ECONSTOR

A Service of

Working Paper
 Short-Time Work and Precautionary Savings

CESifo Working Paper, No. 9873

Provided in Cooperation with:

Ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Dengler, Thomas; Gehrke, Britta (2022) : Short-Time Work and Precautionary Savings, CESifo Working Paper, No. 9873, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at: https://hdl.handle.net/10419/263803

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]
CEsifo WORKING PAPERS

Short-Time Work and Precautionary Savings

Thomas Dengler, Britta Gehrke

Impressum:

CESifo Working Papers
ISSN 2364-1428 (electronic version)
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo GmbH
The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute
Poschingerstr. 5, 81679 Munich, Germany
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de Editor: Clemens Fuest
https://www.cesifo.org/en/wp
An electronic version of the paper may be downloaded

- from the SSRN website: www.SSRN.com
- from the RePEc website: www.RePEc.org
- from the CESifo website: https://www.cesifo.org/en/wp

Short-Time Work and Precautionary Savings

Abstract

In the Covid-19 crisis, most OECD countries have used short-time work (subsidized working time reductions) to preserve employment relationships. This paper studies whether short-time work can save jobs through stabilizing aggregate demand in recessions. First, we show that the consumption risk of short-time work is considerably smaller compared to unemployment using household survey data from Germany. Second, we build a New Keynesian model with incomplete asset markets and labor market frictions featuring an endogenous firing and short-time work decision. In recessions, short-time work reduces the unemployment risk of workers, which mitigates their precautionary savings motive. Using a quantitative model analysis, we show that this channel increases the stabilization potential of short-time work over the business cycle.

JEL-Codes: E210, E240, E320, E520, E620, J630.
Keywords: short-time work, fiscal policy, incomplete asset markets, unemployment risk, matching frictions.

Thomas Dengler*
School of Business and Economics
Humboldt University of Berlin / Germany thomas.dengler@hu-berlin.de

July 29, 2022
We thank Michael C. Burda, Lena Dräger, Brigitte Hochmuth, Christian Merkl, Mathias Trabandt, Simon Voigts, Enzo Weber, and participants at seminars at FU Berlin, HU Berlin, University of Rostock, and University of Kiel and at SED 2021, CEF 2021, EALE 2021, EEA 2021, VfS 2021, ASSA 2022, and the ifo conference on macroeconomics and survey data 2022 for many helpful comments. Further, we thank the Deutsche Bundesbank Research Data and Service Center for integrating specific survey questions in their household panel, Ahmet Ali Taskin for support with the IAB survey data, and Charlotte Altherr, Jil Mössler and Stefan Wilhelm for excellent research assistance.

1 Introduction

Inspired by the successful implementation of short-time work (STW henceforth) during the Great Recession, almost all OECD countries have used STW as an instrument for securing jobs and as a fiscal stabilizer during the Covid-19 crisis. In Germany, Europe's largest economy, almost every fifth employee was affected by STW in spring 2020. When comparing this to the peak of almost 4 percent of total employment during the Great Recession, it becomes clear that the use of STW has reached an unprecedented level, and so have public expenditures on these subsidies. This is not only true for Germany. Equally high numbers were observed in Italy, Spain, France, Belgium, Austria and the UK as illustrated in Figure 1. For example, the UK introduced the furlough scheme that covered more than every forth worker in May 2020. ${ }^{1}$

Yet, knowledge of the dynamic effects of this labor market policy remains limited. While it has been established that STW affects firms by reducing their labor cost, dampening firing and incentivizing hiring, an effect on workers' consumption demand has not yet been analyzed. But in the political debate, one major argument for STW - next to reducing firms' labor costs in crises - is more stable demand and lower unemployment risk. This paper builds a dynamic macroeconomic model with labor market frictions that features how STW may reduce unemployment fears and stabilize incomes and demand with incomplete asset markets. We find that this channel increases cyclical unemployment stabilization through STW by more than a fifth.

Given that STW has a long tradition in Germany and is widely used, we introduce the German policy in the following. STW overall works similarly in other countries. To be eligible for support, a firm has to convince the public employment agency that it is experiencing a significant shortfall in demand which requires the reduction of labor input. The firm then reduces workers' hours and pay proportionally, but workers receive between 60 and 67 percent compensation of the net wage loss, paid out of the unemployment insurance fund. To understand why STW may stabilize demand, it is important to note that workers that are affected by STW are typically better off compared to unemployment. Only in the rare case if hours are reduced to zero, income from STW compensation will be equal to the unemployment benefit. ${ }^{2}$ And even then, the employment prospects of workers on STW (who are considered as employed) are typically better compared to the unemployed.

To illustrate how STW interacts with precautionary saving we proceed in two steps. First, we provide empirical evidence from household survey data on the consumption decline that households experience during unemployment and STW periods. Using data on Germany for the Covid-19 crisis from the Bundesbank Household Online Panel, we show that the consumption drop due to unemployment was large with about 35%. This number is considerably larger compared to earlier (pre-Covid) estimates for other coun-

[^1]

Figure 1: Share of employees affected by STW across different countries during the Covid-19-recession. Source: Eurostat, except for Germany: Federal Employment Agency and UK: ONS and CJRS.
tries. Interestingly for our purpose, however, we find an only moderate and mainly insignificant drop of consumption during STW spells. This is direct evidence for our mechanism that STW is able to stabilize aggregate demand in recessions.

Second, we construct a New Keynesian DSGE model with search and matching frictions, endogenous separations and rigidities in prices and real wages. We add a STW decision as in Balleer et al. (2016) and incomplete asset markets that imply that unemployment (and STW) risk is not fully insurable. In this regard, our model shares many features with the models by Gornemann et al. (2016), Ravn and Sterk (2021), Challe (2020), and Albertini et al. (2021). As in Ravn and Sterk (2021) and Challe (2020) the combination of nominal rigidities and endogenous labor market risk yields an amplification channel. On top of that, as in Gornemann et al. (2016) and Albertini et al. (2021), our model features government debt and a non-degenerate wealth distribution of households. This heterogeneity implies that workers have different marginal propensities to consume depending on their asset holdings, such that redistribution policies can have meaningful implications for aggregate demand. Worker-firm matches are subject to idiosyncratic profitability shocks. When the match becomes so unprofitable that the firm would otherwise fire the worker, the government allows the firm to reduce hours and wage payments and therefore the losses that this match generates. This reduces firing directly and affects hiring indirectly, because it increases the value of the job from the perspective of the firm. Importantly, because of the search and matching frictions, firms retain temporarily unprofitable matches in the firm (labor hoarding). We call this the firm channel of STW. This channel stabilizes employment over the business cycles as shown by Balleer et al. (2016). Our contribution is to provide complementary evidence on the
risk channel of STW that affects workers' consumption demand and their precautionary saving decision. Given that unemployment risk cannot be perfectly insured, workers that face borrowing constraints may reduce their consumption already in anticipation of unemployment risk without necessarily suffering job loss. Quantitatively, we discipline our model with the estimates from the household data.

Our main finding is that STW has additional potential to stabilize the business cycle when this risk channel is taken into account. As firings increase in recessions, full-time employed workers want to self-insure against rising unemployment risk. Lower consumption demand, given nominal rigidities, reduces production and triggers even more firings, resulting in a contractionary deflationary spiral. This amplification channel due to precautionary savings is dampened with STW. Workers know that they might be placed on STW instead of being fired, which leaves them with a higher income. This reduces unemployment as well as income risk and dampens precautionary savings. In an economy calibrated to the German labor market, we document an increase of unemployment stabilization from 19 to 24 percent (i.e., 23%) due to STW. This implies that a shock that would generate an increase of the unemployment rate by 4 percentage points without STW would increase unemployment by only 3 percentage points with STW. Out of the total stabilization of 1 percentage point, one fifth, i.e., 0.2 percentage points is due to the reduction of precautionary savings. Interestingly, STW stabilization interacts with monetary policy. If monetary policy is less aggressive or constrained, the stabilization due to STW increases.

We further investigate the effects of a discretionary increase of STW compensation. This exercise is insightful for two reasons. First, such policies have been implemented during the Covid-19 recession in different countries, including Austria and Germany. Second, it allows to investigate whether the previously described stabilization is due to precautionary savings from full-time workers or due to a reallocation of funds from tax payers to short-time workers with potentially heterogeneous marginal propensities to consume. In the data and in the model, we observe that short-time workers behave rather similarly to full-time workers. For that reason, effects from redistributing to short-time workers tend to be small in the model. This implies that an increase of STW compensation is expansionary, but the effects are quantitatively negligible. Instead, our model predicts that a similar-sized increase of unemployment benefits has larger expansionary effects on output and employment as unemployed workers consume a larger share of additional transfers that they receive compared to short-time workers. The finding that an increase in STW compensation is ineffective also has implications for our result concerning the automatic stabilization of STW. It suggests that most of the stabilization comes from a reduction in separations, and not from redistribution arising from more STW benefits payments in recessions.

Related literature This paper contributes, first, to the literature on New Keynesian models with labor market frictions. Examples are Blanchard and Galí (2010), Krause and Lubik (2007) and Trigari (2009). These papers study normative or positive implications of monetary policy when labor market frictions, partly with endogenous separations, are present, but in complete asset markets. Second, this paper is related to the growing literature on heterogeneous agent New Keynesian models with search and matching (Gornemann et al., 2016, Challe, 2020, Ravn and Sterk, 2017, 2021, Albertini et al., 2021). These studies feature a similar precautionary savings mechanism as in our model, among them Gornemann et al. (2016) and Albertini et al. (2021), also feature a non-degenerate wealth distribution. However, additionally, our labor market features
endogenous separations as well as a STW decision, whereas the existing literature studies only exogenous separations. One recent exception that also looks at endogenous separations in this context is Broer et al. (2021). Third, our paper is related to the literature that assesses the impact of fiscal policy with incomplete markets (e.g., Brinca et al., 2016; Hagedorn et al., 2019). Quantitative studies with STW and complete markets include Krause and Uhlig (2012), Faia et al. (2013), Balleer et al. (2016) and Cooper et al. (2017). Cooper et al. (2017) study STW with heterogeneous firms and focus on reallocation effects. Lastly, there is a growing empirical literature on the effects of STW. Recent studies include Giupponi and Landais (2022), Cahuc et al. (2018) and Kopp and Siegenthaler (2021). Macroeconometric studies are provided by Boeri and Bruecker (2011) and Gehrke and Hochmuth (2021). All of these papers suggest stabilizing effects of STW for unemployment, but none of these papers discusses the different economic mechanisms how STW affects the labor market.

Outline The rest of the paper is structured as follows. Section 2 presents empirical evidence on consumption risk due to unemployment and STW spells. Section 3 develops the model and characterizes the equilibrium. Section 4 discusses the calibration and the steady state properties. Section 5 uses the model for counterfactual analyses and simulation. Section 6 concludes.

2 The consumption risk of short-time work and unemployment

To quantify the risk channel of short-time work (STW) in a credible way, it is crucial to have information on the decline in household consumption during unemployment and STW spells. For this purpose, we use the Bundesbank Online Panel-Households (BOPHH) that surveys German households, in particular during the Covid-19 crisis. ${ }^{3}$ The survey is conducted in monthly frequency in waves covering May to July 2019 and runs continuously since April 2020, our current data vintage covers the period until September 2021. The number of participants varies between 2,000 to 7,500 in each wave. The survey is representative of the German online population, which implies that older female respondents and respondents with lower educational attainment are underrepresented, and has a panel component. Participants are asked about their labor status (including STW) since May 2020. We further have information about expenditures, wealth and several sociodemographic variables.

In Figure 2, we show the distributions of household income and net wealth across German households in three different labor market states: (1) regular employment, (2) STW, and (3) unemployment. Interestingly, the distribution of short-time workers is in between that of the employed and the unemployed, but clearly closer to that of the employed. This suggests that short-time workers behave more like employed workers rather than unemployed workers.

To quantify the consumption risk, we follow Chodorow-Reich and Karabarbounis (2016) and Graves (2020) and regress log consumption expenditure on a dummy of the labor market status. ${ }^{4}$

[^2]

Figure 2: Empirical distributions of household income and net wealth by labor market state in Germany. Source: Bundesbank Household Online Panel, 2021 waves. Weighted according to sampling weights.

$$
\begin{equation*}
\log C_{i, t}=\gamma^{e}+\gamma_{u} D_{i, t}^{u}+\gamma_{s t w} D_{i, t}^{s t w}+\beta \mathbf{X}_{i, t}+\epsilon_{i, t} \tag{1}
\end{equation*}
$$

The coefficients γ_{u} and $\gamma_{s t w}$ measure the decline in log consumption for households that are unemployed or affected by STW. In line with Chodorow-Reich and Karabarbounis (2016) and Graves (2020), consumption is measured as the spending of the household on non-durables and services by excluding spending on durables such as cars and furniture and housing (rent, mortgages, etc). Consumption refers to the preceding month, the employment status is the current status. ${ }^{5}$ To estimate Equation (1), we restrict the sample to individuals between ages 25 to 55 .

We use cross-sectional and in-household variation to identify the consumption decline. When using cross-sectional variation, we rely on the assumption that we can control for all relevant variables to avoid omitted variable bias. Our set of controls in $\mathbf{X}_{i, t}$ is large and includes age and age squared, gender, an indicator for eight categories of education, household size and household size squared, an indicator for city size, home-ownership interacted with city size and wealth of the household. To control for, among other things, (regional) lockdowns during the Covid-19 pandemic, we add time-region fixed effects. We further estimate the same regression as in Equation (1), but adding a household fixed-effect that controls for time-invariant individual characteristics. However, because of too few panel observations, we cannot control for wealth in these regressions.

The results are in Table 1 and Table 2. Average consumption as estimated from the cross-sectional variation is around 40% lower during unemployment $\left(\gamma_{u}\right), 35 \%$ in our tightest specification. Using within households variation, this number increases to 65%. Interestingly, these numbers are considerably larger compared to existing studies for the US and Sweden. For the US, Chodorow-Reich and Karabarbounis (2016) find a drop of 21%, while Graves (2020) estimates numbers between $20-25 \%$ using similar data.

[^3]| | (1) | (2) | (3) | (4) | (5) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| γ_{u} | $-0.47^{* * *}$ | $-0.44^{* * *}$ | $-0.42^{* * *}$ | $-0.42^{* * *}$ | $-0.35^{* * *}$ |
| | (-8.53) | (-7.99) | (-7.75) | (-7.68) | (-4.68) |
| $\gamma_{s t w}$ | $-0.08^{* *}$ | -0.05 | -0.04 | -0.04 | -0.07 |
| Skill | (-2.57) | (-1.62) | (-1.43) | (-1.49) | (-1.43) |
| Homeown | | \times | \times | \times | \times |
| Homeown \times city size | | | \times | \times | \times |
| Wealth/debt | | | | \times | \times |
| Observations | 9,476 | 9,468 | 9,464 | 9,464 | 4,924 |

Table 1: Consumption expenditure across labor market states. The parameter $\gamma_{u}\left(\gamma_{s t w}\right)$ gives the \log difference of the consumption of an unemployed (short-time) worker compared to an employed worker. The estimation uses the Bundesbank Household Online Panel that covers monthly data for 2020/2021, waves 5-21. t-statistics are in parentheses, standard errors are clustered at household level, ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$. Dependent variable is log consumption of non-durables and services for individuals between ages $25-55$. The set of control variables in all regressions includes time-fixed effects interacted with region, age and age squared, gender, household size and household size squared and an indicator for city size. Skill is measured using an indicator of eight categories of education, wealth of the household is measured using indicators across 10 categories each for gross assets, secured debt, and unsecured debt.

Using Swedish data, Kolsrud et al. (2018) find an average drop of 4.4% for short-term unemployed workers, that increases to 9.1% for longer unemployment spells. While the larger consumption drop may seem surprising at first sight given a higher unemployment replacement rate in Germany compared to the US, this may be explained by the fact that the usage of short-term credit, e.g., via credit cards is less widespread in Germany. Further, our estimates are the first for the Covid-19 crisis. While we control for timefixed effects that should capture the direct impact of lockdowns on consumption, it seems likely that the unemployed have reduced their consumption by more due to the uncertainty of the pandemic and because of fewer alternative income sources during unemployment (e.g., informal work). ${ }^{6}$

Our estimates in Table 1 and Table 2 further allow to quantify the consumption drop during STW ($\gamma_{s t w}$). These estimates are considerably smaller, between $5-10 \%$, and mostly insignificant, in particular in the tighter specifications. This suggests that the consumption risk from STW is considerably lower compared to that from unemployment and validates our argument that STW may stabilize demand over the business cycle by reducing risk.

We find similar qualitative results on income risk in a different data set, namely the IAB HOPP as provided by the Research Data Center of the Institute for Employment

[^4]| | (1) | (2) | (3) | (4) | (5) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| γ_{u} | $-0.65^{* *}$ | $-0.66^{* *}$ | $-0.65^{* *}$ | $-0.65^{* *}$ | $-0.66^{* *}$ |
| | (-2.48) | (-2.55) | (-2.54) | (-2.55) | (-2.55) |
| $\gamma_{s t w}$ | -0.10 | -0.10 | -0.09 | -0.08 | -0.07 |
| | (-1.17) | (-1.16) | (-0.99) | (-0.96) | (-0.90) |
| Household size, region, city size | | \times | \times | \times | \times |
| Skill | | | \times | \times | \times |
| Homeown | | | | \times | \times |
| Homeown \times city size | \times | \times | \times | \times | \times |
| Individual-fixed effect | 9,495 | 9,476 | 9,468 | 9,464 | 9,464 |
| Observations | | | | | |

Table 2: Consumption expenditure across labor market states using household fixedeffects. The parameter $\gamma_{u}\left(\gamma_{s t w}\right)$ gives the log difference of the consumption of an unemployed (short-time) worker compared to an employed worker. The estimation uses the Bundesbank Household Online Panel that covers monthly data for 2020/2021, waves $5-21$. t-statistics are in parentheses, standard errors are clustered at household level, ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$. Dependent variable is log consumption of nondurables and services for individuals between ages $25-55$. The set of control variables in all regressions includes time-fixed effects interacted with region. Skill is measured using an indicator of eight categories of education.

Research (IAB). The IAB HOPP is an online survey of individuals during the Covid19 -crisis. In spring 2020 at the first peak of the Covid-19-crisis in Germany, more than half of those that lost their job in that crisis reported a considerable income loss, see Table 3. In contrast, only 37% of those affected by STW reported a considerable income loss. Instead, workers on STW report, to a larger extent, a more moderate income loss.

One may worry about the fact that our measure of STW is incomplete as it does not control for the extent to which a worker is affected by STW. There are two dimensions in this regard: the hours reduction and the STW compensation. We are able to shed light on this issue, as we were able to add specific survey questions to the BOP-HH in wave 20. The results show that the hours reduction and STW compensation vary widely across workers that were affected by STW during the Covid-19-crisis. As shown in Figure 3, more than 50% of workers experienced an hours reduction of less than 50%, more than

Share of respondents	Total	No STW	STW	Unemployed
Income considerably lower	13.3	4.93	36.9	54.4
Income somewhat lower	17.9	13.28	42.5	10.8
Income unchanged	56.6	71.1	12.3	13.9

Table 3: Household's net income change from February 2020 to May 2020 by worker type in Germany. Unemployed workers are those that report that they lost their job in the Covid-19-crisis. Source: IAB HOPP as provided by the Research Data Center of the Institute for Employment Research (IAB), own calculations based on wave one (weighted).

Source: Bundesbank Household Online Panel, wave 20, August 2021
Figure 3: Average hours reduction and STW compensation during the pandemic (weighted summary statistics). Source: Bundesbank Household Online Panel, wave 20, August 2021.
30% of less than 25%. Only around 10% reduced their working hours to zero, i.e., by 100%. Almost half of all workers received a STW compensation between $60-69 \%$ of their net wage, whereas the other half received a higher STW compensation. This can be due to the fact that the German government introduced a higher compensation $(80-89 \%$) for workers affected by STW for a long period during the Covid-19-crisis or because many (in particular large firms) pay top-ups on the STW compensation (as agreed on in wage agreements).

Based on these observations, we define a measure of 'STW affectedness' that combines these two variables. For example, we define a worker as strongly affected by STW if she faces a large hours reduction and only a moderate STW compensation. ${ }^{7}$ Unfortunately, the data has this information only in wave 20 (August 2021). We run the cross-sectional regression as described above for this month while controlling for the extent of STW affectedness. As documented in Table 4, these regressions reveal that workers that are strongly affected by STW reduce their consumption by more, compared to workers that are only more moderately affected. In particular, we see a consumption drop of 29%, which is borderline significant. This consumption drop is nevertheless still around a third smaller, compared to the consumption drop of an unemployed worker. This implies that the consumption risk is still smaller even if we focus on workers that are strongly affected by STW.

[^5]| | (1) | (2) | (3) | (4) | (5) |
| :--- | :--- | :--- | :--- | :--- | :---: |
| γ_{u} | $-0.55^{* * *}$ | $-0.52^{* * *}$ | $-0.49^{* * *}$ | $-0.48^{* * *}$ | $-0.43^{* * *}$ |
| $\gamma_{\text {stw,strong }}$ | (-3.80) | (-4.03) | (-3.85) | (-3.68) | (-2.94) |
| $\gamma_{\text {stw, median }}$ | -0.26^{*} | -0.26^{*} | -0.27^{*} | -0.27^{*} | -0.29^{*} |
| | (-1.67) | (-1.68) | (-1.80) | (-1.70) | (-1.76) |
| $\gamma_{\text {stw,low }}$ | 0.03 | 0.10 | 0.09 | 0.10 | 0.10 |
| Skill | (0.15) | (0.54) | (0.48) | (0.52) | (0.46) |
| Homeown | -0.05 | 0.02 | 0.01 | -0.02 | -0.12 |
| Homeown \times city size | (-0.20) | (0.10) | (0.03) | (-0.09) | (-0.48) |
| Wealth/debt | | \times | \times | \times | \times |
| Observations | | | \times | \times | \times |

Table 4: Consumption expenditure across labor market states including STW affectedness. The parameter $\gamma_{u}\left(\gamma_{s t w}\right)$ gives the \log difference of the consumption of an unemployed (short-time) worker compared to an employed worker. The estimation uses the Bundesbank Household Online Panel that covers monthly data for 2020/2021, wave 20. t-statistics are in parentheses, standard errors are clustered at household level, ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$. Dependent variable is \log consumption of nondurables and services for individuals between ages 25-55. The set of control variables in all regressions includes age and age squared, gender, household size and household size squared, an indicator for region and city size. Skill is measured using an indicator of eight categories of education, wealth of the household is measured using indicators across 10 categories each for gross assets, secured debt, and unsecured debt.

3 The model

The model economy is a New Keynesian economy with search and matching frictions, an endogenous separation and STW decision, and incomplete markets. The labor market creates endogenous fluctuations in job risk, and hence income risk that workers want to self-insure against. The only asset available to do so is a one-period nominal government bond. The economy features pricing decisions subject to nominal rigidities, and real wages are rigid. The government runs a balanced budget and the monetary authority sets nominal interest rates. There is ex-ante heterogeneity, i.e., next to workers, there are wealthy risk-neutral firm owners who collect and consume all profits each period.

3.1 Households

There is a continuum of measure 1 of workers. Workers can be in four labor market states in total. (1) Workers employed in full-time earn wage $w_{t}^{f},(2)$ workers on STW earn wage w_{t}^{s}, (3) unemployed workers receive unemployment benefits δ, and long-term unemployed workers receive less generous benefits $\delta_{l}<\delta$. All sources of income are taxed with rate τ_{t}. Denoting by $x_{t}^{i}=\{f, s, u, l\}$ the set of possible employment statuses of household i, the optimization problem of household i is given by:

$$
\begin{aligned}
& \max _{\left\{c_{t}^{i}, b_{t}^{i}\right\}} \mathbb{E}_{0} \sum_{t=0}^{\infty}\left(\prod_{k=0}^{t} \beta_{k}\right) u\left(c_{t+s}^{i}\right) \\
& \text { s.t. } b_{t}^{i}+c_{t}^{i}=\left(1+r_{t}\right) b_{t-1}^{i}+\left(1-\tau_{t}\right)\left(\mathbb{1}_{f}^{i} w_{t}^{f}+\mathbb{1}_{s}^{i} w_{t}^{s}+\mathbb{1}_{u}^{i} \delta+\left(1-\mathbb{1}_{f}^{i}-\mathbb{1}_{s}^{i}-\mathbb{1}_{u}^{i}\right) \delta_{l}\right) \\
& b_{t}^{i} \geq 0 \\
& \mathbb{E}_{t} \operatorname{Pr}\left(x_{t+1}^{i} \mid x_{t}^{i}\right)=\left[\begin{array}{llll}
\rho_{t+1}^{f f} & \rho_{t+1}^{f s} & \rho_{t+1}^{f u} & \rho_{t+1}^{f l} \\
\rho_{t+1}^{s f} & \rho_{t+1}^{s s} & \rho_{t+1}^{s u} & \rho_{t+1}^{s l} \\
\rho_{t+1}^{u f} & \rho_{t+1}^{u s} & \rho_{t+1}^{u u} & \rho_{t+1}^{u l} \\
\rho_{t+1}^{l f} & \rho_{t+1}^{s s} & \rho_{t+1}^{l u} & \rho_{t+1}^{l l}
\end{array}\right]
\end{aligned}
$$

where $\beta_{k} \in(0,1)$ is the discount factor (that may be subject to shocks) and c_{t}^{i} denotes consumption. The indicator $\mathbb{1}_{j}^{i}$ is equal to 1 if the worker i is in a particular state j and equal to 0 if not. Workers invest in domestic government bonds b_{t} and they cannot borrow. As explained in detail later, workers want to save in a precautionary manner and this savings motive is time-varying, since the transition probabilities $\rho_{t+1}^{j j}$, which determine income risk, are fluctuating in response to aggregate shocks. In the model, the transition probabilities are determined by hiring, firing and STW decisions of intermediate goods firms. Their problem is discussed in the following section.

3.2 Intermediate good producers and the labor market

Intermediate good firms employ a single worker and sell their product on a competitive market to wholesale good producers. They produce their good using a linear production technology in hours. We assume that firms are owned by risk-neutral entrepreneurs who consume all profits each period.

3.2.1 Employment dynamics, matching technology and vacancy posting

The labor market with STW follows Balleer et al. (2016) and Gehrke et al. (2019). The labor market is subject to matching frictions, i.e., it is costly to post a vacancy and takes time to fill a vacancy. Firms post vacancies v_{t} to be matched with unemployed workers u_{t}. Matches are subject to aggregate and idiosyncratic shocks and separate both endogenously and exogenously. We assume that firms cannot adjust hours per worker along the intensive margin. This represents the fact that the hours adjustment occurs mainly along the extensive margin in Germany (Balleer et al., 2016). In recessions, the adjustment along the intensive margin increases predominantly due to STW (Burda and Hunt, 2011) as in our model. ${ }^{8}$ For the sake of clarity, the sequence of events in a typical period t is shown in Figure 4.

Figure 4: Sequence of events at date t

As in Moyen and Stähler (2014), there are two types of unemployed workers, shortterm unemployed $u_{s, t}$ and long-term unemployed $u_{l, t}$. Short-term unemployed workers enter long-term unemployment with probably ω_{l}. Further, and similar to Ravn and Sterk (2017), we allow for duration dependence, i.e., long-term unemployed workers have a lower job finding rate than short-term unemployed workers due to lower search efficacy. The matching technology is given as: $m_{t}=\mu u_{e, t}^{\alpha} v_{t}^{1-\alpha}$, where $u_{e, t}$ is a measure of effective unemployment

$$
\begin{equation*}
u_{e, t}=u_{s, t}+k u_{l, t}, \tag{2}
\end{equation*}
$$

taking into account that long-term unemployed only search with probability $k \in(0,1]$. $\alpha \in(0,1)$ is the elasticity of matches with respect to unemployment and the parameter $\mu>1$ is the matching efficiency. Job-finding rates of short-term unemployed are therefore: $\eta_{s, t}=\mu \theta_{t}^{1-\alpha}$, of long-term unemployed: $\eta_{l, t}=\mu k \theta_{t}^{1-\alpha}$, where $\theta_{t} \equiv v_{t} / u_{e, t}$ represents labor market tightness. Conversely, the probability of a firm to fill a vacancy is given by $q_{t}=\mu \theta_{t}^{-\alpha}$. At the beginning of a given period t, separation and STW decisions are made. The separation rate is given by $\phi_{t}=\phi^{x}+\left(1-\phi^{x}\right) \phi_{t}^{e}$, where ϕ^{x} represents exogenous job destruction and ϕ_{t}^{e} represents endogenous job destruction (details follow in the next section). The laws of motion for employment and unemployment are:

$$
\begin{equation*}
n_{t}=\left(1-\phi_{t}\right)\left(n_{t-1}+m_{t-1}\right) \tag{3}
\end{equation*}
$$

[^6]\[

$$
\begin{gather*}
u_{s, t}=\left(1-\omega_{l}\right)\left(1-\eta_{s, t-1}\right) u_{s, t-1}+\eta_{s, t-1} \phi_{t} u_{s, t-1}+\eta_{l, t-1} \phi_{t} u_{l, t-1}+\phi_{t} n_{t-1} \tag{4}\\
u_{l, t}=\omega_{l}\left(1-\eta_{s, t-1}\right) u_{s, t-1}+\left(1-\eta_{l, t-1}\right) u_{l, t-1} \tag{5}
\end{gather*}
$$
\]

where $n_{t}=1-u_{t}$, and $u_{t}=u_{s, t}+u_{l, t}$.
Employment in period t depends on employment and matches in the previous period, conditional on not being fired at the beginning of period t. Note that workers on STW are treated as employed, thus they are part of n_{t}, although they do not work full-time.

The present value of a vacancy to a firm is defined as:

$$
\begin{equation*}
V_{t}=-\kappa+\beta \mathbb{E}_{t} q_{t} J_{t+1}+\mathbb{E}_{t} \beta\left(1-q_{t}\right) V_{t+1}, \tag{6}
\end{equation*}
$$

where J_{t} is the present value of a job and κ represents vacancy posting costs. Assuming free entry to vacancy posting ($\left.V_{t}=0 \forall t\right)$ results in the job creation condition:

$$
\begin{equation*}
\frac{\kappa}{q_{t}}=\beta \mathbb{E}_{t} J_{t+1} . \tag{7}
\end{equation*}
$$

The average costs of finding a worker are recouped in expectation after a match occurs through the discounted expected value of a job.

3.2.2 Separation and short-time work decisions

The separation and STW decisions follow Balleer et al. (2016). Separations are endogenous in the spirit of Mortensen and Pissarides (1994). Let ϵ_{t} be the realization of an i.i.d. idiosyncratic cost shock drawn from the distribution $g\left(\epsilon_{t}\right)$ that is subtracted from period profits. If the shock is above a certain threshold v_{t}^{f} such that the firm surplus of a filled job turns negative, the worker is fired. STW introduces a second threshold v_{t}^{k}, above which workers are not profitable enough to be full-time employed, but they are not fired because their expected future value is positive. Consequently, the rate of workers on STW is denoted by $\chi_{t}=\int_{v_{t}^{t}}^{v_{t}^{f}} g\left(\epsilon_{t}\right) d \epsilon_{t}$, and the endogenous separation rate is $\phi_{t}^{e}=\int_{v_{t}^{t}}^{\infty} g\left(\epsilon_{t}\right) d \epsilon_{t}$. This is illustrated in Figure 5. For the separation and STW decision, we focus on the firm surplus. This implies that separations or STW decisions may occur because of a negative firm surplus, even though the joint surplus of worker and firm may still be positive, rendering these decisions inefficient. This inefficiency can be explained by institutional constraints and bargaining frictions such as wage floors. Using data for Austria and Italy, Jäger et al. (2022) and Giupponi and Landais (2022) show empirically that such rigidities in wages and hours matter and indeed create inefficient separations.

The present value of a match with a specific realization of the idiosyncratic shock ϵ_{t} such that the worker is not on STW is given by:

$$
\begin{equation*}
J_{t}\left(\epsilon_{t} \mid \epsilon_{t}<v_{t}^{k}\right)=a_{t} p_{t}^{z}-w_{t}-\epsilon_{t}+\beta \mathbb{E}_{t} J_{t+1}, \tag{8}
\end{equation*}
$$

where a_{t} is aggregate productivity and $p_{t}^{z}=P_{t}^{z} / P_{t}$ is the relative price of the intermediate good in terms of the final good price and w_{t} is the wage of the worker.

The government defines an eligibility criterion ζ_{t} for STW such that only those firms with a value below that threshold are allowed to use STW:

$$
\begin{equation*}
a_{t} p_{t}^{z}-w_{t}-\epsilon_{t}+\beta \mathbb{E}_{t} J_{t+1}<\zeta_{t} . \tag{9}
\end{equation*}
$$

Figure 5: Illustration of the distribution of the idiosyncratic profitability shocks with STW threshold v_{t}^{k} and v_{t}^{f} following Balleer et al. (2016).

The value of the idiosyncratic shock ϵ_{t} where Equation 9 holds with equality is given by v_{t}^{k}. It defines the threshold value for STW v_{t}^{k} as

$$
\begin{equation*}
v_{t}^{k}=a_{t} p_{t}^{z}-w_{t}+\beta \mathbb{E}_{t} J_{t+1}-\zeta_{t} . \tag{10}
\end{equation*}
$$

The variable ζ_{t} is a policy instrument and may be changed unexpectedly in a discretionary manner. In steady state, it is assumed that $\zeta_{t}=-f$, where f is the cost of firing a worker, implying that only those firms are allowed to use STW that would otherwise fire. A higher value of ζ_{t} than the steady state value would imply that workers can be sent on STW even before they would be fired, i.e., the eligibility criterion becomes less stringent. This directly shifts the threshold in Figure 5 to the left implying a higher STW rate χ_{t}.

Given that a worker is eligible for STW, the firm can freely choose the optimal working time reduction K subject to convex adjustment costs $C\left(K\left(\epsilon_{t}\right)\right)$ with $\frac{\partial C\left(K\left(\epsilon_{t}\right)\right)}{\partial K\left(\epsilon_{t}\right)}>$ 0 and $\frac{\partial^{2} C\left(K\left(\epsilon_{t}\right)\right)}{\partial K\left(\epsilon_{t}\right)^{2}}>0$ to ensure interior solutions. ${ }^{9}$ The choice of convex adjustment costs reflects the fact that the reduction in labor costs for firms is typically not proportional to the hours reduction. This can be due to (i) the fact that the employer has to pay social security contributions for the full-time equivalent, (ii) the existence of bureaucratic barriers (iii) or possible resistance by workers to high hours reductions. ${ }^{10}$ The firm chooses the optimal level of hours reduction K by maximizing the contemporaneous profit of a worker on STW:

$$
\begin{equation*}
\max _{K\left(\epsilon_{t}\right)} \pi_{t}=\left(a_{t} p_{t}^{z}-w_{t}-\epsilon_{t}\right)\left(1-K\left(\epsilon_{t}\right)\right)-C\left(K\left(\epsilon_{t}\right)\right) \tag{11}
\end{equation*}
$$

The reduction in working time reduces output of the worker, but also wage payments

[^7]and the idiosyncratic cost. Assuming a quadratic functional form for the costs of STW:
\[

$$
\begin{equation*}
C\left(K\left(\epsilon_{t}\right)\right)=c_{k} \frac{1}{2} K\left(\epsilon_{t}\right)^{2} \tag{12}
\end{equation*}
$$

\]

yields an optimal STW hours reduction for a given ϵ_{t}

$$
\begin{equation*}
K^{*}\left(\epsilon_{t}\right)=-\frac{a_{t} p_{t}^{z}-w_{t}-\epsilon_{t}}{c_{k}} . \tag{13}
\end{equation*}
$$

Then, the firing decision of the firm is described by:

$$
\begin{equation*}
\left(a_{t} p_{z, t}-w_{t}-\epsilon_{t}\right)\left(1-K^{*}\left(\epsilon_{t}\right)\right)-C\left(K^{*}\left(\epsilon_{t}\right)\right)+\beta \mathbb{E}_{t} J_{t+1}<-f . \tag{14}
\end{equation*}
$$

Solving for the firing threshold v_{t}^{f} at which the firm is indifferent between firing and retaining a worker on STW yields:

$$
\begin{equation*}
v_{t}^{f}=p_{z, t} a_{t}-w_{t}+\frac{f+\beta \mathbb{E}_{t} J_{t+1}}{1-K^{*}\left(v_{t}^{f}\right)}-\frac{C\left(K^{*}\left(v_{t}^{f}\right)\right)}{1-K^{*}\left(v_{t}^{f}\right)} . \tag{15}
\end{equation*}
$$

All the workers above the threshold v_{t}^{k} are eligible for STW, but workers above v_{t}^{f} are so unproductive that they are fired nevertheless (see also Figure 5). STW exists in this economy only if $v_{t}^{f}>v_{t}^{k}$, which is ensured under plausible values of the STW cost c_{k}. Equation (13) highlights that if c_{k} approaches infinity, the optimal hours reduction approaches zero, and firms do not use STW ($K^{*}=0, v_{t}^{f}=v_{t}^{k}$).

The expected value of a worker to the firm before the realization of ϵ is known is

$$
\begin{align*}
J_{t+1}= & \left(1-\phi^{x}\right) \int_{-\infty}^{v_{t+1}^{k}}\left(a_{t+1} p_{z, t+1}-w_{t+1}-\epsilon_{t+1}\right) g\left(\epsilon_{t+1}\right) d \epsilon_{t+1} \\
& +\left(1-\phi^{x}\right) \int_{v_{t+1}^{k}}^{v_{t+1}^{f}}\left[\left(a_{t+1} p_{z, t+1}-w_{t+1}-\epsilon_{t+1}\right)\left(1-K^{*}\left(\epsilon_{t+1}\right)\right)-C\left(K^{*}\left(\epsilon_{t+1}\right)\right)\right] g\left(\epsilon_{t+1}\right) d \epsilon_{t+1} \\
& -\left(1-\phi^{x}\right) \phi_{t+1}^{e} f+\mathbb{E}_{t+1}\left(1-\phi_{t+1}\right) \Lambda_{t+1, t+2} J_{t+2} . \tag{16}
\end{align*}
$$

Finally, aggregating over all intermediate firms and taking into account the cost for vacancy posting yields total period-by-period dividends paid out to firm owners:

$$
\begin{align*}
d_{t}^{I}= & n_{t}^{B}\left(1-\phi^{x}\right) \int_{-\infty}^{v_{t}^{k}}\left(a_{t} p_{z, t}-w_{t}-\epsilon_{t}\right) g\left(\epsilon_{t}\right) d \epsilon_{t} \\
& +n_{t}^{B}\left(1-\phi^{x}\right) \int_{v_{t}^{k}}^{v_{t}^{f}} \tag{17}\\
& \left.\left.\left.-n_{t}^{B}\left(1-\phi^{x}\right) \phi_{t}^{e} f-\kappa v_{t, t}-w_{t}-\epsilon_{t}\right)\left(1-K^{*}\left(\epsilon_{t}\right)\right)\right)\right] g\left(\epsilon_{t}\right) d \epsilon_{t}
\end{align*}
$$

where $n_{t}^{B}=\frac{n_{t}}{\left(1-\phi_{t}\right)}$ is employment before separations.
Now that the relevant equations for hiring, separation and STW decisions have been discussed, we can show the transition matrix of workers in more detail, with current states in rows and future states in columns:

$$
\begin{align*}
& \mathbb{E}_{t} \operatorname{Pr}\left(x_{t+1}^{i} \mid x_{t}^{i}\right) \\
& =\left[\begin{array}{cccc}
\left(1-\phi^{x}\right) \mathbb{E}_{t}\left(1-\phi_{t+1}^{e}-\chi_{t+1}\right) & \left(1-\phi^{x}\right) \mathbb{E}_{t} \chi_{t+1} & \mathbb{E}_{t} \phi_{t+1} & 0 \\
\left(1-\phi^{x}\right) \mathbb{E}_{t}\left(1-\phi_{t+1}^{e+1}-\chi_{t+1}\right) & \left(1-\phi^{x}\right) \mathbb{E}_{t} t t_{t+1} & \mathbb{E}_{t} \phi_{t+1} & 0 \\
\eta_{s, t}\left(1-\phi^{x}\right) \mathbb{E}_{t}\left(1-\phi_{t+1}^{e}-\chi_{t+1}\right) & \eta_{s, t}\left(1-\phi^{x}\right) \mathbb{E}_{t} \chi_{t+1} & \left(1-\omega_{l}\right)\left(1-\eta_{s, t}\left(1-\mathbb{E}_{t} \phi_{t+1}\right)\right) & \omega_{l}\left(1-\eta_{s, t}\left(1-\mathbb{E}_{t} \phi_{t+1}\right)\right) \\
\eta_{l, t}\left(1-\phi^{x}\right) \mathbb{E}_{t}\left(1-\phi_{t+1}^{e}-\chi_{t+1}\right) & \eta_{l, t}\left(1-\phi^{x}\right) \mathbb{E}_{t} \chi_{t+1} & 0 & 1-\eta_{l, t}\left(1-\mathbb{E}_{t} \phi_{t+1}\right)
\end{array}\right]
\end{align*}
$$

Note that the transition probabilities for employed workers and workers on STW (row 1 and row 2) are identical, but differ from those of unemployed workers. Due to the i.i.d assumption on the profitability shock ϵ_{t}, the firing and STW probability in $t+1$ is independent of whether a worker is employed or on STW in t. This assumption keeps the model tractable as the STW decision of firms is not intertemporal. The zeros in column 4 reflect the fact that there is no direct transition from employment to the longterm unemployment state. Row 3 shows the transition probabilities for the short-term unemployment state, which depend also on the job finding rate $\eta_{s, t}$ in addition to the variables that matter in row 1 and 2. It is easy to see then, that as long as $\eta_{s, t}<1$, the prospective employment probability for unemployed workers is smaller than that of short-time workers. This is how STW reduces employment risk. This is also true in the data. In survey data from the Covid-19 crisis for Germany ${ }^{11}$, only 4% of employees on STW state that it is very likely that they will be unemployed in the next 3 three months, 27% state that it is very likely that they will stay employed. In contrast, for the unemployed 21% consider it highly likely that they will stay unemployed in the next 3 months, only 8% consider it very likely that they will find a new job. Further, the exogenous probability ω_{l} determines transitions from short-term unemployment (row 3) to long-term unemployment (row 4). Lastly, row 4, showing the transition probabilities out of long-term unemployment, includes a zero, because transitions back to short-term unemployment are not possible.

Generally, note that the job finding rates $\left(\eta_{s, t}, \eta_{l, t}\right)$, the short-time rate χ_{t+1} and the endogenous separation rate ϕ_{t+1}^{e} are all fluctuating in response to aggregate shocks, thereby making employment and consequently income risk endogenous. The latter aspect is a feature of the search and matching labor market. However, the complexity of the labor market sets this model apart from simpler search models where only fluctuations in the job finding rate drive precautionary savings (e.g. Ravn and Sterk (2021); Challe (2020)).

3.2.3 Wage determination

For wages, we assume collective bargaining in line with labor market institutions in continental Europe. The wage is bargained in a Nash bargaining game between the representative firm and the median incumbent worker with a realization of the profitability shock ϵ_{t} equal to zero. Every worker who is working full time earns this wage. Workers on STW also receive a collective wage, according to the average working time of shorttime workers, plus a reimbursement for the lost wage income. This type of bargaining makes the model easier to solve but implies inefficient separations. ${ }^{12}$ The value of the median worker to the firm is therefore

$$
\begin{equation*}
F_{t}=a_{t} p_{z, t}-w_{t}+\beta \mathbb{E}_{t} J_{t+1} \tag{20}
\end{equation*}
$$

In case of disagreement, there is no production, but bargaining is resumed in the next period such that the match of the median worker continues. This type of bargaining setup is described in more detail in Hall and Milgrom (2008) and is also used in Lechthaler et al. (2010). The assumption on the disagreement value differentiates collective from

[^8]individual wage bargaining, reflecting that with collective bargaining it is typically not the case that all workers will become unemployed in case of disagreement. The fall-back option is thus
\[

$$
\begin{equation*}
\tilde{F}_{t}=\beta \mathbb{E}_{t} J_{t+1} . \tag{21}
\end{equation*}
$$

\]

The median worker's surplus W_{t} from a match is
$W_{t}=u\left(w_{t}\right)+\beta\left(1-\phi^{x}\right) \mathbb{E}_{t}\left(1-\phi_{t+1}^{e}-\chi_{t+1}\right) W_{t+1}+\beta \mathbb{E}_{t}\left(1-\phi^{x}\right) \chi_{t+1} W_{t+1}^{s t w}+\beta \mathbb{E}_{t} \phi_{t+1} U_{t+1}$,
where U_{t} is the value of unemployment defined as $U_{t}=\delta_{t}+\eta_{t}\left(1-\phi_{t+1}\right) W_{t+1}+(1-$ $\left.\eta_{t}\left(1-\phi_{t+1}\right) U_{t+1}\right)$. The worker knows that the wage will also be collectively bargained in the next period, hence W_{t+1} does not depend on the idiosyncratic shock either. Lastly, the worker's fall-back option under disagreement is
$\tilde{W}_{t}=u\left(\delta_{t}\right)+\beta\left(1-\phi^{x}\right) \mathbb{E}_{t}\left(1-\phi_{t+1}^{e}-\chi_{t+1}\right) W_{t+1}+\beta \mathbb{E}_{t}\left(1-\phi^{x}\right) \chi_{t+1} W_{t+1}^{s t w}+\beta \mathbb{E}_{t} \phi_{t+1} U_{t+1}$.
In case of disagreement, the worker receives unemployment benefits $\delta_{t}<w_{t}$. The wage follows from

$$
\begin{equation*}
w_{t}^{N}=\arg \max \left(W_{t}-\tilde{W}_{t}\right)^{1-\gamma}\left(F_{t}-\tilde{F}_{t}\right)^{\gamma}, \tag{24}
\end{equation*}
$$

where $\gamma \in(0,1)$ represents the bargaining power of the worker. Following Shimer (2005) and Hall (2005), we add real wage rigidity to the model. There are two reasons for this. First, this generates realistic volatility of labor market variables over the business cycle. Second, the degree of wage rigidity has important implications for the behavior of the real interest rate and precautionary savings, as will be discussed in Section 5.1.

$$
\begin{equation*}
w_{t}=\left(w_{t}^{N}\right)^{1-\gamma_{w}}\left(w_{s s}\right)^{\gamma_{w}} . \tag{25}
\end{equation*}
$$

The real wage is a weighted average between the bargained wage and the wage at the steady state, where a higher value of $\gamma_{w} \in(0,1)$ implies more rigid real wages. Finally, a short-time worker is paid the wage for the remaining working time $1-K\left(\epsilon_{t}\right)$, but receives STW compensation that is (in the baseline model) equal to the unemployment benefit for the share $K\left(\epsilon_{t}\right)$. Since being on STW is a convex combination of full employment and unemployment, workers generally prefer STW to being laid off. In the limit where $K\left(\epsilon_{t}\right)=1$, workers would be indifferent. ${ }^{13}$ For tractability of the model, we introduce an average STW wage that all workers on STW receive irrespective of the idiosyncratic ϵ_{t} realization. This STW wage is given by

$$
\begin{equation*}
w_{t}^{s}=\int_{v_{t}^{k}}^{v_{t}^{f}} \frac{\left(1-K\left(\epsilon_{t}\right)\right) w_{t}+\delta_{t} K\left(\epsilon_{t}\right)}{\chi t} g\left(\epsilon_{t}\right) d \epsilon_{t} .{ }^{14} \tag{26}
\end{equation*}
$$

3.3 Wholesale and final goods firms

Wholesale firms use intermediate goods as their only input in production, turn it into a specialized good and monopolistically resell it to the final goods sector. Final good firms

[^9]produce homogeneous consumption goods with a Dixit-Stiglitz aggregator and sell in a perfectly competitive market to households. Profit maximization by final goods firms implies that wholesale firms face the following downward sloping demand function:
\[

$$
\begin{equation*}
y_{j t}=\left(\frac{P_{t}^{j}}{P_{t}}\right)^{-\epsilon} y_{t}, \tag{27}
\end{equation*}
$$

\]

where ϵ is the elasticity of substitution among goods varieties and the price index is given by $P_{t}=\left(\int_{j} P_{j, t}^{1-\epsilon} d j\right)^{\frac{1}{1-\epsilon}}$.

We introduce nominal rigidities so that fluctuations in aggregate demand affect aggregate employment. Following Rotemberg (1982), wholesale goods firms face quadratic costs of price adjustment. They are also owned by the risk-neutral entrepreneurs. They set prices to maximize the present discounted value of profits:

$$
\begin{equation*}
\mathbb{E}_{t} \sum_{s=0}^{\infty}\left[\left(\frac{P_{j, t+s}}{P_{t+s}}-p_{t+s}^{z}\right) y_{j, t+s}-\frac{\Psi}{2}\left(\frac{P_{j, t+s}-P_{j, t+s-1}}{P_{j, t+s-1}}\right)^{2} y_{t}\right], \tag{28}
\end{equation*}
$$

subject to the demand constraint (27). The first order condition using that all firms set the same price becomes:

$$
\begin{equation*}
0=(1-\epsilon)+\epsilon p_{t}^{z}-\Psi\left(\Pi_{t}-1\right) \Pi_{t}+\beta \mathbb{E}_{t}\left\{\Psi\left(\Pi_{t+1}-1\right) \frac{y_{t+1}}{y_{t}} \Pi_{t+1}\right\}, \tag{29}
\end{equation*}
$$

where $\Pi_{t}=\frac{P i_{t}}{P i_{t-1}}$ is the gross inflation rate.
Lastly, the period by period dividends paid out to firm owners are

$$
\begin{equation*}
d_{t}^{W}=\left(1-p_{t}^{z}\right) y_{t}-\frac{\Psi}{2}\left(\Pi_{t}-1\right)^{2} y_{t}, \tag{30}
\end{equation*}
$$

and total dividends paid out to firm owners by wholesale and intermediate firms are thus given by:

$$
\begin{equation*}
d_{t}=d_{t}^{W}+d_{t}^{I} . \tag{31}
\end{equation*}
$$

3.4 Government and market clearing

The monetary authority adheres to a simple Taylor rule that targets the inflation rate:

$$
\begin{equation*}
\frac{1+i_{t}}{1+\bar{r}}=\left(1+\pi_{t}\right)^{\psi_{\pi}}, \tag{32}
\end{equation*}
$$

where $\psi_{\pi}>1$ is the elasticity of the policy rate to inflation. Real and nominal interest rates are connected via the Fisher equation $1+i_{t}=\left(1+r_{t}\right)\left(1+\mathbb{E}_{t} \pi_{t+1}\right)$. The government finances expenditures on unemployment insurance and short-term work benefits by issuing one-period bonds B_{t}, and collecting taxes T_{t}. The government's budget constraint is therefore:

$$
\begin{equation*}
T_{t}+B_{t}=\left(1+r_{t}\right) B_{t-1}+\delta n_{t}^{B}\left(1-\phi^{x}\right) \int_{v_{t}^{k}}^{v_{t}^{f}} K^{*}\left(\epsilon_{t}\right) g(\epsilon) d \epsilon_{t}+\delta u_{s, t}+\delta_{l} u_{l, t}, \tag{33}
\end{equation*}
$$

where tax income T_{t} is obtained by taxing all agents' income with tax rate τ_{t}. In the baseline specification, government debt is determined exogenously by a deficit rule:

$$
\begin{equation*}
\frac{B_{t}}{B}=\left(\frac{B_{t-1}}{B}\right)^{\rho_{B}}\left(\frac{n_{t}}{n}\right)^{\left(1-\rho_{B}\right) \gamma_{B}}, \tag{34}
\end{equation*}
$$

so that government debt expands in a countercyclical manner when the labor market is slack, governed by the elasticity parameter $\gamma_{B}<0$, with some inertia, controlled by parameter ρ_{B}.

The bond market clears when bonds supplied by the government are equal to the aggregate savings of the respective agents

$$
\begin{equation*}
B_{t}=\mathbb{E}_{t}\left[n_{f, t} b_{t, f}^{*}+n_{s t w, t} b_{t, s t w}^{*}+u_{s, t} b_{t, s u}^{*}+u_{l, t} b_{t, l u}^{*}\right] \tag{35}
\end{equation*}
$$

where the expectation on the right-hand side is taken with respect to the distribution over assets, and $b_{t, i}^{*}$ denote optimal savings decisions of agents in employment state i.

Market clearing in the intermediate goods market implies

$$
\begin{equation*}
y_{t}=n_{t}^{B}\left(1-\phi^{x}\right)\left[\int_{-\infty}^{v_{t}^{k}} a_{t} g\left(\epsilon_{t}\right) d \epsilon_{t}+\int_{v_{t}^{k}}^{v_{t}^{f}} a_{t}\left(1-K^{*}\left(\epsilon_{t}\right)\right) g\left(\epsilon_{t}\right) d \epsilon_{t}\right] \tag{36}
\end{equation*}
$$

Finally, adding up the budget constraints of all households, one arrives at at the aggregate resource constraint. Aggregate consumption equals production minus frictional costs:

$$
\begin{align*}
& \mathbb{E}_{t}\left[n_{f, t} c_{t, f}^{*}+n_{s t w, t} c_{t, s t w}^{*}+u_{s, t} c_{t, s u}^{*}+u_{l, t} c_{t, l u}^{*}\right]+c_{e, t}= \\
& n_{t}^{B}\left(1-\phi^{x}\right) \int_{-\infty}^{v_{t}^{k}}\left(a_{t}-\epsilon_{t}\right) g\left(\epsilon_{t}\right) d \epsilon_{t}+n_{t}^{B}\left(1-\phi^{x}\right) \int_{v_{t}^{k}}^{v_{t}^{f}}\left(a_{t} \epsilon_{t}\right)\left(1-K^{*}\left(\epsilon_{t}\right)\right) g\left(\epsilon_{t}\right) d \epsilon_{t}- \tag{37}\\
& \left(1-\phi^{x}\right) n_{t}^{B} \phi_{t}^{e} f-\kappa v_{t}-\frac{\Psi}{2}\left(\Pi_{t}-1\right)^{2} y_{t}+\xi
\end{align*}
$$

where $c_{t, i}^{*}$ denote optimal consumption decisions of agents in employment state i.

3.5 Equilibrium and solution method

An equilibrium is a sequence of value and policy functions, tightness, employment, shorttime rate, prices, wages, such that workers solve their optimization problem given prices and employment probabilities, which are implied by equations (3), (4), (5), (7), together with equations for the short-time rate 10) and firing rate (15). Optimal hours reduction is given by (13), and wages are determined by Nash-bargaining (24). Retailers maximize (28), the government budget constraint holds (33) and the markets for assets (35) and goods clears (36).

To solve the model, we rely on perturbation methods, i.e. we compute a firstorder Taylor expansion around the steady state following the method discussed in Reiter (2009).

3.6 Inspecting the unemployment risk stabilization of short-time work

To illustrate how STW stabilizes unemployment risk, we analyze a simplified model first. In particular, we assume that bonds are in zero net supply such that the wealth distribution is degenerate in equilibrium, and all agents consume their current income, as in Challe (2020) or Ravn and Sterk (2021). Then, the Euler equation of full-time workers determines the real interest rate in equilibrium. Further, we abstract from longterm unemployment here. In a counterfactual model without STW, the Euler equation
is:

$$
\begin{equation*}
\beta \mathbb{E}_{t}\left\{R_{t}^{\text {nostw }}\left[\left(1-\phi_{t+1}^{\text {nostw }}\right)\left(\frac{w_{f, t+1}}{w_{f, t}}\right)^{-\sigma}+\phi_{t+1}^{\text {nostw }}\left(\frac{\delta}{w_{f, t}}\right)^{-\sigma}\right]\right\}=1 \tag{38}
\end{equation*}
$$

For the consumption-saving decision, the household weighs the probabilities and outcomes of the different labor market states in the next period. In particular, the household compares the full-time workers wage to the income loss that is associated with unemployment, δ.

With STW, the full-time workers' Euler Equation is:
$\beta \mathbb{E}_{t}\left\{R_{t}\left[\left(1-\phi_{t+1}-\chi_{t+1}\right)\left(\frac{w_{f, t+1}}{w_{f, t}}\right)^{-\sigma}+\chi_{t+1}\left(\frac{w_{s t w, t+1}}{w_{f, t}}\right)^{-\sigma}+\phi_{t+1}\left(\frac{\delta}{w_{f, t}}\right)^{-\sigma}\right]\right\}=1$.

First, STW introduces additional risk as captures by the term $\chi_{t+1}\left(\frac{w_{s t w, t+1}}{w_{f, t}}\right)^{-\sigma}$ that represents the additional STW state that occurs with probability χ. But second, STW reduces the firing risk $\phi<\phi^{n o s t w}$, because the existence of STW prevents firings. This is the probability of the bad outcome, where workers receive unemployment benefits δ. A higher probability on the bad outcome in the model without STW implies more risk and more precautionary savings, and a lower equilibrium interest rate.

Thus, as long as $\delta<w_{s} \leq w$, i.e., being on STW is preferred to being unemployed, we obtain $R^{\text {nostw }}<R$, implying less precautionary savings in the model with STW as full-time workers face lower risk. The condition $\delta<w_{s} \leq w$ holds as we showed in Section 2. Thus, the existence of STW helps to stabilize demand in recessions. Next, we quantify the extent of this stabilization in our full quantitative model.

4 Quantitative analysis of short-time work and precautionary savings

4.1 Benchmark economies

To illustrate the transmission mechanism when there is uninsurable unemployment risk in a model with STW, we compare several scenarios.

Short-time work with unemployment risk Our benchmark is an economy where firms face a STW decision and households are imperfectly insured against unemployment risk.

No short-time work with unemployment risk The benchmark model economy nests a smaller model with endogenous separations but without a short-time margin. This acts as a benchmark to illustrate the effects of STW in interaction with precautionary savings.

Short-time work without unemployment risk In this economy, there is a STW decision but households pool their income risk perfectly, so that there is no precautionary savings mechanism.

No short-time work without unemployment risk The final comparison will be a model without unemployment risk and without STW.

4.2 Calibration

Our baseline model is calibrated to the German economy. A time period represents a quarter. Table 5 summarizes our parameters and calibration targets. For the New Keynesian block of the model, we impose standard values. The discount factor β is 0.98 , which delivers an annual interest rate of 1%. We follow McKay et al. (2016) and set the elasticity of substitution to 6 . For the value of the price adjustment costs we choose a value consistent with a Calvo (1983) probability of maintaining a fixed price equal to 0.86 . In comparison, Thomas and Zanetti (2009) estimate a value of 0.88 in a model with labor market frictions for Europe. This estimate is on the high side of the values used in the business cycle literature but it ensures a plausible slope of the Phillips curve. ${ }^{15}$ The Taylor weight on inflation and the value for relative risk aversion are both set to 1.5 .

Regarding the labor market, the targets are in line with Balleer et al. (2016). Specifically, the targets for the steady state worker finding rate and separation rate are 0.7 and 0.03 respectively. Out of all separations, we assume that one-third are endogenous, while two-thirds are exogenous. Further, the targeted unemployment rate of 9% implies a quarterly job-finding rate of 31%. The elasticity of matching with respect to unemployment α is set to 0.6 . It is well known that, in search models, smaller accounting profits imply a higher volatility of labor market variables (Shimer, 2005; Hagedorn and Manovskii, 2008). Setting the operating profits for a job with mean profitability of zero equal to 0.05 implies a contemporaneous elasticity of the extensive margin of STW with respect to output changes of -4.5 in the case without unemployment risk. This number is in the range of the estimated elasticities by Balleer et al. (2016).

The idiosyncratic profitability shock follows a logistic distribution, which is normalized to have an unconditional mean of zero. To achieve our targets, we set the scale parameter of the distribution s to 1.02 , the matching efficiency μ to 0.43 , and the costs of posting a vacancy κ to 1.18 . The firing costs f are set to 60% of annual productivity. The target for the STW rate in steady state of 0.7% implies a value for the costs of STW usage c_{k} of 19.75 .

The transition probability to long-term unemployment is 0.2 . Hence, if they don't find a job, unemployed workers stay for 5 quarters in short-term unemployment before transitioning to long-term unemployment, similar to the duration of the highest level of unemployment benefits in Germany. ${ }^{16}$ and the relative search efficiency of the long-term unemployed is equal to 1 . This implies that they are equally efficient searchers as the short-term unemployed, which we regard as an upper bound. ${ }^{17}$

Regarding the precautionary savings mechanism, first, key parameters in the model are the replacement rates of short-term unemployed δ / w and long-term unemployed δ_{l} / w workers. We set the former to 0.6 , and adjust the latter to obtain an average consumption

[^10]| | Description | Value |
| :---: | :--- | :---: |
| Parameters | | |
| β | Discount factor | 0.98 |
| Ψ | Price adjustment costs | 207 |
| ϵ | Elasticity of subst. between varieties | 6 |
| ψ_{π} | Taylor weight on inflation | 1.5 |
| σ | Relative risk aversion | 1.5 |
| α | Matching elasticity w.r.t. unemployment | 0.6 |
| δ / w | Replacement rate | 0.6 |
| δ_{l} / w | Replacement rate for long-term unemployed | 0.17 |
| μ | Matching efficiency | 0.43 |
| f | Firing costs | 2.4 |
| k | Relative search efficiency of the long-term unemployed | 1 |
| ω_{l} | Transition probability to long-term unemployment | 0.2 |
| $p^{z} a-w$ | Operating profits | 0.05 |
| s | Scale parameter of profitability distribution | 1.02 |
| κ | Costs of posting a vacancy | 1.18 |
| c_{k} | Costs of STW usage | 19.75 |
| γ_{w} | Wage rigidity parameter | 0.82 |
| γ | Worker bargaining power | 0.86 |
| ξ | Home production | 0.97 |
| B | Bond supply | 1 |
| γ_{B} | reaction of debt to employment | -0.2 |
| ρ_{B} | inertia of debt | 0.9 |
| Steady state targets | | |
| q | Worker finding rate | 0.7 |
| ϕ | Overall job destruction rate (endogenous 1/3, exogenous $2 / 3)$ | 0.03 |
| η | Job finding rate | 0.3 |
| u | Unemployment rate | 0.09 |
| χ | STW rate | 0.007 |
| Π | Inflation | 1% |
| r | Real interest rate (annual.) | |

Table 5: Calibration
drop upon unemployment in line with the empirical results from Section 2 (a discussion follows in the next section). Second, the degree of wage rigidity is important as a driver of the cyclicality of labor income. The wage rigidity parameter γ_{w} is calibrated to match an elasticity of real wages with respect to labor productivity of 0.2 . In the benchmark case of imperfect insurance and STW, this implies a value of $\gamma_{w}=0.83$. We show how our main results change with different values of this elasticity in Section 5.4. ${ }^{18}$ Third, the bond supply by the government is set to 1 , implying a debt to GDP ratio of roughly 0.3 . This is considerably lower than the actual German debt to GDP ratio, but this low amount of liquidity is needed as a shortcut in order to generate high enough average MPCs in the model. ${ }^{19}$ The reaction of debt to employment γ_{B} is equal to -0.2 , and the autoregressive parameter ρ_{B} is equal to 0.9. ${ }^{20}$ Entrepreneurial consumption is interpreted as the consumption of the top 20% in the income distribution. To target an income share of roughly 60% (Kuhn and Ríos-Rull (2016)), we set the value of home production equal to $\xi=0.97$.. Lastly, to assess the role of STW as an automatic stabilizer of the macroeconomy, we compare economies with and without STW. We keep all parameters the same between these scenarios, ensuring that our stabilization results are not driven by parameter changes, but the steady states may differ. ${ }^{21}$ This is why we only interpret percentage deviations from steady state in the following.

4.3 Policy functions and model validation

Before we show impulse responses, we discuss model intuition and model fit in steady state. Towards that end, Figure 6 displays distributions in steady state and policy rules over the asset grid. Panel 1 shows the stationary asset distributions for the different employment states. A significant fraction (around 3 percent) of all long-term unemployed workers hold zero assets. The asset distributions of full-time employed and short-time employed look similar. The lower left panel plots net savings $b^{\prime}-b$ for workers across assets and states. The plot supports the intuition from Panel 1. The policy rules of full-time workers and short-time workers are similar except for a level effect arising from lower incomes of short-time workers. This observation is in line with the empirical evidence from the German household data as presented in Figure 2 (Section 2). The policy rules of unemployed workers are steeper compared to those of employed workers in general, and net savings are negative almost over the whole grid. An exception arises

[^11]

Figure 6: Model properties in steady state.
for very low assets: savings of short-term unemployed workers are positive and higher than those of short-time workers because they fear that they might become long-term unemployed. The precautionary savings motive at low assets for all states except longterm unemployment explains why only a significant fraction of that group holds zero assets, as visible in Panel 1. The upper right panel plots the consumption rules. They imply that on average, workers on STW have similar consumption to full-time workers, whereas consumption of short-time unemployed workers is lower by 31% percent and those of long-term unemployed workers is lower on average by 44%. Overall, this implies that consumption is 35% lower in unemployment than in employment, in line with the empirical results of Section 2. The lower average consumption and the different shape of the policy rules are due to the lower current income in unemployment, as well as the different transition probabilities conditional on the employment state. Lastly, the lower right panel plots the MPCs, which are obtained as a numerical derivative of the consumption rules. In line with the consumption rules, MPCs are very high for low assets in the unemployment states, especially in long-term unemployment. By looking at this panel, a prediction can be made that transfers to unemployed workers will yield the highest fiscal multiplier.

5 Short-time work and precautionary savings over the business cycle

The goal of the paper is to study whether the presence of STW mitigates the precautionary savings motive of households and thereby potentially stabilizes demand in recessions. Further, we want to evaluate how discretionary changes to STW may boost demand in recessions. First, for illustration, we show the impact of a productivity shock in the model without STW to highlight the effects of the precautionary savings motive. Second, we examine the stabilizing effects of STW over the business cycle. Third, we evaluate discretionary changes to STW.

5.1 No-STW model

Figure 7 shows the responses of several key variables to a one percent contractionary productivity shock with autocorrelation 0.95 in the model without STW for the calibration with unemployment risk (row 1) and without unemployment risk (row 2), respectively.

In both cases, a fall in productivity reduces the value of a job J, which induces firms to reduce hiring and to increase separations, as can be seen from the fall in the job finding rate η as well as the increase in the separation rate ϕ in column 3 . As a consequence, unemployment increases (column 2) and output decreases (column 1). The clearest difference between the two models lies in the behavior of the real interest rate (column 4) and inflation (column 5). When workers are insured against unemployment risk (row 2), the real interest rate increases persistently after an initial drop, and inflation behaves similarly due to aggressive monetary policy $\left(\psi_{\pi}>1\right)$ and lower marginal cost of production. The opposite is true with unemployment risk. In that case, there is persistent downward pressure on the real interest rate and inflation. Facing increasing unemployment risk, workers save for precautionary reasons, i.e., they raise their demand for government bonds and postpone consumption. This generates a fall in aggregate demand and deflationary pressure, consistent with a decline in nominal and real interest

Figure 7: Impulse responses to a negative one percent shock to productivity with autocorrelation 0.95 , models without STW. First and second row show IRFs with unemployment risk and without unemployment risk, respectively.
rates. However, the cut in the nominal interest rate by the monetary authority is not enough to prevent a deflationary feedback loop between unemployment risk and demand. Households cut back demand in fear of unemployment, which induces firms to increase separations. This raises unemployment fears by more and results in an even larger contraction of demand. Because the drop in the intermediate goods price on impact is stronger in the case with unemployment risk, unemployment rises by more immediately. The feedback loop then results in larger peak responses and more persistent responses of the job finding rate, separation rate and unemployment to the shock. The peak response of unemployment is 0.36 percentage points in the no unemployment risk case, compared to 0.50 percentage points in the unemployment risk case. The drop in output is 1.25 percent compared to 1.39 percent.

5.2 Adding the STW margin

To assess the role of STW as a stabilizer of the labor market and the aggregate economy, and specifically its effect on stabilizing demand, we compare in Figure 8 an economy with and without STW. As before, we compare a scenario where unemployment risk matters to a scenario where labor income is pooled. First, we discuss the latter as displayed in row 2 to clarify the stabilizing role of STW through its effect on a firm's firing decision (the firm channel). Both with and without STW, the negative productivity shock reduces the value of the job from the perspective of the firm, firings increase and hiring decrease, which results in an increase in the unemployment rate and a fall in output. However, with the STW option available to firms (dashed lines), some firms choose to place workers on STW (consider the increase in the STW rate as shown

Figure 8: Impulse responses to a negative one percent shock to productivity with autocorrelation 0.95 . First and second row show IRFs under unemployment risk and without unemployment risk. Dashed lines indicate IRFs when firms can use STW, solid lines indicate IRFs when firms have no such option.
in the third column of Figure 8), thereby keeping workers employed at reduced hours instead of firing them to avoid having to search for a new worker once the recession is over. ${ }^{22}$ In addition, because firms anticipate that they have the STW option also in the future, they also reduce hiring by less. Naturally, this leads to a smaller increase in unemployment and a smaller drop in output with STW. Table 6 displays the stabilization of unemployment and output fluctuations due to STW. Unemployment fluctuations are reduced by 19 percent. Output fluctuations are reduced by less, because firms use the option of STW to reduce the hours worked of workers with lower match quality. When it comes to the behavior of inflation and the real interest rate, the shock is inflationary, as expected for a supply shock, consistent with an increase in the real interest. In the case without unemployment risk, households' consumption is equal to all labor income plus unemployment benefits as well as interest income on savings in government bonds. This behaves proportional to employment, therefore the timing of the two variables resembles the timing of unemployment. As STW allows firms to save costs, inflation and the real interest rate rise somewhat less with the STW option available.

In contrast to that consider the response of inflation and the real interest rate between the model with and without STW in the economy with unemployment risk (row 1). Because households fear unemployment, goods demand is depressed due to the precautionary savings motive, and the productivity shock is deflationary. However, in the model with STW, households internalize that they may be placed on STW instead of being fired. Since the wage in STW is expected to be higher than income when unem-

[^12]| | Productivity shocks | | | Demand shocks | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | STW | STW | | STW | STW |
| Difference of | vs | vs | | vs | vs |
| standard dev. | no STW | no STW | | no STW | no STW |
| in \% | Unemployment risk | No unemployment risk | | Unemployment risk | No unemployment risk |
| | (1) | (2) | | (3) | (4) |
| Output | -8.397 | -5.402 | | -25.047 | -20.420 |
| Unemployment | -23.739 | -19.351 | | -24.028 | -19.361 |

Table 6: Difference of standard deviation conditional on productivity shock across different models in percent. We use HP filtered deviations from steady state (smoothing parameter 1, 600). For output, we use log-deviations, for unemployment level deviations, since this variable is already denoted in percentage points.
ployed (as long as working time is not reduced by $100 \%{ }^{23}$), this is preferred, and the precautionary savings motive is weaker. Consequently, there is a smaller contraction in demand and therefore a smaller deflation. The central bank responds by cutting the nominal interest rate, more so in the economy without STW. The robustness analysis in Section 5.4 discusses what happens when monetary policy responds less aggressively. For the model without as well as the model with STW, the deflationary spiral that feeds back into output and unemployment is active, but less so in the latter case.

In summary, the precautionary savings channel that is active only in the unemployment risk case (row 1) leads to additional unemployment and output stabilization of STW on top of the mere firm channel that is active with income pooling (row 2). In fact, this implies two things at the same time: First, precautionary savings amplify the negative productivity shock and imply a larger contraction of output and employment. This increases the firms' STW response compared to the perfect insurance case because STW becomes more attractive for firms if profits decline more due to lower demand. Thus, the firm channel is boosted when accounting for precautionary savings. In other words, the firm channel and the risk channel are complementary. Second, STW stabilizes aggregate demand and in turn the labor market as discussed above. The difference in stabilization can be seen in the gaps between the dashed and solid lines for unemployment and output across the two cases. The numbers are summarized in Table 6. The table displays the change of business cycle volatility of output and unemployment across the different models, both for productivity as well as demand shocks. To simulate demand shocks, we shock the discount factor β in the worker's Euler equation. First, in response to productivity shocks, STW reduces unemployment fluctuations by roughly 23.8% in a model with unemployment risk (compared to 19.4% in the case without unemployment risk). This is an increase of 23% or roughly one fifth and implies that a shock that would imply an increase of the unemployment rate by 4 percentage points without STW stabilization would only increase unemployment by 3 percentage points without STW. Out of the total stabilization of 1 percentage point, one fifth (i.e., 0.2 percentage points) would be due to the reduction of precautionary savings. The picture looks qualitatively similar for demand shocks, unemployment and output are stabilized more when there is unemployment risk in the economy. The numbers for output are

[^13]

Figure 9: Impulse responses to an increase in STW compensation and an increase in unemployment benefits, normalized to 0.5% of GDP on impact.
now much more similar to those of unemployment than they are for productivity shocks, because with constant productivity, employment and output move one to one. Figure 11 in the appendix shows the stabilization in response to demand shock. In order to illustrate the different transmission mechanism, the discount factor shock is scaled so that the peak response of unemployment is the same.

5.3 STW fiscal multipliers

Where does the stabilization of the STW policy come from? Next to the its effect on full-time workers precautionary savings, it is also plausible that this policy stabilizes consumption demand by redistributing funds from households with a low marginal propensity to consume (full-time workers) to households with higher marginal propensity to consume (short-time workers). Since our model features MPC heterogeneity, in contrast to traditional representative agent models, we can investigate this. To do so, we assume that the short-time wage, given by Equation 26, is now increased exogenously. The increase in STW benefits follows an autoregressive process with autocorrelation 0.85. We assume that the additional benefits are financed with a tax to full-time employed workers, so that the policy experiment represents a redistribution from full-time employed workers to short-time employed workers.

Figure 9 compares the effects of this exercise to a similar-sized increase in unemployment benefits, financed again by an increase in taxes to full-time employed workers. The first thing that becomes apparent is the severe quantitative difference between the two policies. An increase in short-time work benefits (dashed line) is barely expansionary, whereas an increase in unemployment benefits has noticeable effects. Qualitatively, however, the transmission mechanism of both policies is quite similar. Consider first the increase in unemployment benefits. Average consumption of unemployed workers (short-term and long-term) increases, more so for long-term unemployed workers, since
their average marginal propensity to consume (MPC) is higher (see also the discussion in Section 4.3). Since the increase in benefits is financed by agents with lower MPCs (full-time employed workers), this redistribution raises aggregate demand, and therefore demand for intermediate goods. Note that in a model without unemployment risk and MPC heterogeneity, these effects would be completely absent. This leads to a persistent increase in the price of intermediate goods $p_{z, t}$, and therefore a persistent increase in the expected value of a filled position $\mathbb{E}_{t} J_{t+1}$ (see Equation (7)). This increase is more pronounced if real wages and therefore labor costs are expected to be rigid, which is the case here. The job finding rate increases and the separation rate decreases, leading to a fall in unemployment and, importantly, a decline in unemployment risk. The decline in unemployment risk plays a crucial role for employed worker's (full-time and shorttime) consumption, lowering precautionary savings motives and boosting consumption demand. This channel is counteracted by a negative wealth effect resulting from the increase in taxation to full-time employed workers, but the precautionary savings channel dominates, so that even the consumption of employed workers increases overall. By contrast, when the STW compensation is increased (dashed line), full-time workers' consumption actually declines, because the wealth effect dominates. Overall, the redistribution also results in an increase in aggregate demand and therefore an increase in output, but the effects on output are negligible. Only short-time employed workers raise their consumption by a large amount on average. In fact, they increase their consumption by slightly more in percentage terms than unemployed workers do in response to an increase in unemployment benefits, but this is due to the fact that there are more than ten times as many unemployed workers as short-time workers in steady state. The fiscal cost of both measures is the same overall, therefore the transfers per person to shorttime workers are much higher. Accordingly, the small fraction of short-time workers in steady state implies that the increase in aggregate demand is much lower compared to the increase in unemployment benefits. Overall, this implies that the automatic STW stabilization from the demand channel discussed in the previous section works through the precautionary savings of the full-time workers rather than the redistribution from funds to short-time workers.

Table 7 summarizes the quantitative effects of increasing STW compensation and compares these to an increase in unemployment benefits. Displayed are output and unemployment fiscal multipliers following Monacelli et al. (2010). The present value multiplier of government spending in terms of unemployment in percentage points at horizon k is defined as:

$$
\begin{equation*}
m_{G}^{k}=\frac{\sum_{t=0}^{k} \beta^{t}\left(u_{t}-u\right)}{\sum_{t=0}^{k} \beta^{t}\left(G_{t}-G\right) / Y} \tag{40}
\end{equation*}
$$

To compute the output multiplier, the numerator is replaced with the relative change in output. ${ }^{24}$ The quantitative results in Table 7 support the qualitative results of Figure 9. The unemployment multiplier of an increase in STW compensation (column 1) is close to zero, whereas in increase in unemployment benefits yields a multiplier of around -0.3 after five quarters and -0.4 in the long run, and an output multiplier of 0.46 .

As discussed previously, the expansionary effects of shocks to the short-time wage and the replacement rate are due to the incomplete markets assumption in combination with

[^14]| | Short-time compensation | | | Unemployment benefits | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Unemployment | Output | | Unemployment | Output |
| Horizon | (1) | (2) | | (3) | (4) |
| 5 | -0.006 | 0.010 | | -0.296 | 0.330 |
| 10 | -0.008 | 0.014 | | -0.369 | 0.410 |
| Long run | -0.012 | 0.020 | | -0.416 | 0.462 |

Table 7: Fiscal multipliers in response to a discretionary shock equal to an increase of fiscal spending of 1% of GDP. Multipliers for unemployment in percentage points and multipliers for output in percent. The denominator is made up of costs holding the endogenous variables constant at the steady state level.
nominal rigidities, which sets this paper apart from results obtained in representative agent models with income pooling that lack a precautionary savings motive (Hagedorn et al., 2013; Christiano et al., 2016). Then, an increase in unemployment benefits increases unemployment. ${ }^{25}$ Instead our results are in line with papers featuring search and matching frictions and incomplete markets that find that extensions to unemployment benefits may stabilize the business cycle. Examples are McKay and Reis (2021) and Kekre (2022) with models calibrated to the US labor market. We add the perspective on shocks to the short-time wage in a model calibrated to the German labor market. Here, with incomplete markets, the policy affects the risk perception of full-time workers and, hence, boosts their consumption demand. Similar to the results by Kekre (2022) for the U.S., we find that an increase in unemployment benefits is expansionary, with output multipliers below 1 in normal times. At the ZLB, multipliers would be higher, because the increase in inflation triggered by the rise in aggregate demand in Figure 9 would go hand in hand with a decline in the real interest rate, further boosting consumption demand. The same mechanism would apply to the increase in STW compensation, but it would remain less expansionary than an increase in unemployment benefits. The initial increase in aggregate demand, triggering the rise in inflation, depends on the MPC of the agents receiving the benefits. As the bottom right panel of Figure 6 shows, the MPCs of unemployed workers are much higher. Our analysis abstracts from the fact that higher unemployment benefits discourage search effort. Given that employment prospects are worse for the unemployed compared to workers affected by STW, a reduction of search effort could be more problematic for the former and may render the extension of the STW compensation relatively more effective. Nevertheless, the effects of search effort play less of a role in recessions when unemployment is high and labor market tightness is low (see Landais et al., 2018). ${ }^{26}$

[^15]
5.4 Sensitivity analysis of stabilization results

The previous subsection has shown that the redistribution caused by the STW benefits plays little role for the stabilization effect. Indeed, most of the effect comes from a reduction in precautionary savings caused by lower income risk. The strength of this channel may vary depending on the choice of parameters. In particular, we have argued that the unemployment insurance and the degree of wage rigidity drive the cyclicality of income risk and are therefore relevant for the precautionary savings channel. We illustrate this by changing those parameters. Column 1 in Table 8 repeats the baseline results from Table 6 for comparison.

Replacement rate The replacement rate represents the relative income drop upon unemployment. In our baseline scenario, we kept the replacement rate of short-term unemployed workers fixed at 0.6 and chose the replacement rate for long-term unemployed workers to fit the consumption drop of roughly 35% that we estimated in Section 2. First, lowering the replacement rate will imply a larger consumption drop, and therefore a stronger precautionary savings motive in response to unemployment risk. Second, lower unemployment benefits also imply a larger relative income gain from STW compared to unemployment. To see that, consider that the short-time wage lies between the unemployment benefits and the full-time wage (equation 26), closer to the latter if the reduction in hours is less than 50%. Overall, this implies that a lower replacement rate yields more automatic stabilization, and a higher replacement rate implies less automatic stabilization, which is reflected in column 2 and 3 of Table 8.

Wage rigidity Column 4 and 5 of Table 8 show the stabilization results for different levels of real wage rigidity. Perfectly rigid wages $(d \ln w / a=0)$ imply larger fluctuation of firm profits, and consequently, a stronger decline in the job finding and separation rate in response to productivity shocks. Hence, the stabilization of unemployment risk coming from STW is increased. By contrast, when wages are twice as flexible as in the baseline case ($d \ln w / d \ln a=0.4$), it is reduced but remains substantial.

Monetary policy As discussed in Section 5.2 and visible in Figure 8 row 1, the monetary authority cuts the nominal interest rate in response to the deflation caused by precautionary savings in the recession, more so in the model without STW. This stabilizes demand to some extent, lowering the automatic stabilization potential coming from STW. Columns 6 of Table 8 shows that the stabilization of STW increases slightly with a monetary reaction coefficient to inflation of only 1.3 compared to the baseline value of 1.5 . The opposite is true with more aggressive monetary policy. The differences in stabilization are small because the parameter values are close to our baseline. In contrast to that, we suspect that automatic stabilization would increase more substantially with a binding zero lower bound, i.e., if the interest rate would not adjust at all.

Financing In models with incomplete markets, the financing of fiscal policy can play a large role in theory (see e.g. Kaplan et al., 2018). Therefore we test how different fiscal rules affect our stabilization results. In the baseline scenario, we assume that government bonds are determined by an exogenous deficit rule which reacts in a countercyclical manner to output. The tax rate on all workers adjusts endogenously consistent with the government's budget constraint. For robustness, we show what happens when bonds
are held constant, and higher unemployment or STW benefits are purely financed by a higher tax rate (column 8 of Table 8). This increases the stabilization slightly compared to the baseline. In column 9, we show the results if there is a tax rule instead of a deficit rule, so that the tax rate adjusts according to the following equation:

$$
\begin{equation*}
\frac{\tau_{t}}{\tau}=\left(\frac{B_{t}}{B}\right)^{\gamma_{B}}, \tag{41}
\end{equation*}
$$

so that the tax rate reacts to bond holdings, ensuring stationarity of the model. We set $\gamma_{B}=0.5$. Government bonds adjust endogenously to clear the government's budget constraint. Here, the STW stabilization declines slightly compared to baseline. Figure 12 in the appendix shows that the transmission of the productivity shock looks quite different for the unemployment risk compared to the baseline case. The reason behind this result is that government debt expands slightly more with a tax rule compared to the baseline case. In the model without STW, payments for unemployment benefits are higher because the unemployment rate rises more, compared to the model without STW (wages for short-time workers are only partially funded by the government). Accordingly, the no STW model requires more government debt to finance these payments. Ceteris paribus, more supply of government debt has a stabilizing effect on the business cycle because it provides more insurance possibilities (see e.g. Aiyagari and McGrattan, 1998), thereby increasing workers' consumption. This decreases the stabilization that STW provides. Interestingly, as Figure 12 shows, the deviations of unemployment from steady state intersect after around 18 quarters. Nevertheless, Table Table 8 shows that the qualitative difference in the impulse responses matters very little quantitatively. The no-unemployment risk case is unchanged compared to baseline, because the bond supply provides no additional insurance.

In the case of constant bonds, the aforementioned insurance effect is turned off completely, increasing the stabilization of STW. Lastly, it becomes clear that the baseline case in column 1 lies in between the two scenarios, but closer to the scenario with constant debt.

Lower relative search efficiency of the long-term unemployed In the baseline scenario, the search efficiency of the long-term unemployed was set equal to that of the short-term unemployed ($k=1$), a conservative choice. In column 10 , we show how the stabilization changes if this assumption is relaxed, we set $k=0.5$, so that the job finding rate of the long-term unemployed is half of that of the short-term unemployed. ${ }^{27}$ The stabilization of STW increases slightly, due to more unemployment risk and therefore a stronger precautionary savings motive. Figure 13 in the appendix confirms also visually that the overall volatility in the labor market is increased by a lot with incomplete markets (row 1), and that the stabilization of STW is stronger. Since a lower job finding rate of the long-term unemployed also makes the labor market more rigid in the case of no unemployment risk, the stabilization is also increased slightly in that case.

6 Conclusions

This paper is the first to investigate the effects of STW over the business cycle, while allowing for aggregate demand effects through precautionary savings. We document

[^16]| Stabilization (\%) | Baseline \qquad
 (1) | Replacement rate $\delta / w(0.6)$ | | Wage rigidity $d \ln w / d \ln a(0.2)$ | | Monetary policy$\psi_{\pi}(1.5)$ | | Taxation | | Relative search efficiency
 $k(1)$
 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0.5 | 0.7 | 0 | 0.4 | 1.3 | 1.7 | | | |
| | | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| Output | -8.48 | -9.83 | -7.63 | -12.76 | -4.78 | -9.27 | -8.1 | -8.56 | -8.86 | 10.83 |
| Unemployment | -23.75 | -25.41 | -22.60 | -25.81 | -21.88 | -24.55 | -23.3 | -23.91 | -23.13 | 24.82 |

Table 8: This table compares the stabilization of STW across different calibrations in response to productivity shocks.
that precautionary savings matter for assessing the effectiveness of STW. In particular, STW becomes more effective over the business cycle as STW reduces the income risk for full-time workers and their precautionary savings motive. We back this mechanism with empirical evidence that shows that the average consumption decline of households during STW periods is small and mainly insignificant. In contrast, during unemployment spells, we observe a substantial drop of consumption. The demand channel through labor market risk that we discuss in this paper matters most in crisis times when risk is high. If STW is applied for a longer time period outside of economic crises, it may trigger biases and inefficiencies that the model in this paper does not account for. For example, STW may hinder the reallocation of labor to growing and productive firms or it may lead to excessive hours reductions. As a result, we can conclude that STW is a well-suited policy for temporary crisis situations, but we cannot speak to more long-run phenomena. We leave an analysis of long-run and welfare properties of the policy for future research.

References

Aiyagari, S. R. and McGrattan, E. R. (1998). The optimum quantity of debt. Journal of Monetary Economics, 42(3):447-469.

Albertini, J., Auray, S., Bouakez, H., and Eyquem, A. (2021). Taking off into the wind: Unemployment risk and state-dependent government spending multipliers. Journal of Monetary Economics, 117:990-1007.

Balleer, A., Gehrke, B., Lechthaler, W., and Merkl, C. (2016). Does short-time work save jobs? a business cycle analysis. European Economic Review, 84:99-122.

Beckmann, E. and Schmidt, T. (2020). Bundesbank online pilot survey on consumer expectations. Deutsche Bundesbank Technical Paper, 01/2020.

Blanchard, O. and Galí, J. (2010). Labor markets and monetary policy: A new keynesian model with unemployment. American Economic Journal: Macroeconomics, 2(2):1-30.

Boeri, T. and Bruecker, H. (2011). Short-time work benefits revisited: some lessons from the great recession. Economic Policy, 26(68):697-765.

Brinca, P., Holter, H. A., Krusell, P., and Malafry, L. (2016). Fiscal multipliers in the 21st century. Journal of Monetary Economics, 77:53-69.

Broer, T., Druedahl, J., Harmenberg, K., and Öberg, E. (2021). The unemployment-risk channel in business-cycle fluctuations. CEPR Discussion Paper.

Burda, M. C. and Hunt, J. (2011). What explains the german labor market miracle in the great recession? Brookings Papers on Economic Activity, Spring:273-335.

Cahuc, P., Kramarz, F., and Nevoux, S. (2018). When short-time work works. CEPR Discussion Paper No. 13041.

Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal of Monetary Economics, 12(3):383-398.

Carroll, C., Slacalek, J., Tokuoka, K., and White, M. N. (2017). The distribution of wealth and the marginal propensity to consume. Quantitative Economics, 8(3):9771020.

Challe, E. (2020). Uninsured unemployment risk and optimal monetary policy in a zero-liquidity economy. American Economic Journal: Macroeconomics, 12(2):241-83.

Chodorow-Reich, G. and Karabarbounis, L. (2016). The cyclicality of the opportunity cost of employment. Journal of Political Economy, 124(6):1563-1618.

Christiano, L. J., Eichenbaum, M. S., and Trabandt, M. (2016). Unemployment and business cycles. Econometrica, 84(4):1523-1569.

Cooper, R., Meyer, M., and Schott, I. (2017). The employment and output effects of short-time work in germany. NBER Working Paper No. 23688.

Faia, E., Lechthaler, W., and Merkl, C. (2013). Fiscal stimulus and labor market policies in europe. Journal of Economic Dynamics and Control, 37(3):483-499.

Gehrke, B. and Hochmuth, B. (2021). Counteracting unemployment in crises: Nonlinear effects of short-time work policy. The Scandinavian Journal of Economics, 123(1):144-183.

Gehrke, B., Lechthaler, W., and Merkl, C. (2019). The german labor market during the great recession: Shocks and institutions. Economic Modelling, 78:192-208.

Giupponi, G. and Landais, C. (2022). Subsidizing labor hoarding in recessions: The employment and welfare effects of short time work. Review of Economic Studies, Conditionally accepted.

Gornemann, N., Kuester, K., and Nakajima, M. (2016). Doves for the rich, hawks for the poor? distributional consequences of monetary policy.

Graves, S. (2020). Does unemployment risk affect business cycle dynamics? FRB International Finance Discussion Paper, (1298).
Guvenen, F., Ozkan, S., and Song, J. (2014). The nature of countercyclical income risk. Journal of Political Economy, 122(3):621-660.

Hagedorn, M., Karahan, F., Manovskii, I., and Mitman, K. (2013). Unemployment benefits and unemployment in the great recession: the role of macro effects. Technical report, National Bureau of Economic Research.

Hagedorn, M. and Manovskii, I. (2008). The cyclical behavior of equilibrium unemployment and vacancies revisited. American Economic Review, 98(4):1692-1706.

Hagedorn, M., Manovskii, I., and Mitman, K. (2019). The fiscal multiplier. NBER Working Paper, 25571.

Hall, R. E. (2005). Employment fluctuations with equilibrium wage stickiness. American Economic Review, 95(1):50-65.

Hall, R. E. and Milgrom, P. R. (2008). The limited influence of unemployment on the wage bargain. American Economic Review, 98(4):1653-74.

Harding, M., Lindé, J., and Trabandt, M. (2022). Resolving the missing deflation puzzle. Journal of Monetary Economics, 126:15-34.

Jäger, S., Schoefer, B., and Zweimüller, J. (2022). Marginal jobs and job surplus: a test of the efficiency of separations. Review of Economic Studies, accepted article.

Kaplan, G., Moll, B., and Violante, G. L. (2018). Monetary policy according to hank. American Economic Review, 108(3):697-743.

Kekre, R. (2022). Unemployment insurance in macroeconomic stabilization. Review of Economic Studies, accepted article.

Kolsrud, J., Landais, C., Nilsson, P., and Spinnewijn, J. (2018). The optimal timing of unemployment benefits: Theory and evidence from sweden. American Economic Review, 108(4-5):985-1033.

Kopp, D. and Siegenthaler, M. (2021). Short-Time Work and Unemployment in and after the Great Recession. Journal of the European Economic Association, 19(4):2283-2321.

Krause, M. U. and Lubik, T. A. (2007). The (ir) relevance of real wage rigidity in the new keynesian model with search frictions. Journal of Monetary Economics, 54(3):706-727.

Krause, M. U. and Uhlig, H. (2012). Transitions in the german labor market: Structure and crisis. Journal of Monetary Economics, 59(1):64-79.

Kuhn, M. and Ríos-Rull, J.-V. (2016). 2013 update on the us earnings, income, and wealth distributional facts: A view from macroeconomic modelers. Federal Reserve Bank of Minneapolis Quarterly Review, 37(1):2-73.

Landais, C., Michaillat, P., and Saez, E. (2018). A macroeconomic approach to optimal unemployment insurance: Theory. American Economic Journal: Economic Policy, 10(2):152-81.

Lechthaler, W., Merkl, C., and Snower, D. J. (2010). Monetary persistence and the labor market: a new perspective. Journal of Economic Dynamics and Control, 34(5):968983.

Marinescu, I., Skandalis, D., and Zhao, D. (2021). The impact of the federal pandemic unemployment compensation on job search and vacancy creation. Journal of Public Economics, 200:104471.

McKay, A., Nakamura, E., and Steinsson, J. (2016). The power of forward guidance revisited. American Economic Review, 106(10):3133-58.

McKay, A. and Reis, R. (2021). Optimal automatic stabilizers. The Review of Economic Studies, 88(5):2375-2406.

Monacelli, T., Perotti, R., and Trigari, A. (2010). Unemployment fiscal multipliers. Journal of Monetary Economics, 57(5):531-553.

Mortensen, D. T. and Pissarides, C. A. (1994). Job creation and job destruction in the theory of unemployment. The Review of Economic Studies, 61(3):397-415.

Moyen, S. and Stähler, N. (2014). Unemployment insurance and the business cycle: should benefit entitlement duration react to the cycle? Macroeconomic Dynamics, 18(3):497-525.

Ravn, M. O. and Sterk, V. (2017). Job uncertainty and deep recessions. Journal of Monetary Economics, 90:125-141.

Ravn, M. O. and Sterk, V. (2021). Macroeconomic fluctuations with hank \& sam: An analytical approach. Journal of the European Economic Association, 19(2):1162-1202.

Reiter, M. (2009). Solving heterogeneous-agent models by projection and perturbation. Journal of Economic Dynamics and Control, 33(3):649-665.

Rotemberg, J. J. (1982). Sticky prices in the united states. Journal of Political Economy, 90(6):1187-1211.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. American Economic Review, 95(1):25-49.

Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Consumption and risk sharing over the life cycle. Journal of Monetary Economics, 51(3):609-633.

Thomas, C. and Zanetti, F. (2009). Labor market reform and price stability: An application to the euro area. Journal of Monetary Economics, 56(6):885-899.

Trigari, A. (2009). Equilibrium unemployment, job flows, and inflation dynamics. Journal of Money, Credit and Banking, 41(1):1-33.

A Additional figures and tables

Figure 10: STW as a percentage of total employment (left axis) and average hours reduction in Germany (right axis). Source: Federal Employment Agency.

	(1)	(2)	(3)	(4)	(5)
γ_{u}	$-0.36^{* * *}$	$-0.36^{* * *}$	$-0.29^{* * *}$	$-0.27^{* * *}$	$-0.28^{* * *}$
	(-7.36)	(-12.19)	(-4.46)	(-4.10)	(-4.32)
Household size, region, city size		\times	\times	\times	\times
Skill			\times	\times	\times
Homeown				\times	\times
Homeown \times city size	\times	\times			\times
Individual-fixed effect	2,587	2,582	1,793	1,793	1,793
Observations					\times

Table 9: Consumption expenditure across labor market states using household fixedeffects, pre-Covid sample. The parameter γ_{u} gives the log difference of the consumption of an unemployed worker compared to an employed worker. The estimation uses the Bundesbank Household Online Panel that covers monthly data for 2019, waves 1-3. t-statistics are in parentheses, standard errors are clustered at household level, ${ }^{*} p<$ $0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$. Dependent variable is log consumption of non-durables and services for individuals between ages 25-55. The set of control variables in all regressions includes time-fixed effects. Skill is measured using an indicator of eight categories of education.

Figure 11: Impulse responses to a negative shock to the discount factor with autocorrelation 0.95. Shock is scaled to yield the same peak response of unemployment as for productivity. First and second row show IRFs under unemployment risk and without unemployment risk. Dashed lines indicate IRFs when firms can use STW, solid lines indicate IRFs when firms have no such option.

Figure 12: Impulse responses to a negative one percent shock to productivity with autocorrelation 0.95 , for a bond supply that expands more flexibly. First and second row show IRFs under unemployment risk and without unemployment risk. Dashed lines indicate IRFs when firms can use STW, solid lines indicate IRFs when firms have no such option.

Figure 13: Impulse responses to a negative one percent shock to productivity with autocorrelation 0.95, for a lower search efficiency of the long-term unemployed First and second row show IRFs under unemployment risk and without unemployment risk. Dashed lines indicate IRFs when firms can use STW, solid lines indicate IRFs when firms have no such option.

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^1]: ${ }^{1}$ At the European level, the EU has implemented the "Temporary Support to mitigate Unemployment Risks in an Emergency" (SURE) scheme, which provides financial support of up to $€ 100$ billion in the form of loans to member states, specifically to finance the implementation or extension of schemes to preserve employment.
 ${ }^{2}$ The feature that hours due to STW do not have to be reduced to zero differentiates STW from recalls and temporary layoffs that are common in the US labor market. From March to May 2020, the average STW hours reduction in Germany was 41%. Figure 10 in the Appendix shows that this number was generally lower before the Covid-19-recession. In addition, during the Covid-19 crisis, benefits for short-time workers have been increased so that even for workers on zero hours these may have been higher than unemployment insurance.

[^2]: ${ }^{3}$ See Beckmann and Schmidt (2020). Data access is provided by the Research Data and Service Centre of the Deutsche Bundesbank.
 ${ }^{4}$ Chodorow-Reich and Karabarbounis (2016) and Graves (2020) have annual data and use the time spent unemployed in a given year. We have monthly data and can thus directly investigate contempora-

[^3]: neous consumption across different labor market states. In doing so, we estimate the average response across different durations of unemployment or STW (we do not have information about the duration of each state). Chodorow-Reich and Karabarbounis (2016) find that the estimated consumption drop is independent of duration.
 ${ }^{5}$ In a robustness check, we estimate the same regression but using the lagged employment status. The results are very similar, but the number of observations drops a lot.

[^4]: ${ }^{6}$ To check this argument, we have repeated our estimation for a pre-Covid sample using the three survey waves from May to July 2019. This data does not have information about STW, but it allows to estimate the consumption drop due to unemployment in a similar way to above. In our tightest specification with fixed-effects, we then find an average consumption drop of 28%. This number if well in line with the estimate by Graves (2020) for the US who reports 26%. Table 9 in the Appendix reports our estimation results.

[^5]: ${ }^{7}$ Strong STW affectedness summarizes workers that experience a 100% hours reduction and either a $60-69 \%$ or $70-79 \%$ STW compensation, workers that experience a $75-99 \%$ hours reduction and either a $60-69 \%$ or $70-79 \%$ STW compensation, and workers that experience a $50-74 \%$ hours reduction and only a $60-69 \%$ STW compensation.

[^6]: ${ }^{8}$ Cooper et al. (2017) and Giupponi and Landais (2022) develop models with STW that also feature hours adjustment. STW is then rationalized by introducing a lower bound on hours as justified by rigidities in the labor market or by workers not accepting hours below a certain threshold due to risk aversion or a convex disutility of work. STW then relaxes this lower bound.

[^7]: ${ }^{9}$ Linear costs would imply corner solutions where workers either work full-time or hours are reduced by 100%. This would not be in line with the data, see also Figure 10 in the Appendix.
 ${ }^{10}$ For example in the German context, the workers representation has to agree to using STW.

[^8]: ${ }^{11}$ Source: IAB HOPP, May to September 2020.
 ${ }^{12}$ The median worker is not affected by STW. Further, STW does not affect the outside option in the bargaining game as it is not a relevant outside option in case of wage disagreement. In practice, STW is only allowed in case of a temporary lack of demand and financial difficulties.

[^9]: ${ }^{13}$ In Germany, the average hours reduction due to STW was 41% in March to May 2020 at the peak of the Covid-19-crisis, the long-run average is lower with 29% from January 2007 to May 2020.
 ${ }^{14}$ Similarly to the full-time wage, ensuring that the short-time wage does not depend on idiosyncratic productivity eases the computational burden, in the sense that one does not need to keep track of a nondegenerate wage distribution.

[^10]: ${ }^{15}$ Harding et al. (2022) show that a relatively minor modification of a New Keynesian model with a Kimball aggregator and a non-linear solution is able to produce a flat Phillips curve, while being consistent with more realistic price adjustment at the micro level. However, the latter is not the focus of our paper.
 ${ }^{16}$ In Germany, entitlement to Arbeitslosengeld I (ALG 1) is based on age and duration of employment, and can be between 6 to 24 months long. 5 quarters is close to the duration of the average worker.
 ${ }^{17}$ In Section 5.4, we show what happens if we relax this assumption.

[^11]: ${ }^{18}$ Note that income risk is countercyclical in this economy by assumption, meaning that precautionary savings motives increase in recessions, because the unemployment probability increases. This is an ongoing empirical issue. Storesletten et al. (2004) study PSID household income data and find that individual income processes exhibit countercyclical variance. Guvenen et al. (2014) find that countercyclical fluctuations in earnings risk may derive from countercyclical left-skewness of shocks, i.e., an increasing likelihood of large income losses rather than large income gains in recessions. This concept is distinct from a countercyclical variance but similar predictions arise, namely that precautionary savings rise in recessions. Ravn and Sterk (2021) provide a detailed discussion on the countercyclicality of income risk.
 ${ }^{19}$ With a more realistic debt to GDP ratio, and therefore higher average wealth in steady state, we would need to introduce additional heterogeneity, for example discount factor heterogeneity as in Carroll et al. (2017), so that workers either cannot or don't want to save themselves out of being constrained. This would complicate the model further.
 ${ }^{20}$ Government debt plays a role for the ability of agents to self insure in the model, and therefore affects precautionary savings and our results. We test different specifications of fiscal policy rules for robustness in section 5.4.
 ${ }^{21}$ For instance, targeting the same level of unemployment in models with STW and without STW would imply a difference in matching efficiency. The real interest rate in steady state of the model without STW is lower with the same discount factor and the same bond supply.

[^12]: ${ }^{22}$ Adding match-specific human capital to the model would even increase the motive for labor hoarding. In this regard, our stabilization results are a lower bound.

[^13]: ${ }^{23}$ This holds in the model and in reality. The average working time reduction under STW in Germany was 29% between 2007 and 2020. See also Figure 10 in the Appendix.

[^14]: ${ }^{24}$ The total amounts of short-time compensation and unemployment benefits are endogenous variables as the unemployment and the STW rate may fall below the steady state level after an expansionary shock. To ensure comparability and to not overstate the results, multiplier calculations are based on the steady state values for the endogenous variables for both shocks as in Faia et al. (2013).

[^15]: ${ }^{25}$ Christiano et al. (2016) find in an estimated medium scale DSGE model with search frictions and a representative agent that an increase in unemployment benefits is contractionary in normal times and expansionary at the ZLB.
 ${ }^{26}$ Empirical evidence for the Covid-19 recession that confirms this notion is provided by Marinescu et al. (2021).

[^16]: ${ }^{27}$ Holding all other parameters constant, this lowers the average job finding rate in steady state so that overall unemployment increases to 11.4%.

