts (Lee and Zeng,

2011).1 The IAS represents the negative of the convenience yield plus the cost of storage of

crude oil inventories. In other words, it measures the benefit of holding stocks of crude oil

above and below the ground.2

1Notice that st is constructed subtracting the risk-free rate from the futures-spot price spread. This
might seem at odd with the fact that the real price of oil is affected by changes in the US interest rates
by means of the cost-and-carry equation (Frankel, 2014). However, in our model the potential exposure of
the real price of oil to changes in the US interest rate is captured by shocks to the global business cycle, as
discussed by Kilian and Zhou (2019) and Alquist et al. (2019).

2The theory of competitive storage postulates that the IAS is the the cost of storage minus the convenience
yield. In the short-run the cost of storage is constant (Fama and French, 1987), while the convenience yield
is a decreasing function of the level of inventories (Knittel and Pindyck, 2016).
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2.2 VAR representations and estimation

We write the structural form of the VAR model as:

Ayt = b0 +
12∑
j=1

Bjyt−j + vt (1)

where b0 is a n × 1 vector of intercepts, while A and Bj are n × n matrices of structural

coefficients. The vector of structural shocks vt ≡ [v1t, v2t, v3t, v4t, v5t]
′ is assumed to be

normally distributed with zero mean and diagonal variance-covariance matrix D ≡ E [vtvt
′].

The model includes 12 lagged values, that corresponds to three months which is the maturity

of the futures contracts used to build the IAS.

The reduced-form representation of the VAR is given by:

yt = c0 +
12∑
j=1

Φjyt−j + ut (2)

where c0 = A−1b0, Φj = A−1Bj and ut = A−1vt. Reduced-form errors, ut are assumed

to be normally distributed with zero mean and variance-covariance matrix Σu ≡ E [utu
′
t].

The reduced-form parameters can be consistently estimated by Ordinary Least Squares

(OLS), however – absent any restrictions – the structural shocks are not point identified.

We follow the identification and estimation strategy proposed by Baumeister and Hamil-

ton (2015) that delivers a set-identified structural VAR model and is based on two main

steps. The first step consists of a specification of informative prior beliefs about the struc-

tural parameters A, B and D. The second step relies on a random walk Metropolis-Hastings

algorithm, which is designed to generate draws from the posterior distribution of the struc-

tural coefficients. Further details are provided in the Appendix.

As for the matrix of contemporaneous correlations, we impose the following structure

that allows to set-identify the structural shocks of interest:
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A =



1 0 −asqs 0 −asqp

0 1 0 0 −ayp

0 0 1 −asi −asp

−aiq 0 −ais 1 −aip

1 −adqy −adqs −1 −adqp


(3)

3 Identification

3.1 A structural VAR model of the US crude oil market

To better illustrate our identification assumptions, we re-write the structural form of the

VAR model as a system of equations:



∆qt = asqsst + asqp∆pt + b′
1xt−1 + v1t

yt = ayp∆pt + b′
2xt−1 + v2t

st = asi∆it + asp∆pt + b′
3xt−1 + v3t

∆it = aiqqt + aisst + aip∆pt + b′
4xt−1 + v4t

∆qt = adqyyt + adqsst +∆it + adqp∆pt + b′
5xt−1 + v5t

(4a)

(4b)

(4c)

(4d)

(4e)

where xt−1 is a mn+1 vector containing a constant and m = 12 lags of the variables, that is

x′
t−1 ≡

[
y′
t−1, y′

t−2, . . . , y′
t−m, 1

]′
and b′

i contains all structural coefficients on the lagged

variables of the ith equation and corresponds to the ith row of B ≡ [B1, . . . ,Bm, b0], a

[n× (nm+ 1)] matrix. In this way, we include in each equation the lagged values of all the

variables in the system.

Equation (4a) states that US oil supply is affected both by the IAS and the real price

of oil, through the contemporaneous structural parameters asqs and asqp, respectively. The

first parameter, asqs, captures the feedback effects from the financial to the physical market

for crude oil. The second parameter, asqp, represents the short-run price elasticity of oil

supply. Equation (4a) involves two exclusion restrictions, namely asqy = aqi = 0. These

restrictions are consistent with the view that, within the same period, oil supply is not
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directly affected by changes in global business cycle and in above ground crude oil inventories.

With these restrictions, the first structural shock, v1t, corresponds to a “US oil supply shock”,

triggered by any event that causes unexpected changes of the US production of crude oil

(e.g. natural disasters, strikes, production decisions). A negative US supply shock shifts the

contemporaneous oil supply curve to the left along the oil demand curve.

In equation (4b), global real economic activity is instantaneously affected only by the

real price of oil, via ayp. The second structural shock, v2t, is then interpreted as a “global

economic activity shock” that reflects unexpected changes in the demand for US crude oil

driven by fluctuations in the global business cycle. A positive global economic activity shock

represents a shift to the right of the instantaneous oil demand curve for US crude oil along

the oil supply curve.

Equation (4c) illustrates the determinants of the IAS, that is assumed to respond on

impact to changes in US inventories and in the real price of crude oil. The parameter asi

captures the relationship between (the negative of) the convenience yield and the inventory

level (see e.g. Working, 1949; Brennan, 1958; Fama and French, 1987). The relationship

between changes in the spot price of crude oil and the IAS is captured by asp. This parameter

is interpreted as a proxy for the slope of the term structure of the oil futures curve. The two

exclusion restrictions – namely asq = 0 and asy = 0 – imply that on impact the IAS does

not depend on oil production and global real economic activity.

One of the main contribution of our work is the identification of the third structural

shock, v3t, that we label “expectational shock”. This shock captures unpredictable changes

in financial markets expectations about the future path of crude oil spot prices. A positive

expectational shock represents a shift to the left of the supply curve along the demand curve

driven by changes in the market participants’ expectations. Specifically, if futures prices

are higher than spot prices, a positive IAS is interpreted as a signal of higher expected

spot prices. Thus, in a contango market structure, oil producers with access to a flexible

production process will reduce the production in the current period and bet on making more

profits by increasing output in the near future.

Equation (4d) represents the oil inventory demand curve. Changes in the level of US

oil production, the price of storage and the real price of oil result in an instantaneous shift
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of the oil inventory demand curve. Following Baumeister and Hamilton (2019), we assume

that US crude oil stocks depend on economic activity, only through its effects on real price

of crude oil. As a result, we impose an exclusion restriction on the structural coefficient

aiy. The fourth structural shock – labelled “US inventory demand shock” (v4t) – also shifts

the demand curve for US crude oil. A positive shock to crude oil inventories – triggered

by an increase in the demand for storage (i.e. above-ground oil inventories) – moves the

contemporaneous demand curve to the right along the supply curve for US crude oil.

Lastly, equation (4e) represents the US oil consumption demand approximated by the

difference between production ∆qt and inventories, ∆ii. The parameters adqy and adqp capture

the effect of global real economic activity on US oil consumption demand and the short-

run price elasticity of oil demand, respectively. The US consumption demand for oil is

instantaneously related to the IAS, via adqs, which is designed to capture the forward-looking

component of oil consumption. Therefore we label the last shock as “US oil consumption

demand shock” (v5t). A positive shock to oil consumption demand represents a shift to

the right of the contemporaneous demand curve for US crude oil along the US oil supply

schedule, mainly explained by unexpected changes in the current state of the US economy.

3.2 The role of the interest-adjusted spread (IAS)

A distinguishing feature of our model is its reliance on both oil inventories and the IAS. This

is a point of departure from several extant contributions, such as Kilian and Murphy (2014)

and Baumeister and Hamilton (2020). These works build on standard arbitrage assumptions

and argue that futures prices are redundant in structural VAR models of the oil market,

provided that the speculative component of prices is captured by data on above-ground

crude oil inventories.3

The inclusion of the IAS in our model can be motivated as follows. First, the IAS

captures the benefit of holding stocks of crude oil both above and below the ground (see

Alquist et al. (2014)). Below-ground inventories play an important role for US shale oil

3For instance Kilian and Murphy (2014) perform the test developed by Giannone and Reichlin (2006) to
show that that data on futures-spot spread do not contain extra-information relative to the proxy for global
crude oil inventories.
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producers that can easily adjust production in response to oil price expectations (Bjørnland,

2019; Newell and Prest, 2019).4

The IAS based on WTI is also informative about the slope of the term structure of

futures prices. In fact, the WTI market is exposed not only to US-specific shocks, but also

to global oil price shocks.5

Lastly the IAS reflects the information set available to agents at the time they make

their decisions in terms of production, consumption and investment strategies. Therefore,

the IAS helps capturing the forward-looking component of the real price of crude oil through

the feedback effect from the futures market to the spot market (see Singleton, 2014; Sockin

and Xiong, 2015; Figuerola-Ferretti et al., 2020; van Huellen, 2020).

3.3 Prior information for the structural parameters

We rely on economic theory and empirical evidence from previous studies to specify a set

of prior beliefs on the elements of A, B and D. In this section we focus on the priors for

the elements of the contemporaneous structural matrix A, while priors for the remaining

coefficients are discussed in the Appendix.

The priors for the elements of A are specified in terms of Student t distributions and

are reported in Table 1.6

Priors for parameters of the supply equation. Setting prior for the parameters of the sup-

ply equation is challenging due to the contemporaneous relationship between the price and

the production of crude oil. Empirical analyses based on panel and time-series data pro-

vide mixed evidence on the magnitude of the short-run oil price supply elasticity (Kilian,

2022). Newell and Prest (2019) estimate the price elasticity of oil supply to be -0.022 for

4Newell and Prest (2019) state that:“Using futures prices as a measure of spot price expectations is a
shortcut to obtain price expectations. This is based on conversations with industry operators regarding how
they generate their price expectations”

5Elder et al. (2014) finds that WTI market maintains a dominant role in price discovery compared to
Brent market, with an estimated information share in excess of 80% over the period 2007-2012. Moreover,
Kristoufek (2019) provides empirical evidence that WTI crude oil market is more efficient than Brent market.

6Compared to a Normal density function, the Student t distribution is more appropriate in the presence
of outliers. This is particularly relevant in our case since we work with weekly data.
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Table 1: Specification of prior distributions for structural parameters A

Student t

parameter economic interpretation mode (c) scale (σ) dof (ν) sign

asqs Effect of st on US oil supply -0.10 0.10 3 ?

asqp US oil price supply elasticity 0.15 0.05 3 +

ayp Effect of ∆pt on global economic activity -0.05 0.1 3 ?

asi Effect of ∆it on IAS 0 0.2 3 ?

asp Effect of ∆pt on IAS 0 0.5 3 ?

aiq Effect of qt on US oil stocks 0 0.5 3 ?

ais Effect of st on US oil stocks 0 0.2 3 ?

aip Effect of pt on US oil stocks 0 1 3 ?

adqy Effect yt on US oil demand 0 0.5 3 +

adqs Effect of st US oil demand 0.2 0.2 3 ?

adqp US oil price demand elasticity -0.15 0.05 3 -

Notes: the location parameter is the mode of the t distribution, the scale parameter is its standard deviation, while “dof”
denotes its degrees of freedom. “Sign” indicates whether a sign restriction has been enforced.

unconventional wells and 0.017 for conventional wells.7

Other empirical studies find evidence of a large positive short-run supply elasticity, es-

pecially for unconventional crude oil producers. Bjørnland et al. (2021) report a monthly

supply elasticity of shale oil in North Dakota in the range 0.3-0.9, depending on the techno-

logical characteristics of the wells.8 Moreover, using a well-level dataset covering ten of the

largest producing regions in the US, Bjørnland et al. (2021) show that the response of shale

firms to unexpected increase in the price of crude oil is 0.62. This figure is given by the

sum of two components (i) the estimated price elasticity of oil supply (−0.06) and (ii) the

estimated elasticity of oil supply with respect to the spot-futures price spread (0.68). For

conventional oil producers, the oil supply elasticities with respect to spot price and spot-

futures spread are −0.02 and −0.10, respectively. These results are in line with Anderson

et al. (2018) who show that the responses of conventional oil producers to changes in the

7Newell and Prest (2019) investigate the effects of price changes on drilling, completions and production
in the five major oil-producing states of Texas, North Dakota, California, Oklahoma and Colorado. The
authors provide empirical evidence of a positive response of drilling and completions to changes in futures
prices, consistent with the view that price expectations play an important role in driving the first-two phases
of well development. As opposed, for the production equation the futures prices are replaced with spot prices
and the elasticity of oil supply for shale producers becomes negligible.

8Bjørnland et al. (2021) estimate the short-run price price elasticity of oil supply distinguishing conven-
tional and shale oil producers with well level data. Moreover, each specification includes the spot price of
crude oil and the spot-futures spread. Specifically, for conventional oil producers the response of production
to changes in price and spot-futures spread are 0.03 and 0.07, respectively. Instead, the response of shale oil
production to changes in the spot price is -0.015 and 0.76 to changes in the spread. Finally, the elasticities
for unconventional and conventional oil supply are 0.1 and 0.71, respectively.
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spot-futures spread and prices are close to zero.9 Lastly, Rebelo et al. (2017) using a general

equilibrium model show that the use of hydraulic fracturing renders shale producers more

price-sensitive than conventional producers.10

We use these studies to set the prior of asqp and asqp. As for the price elasticity of crude oil

supply, we rely on a Student t distribution with support restricted on the positive domain

and mode csqp = 0.15. The prior for the mode is in the range of empirical estimates the

price elasticity of oil supply that account for both conventional and unconventional crude oil

production. We note that elasticities tend to (slightly) increase over time: monthly estimates

reported in the literature can then be treated as an upper bound of the weekly US price

elasticity of oil supply, asqp.

For the elasticity of oil supply with respect to a change in the oil futures-spot spread we

use a Student t distribution with a negative prior mode, but with support over the entire

real line. The negative sign for the prior mode subsumes the idea that forward-looking shale

oil producers have the option of leaving oil below the ground in anticipation of higher oil

spot prices.

Priors for parameters of the global economic activity equation. The structural parameter ayp

denotes the effect of changes in the real price of oil on global economic activity. For the

structural coefficient ayp we use a Student t distribution whose support is constrained to

be negative. Since energy expenditure represents a small share of global GDP, an increase

in the price of oil causes a small reduction in the proxy for global business cycle, we set

cyp = −0.05 (Hamilton, 2013).

Priors for parameters of the IAS equation. The structural coefficient asi represents the effect

of changes in the US crude oil inventories on the IAS. The sign of the relationship between

st and ∆it is not clear a priori, therefore we do not constraint the support of the Student t

9According to the theoretical model provided by Anderson et al. (2018), crude oil production from existing
wells in Texas does not respond to price incentives. This is consistent with the supply-side rigidities which
are mainly motivated by the large costs of extractions (Pindyck, 1994, 2001)).

10Rebelo et al. (2017) relies on a novel data set compiled by Rystad Energy that contains detailed infor-
mation (e.g. production, reserves, operational costs and investment) on 14.000 oil fields operated by 3.200
companies across 109 countries.
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distribution.11. Similarly, we do not have reliable information to constraint the sign of asp,

which represents the effect of an increase in the spot price of crude oil on the IAS. Therefore,

we rely on relatively uninformative priors for both asi and asp and set the mode of the priors

distributions of these parameters to zero.

Priors for the inventory demand equation. For the inventory equation we follow Baumeister

and Hamilton (2019) and assign relatively uninformative Student t prior for the structural

coefficient aiq, with mode at ciq = 0. A recent work by Ederington et al. (2020) documents

a positive relationship between crude oil inventories stored at Cushing, Oklahoma, and the

futures-spot spread. In contrast, outside Cushing inventory changes are mainly explained by

operational needs, consistent with the view that not all US storage locations are arbitrage

hubs. For these reasons, we assign non-informative prior also for ais. Also in the case of

aip – the effect of a change in the spot price on US stocks – a tight prior cannot be set. In

fact, if on the one hand a price increase might induce inventory accumulation, on the other

hand, it might also cause inventories to be drawn down in an effort to smooth production

(or consumption).

Priors for the consumption demand equation. The first structural coefficient of the US oil

crude oil demand equation (4e) is adqy, which represents the effect of global economic activity

on the US oil consumption demand. We expect the global business cycle to exert only a mild

effect on US consumption demand within the week. Thus, we use a relatively uninformative

prior distribution with mode at cdqy = 0 and support constrained to be non-negative.

The structural coefficient adqs represents the effect of changes in the IAS on the US oil

demand. The sign of the relationship between the demand for crude oil and the IAS is not

clear a priori. We then rely a relative uninformative prior distribution with mode cdqs = 0.2.

Lastly, the structural coefficient adqp is the short-run price elasticity of US crude oil

demand. Coglianese et al. (2017) estimate the short-run gasoline price demand elasticity

11For example, inventory accumulation can be associated with an increase in the IAS, mainly explained
by a reduction in the convenience yield or, by an increase in the cost of storage. In this case, the built-up of
US stocks would be driven by positive (or negative) shocks to supply (or demand), causing the spot price of
crude oil to fall. On the other hand, speculators raise the demand for holding additional barrels of crude oil
(also known as “precautionary demand for oil”) driven by fears of production shortage or uncertainty in the
state of the economy. In this context, the structural parameter asp is expected to be negative (see Kilian,
2009; Alquist and Kilian, 2010; Anzuini et al., 2015)
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to be approximately -0.37. Wadud et al. (2010) estimate US oil demand elasticity to be

between -0.58 and -0.18. Similarly Levin et al. (2017) estimate the fuel demand elasticity

to be between -0.36 and -0.30. Therefore, we set the mode of the prior distribution at

cdqp = −0.1 and truncate the support of the distribution to be negative.

4 Empirical results

4.1 Prior and posterior distributions of structural parameters

The prior and posterior distributions of the structural parameters in A are compared in

Figure 1 to assess whether the data have updated the prior distribution and to what extent

our subsequent results are driven by the choice of the priors’ parameters.

Posteriors for the oil supply equation. The posterior distribution of the elasticity of oil supply

with respect to a change in the oil futures-spot spread, asqs, is reported in Panel 1 of Figure

1. The posterior distribution of asqs has smaller variance than its prior and is characterized

by a posterior median equal to −0.035. In line with the results of Bjørnland (2019), this

result suggests that US producers – possibly driven by firms based on horizontal drilling

technologies – respond to changes in market expectations by shifting the supply curve to the

left and hence increasing oil spot prices within the week.12

Panel 2 of Figure 1 shows that the posterior median of the short-run price supply elas-

ticity of oil supply, asqp, is 0.02 and its distribution is skewed to the right. The posterior

median is significantly smaller than the mode of the prior and is consistent with the empir-

ical estimates available in the literature (see Anderson et al., 2018; Bjørnland, 2019; Kilian,

2022).

Two observations stand out from our results about oil supply elasticities. First, the

posteriors median of elasticity of oil supply with respect to changes in the oil futures-spot

spread is larger (in absolute value) than the posterior median of the price elasticity of oil

12It is worth noting that US crude oil production has increased significantly over the past ten years,
driven mainly by the development of unconventional crude oil extractions. The US Energy Information
Administration (EIA) reports that tight oil extraction accounted for around 63% of total crude oil production
in the United States in 2019.
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supply. This suggests that the responsiveness of oil producers is mostly linked to changes

in market expectations. This finding is not surprising, given that holding above-ground

inventories is generally costlier than holding them below-ground. Second, our posterior

median estimate of the price elasticity of oil supply is very much in line with those by

Baumeister and Hamilton (2019) and Caldara et al. (2019). On this regard, the weekly

elasticity of oil supply should not exceed the value of monthly elasticity estimates. However,

if we follow Bjørnland (2019) and we sum the absolute value of the posterior median of asqp

and asqs, we get an even more elastic oil supply curve, with a median posterior estimate of

0.055.

Posteriors for the global economic activity equation. The prior distribution is flat when

viewed on the scale adjusted for the posterior distributions for ayp. However, we provide

empirical evidence that most of the mass of the posterior distribution for ayp is centered

at −0.01. This result is consistent with the fact that an increase in the real price of oil is

associated with a very small reduction in the global real economic activity, within the week.

Posteriors for IAS equation. The posterior distribution of parameter capturing the effect

of changes in US oil inventories on the IAS, asi, has most of its mass on the positive sup-

port. This is in accordance with the theory of competitive storage and points to an inverse

relationship between the quantity of crude oil held in inventories and the convenience yield.

Panel 5 of Figure 1 shows that the prior distribution is flat when viewed on the scale adjusted

for the posterior distribution for asp. Moreover, we provide empirical evidence that most of

the mass of the posterior distribution for asp is negative and centered at −0.60. This result

is consistent with the fact that a high level of spot oil prices can lead to an increase in the

convenience yield on inventories held to meet customer demand for spot delivery. Thus,

a negative spread suggests that the ownership of the physical barrel of crude oil provides

benefits that are not extended to the holders of oil futures contracts.

Posteriors for the inventory demand equation. The posterior distribution of aip – reported in

panel 8 of Figure 1 – is narrower than the prior, suggesting that data are informative about

the negative relationship between spot prices and inventories. This supports the idea that,

in periods of high prices, crude oil stocks are drawn down to compensate for the adjustment
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in production and to deal with marketing and delivery costs (Pindyck, 2001; Knittel and

Pindyck, 2016).

Posteriors for the oil consumption demand equation. The posterior distribution of the short-

run price elasticity of oil demand is quantitatively similar to the value anticipated by our

prior knowledge, with a posterior median of −0.2, as illustrated in panel 11 of Figure 1.

The posterior distribution of adqs reported in panel 10 of Figure 1 has median equal

to 0.58 and mass concentrated on the positive support. This is reasonable, since periods

during which the spread is positive are precisely those when oil stocks are high. Thus, the

abundance of barrels of crude oil causes a reduction in the oil spot prices, which in turns

stimulates the consumption of petroleum products.

Panel 9 of Figure 1 plots the posterior distribution for adqy, which is centered at 0.08.

This implies that the US crude oil demand for current consumption is positively affected by

a global economic growth.

4.2 Impulse responses

We illustrate the dynamic responses of the endogenous variables to each structural shock

in Figure 2. Each graph reports the posterior median impulse responses, together with the

highest posterior density at 68% and 95% credibility levels.

The structural impulse responses for the real price of crude oil are shown in the last

column of Figure 2. As for supply shocks, we plot the responses to a disruption of US oil

production. A negative shock to the US supply of crude oil immediately raises the spot

price. The effect is however short-lived, in fact the highest posterior density region with

credibility level 95% includes the value zero two weeks from the shock. A shock boosting

global economic activity affects the real price of WTI only with a delay of four weeks and

there is evidence of overshooting in the response. This contrasts with the immediate price

increase that follows a US consumption demand shock. Both expectational and US inventory

demand shocks induce a positive and long-lived price response.

The responses of the IAS are shown in the third columns of Figure 2. A disruption

of US production causes a sharp but short-lived decrease of the IAS, as anticipated by the
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theory of competitive storage. A positive global economic activity shock induces a small

reduction in the IAS on impact, however the 95% posterior credibility region is wide and

includes zero. A positive expectational shock causes an immediate, although temporary

jump in the IAS. The subsequent reduction of the IAS is accompanied by a gradual increase

in the real price of oil and a permanent reduction in US crude oil stocks, also triggered by

the same underlining shock. An unexpected increase inventory demand shock is responsible

for a large decline in the IAS on impact, that is partly absorbed in subsequent weeks. A

positive US consumption demand shock also causes a large reduction in the IAS. The effect

of the shock is also long-lived and takes about eight weeks for the 95% credible region to

become negligible. The response of the IAS to each structural shock is coherent with the

theory of competitive storage and it is highly informative about the interaction between the

physical and futures markets. Specifically, an unexpected US oil supply disruption raises the

value of future crude oil inventories for consumption smoothing and this is captured by a

reduction in the IAS. Analogously, positive shocks to global economic activity and US crude

oil consumption induce inventories to be drawn down in an effort to smooth production.

Since the supply of storage takes time to respond to such shocks, the IAS – which is driven

by a rise in the convenience yield – falls. Moreover, an upward shift of the demand for

above-ground crude oil inventories causes a short-lived reduction of the IAS. The response of

the IAS to each structural shock represents valuable information for all traders participating

to the futures market for hedging and speculative purposes. If the spot price of oil is lower

(higher) than it will be in later weeks, traders with access to physical oil and storage are

encouraged to resell (hold) oil in the future (see e.g. Erb and Campbell, 2006; Valenti et al.,

2020).

The responses of US crude oil inventories are reported in the fourth column of the Figure

2. While a shock to US crude oil consumption immediately reduces US inventories, a shock

to global economic activity reduces the level of inventories only with a lag of few weeks.

The dynamics of the impulse responses is also useful to point out some features that

distinguish the expectational shock from the inventory demand shock and the exogenous oil

supply shock. A positive expectational shock is associated with a decline in US crude oil

production because producers hold oil back from the spot market in anticipation of higher

17



prices in the future. Producers have the option of leaving oil below the ground, rather than

extracting it, causing the spot price of oil to overshoot (see Hotelling, 1931; Smith, 2009;

Juvenal and Petrella, 2015). Conversely, a positive inventory demand shock is designed to

capture an upward shift of the demand for oil storage, while exogenous supply shocks are

related to oil supply outages.

4.3 Historical decomposition

Figures 3 and 4 present the historical decomposition of the real price of WTI crude oil during

the first outbreak of the COVID-19 pandemic in early 2020 and at the time of the geopolitical

tensions that culminated with Russia’s invasion of Ukraine in February 2022.

COVID-19 pandemic. The COVID-19 pandemic represents a global crisis that has requested

unprecedented policy responses. Quoting Chudik et al. (2021), the COVID-19 pandemic “has

been a shock like no other”, inducing both demand and supply disruptions worldwide. The

US economy officially entered a recession in February 2020.13

For the historical decomposition in Figure 3, we focus on the time period ranging from

the week ending March 15 2020 to the week ending April 26 2020. The start of this time

period was marked by a declaration of the World Health Organization stating that COVID-

19 had to be considered a global health pandemic. Moreover, few days later – on March 13,

2020 – President Trump declared a national emergency concerning the COVID-19 pandemic.

The subsequent weeks were characterized by stay-at-home orders and other restrictions. On

the supply side these measures reduced dramatically labour supply and productivity. On

the demand side the pandemic depressed households’ consumption and firms’ investments.

Another effect of policy responses to the pandemic was a drop in fuel consumption due

to reduced mobility. Over the time period under analysis the real price of WTI crude oil

decreased from 29 to 3 dollars per barrel that represents a 228% reduction.14

13The United States experienced two consecutive quarters of declines in GDP by 1.3% and 9.1%, respec-
tively. To put this contraction into historical context, quarterly US GDP had never experienced a drop
greater than 3%.

14This is computed as 100× log(Pt/Pt−h) to be consistent with the data used in the structural VAR model.
Pt (Pt−h) denotes the price in the last (first) week considered in the historical decomposition.
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Figure 3: Historical decomposition of the real price of WTI crude oil: COVID-19
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The top panel of Figure 3 shows the sequence of shocks that each week have contributed

to the observed price decline. In the bottom panel of Figure 3 the bars represent the

contribution of each structural shock to the total price reduction. Notice that the sum

of such percentages yield a very close approximation of the observed -228% log-price change.

The bottom panel of Figure 3 shows that -137% of the total decline was driven by shocks

to US inventory demand. Policy responses to the pandemic have induced large reductions of

consumption of crude oil and oil products worldwide. Such decreases, combined with the fact

that crude oil production cannot be reduced much in the short-run, implied an accumulation

of inventories. The high level of oil inventories led market participants to lease tankers for

floating storage.

As anticipated a second a very important driver of the observed price reduction is related

with lower demand. The combined effect of shocks to global economic activity and US

consumption accounts for -76.2% of the total -228% log-price change.

This series of events led to the well known “negative price episode” with the WTI crude

oil front-month futures price falling below zero dollars per barrel on April 20, 2020. A

negative futures prices suggested that oil traders were willing to pay money in order to avoid

delivery. These extreme price developments were induced by several factors, including the

scarcity of oil storage and the difficulties to sell futures contracts. Moreover, the temporary

failure to reach a production agreement among OPEC and other large oil producers raised

uncertainty regarding the oil markets conditions, especially during the last three weeks of

March 2020. This is captured by negative expectational and US inventory demand shocks.

Russia’s invasion of Ukraine. We now analyse the price rally culminated with the real price

WTI reaching 113.4 dollars per barrel on the week ending March 13, 2022. The historical

decomposition of the price starts from the week ending January 9, 2022 when the real WTI

price was 76.4 dollars per barrel. The percent log-price increase over the time span considered

in this exercise equals 39.5%. This price increase has happened at a time when the global

market for crude oil was characterized by low inventories.

As reported by EIA in the Short-Term Energy Outlook of February 2022 “global oil

consumption has exceeded global oil supply since mid-2020, leading to six consecutive quarters
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Figure 4: Historical decomposition of the real price of WTI crude oil: Russia’s invasion of
Ukraine
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of global oil inventory draws.”15

The top panel of Figure 4 illustrates that a combination of different shocks have con-

tributed to the price increase observed during the first monts of 2022. The bottom panel

of Figure 4 shows that the contribution of expectational shocks is the largest and equals

24.7%. These shocks have been mainly driven by concerns about the future of oil supply

disruptions due to geopolitical tensions, notably regarding the Russia-Ukraine war started

on February 24, 2022. The large expectational shock characterizing the last week of the sam-

ple also reflects the fact that sanctions levied by the US and the EU against Russia further

contribute to uncertainty regarding the future supply shortages due to the cut of Russian

crude oil exports from the market. US inventory demand shocks have also had a large impact

on the price increase we are analysing. As we can see from the bottom panel of Figure 4,

the contribution of these shocks is 9.2%. Lastly, we can see that shocks to global economic

activity have also contributed to the price increase observed at the beginning of 2022. De-

creasing COVID-19 cases worldwide have likely contributed to price pressure coming from

the demand-side.

4.4 Robustness check: an alternative proxy for oil market expec-

tations

Since the interest-adjusted spread might be a biased measure of oil price expectations if

the crude oil risk-premium is not zero (see Baumeister and Hamilton, 2020), in this section

we estimate model (1) by including an alternative proxy of the IAS. More precisely, we

replace the observed futures prices with a proxy of futures prices adjusted for the presence

time-varying risk-premium.

We define the risk-premium as the difference between the expected spot price Et(St+h)

– proxied by the price of futures contract with one-month maturity F 1
t+h−1 – and the oil

futures price F h
t , with h-months maturity (i.e. h = 3 months in our case). Following Fama

15See https://www.eia.gov/outlooks/steo/archives/Feb22.pdf (last accessed May 20, 2022).
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and French (1987), we construct a regression-based measure of oil risk-premium as follows:

F 1
t+h−1 − F h

t

F h
t

= β′zt + εt+h (5)

where the
F 1
t+h−1−Fh

t

Fh
t

represents the final percentage payoff of a crude oil futures invest-

ment of h = 3 months periods and εt+h is the error component of the regression. In our

example we select the following regressors, zt = [yt, tedt, vixt, ewit, fer
5y
t ] as proxies of risk

factors. These include: the index of global real economic activity, yt; the TED spread, tedt,

as measure of credit-risk (Matvos et al., 2018)16; a proxy of stock market volatility, vixt; a

measure of US economic uncertainty, ewit, designed to estimate the recession probabilities

in each US State (Baumeister et al., 2022). We also account for expected inflation, fer5yt ,

which is positively correlated with the oil risk premium, since investors use futures contracts

to hedge against inflation risks (Gorton and Rouwenhorst, 2006; Gorton et al., 2013b).

Solving Equation 5 for crude oil market’s expectations of the future spot price of oil

(F 1
t+h−1), under the hypothesis of Et[εt+h] = 0, yields a proxy of risk-adjusted futures prices,

which is then used to build the IAS. Due to data constraints, we estimate the model with

this new proxy of the IAS over a shorter time period, running from the third week of January

2003 through the last week of October 202117 Figure 5 shows the structural impulse response

estimates obtained using alternative IAS measures. All in all, we can see that the responses

obtained with different IAS measures are qualitatively similar.

5 Conclusions

In this paper we develop a structural VAR model suitable for explaining short-run crude

oil price fluctuations in the US – including those related with the COVID-19 pandemic and

with the Russia’s invasion of Ukraine. Reliance on weekly data allows to obtain analyses of

the most recent developments of the oil market in a timely fashion.

16The TED spread is defined as the difference between the 3-month LIBOR rate and the rate on 3-month
Treasury bills

17Our model yields a Mean Squared Prediction Error (MSPE) lower than a random walk specification.
However, the MSPE differential is not distinguishable from zero according to Diebold-Mariano test of equal
predictive ability.
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A second contribution of the paper is to provide empirical evidence that the interest-

adjusted spread plays an important role in proxying the convenience yield of crude oil inven-

tories (above- and below-ground) and in capturing the market’s expectations of all traders.

This measure allows to identify a new structural shocks, that we label expectational shock.

This represents the expected component of the real price of oil that is transmitted from

futures to spot markets (Sockin and Xiong, 2015). Our results shows that a positive expec-

tational shock is associated with a decline in US crude oil production and US inventories,

while contemporaneously inducing an increase of the IAS and of the real price of crude oil.

The role of this shock is fundamental when describing the series of events that have caused

the spike in the price of crude oil observed in the aftermath of Russia’s invasion of Ukraine.

The use of financial data as a proxy of market expectations is key when working with data

sampled daily or weekly. Most survey measures of market expectations are in fact usually

available only at monthly or quarterly horizon. The inclusion of forward-looking variables

has the potential of making our model well-suited for forecasting the price of crude oil at

short horizons and building forecast scenarios (see e.g. Antolin-Diaz et al., 2021; Baumeister

and Kilian, 2014). However, one problem with data sampled weekly is that, while they are

informative of short-run market developments, they might also be noisy. A possible solution

– allowing to benefit from high-frequency data while reducing the impact of noise – would

be to rely on ad-hoc estimation procedures such as those developed Carriero et al. (2021),

Lenza and Primiceri (2022) and Ng (2021). We leave these extensions as topics for future

research.
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A Identification algorithm

This section reports a short description of the identification strategy proposed by Baumeister

and Hamilton (2015) for the estimation of the Bayesian structural VAR model (1) reported in

our paper. The implementation of the identification algorithm is based on two main steps.

The first step consists of a specification of informative prior beliefs about the structural

parameters A, B and D. The second step relies on a random walk Metropolis-Hastings al-

gorithm, which is designed to generate draws from the posterior distribution of the structural

coefficients. The structural VAR model can be written in a compact form as:

Ayt = Bxt−1 + vt (1)

where:

A =



1 0 −asqs 0 −asqp

0 1 0 0 −ayp

0 0 1 −asi −asp

−aiq 0 −ais 1 −aip

1 −adqy −adqs −1 −adqp



yt ≡ [∆qt, yt, st,∆it,∆pt]
′

B ≡ [B1, . . . ,Bm, b0]

x′
t−1 ≡

[
y′
t−1, y′

t−2, . . . , y′
t−m 1

]′

vt ≡ [v1t, v2t, v3t, v4t, v5t]
′

1



Priors for A. Let α be the vector collecting the priors for the elements of matrix A and

h0 = det(A). Following Baumeister and Hamilton (2018), we use a prior asymmetric t

distribution to assign a high probability of observing h1 > 0.18 To this end, we generate

50, 000 draws from the prior distribution of the unknown parameters collected in matrix A

in order to set the location parameter µ1 equal to the average value of h1 and the scale

parameter σ1 equal to the standard deviation of h1 across these draws. In our study, we set

µ1 = 0.79, σ1 = 27.5, λ1 = 2 and ν1 = 3 to assign 95% prior probability to h1 > 0.

Therefore, assuming independence across the contemporaneous structural parameters, the

joint prior distribution of A, denoted by p (A), is:

p(A) = p(asqs)p(a
s
qp)p(ayp)p(asi)p(asp)p(aiq)p(ais)p(aip)p(a

d
qy)p(a

d
qs)p(a

d
qp)p(h0) (2)

The priors for the unknown elements of matrix A are Student t distributions, with mode,

scale parameters and degrees of freedom as reported in Table 1 of our paper.

Priors for D|A. The priors for d−1
ii (where d−1 denotes the ith element on the diagonal of D

- the variance-covariance matrix of the structural errors -) conditional on A are given by a

Gamma distribution, Γ(κ, τi), as follow:

p(D|A) =
n∏

i=1

p(dii|A) (3)

where κ/τi and κ/τ 2i represent the first and second moments of d−1
ii , respectively. Notice

that the parameter τi depends on A, whereas the parameter ki does not.

Following Baumeister and Hamilton (2015), we set the prior mean for d−1
ii equals to the

reciprocal of the diagonal element of matrix AΩA′, where Ω represents the sample variance-

covariance matrix of the residuals from the univariate autoregressive models (of order 12)

18The asymmetric t distribution introduced by Baumeister and Hamilton (2018) can be defined as follows:

p(h1) = σ−1
1 ϕ̃ν1 ((h1 − µ1) /σ1) Φ (λ1h1/σ1)

where ϕ̃ν1 (w) denotes the probability density function of a standard Student t variable with ν1 degrees
of freedom evaluated at the point w. Moreover, Φ (w) denotes the cumulative distribution function for
a standard Normal distribution. The parameter λ1 governs the skewness of h1. Specifically, if λ1 = 0 ,
the asymmetric t distribution becomes symmetric Student t. Instead, λ1 tends to −∞, the asymmetric t
distribution will become a Student t distribution truncated to be negative.

2



estimated on each endogenous variable. Moreover, we set κ = 2, which implies that the prior

carries as much weight as four observations.

Priors for B, D and A. We assume that b′
i conditional on A and D is a row vector

of random structural parameters following a multivariate Normal distribution, bi|A,D ∼

N (mi, diiMi), where mi can be interpreted as the best guess about bi before looking at the

data and Mi represents the covariance matrix about the prior.

Thus, the prior for the lagged structural coefficients is:

p(B|D,A) =
n∏

i=1

p(b′|A,D) (4)

where for most parameters mi = 0 for i = 1, 2, · · · , 5. The only exceptions are for the

coefficients of the supply and the consumption demand equations, where for the first lag, we

put prior means equal to those of A. For the prior variance Mi, we set a standard Minnesota

prior that assigns large confidence that coefficients related to higher lags are zero (see Doan

et al. (1984)).19

The prior distribution for A,D,B. The joint probability distribution of the prior information

about the plausible values of matrices A,D,B is:

p(A,D,B) = p(A)p(D|A)p(B|A,D) (5)

The last step is designed to construct the joint posterior distribution of the parameters,

p(A,D,B|YT), where YT represents the data sample. According to Baumeister and Hamil-

ton (2015), we proceed as follow.

Generating draws from p(A|YT). We use the Metropolis-Hasting algorithm to generate

draws from the posterior distribution of A. The iteration starts from setting α1 = α̂ and,

19Following Baumeister and Hamilton (2015), we need to set three different values for the hyper-parameters
of the prior for B. Specifically, we set the parameter controlling the overall tightness of the prior to 0.5. We
set to 1 the parameter governing how quickly the prior of the coefficients associated with the lagged variables
tightens to zero as the lags increase. Finally, we set the parameter governing the tightness of the prior for
the constant term to 100, in order to make the prior on the constant term irrelevant.

3



for a generic step l + 1 we generate a candidate α̃(l+1) as follows:

α̃(l+1) = αl + ξ(P̂Λ)
′vl+1

where vl+1 is a 5 × 1 vector of independent standard Student t variables with 2 degrees of

freedom, ξ is a scalar tuning parameter for 30% acceptance ratio and P̂Λ is the Cholesky fac-

torization of the matrix capturing the curvature of the posterior distribution of the vector of

unknowns parameters α. Tehn, we compare the value of the target function, q(·), evaluated

in α̃(l+1) and α(l), respectively. If q(α̃(l+1)) < q(α(l)), we set α(l+1) = α(l) with probability

1 − exp[q(α̃(l+1) − q(α(l+1))]; otherwise we set α(l+1) = α̃(l+1). The value l indicates the

number of iterations with the first M burn-in draws included.

Generating draws from p(D|A,YT). Starting with l = M + 1, for each αl we generate

δlii ∼ Γ(k∗
i , τ

∗
i (A(αl))), i = 1, 2, 3, 4, and take Dl to be a diagonal matrix whose elements are

dlii = 1/δlii.

Generating draws from p(B|A,D,YT). From the posterior distribution of the variance-

covariance matrix of the structural shocks we can further generate bl
i ∼ N (m∗

i , d
l
iiM

∗
i ),

i = 1, 2, 3, 4, 5.

The triple {A(αl),Dl,Bl}M+N
l=M+1 represents a sample of size N of the posterior distribu-

tion:

p(A,D,B|YT) = p(A|YT)p(D|A,YT)p(B|A,D,YT)) (6)

with the first M burn-in draws equal to 2.5e6 and N = 1e6. Finally, following Baumeis-

ter and Hamilton (2019), we split the estimation sample in two parts YT = {Y1,Y2},

where Y1 spans from 1/01/1988 to 19/03/2010 and Y2 covers the remaining period, that is,

26/02/2010-29/04/2022. Then. we put a prior which treats observations in the first sample

as half informative as those in the second sample.

4



B Data

Let Qt be the U.S. field production of crude oil in thousands barrels (mnemonic: WCRF-

PUS2), then ∆qt = 100× log(Qt/Qt−1). Notice that EIA provides production data in thou-

sands barrels per day, therefore we multiply by 7 to obtain the value in thousands barrels

per week.

In constructing yt we follow Hamilton (2019b) and rely on the daily value of Baltic

Dry Index (BDIt) sourced from Bloomberg (mnemonic: BDIY). To deflate the index we

use the U.S. Consumer Price Index sourced from FRED (mnemonic: CPIAUCSL) that is

linearly interpolated to obtain daily values. Both variables are then converted to weekly

sampling frequency by averaging daily data. Lastly, we define yt = log(BDIt/CPIt) −

log(BDIt−(2×52)/CPIt−(2×52)). Notice that taking a 2 years difference we interpret yt a

cyclical indicator.

The interest-adjusted spread (IAS) is defined as: st = 100× log(F
(3mo)/Pt

t )− rft where Pt

is the WTI spot price (mnemonic: RWTC), F
(3mo)
t is the 3 month futures price (mnemonic:

RCLC3) and rft is the 3-Month Treasury Bill rate (mnemonic: WTB3MS). Prices are sourced

from EIA, while rft from FRED.

Let It be the U.S. ending stocks of crude oil in thousands barrels (mnemonic: WCRS-

TUS1), then ∆it = 100× [(It − It−1)/Qt−1], where Qt is U.S. field production of crude oil in

thousands barrels.
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