
Lamprecht, Julian; Thum, Marcel

Working Paper

Opacity in Bargaining over Public Good Provision

CESifo Working Paper, No. 9871

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Lamprecht, Julian; Thum, Marcel (2022) : Opacity in Bargaining over Public Good
Provision, CESifo Working Paper, No. 9871, Center for Economic Studies and ifo Institute (CESifo),
Munich

This Version is available at:
https://hdl.handle.net/10419/263801

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/263801
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

9871 
2022 

July 2022 
 

Opacity in Bargaining over 
Public Good Provision 
Julian Lamprecht, Marcel Thum 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 9871 
 
 
 
Opacity in Bargaining over Public Good Provision 

 
 

Abstract 
 
We consider ultimatum bargaining over the provision of a public good. Offer-maker and 
responder can delegate their decisions to agents, whose actual decision rules are opaque. We show 
that the responder will benefit from strategic opacity, even with bilateral delegation. The 
incomplete information created by strategic opacity choices does not lead to inefficient 
negotiation failure in equilibrium. Inefficiencies arise from an inefficient provision level. While 
an agreement will always be reached, the public good provision will, however, fall short of the 
socially desirable level. Compared to unilateral delegation, bilateral delegation is never worse 
from a welfare perspective. 
JEL-Codes: C780, H400. 
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1 Introduction and Literature Review

Standard bargaining models suggest that with complete information, bargaining will succeed with certainty and

efficient allocation will be achieved. While this result is fairly general, the distribution of the surplus generated by

successful negotiations will rely on the particular setting. Depending on the players’ costs or preferences, as well

as the bargaining protocol itself, bargaining power may differ considerably. In the extreme case of an ultimatum

game, the proposing player will have all the bargaining power. By making a take-it-or-leave-it offer, she can

harvest the complete surplus of successful negotiations, leaving the responder only with her fallback payoff.

There are various strategies for modifying bargaining power at a pre-negotiation stage. The main idea of

opacity, as introduced by Konrad and Thum (2020), is that a favorable redistribution of cooperative gains can

be achieved by appointing a delegate whose costs or preferences are on average the same as the principal’s but

may diverge in both directions due to imperfectly observable characteristics. From the responding player’s point

of view, opacity is beneficial, as a proposer may pursue a less aggressive strategy in order not to put the success

of negotiations at risk. While Konrad and Thum (2020) consider bargaining over a fixed rent, we look at a

non-cooperative game of public good provision with the cooperative rent being determined endogenously. This

way we bring together the strands of literature on strategic opacity choice and the private provision of public

goods. The idea of strategic opacity is also closely related to the literature on information design.1 As actions

will depend on the information available, a player who is able to reveal or obscure information can manipulate

the other players’ optimal strategies. Unrelated to delegation, the approach by Condorelli and Szentes (2020) is

closely linked to Konrad and Thum (2020). Condorelli and Szentes (2020) consider randomness of the buyer’s

true valuation in a buyer-seller interaction, where the buyer can actively modify the distribution from which her

valuation for an asset will be drawn.

Usually, incomplete information in bargaining over the division of a rent or over the provision of a public good

is assumed to be exogenously given. The basic messages of Chatterjee and Samuelson (1983) and Myerson and

Satterthwaite (1983) carry over to bargaining over the provision of a public good. With incomplete information,

negotiations may lead to inefficient outcomes. Incomplete information furthermore entails the risk of failed

negotiations. Bargaining over a public good under incomplete information has explicitly been considered e.g. by

Harstad (2007) and Konrad and Thum (2014, 2018). In the offer-counteroffer game of Harstad (2007), proposed

contracts may be rejected and inefficiencies of incomplete information arise from delays in reaching an agreement.

The parties have an incentive to signal a low valuation for the public good by delaying their offers and counteroffers.

Side-payments between the parties involved may actually worsen the bargaining outcome. Konrad and Thum

(2014, 2018) consider bilateral bargaining over mitigation efforts in a one shot game. In both papers, negotiations

fail with a positive probability when there is asymmetric information about abatement costs. Pre-commitment to

high abatement levels (Konrad & Thum, 2014) as well as the possibility of cost efficient trans-border mitigation

in the non-cooperative game (Konrad & Thum, 2018) lead to an increase in the probability of failed negotiations.

Helm and Wirl (2014) consider ultimatum offer bargaining in the presence of a public bad with uncertainty

regarding the willingness to pay for abatement. The proposing player offers a menu of incentive compatible

contracts. An agreement will be reached with certainty achieving cost effectiveness, yet the first-best emission

levels of both proposer and responder are missed.

In our framework, incomplete information results from a decision maker’s individual acceptance costs, which

emerge beyond the physical cost of public good provision. A decision maker’s acceptance costs may stem from

moral views and political beliefs, as well as career concerns. For example, a politician might fear not getting

reelected or damaging her inner-party career options when signing an agreement which runs counter to her

constituents’ interests. There might also be a warm glow (Andreoni, 1990) from supporting a climate-friendly

project due to ethical and altruistic motives such as genuinely caring for the environment or the well-being of

future generations. While the actual costs of production are easily observable, the political and personal costs

are private information to the decision maker. This notion of political costs has already been used as source

for uncertainty in Fingleton and Raith (2005) and Konrad and Thum (2014, 2018). These political costs may

gradually be revealed in the course of a politician’s career. Depending on her standpoint in previous negotiations

or her active participation in certain projects, the decision maker’s motives and values eventually become apparent.

1A survey of the literature on information design can be found in Bergemann and Morris (2019).
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If the negotiators are well-known public figures or know each other from earlier negotiations, their behavior and

values are predictable to a certain extent. Choosing a delegate lacking such a track record can become a strategic

advantage. With the delegate still being a blank page, her actual political cost will be unknown to her counterpart

in negotiations.

With delegation being the source of opacity, our work is also related to the literature on strategic delegation

in bargaining over a public good. Delegation is usually considered in the form of a tough agent, who will reject

the least favorable proposals that would have been accepted by the principal and in this way secure a better

deal. The notion of a delegate’s toughness introduced by Schelling (1960/1980) and developed by Jones (1989a,

1989b) and Burtraw (1992) has also been applied to bargaining over public goods or bads, e.g. considering the

case of international environmental agreements (IEA). In a Nash bargaining framework, Segendorff (1998) and

Buchholz, Haupt, and Peters (2005) have shown that if the principal decides to delegate, she will appoint an agent

who has a strictly lower preference for the environmental good than herself. This way bargaining power can be

increased. Segendorff (1998) finds that in equilibrium at least one player will be worse off under delegation than

if self-representation had been chosen. If the delegates were to decide on contribution levels in the case of failed

negotiations, the other player’s fallback utility can be lowered by appointing a tougher delegate. In equilibrium

the principals’ payoffs may even be lower than in the non-cooperative game without delegation. Buchholz et

al. (2005), who consider elections as a form of delegation, show that in the case of complete spillovers there are

no gains from bargaining as the elected governments will not value the environment at all. The delegate could

be greener and the median voter’s payoff higher if bargaining were not to take place. There is a strong link to

the literature on strategic commitment at a pre-negotiation stage, e.g. regarding technology choice (Buchholz &

Konrad, 1994; Urpelainen, 2012) or investment in green equipment (Beccherle & Tirole, 2011). In those papers,

commitment can be used to shift the burden of public good provision towards the other player, thus achieving a

favorable movement of the threat point (Beccherle & Tirole, 2011; Buchholz & Konrad, 1994). Even if there is

no crowding-out, Beccherle and Tirole (2011) and Urpelainen (2012) find that committing to high emissions by

low investment lowers the fallback utility of the other player. Simultaneously, in Beccherle and Tirole (2011) the

fallback position becomes more attractive as low levels of investment lead to a higher marginal utility of emissions.

Delegation in the context of uncertainty is considered by Harstad (2008). Heterogenous principals, who have

to unanimously decide over the realization of a project, face uncertainty regarding their resulting utility. By

appointing a delegate with a lower valuation for the project, they can increase their bargaining power if side

payments are applied. On the other hand, projects that may have been favorable from the principal’s point of

view may be rejected by the delegate.

Applying the concept of opacity (Konrad & Thum, 2020) to bargaining over a public good, the rent from

bargaining will become endogenous. The setup allows us to discuss whether an agreement is reached at all

and which size of the public good will be realized if negotiations succeed. As do Konrad and Thum (2020),

we use a model of ultimatum bargaining where one or both parties can appoint delegates whose preferences

may be imperfectly observable. From the offer maker’s point of view, bargaining will be a game of incomplete

information. For the unilateral case, we can determine a unique equilibrium with delegation by the responder.

Through delegation, the responder can achieve a favorable redistribution of bargaining surplus. However, opacity

will lead to an inefficiently low level of public good provision and thus a welfare loss. Considering the bilateral

case, multiple equilibria arise where, except for corner solutions, both principals’ opacity choices are strategic

substitutes. Yet, in any subgame perfect equilibrium, an agreement will be reached with certainty. This is in

contrast to Konrad and Thum (2020), who found a set of equilibria entailing the risk of failed negotiations in

bargaining over a fixed rent. Bilateral delegation will never lead to lower welfare than unilateral delegation.

The paper is structured as follows. In chapter 2, the framework is introduced. Chapter 3 establishes the

results of the bargaining game without delegation as a baseline scenario. We consider one-sided delegation in

chapter 4. In chapter 5, we analyze the equilibria for bilateral delegation. Chapter 6 concludes.

2 The Setup of the Model

We consider a standard setup for the private provision of public goods. There are two players (i = 1, 2), who both

derive benefit B(G) from the provision level G of a public good. Each player’s benefit is strictly increasing and
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is strictly quasi-concave in G, i. e. B
′
(G) > 0, B

′′
(G) ≤ 0. The size of the public good is determined through

the non-negative contributions (gi ≥ 0) of the two players: G = g1 + g2. A linear technology generates constant

marginal costs ci of production. Player 1 is assumed to have the lower costs of production (c1 < c2); let the

cost difference of the two players be denoted by β ≡ c2 − c1. Technologies as well as preferences are common

knowledge. Player i′s payoff can be written as:

Πi(G, gi) = B(G)− ci · gi. (1)

Before we turn to our bargaining model with weak delegation, we first briefly describe the socially optimal

provision and the Nash equilibrium with decentralized decisions as reference points for the subsequent analysis.

Welfare is measured by the sum of both players’ payoffs:

W =

2∑
i=1

Πi(G, gi). (2)

Maximizing welfare over the (non-negative) contributions of the two players yields the provision level according

to the Samuelson rule:

2 ·B
′
(GC) = c1, (3)

where low-cost player 1 is in charge of the entire production (gC1 = GC , gC2 = 0).2

If the players provide the public good non-cooperatively, the Nash equilibrium can be described as:

(gNC
1 = GNC , gNC

2 = 0) with B
′
(GNC) = c1. (4)

Again only low-cost player 1 will make positive contributions. The public good is provided in a quantity

so that the marginal benefit of player 1 equals her marginal cost. Technically speaking, the reaction curves of

both players have a slope of -1, i.e. each unit of provision by the other player crowds out one unit of their own

contributions. Due to the lower marginal cost, the reaction curve of player 1 will lie farther to the right than

player 2’s. Hence, the reaction curves only intersect once with gNC
2 = 0. In the Nash equilibrium, the two players

earn payoffs:

Π1(g
NC
1 ) = B(gNC

1 )− c1 · gNC
1 and (5)

Π2(g
NC
1 ) = B(gNC

1 ) (6)

This simple variant of the standard model illustrates nicely the well-known property of underprovision of

public goods in a non-cooperative setting: GNC < GC . Welfare with non-cooperative private provision remains

below the social optimum:
2∑

i=1

Πi(g
NC
1 ) <

2∑
i=1

Πi(g
C
1 ). (7)

3 Ultimatum-offer Bargaining

As we want to analyze weak delegation to a representative with opaque preferences, we need a tractable model

of negotiations. We use a simple ultimatum offer game where the high-cost player offers a contract that contains

provision levels and a transfer. This is the simplest way to implement bargaining that helps to exploit efficiency

gains by increasing public good provision beyond the non-cooperative level. As total rents are maximized with

the Samuelson rule, the offer maker has an incentive to propose the socially efficient provision level. The proposed

transfer is used to appropriate the rents from enhanced efficiency. Ultimatum-offer bargaining takes place within

a three-stage game:

1. Player 2 proposes a contract stating the contribution levels gbar1 , gbar2 and a monetary transfer T to player

1.

2As the results of this and the subsequent section are standard, we do not provide proof. The formal derivations are
available upon request from the authors.

4



2. Player 1 can either accept or reject the offer.

3. In the case of successful negotiations, public good provision and transfer happen according to the proposed

contract. If negotiations fail, the non-cooperative game will be played.

With failed negotiations, players 1 and 2 receive payoffs Π1(g
NC
1 ) and Π2(g

NC
1 ) in stage 3. These payoffs are

both players’ fallback positions. For player 1 to accept a proposal in stage 2, she must receive a payoff that is at

least as high as her fallback position Π1(g
NC
1 ). Hence, her participation constraint can be written as:

B(g1 + g2)− c1 · g1 + T −Π1(g
NC
1 ) ≥ 0. (8)

In stage 1, player 2 makes an offer that maximizes her own payoff subject to player 1’s participation constraint.

The optimal contract proposed by player 2 can be obtained by solving the following maximization problem:

max
g1,g2,T

B(g1 + g2)− c2 · g2 − T (9)

s.t. B(g1 + g2)− c1 · g1 + T −Π1(g
NC
1 ) ≥ 0

g1, g2 ≥ 0

Player 2 proposes contract P:

P =
{
gbar1 = gC1 , gbar2 = 0, T = Π1(g

NC
1 )−B(gbar1 ) + c1 · gbar1

}
, (10)

where the provision level gbar1 fulfills the Samuelson condition, i.e. 2 ·B
′
(gbar1 )− c1 = 0. The “pie” is maximized

by letting the low-cost producer (player 1) provide the public good so that the sum of marginal benefits equals

the marginal cost. Player 1 is compensated for her efforts by transfer T . Her participation constraint will be

binding, i.e. player 2 will propose the lowest transfer possible, making player 1 indifferent between accepting and

refusing the offer. All rents that are created by the transition to the socially optimal provision level accrue to the

offer maker (player 2). Player 2 is strictly better off in the bargaining solution compared to the Nash equilibrium:∑2
i=1 Πi(g

NC
1 )−Π1(g

NC
1 ) > Π2(g

NC
1 ). This framework of ultimatum bargaining serves as the baseline scenario

for our model of weak delegation to a representative with opaque preferences.

4 Bargaining with Unilateral Delegation and Opacity

As shown in the basic model, ultimatum bargaining can ensure the welfare maximizing provision of the public

good; the problem of under-provision is solved. Although the welfare loss has disappeared, it is only player 2

who benefits from the bargaining solution. She is able to harvest the total surplus of successful negotiations. It

is well known (Schelling, 1960/1980) that player 1 can partially shield herself from being exploited by sending a

delegate who has higher acceptance costs. These acceptance costs emerge beyond the costs of physical production.

They may be grounded in the political sphere. For instance, a delegate may face reputational costs. A delegate

who is known for pro-environmental positions may damage her future political career when striking a deal for a

nature-consuming transnational infrastructure project. The larger the project the bigger the political damage.

Hence, such a delegate will only accept a deal when these private political costs are compensated.

Such private costs are much harder to observe than the actual costs of production. The costs of infrastructure

or climate mitigation are more or less quantifiable, also for offer-making player 2. However, the career concerns,

political attitudes, and personal views of a delegate or even an entire delegation are quite opaque. This may not

only be true for the counterparty (player 2) but also for delegating player 1. The delegate’s precise political costs

for accepting an offer may remain her private information. This opacity of a delegate’s preferences can help to

secure rents in ultimatum bargaining has been shown by Konrad and Thum (2020) in a game with fixed rents.

Here we analyze how the strategic use of opaque preferences affects bargaining over public good provision, i.e. in

a setting where rents are endogenous.

To separate the toughness (Schelling, 1960/1980) from the opacity dimension, we assume that player 1 can

only choose a delegate whose preferences are opaque but who is not tougher on average. By focusing on a delegate
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with opaque preferences, we create a variant of the model just a one-step deviation from the basic ultimatum-offer

model of the previous chapter. This allows us to clearly identify the effects of opacity. To be more specific, we

assume that the delegate has either political costs of α1 or political benefits of α1 from each unit of the public

good negotiated in the contract. The probability of a delegate with political costs is π = 0.5. In expectation,

the preferences of the delegate do not diverge from the preferences of player 1 as the expected political costs are

zero [π ·α1 + (1− π) · (−α1) = 0]. The delegate’s political costs or benefits are relevant in the bargaining process

as the delegate decides on acceptance or rejection. The public good, however, is always provided by player i at

cost ci – either according to the negotiated contract or in a non-cooperative game. Following the definition of

weak delegation according to Segendorff (1998), in the case of failed negotiations, the delegate reports back to

player 1, who sets the non-cooperative level of public good provision. The delegate is not involved and, therefore,

cannot be held accountable. Hence, we additionally assume (deviating from Segendorff (1998)) that the fallback

position of player 1 and the delegate are the same and identical to the ultimatum-offer game in the previous

section: Πdel(g
NC
1 ) = Π1(g

NC
1 ).

From the perspective of player 2, who has to make an offer, the opaque preferences of the delegate generate

a mean preserving spread of marginal costs around c1. With probability π = 0.5, the delegate has marginal costs

of public good provision of ch1 = c1 + α1. With probability (1 − π) = 0.5, the delegate draws political benefits

from successful negotiations; her marginal costs are cl1 = c1 − α1.
3 We assume that the degree of opacity α1 is

a choice variable of player 1. As discussed in the introduction, player 1 may choose a delegate, who is not well

known in public, or she can create opacity by designing a decision mechanism for a group of delegates. The value

α1 is common knowledge. But neither player 1 nor player 2 know the actual type of the delegate.

The game is structured as before, the only differences being the new stage 0 (choice of opacity) and a slightly

modified stage 2 (decision of the delegate):

0. Player 1 chooses α1, i.e. appoints a delegate who is defined by her level of opacity.

1. Player 2 proposes a contract stating the contribution levels gdel1 , gdel2 and a monetary transfer T to player

1.

2. The delegate of player 1 can either accept or reject the offer.

3. In the case of successful negotiations, the public good is provided at marginal cost c1 and the transfer made

according to the contract. If negotiations fail, the non-cooperative game will be played.

We solve the game backwards. First, we establish that there are only two candidates of payoff-maximizing

offers for player 2. Then, we show that there is a critical value for the degree of opacity α1 where player 2 finds it

optimal to switch between the two candidate offers. Finally, we determine the payoff maximizing degree of opacity

for player 1 in stage 0. For clarity of exposition, we now focus on the case where the marginal costs of player 2

exceed those of the high-cost delegate (ch1 < c2); at the end of this section, we briefly discuss the alternative case.

Stage 1: Contract Offer

Lemma 1. There are only two offers that can maximize player 2’s expected payoff. Player 2 either offers a safe

contract PS, which will be accepted by both types of delegates, or a risky contract PR, which will only be accepted

by the low-cost delegate.

Proof. We simply sketch the proof as the formal derivation is straightforward. In stage 2, the delegate accepts

an offer from player 1, if B(g1 + g2)− ck1 · g1 + T ≥ Π1(g
NC
1 ) with k = l, h. For a given level of contributions, the

minimum transfer required for acceptance is always higher for the h-type by 2 · α1 per unit of the public good

compared to the l-delegate. Hence, if the h-type is willing to accept an offer, the l-type will accept the offer a

fortiori. The different acceptance thresholds have to be taken into account by player 2 when making her offer.

Player 2 has the choice of offering a contract that is accepted by both types with probability 1, which we call

the safe strategy, or a contract that is only accepted with probability 0.5 (by the low-cost type l, risky strategy).

For any provision level, it cannot be profitable for player 2 to offer T < Π1(g
NC
1 )− [B(g1 + g2)− cl1 · g1] as such

an offer will be rejected by both types and all potential gains from bargaining will be lost. Also a transfer offer

3Without loss of generality, it is assumed that c1 is sufficiently large so that the private marginal costs cl1 cannot become
negative.
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Π1(g
NC
1 )− [B(g1 + g2)− cl1 · g1] < T < Π1(g

NC
1 )− [B(g1 + g2)− ch1 · g1] can never be optimal as the acceptance

probability is only 0.5 but the transfer is higher than necessary to make the l-type accept the offer. Finally,

T > Π1(g
NC
1 )− [B(g1 + g2)− ch1 · g1] is not optimal as the acceptance probability is always unity but the transfer

to player 1 is higher than necessary. Therefore, there are only two candidates for payoff-maximizing transfers:

T = Π1(g
NC
1 ) − [B(g1 + g2) − cl1 · g1] to win the l-type only and T = Π1(g

NC
1 ) − [B(g1 + g2) − ch1 · g1] to make

both types accept.

We can now describe the payoff-maximizing offers in stage 1 under the safe and the risky strategy. The best

safe contract can be found by maximizing:

max
g1,g2,T

B(g1 + g2)− c2 · g2 − T (11)

s.t. B(g1 + g2)− ch1 · g1 + T −Π1(g
NC
1 ) ≥ 0

g1, g2 ≥ 0.

The relevant constraint is the participation constraint of the high-cost delegate. The best safe contract can

be written as:

PS =
{
gbar,S1 = gC,h

1 , gbar,S2 = 0, T = Π1(g
NC
1 )− [B(gC,h

1 )− ch1 · gC,h
1 ]

}
, (12)

where gbar,S1 = gC,h
1 is implicitly determined by the Samuelson rule: 2 ·B

′
(gC,h

1 )− ch1 = 0. As player 2’s cost

exceeds the cost of the h-type delegate, the total payoff is maximized when the entire public good is provided by

player 1. Player 2’s (expected) payoff under the safe strategy can be written as:

ΠS
2 = 2 ·B(gC,h

1 )− ch1 · gC,h
1 −Π1(g

NC
1 ). (13)

Player 2 reaps both parties’ benefits of a public good of size gC,h
1 but has to compensate player 1 for the cost

of provision (including the political costs) and the opportunity cost of a bargaining solution.

To find the best risky contract we use the participation constraint of the l-type and take into account that this

strategy is only successful with a probability of 0.5:

max
g1,g2,T

1

2
· [B(g1 + g2)− c2 · g2 − T ] +

1

2
· [Π2(g

NC
1 )] (14)

s.t. B(g1 + g2)− cl1 · g1 + T −Π1(g
NC
1 ) ≥ 0

g1, g2 ≥ 0.

Again, the public good is entirely provided by player 1 (gbar1 = gC,l
1 ) as she has the lower marginal costs. The

size of the public good is implicitly given by the Samuelson rule, where the marginal costs of the l-type matter:

2 ·B
′
(gC,l

1 )− cl1 = 0. As best risky contract, we get:

PR = {gbar,R1 = gC,l
1 , gbar,R2 = 0, T = Π1(g

NC
1 )− [B(gC,l

1 )− cl1 · gC,l
1 ]}. (15)

The risky strategy yields:

EΠR
2 =

1

2
· [2 ·B(gC,l

1 )− cl1 · gC,l
1 −Π1(g

NC
1 )] +

1

2
·Π2(g

NC
1 ) (16)

as an expected payoff for player 2.

Lemma 2. There is a unique value αindiff
1 ∈ [0, c1) that makes player 2 indifferent between the risky and the

safe strategy. For α1 < αindiff
1 , she prefers the safe strategy; for α1 > αindiff

1 , she prefers the risky strategy.

Proof. Player 2 compares the payoffs under the two strategies:

ΠS
2 ⋛ EΠR

2 (17)

At α1 → 0, the comparison boils down to 2 ·B(gC,l
1 )−cl1 ·gC,l

1 > Π2(g
NC
1 ), which holds due to gC1 = gC,l

1 = gC,h
1

for α1 close to zero. As the cooperative solution generates higher rents (left-hand side) than the non-cooperative
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game (right-hand side), player 2 is always better off choosing the safe strategy with very small opacity. If α1

increases, the left-hand side of (17) decreases, while the right-hand side increases:

∂ΠS
2

∂α1
= [2 ·B

′
(gC,h

1 )− ch1 ] ·
∂gC,h

1

∂ch1
· ∂c

h
1

∂α1
− ∂ch1

∂α1
· gC,h

1 = −gC,h
1 < 0

∂EΠR
2

∂α1
=

1

2
· {[2 ·B

′
(gC,l

1 )− cl1] ·
∂gC,l

1

∂cl1
· ∂cl1
∂α1

− ∂cl1
∂α1

· gC,l
1 } =

1

2
· gC,l

1 > 0.

(18)

The safe strategy becomes less attractive, since aggregate payoffs are falling when the marginal cost ch1 is

increasing. The risky strategy becomes more attractive as cl1 falls in α1. With α1 close to c1, the marginal

costs cl1 converge to zero and the expected payoff EΠR
2 to infinity. This way the existence of a unique point of

intersection between ΠS
2 and EΠR

2 within the range α1 ∈ (0, c1) is ensured. Note that the fallback position is not

affected by the degree of opacity. Hence, there is a unique value αindiff
1 making player 2 indifferent between the

safe and the risky proposal:

ΠS
2 ⋛ EΠR

2 ⇔ αindiff
1 ⋛ α1. (19)

Stage 0: Choice of Opacity

We can now turn to player 1’s choice of opacity. Player 1 knows that the degree of opacity will influence player

2’s offer. To what extent can player 1 secure some of the rents from extended public good provision for herself by

sending an opaque delegate to the negotiations?

Proposition 1. For player 1, it is always optimal to generate some opacity about the delegate’s preferences

(αopt
1 > 0).

Proof. For player 1 the payoff if player 2 chooses the safe strategy, and the expected payoff if player 2 chooses

the risky strategy can be written as:

ΠS
1 = Π1(g

NC
1 ) + (ch1 − c1) · gC,h

1 and (20)

EΠR
1 = Π1(g

NC
1 ) +

1

2
· (cl1 − c1) · gC,l

1 (21)

respectively. Since (ch1 − c1) · gC,h
1 > 0 > 1

2
· (cl1 − c1) · gC,l

1 , player 1 prefers the safe contract over the risky

contract. Therefore, αindiff
1 is the upper limit to her opacity choice, i.e. αopt

1 ≤ αindiff
1 . Taking the first derivative

of ΠS
1 with respect to α1 yields:

∂ΠS
1

∂α1
= (ch1 − c1) ·

∂gC,h
1

∂α1
+

∂ch1
∂α1

· gC,h
1 = α1 ·

∂gC,h
1

∂α1
+ gC,h

1 . (22)

At α1 = 0, the derivative is strictly positive:
∂ΠS

1
∂α1

(α1 = 0) = gC,h
1 > 0. Hence, it always pays off for player 1

to create some opacity.

This is where a difference emerges from Konrad and Thum (2020), who analyze the division of a fixed rent.

In our model with endogenous rents, an increase in opacity comes at a cost. Opacity forces player 2 to target a

delegate with high (political) costs. With rising α1, the contribution level gC,h
1 falls. In the opacity equilibrium,

this mechanism reduces the provision level below the first-best level. The strategy of sending a delegate with

opaque preferences entails a welfare loss. The compensation of player 1 for each unit provided is simply a transfer

and is irrelevant from a welfare perspective. However, this compensation goes along with a downward distortion

in the provision level (gC,h
1 < gC1 ), which makes aggregate payoffs of player 1 and player 2 (

∑2
i=1 Πi(g

C,h
1 ))

suboptimally low.
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The Case of Small Cost Differences

So far, we have considered large cost differences between player 1 and player 2. Even the high-cost delegate still

had lower costs than player 2. The cost to player 2 was never a binding constraint for the opacity choice of player

1. What happens if the cost difference β between the two players is small, so that the high-cost delegate would

have a higher cost than player 2 when applying the previously optimal opacity choice?

Lemma 3. If β < αopt
1 , player 1’s payoff-maximizing degree of opacity is αopt,2

1 = β.

We simply provide an intuition for this result; the formal proof is available upon request. How is player 2’s

offer in stage 1 affected if ch1 = c1 + α1 > c2? Obviously, nothing changes for the risky contract as it aims at

the low-cost delegate cl1 = c1 − α1. However, the safe contract is affected. Due to ch1 > c2, player 2 is now

better off providing the public good herself and charging player 1 for this provision (negative transfer). This

negative transfer pushes player 1 down to the reservation payoff. When increasing the degree of opacity beyond

the threshold of α1 = β, player 1’s payoff drops to the reservation level. Hence, player 1’s best choice of opacity

is αopt,2
1 = β. This just prevents player 2 from providing the good, ensures a safe offer, and allows player 1 to

secure some rents.4

5 Bilateral Delegation

We now consider the case where players 1 and 2 can simultaneously hand over negotiations to opaque delegates.

The opacity choice is denoted as α1 and α2 respectively. The realizations of the players’ types are mutually

stochastically independent.

Player 2 chooses α2; her delegate’s costs are either ch2 = c2 + α2 or cl2 = c2 − α2 with equal probability. The

payoff functions of player 2 and her delegate only differ in the marginal cost of public good provision. Therefore,

the payoffs of player 2 and a delegate of type m ∈ (h, l) are identical, if g2 = 0. In the case of weak delegation,

the fallback position of player 2’s delegate will be Πdel2,m(gNC
1 ) = Π2(g

NC
1 ) = B(gNC

1 ). With bilateral opacity

there are minor changes to the overall structure of the game. In stage 0, there is now a simultaneous opacity

choice by both players. In stage 1, it is now the delegate of player 2 (rather than player 2 herself) who makes a

take-it-or-leave-it offer.

0. Player 1 chooses α1 and player 2 chooses α2, i.e. both players appoint a delegate who is defined by her

level of opacity.

1. The delegate of player 2 proposes a contract stating the contribution levels gdel1 , gdel2 and a monetary transfer

T to player 1.

2. The delegate of player 1 can either accept or reject the offer.

3. In the case of successful negotiations, the public good is provided at marginal cost c1 or c2 and the transfer

is realized according to the contract. If negotiations fail, the non-cooperative game will be played.

The game is solved backwards.

Stage 2: Acceptance and Refusal

A delegate of type m ∈ (h, l) either proposes a safe or risky contract. A safe offer is accepted with certainty;

a safe offer may stipulate the provision of the public good by player 1 or player 2. In the case of a risky offer,

bargaining is successful with probability 50%, i.e. when the delegate of player 1 is of the low-cost type. If she is

of the high-cost type, the outcome of the non-cooperative game will be realized.

4We have focused on the case c1 < c2. If c1 ≥ c2, player 1 cannot gain from opacity. The only way for player 1 to profit
from delegation is achieving overcompensation for the cost of public good provision. This is only possible, if the high-cost
delegate has lower marginal cost than player 2, i.e. ch1 < c2, which is not possible if c1 ≥ c2. Another scenario is that
player 2 considers delegation. Since player 2 has already all the bargaining power, she can harvest the complete rent from
cooperation and there is no possibility for further redistribution towards player 2. Yet, by delegation the efficient provision
level will be missed with certainty.
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Stage 1: Contract Offer

There are three types of contracts that may be optimal for a delegate of type m. The optimal contract offer

depends on the previous choices of α1 and α2. The delegate can either propose a safe contract with player 1

contributing to the public good (PS1), a safe contract with player 2 contributing to the public good (PS2), or a

risky contract with player 1 contributing to the public good (PR):

PS1 = {gdel1 = gC,h
1 , gdel2 = 0, TS1 = Π1(g

NC
1 )− [B(gC,h

1 )− ch1 · gC,h
1 ]} (23)

PS2 = {gdel1 = 0, gdel2 = gC,m
2 , TS2 = Π1(g

NC
1 )−B(gC,m

2 )} (24)

PR = {gdel1 = gC,l
1 , gdel2 = 0, TR = Π1(g

NC
1 )− [B(gC,l

1 )− cl1 · gC,l
1 ]} (25)

There is a single value αindiff,I
1 making a delegate of type m indifferent between proposing PS1 and PR:5

ΠS1
del2,m(gC,h

1 ) ⋛ EΠR
del2,m(gC,l

1 ) ⇔ αindiff,I
1 ⋛ α1 (26)

For any α1 ≤ αindiff,I
1 , a delegate of type m prefers PS1 over PR. This value is independent of α2. However,

whether or not a delegate of type m considers PS2 depends on cm2 and, therefore, on α2.

In the following, we analyze whether the provision of the public good by player 2 (PS2) can be part of

an optimal offer by player 2’s delegate. Whether this is the case, depends on the delegate’s marginal costs

cm2 = c2 ± α2.

Lemma 4. (a) For marginal costs cm2 ≥ c1 +αindiff,I
1 , PS2 can never be an optimal contract. A delegate of type

m chooses either PS1 or PR; therefore, player 1 always contributes to the public good. For α1 ≤ αindiff,I
1 , the

safe contract PS1 will be proposed, otherwise the risky contract PR.

(b) For c1 < cm2 < c1 + αindiff,I
1 , the delegate’s best offers are: PS1 for α1 ≤ αindiff,IIa

1 , PS2 for αindiff,IIa
1 <

α1 ≤ αindiff,IIb
1 and PR for α1 > αindiff,IIb

1 . The critical value αindiff,IIa
1 is implicitly given by ΠS2

del2,m(gC,m
2 ) =

ΠS1
del2,m(gC,h

1 (αindiff,IIa
1 )), and αindiff,IIb

1 is given by ΠS2
del2,m(gC,m

2 ) = EΠR
del2,m(gC,l

1 (αindiff,IIb
1 )).

(c) For cm2 < c1, the delegate’s best offers are: PS2 for α1 ≤ αindiff,IIb
1 and PR for α1 > αindiff,IIb

1 .

The formal proof for Lemma 4 can be found in Appendix A. The configuration of best offers is illustrated in

Figure 1a and Figure 1b:

(a) Figure 1a depicts the (expected) payoffs of a delegate of type m for the different contract choices as a function

of α1 for the case cm2 = c1+αindiff,I
1 . The blue lines are the (expected) payoffs if player 1 contributes and the red

line visualizes the payoff from the contract with player 2 contributing. By construction, all three lines intersect

once in αindiff,I
1 . One of the contracts, PS1 or PR, is always preferred over PS2. This is a fortiori the case when

cm2 > c1 + αindiff,I
1 , i.e. when the red line shifts downwards. For α1 ≤ αindiff,I

1 , the delegate prefers the safe

strategy PS1; for α1 > αindiff,I
1 , she prefers the risky strategy PR.

(b) Figure 1b illustrates the case cm2 < c1+αindiff,I
1 . The blue lines depict again ΠS1

del2,m(gC,h
1 ) and EΠR

del2,m(gC,l
1 );

the horizontal red line describes ΠS2
del2,m(gC,m

2 ). At αindiff,I
1 , the red line now lies above the intersecting point

of both blue lines. As the blue line ΠS1
del2,m(gC,h

1 ) starts above the red line – due to the lower cost of player 1 at

α1 = 0 (c1 < cm2 ) – and is downward sloping, there will be a unique value αindiff,IIa
1 that will make the delegate

of type m indifferent between the safe contracts where player 1 (PS1) or player 2 (PS2) contribute. A similar

threshold can be established for the comparison of PS2 and PR. The expected payoff of the risky strategy is

increasing in α1 and goes to infinity as α1 → c1. Hence, there must be a unique critical value αindiff,IIb
1 where

the risky strategy becomes more attractive for player 2’s delegate than providing the public good herself.

(c) The mechanism is basically the same as under (b). When the red curve for PS2 shifts upward beyond cm2 < c1,

the critical value αindiff,IIa
1 vanishes as player 2’s delegate can always provide the good at lower costs than player

1. Hence, player 2’s delegate offers PS2 for α1 < αindiff,IIb
1 and PR otherwise.

Using these results, we can establish, which combinations of offers are possible given the opacity choice from

the previous stage.

5Since Π2 = Πdel2,m for g2 = 0, the proof is analogous to the previous chapter.
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Figure 1a: Contract offers at cm2 ≥ c1+αindiff,I
1 Figure 1b: Contract offers at cm2 < c1+αindiff,I

1

Lemma 5. If player 1 chooses α1 > αindiff,I
1 , she will either receive an offer PS2 or PR depending on α2. As

these offers are not profitable for her, player 1 will never choose α1 > αindiff,I
1 .

Proof. For α1 > αindiff,I
1 , it holds that ΠR

del2,m > ΠS1
del2,m irrespective of the proposing delegate’s type m.

Depending on α2, an offer of PS2 or PR will be made. There are three subcases to consider:

1. Both types of the proposing delegate will make a safe offer PS2.

Player 1’s (expected) payoff is EΠ1 = ΠNC
1 .

2. The delegate of the h-type proposes PR while the delegate of the l-type proposes PS2.

Player 1’s (expected) payoff is EΠ1 = ΠNC
1 − 1

2
· (α1 · gC,l

1 ) < ΠNC
1 .

3. Both types of delegates propose the risky offer PR2

Player 1’s (expected) payoff is EΠ1 = ΠNC
1 − α1 · gC,l

1 < ΠNC
1 .

Hence, by choosing α1 > αindiff,I
1 , player 1 cannot benefit compared to the situation without delegation.6

Lemma 6. For α1 ≤ αindiff,I
1 , a delegate of player 2 will either propose PS1 or PS2. By choosing α1 ≤ αindiff,I

1

player 1 will never be worse off than in the situation with no delegation.

Proof. For α1 ≤ αindiff,I
1 , it holds that ΠS1

del2,m ≥ ΠR
del2,m irrespective of the proposing delegate’s type m. The

risky offer PR therefore can be ruled out. Depending on α2, either an offer of PS1 or PS2 will be made.

For a given value α1, there are three possible combinations of offers depending on α2.

1. Both types of delegates offer a contract PS1.

Player 1 will receive the (expected) payoff EΠ1 = ΠNC
1 + α1 · gC,h

1 .

2. The l-type delegate offers a contract PS2 and the h-type delegate offers a contract PS1.

The expected payoff of player 1 will be EΠ1 = 1
2
· (ΠNC

1 + α1 · gC,h
1 ) + 1

2
·ΠNC

1 .

3. Both types of delegates offer a contract PS2.

The (expected) payoff of player 1 will be EΠ1 = ΠNC
1 .

For any α1 ∈ (0, αindiff,I
1 ), it holds that EΠ1(α1) ≥ ΠNC

1 .

With the possible combinations of proposals established, we now look at stage 0 of the game. The opacity

choices at stage 0 determine, which of these combinations is realized.

6A combination of PS2 from the delegate of the h-type and PR from the l-type will never occur. If the h-type finds it
profitable to provide the good, the l- type will do so a fortiori.
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Figure 2: Player 1’s maximization problem

Stage 0: Opacity Choice

Player 1:

For clarity of exposition, we again assume that the cost differential β is sufficiently large. This way we only have

to consider the l-type among player 2’s delegates. Since we have already established that player 1 will always

choose a degree of opacity α1 ≤ αindiff,I
1 , the additional assumption αindiff,I

1 < β ensures that ch2 ≥ ch1 , i.e.

player 1 will always receive the safe offer PS1 from a h-type delegate irrespective of α2. To establish the reaction

function we only have to determine, whether player 1 will induce the l-type to offer PS1 or PS2 for a given α2.

To determine the optimal reply to a given value α2, player 1 solves the following maximization problem:

max
α1

EΠ(α1, α2) =
1

2
· [ΠNC

1 + α1 · gC,h
1 (c1 + α1)] +

1

2
· [ΠNC

1 + I(α1, α2) · (α1 · gC,h
1 (c1 + α1))] (27)

s.t. 0 ≤ α1 ≤ αindiff,I
1

I(α1, α2) =

1, if α1 ≤ β − α2

0, if α1 > β − α2

The first term in square brackets is player 1’s payoff if the proposing delegate is of the h-type, who will always

propose PS1. The second term in square brackets is the payoff from delegation if the proposing delegate is of the

l-type. The l-type will propose PS2 if ch1 > cl2, which can be rewritten as α1 > β −α2. In this case, the indicator

function I(α1, α2) takes on the value 0. For α1 ≤ β − α2, the indicator function I(α1, α2) takes on the value 1,

meaning that a delegate of the h-type will propose PS1.

Lemma 7. There is a discontinuity in the expected payoff function of player 1 at the threshold α1 = β − α2. A

local maximum exists both to the left and the right of this threshold. Player 1’s expected payoff EΠ1 is maximized

at min(α∗
1, α

indiff,I
1 , β − α2) for I(α1, α2) = 1 and at max(min(α∗

1, α
indiff,I
1 ), β − α2) for I(α1, α2) = 0.

Proof. The formal proof for Lemma 7 can be found in Appendix B.

The maximization problem is visualized in Figure 2. The threshold β−α2 is depicted by the vertical red line.

The upper payoff function describes player 1’s expected payoff if both types of delegates propose the contract

PS1, i.e. EΠ(I = 1). The non feasible values to the right of the threshold are indicated by the dashed red line.

In our example, the local maximum of EΠ1(I = 1) can be found at point A, i.e. by choosing α1 = β − α2 at the
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threshold. The lower curve describes player 1’s expected payoff if only a delegate of the h-type is proposing the

contract PS1. Non-feasible values of the expected payoff function below the threshold are again indicated by a

dashed red line. In Figure 2, min(α∗
1, α

indiff,I
1 ) lies to the right of the threshold. Therefore the local maximum

for EΠ(I = 0) can be found in point B, i.e. a choice of α1 = αindiff,I
1 . We have established the existence of two

local maxima for the two cases I(α1, α2) = 0 (point B) and I(α1, α2) = 1 (point A). By comparing the two local

maxima, the best response of player 1 to a given value α2 is found. In our example, this is α1 = β − α2. We now

have to determine, how player 1’s choice depends on α2.

Lemma 8. There is a critical value αindiff
2 , making player 1 indifferent between receiving the safe offer PS1 from

both types of delegates or only from the l-type.

Proof. The formal proof for Lemma 8 can be found in Appendix C.

Player 1 is facing a trade-off between higher degrees of opacity α1 and a higher probability of receiving the

beneficial offer PS1. Using Figure 2, the comparative statics with respect to α2 can easily be understood. When α2

increases, the vertical line shifts to the left. This will lead to a falling value of the local maximum EΠopt
1 (I = 1),

while there will be no change in the local maximum EΠopt
1 (I = 0).7 If the threshold is below but close to

min(α∗
1, α

indiff,I
1 ), player 1 loses very little by choosing α1 = β − α2 and receiving the offer PS1 with certainty.

Choosing the unrestricted opacity value instead puts the gains from delegation at risk with a probability of 50%.

However, if β − α2 is close to zero, there are only small gains from delegation if player 1 wants to make sure to

receive the offer PS1. By an opacity choice to the right of the threshold, the rent from delegation will be achieved

with a probability of 50%. There is a value αindiff
2 , making player 1 indifferent between a choice of α1 that will

guarantee offer PS1 with a low payoff and a choice of α1 with a maximum degree of opacity min(α∗
1, α

indiff,I
1 )

that will lead to offer PS1 only with 50% probability. Player 1 receives a high payoff if player 2’s delegate is of

the h-type, and there will be no gains from delegation if the proposer’s delegate is of the l-type.

Lemma 9. Player 1’s reaction function α1(α2) is:

α1(α2) =

min(α∗
1, α

indiff,I
1 , β − α2), if α2 ≤ αindiff

2

min(α∗
1, α

indiff,I
1 ), if α2 > αindiff

2

(28)

Proof. The reaction curve is directly obtained by taking together Lemma 7 and Lemma 8.

The blue line in Figure 3 illustrates player 1’s reaction function α1(α2). For the diagrammatic exposition, we

assume that α∗
1 ≥ αindiff,I

1 . Along the segment AB, player 1 chooses α1 = αindiff,I
1 and receives the offer PS1

with certainty. Along the segment BC, player 1 chooses α1 = β − α2. Increasing degrees of opacity of player 2

will lead to a decrease in α1. In order to receive the offer PS1 with certainty, player 1 has to deviate from her

unrestricted opacity choice α1 = αindiff,I
1 . Along the segment DE, player 1 chooses α1 = αindiff,I

1 and receives

the offer PS1 only with 50% probability. The horizontal segments of the reaction curve are shifted downwards for

α∗
1 < αindiff,I

1 .

Player 2:

To derive the best reply correspondence of player 2, we have to distinguish between the cases α1 ≤ αindiff,I
1 and

α1 > αindiff,I
1 .

α1 ≤ αindiff,I
1 : It has already been established that for α1 ≤ αindiff,I

1 player 2, as well as any of her dele-

gates, choose between PS1 and PS2. Recall that we have assumed a sufficiently large β, i.e. β > αindiff,I
1 . This

way, player 2, as well as her delegate of the h-type, always proposes PS1 irrespective of the α2 level, as ch1 > ch2 for

all α2. The proposal of the l-type delegate, however, depends on α2. The delegate proposes PS2 if cl2 < ch1 , i.e.

7For β − α2 > min(α∗
1, α

indiff,I
1 ) the threshold is not binding. Player 1 receives PS1 with certainty, choosing her

maximum level of opacity min(α∗
1, α

indiff,I
1 ). A marginal shift of the threshold to the left will not affect player 1’s choice

of opacity.
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Figure 3: Reaction function α1(α2) of player 1 and best response correspondence of player 2 for the case

α∗
1 > αindiff,I

1

α2 > β − α1, and PS1 otherwise. Player 2 solves the following maximization problem to determine the optimal

choice of α2 for a given α1 ≤ αindiff,I
1 :

max
α2

EΠ2 =
1

2
· [2 ·B(gC,h

1 )− ch1 · gC,h
1 −ΠNC

1 ] +
1

2
· [2 ·B(ĝ1(α2) + ĝ2(α2))− cl1 · ĝ1(α2)− c2 · ĝ2(α2)−ΠNC

1 ] (29)

ĝ1 =

gC,h
1 , if α2 ≤ β − α1

0, if α2 > β − α1

ĝ2 =

0, if α2 ≤ β − α1

gC,l
2 (α2), if α2 > β − α1

The first expression in square brackets is player 2’s payoff if her delegate is of the h-type, who always proposes

PS1 with g1 = gC,h
1 and g2 = 0. The second term in square brackets is player 2’s payoff if her delegate is of

the l-type. The contribution levels to the public good – ĝ1(α2) and ĝ2(α2) – are functions of α2. As long as

α2 ≤ β − α1 (i.e. ch1 ≤ cl2), the l-type delegate proposes PS1 with ĝ1 = gC,h
1 and ĝ2 = 0. Otherwise, the l-type

delegate proposes PS2 with ĝ1 = 0 and ĝ2 = gC,l
2 .

Lemma 10. For α1 ≤ αindiff,I
1 , the best response of player 2 is set valued with α2 ∈ [0, β − α1], so that PS1 is

proposed.

Proof. The formal proof for Lemma 10 can be found in Appendix D.

For α1 ≤ αindiff,I
1 , player 2 prefers PS1 over PS2 at α2 = 0. For α2 > 0, player 2 never wants any of her

delegates whose marginal costs deviate from her own to propose PS2. Hence, she has to make sure that PS1 is

offered with certainty. As we assume a sufficiently large cost differential β, only the l-type is relevant, who will

propose PS1 as long as cl2 > ch1 . This is the case for α2 ≤ β − α1.

α1 > αindiff,I
1 : Player 2 as well as both of her delegates prefer PR over PS1. Recall that we have considered a

sufficiently large cost differential β, so that player 2 and her delegate of the h-type prefer PR over PS2 irrespective

of α2. The proposal of the l-type delegate depends on α2.

Lemma 11. For α1 > αindiff,I
1 , a delegate of the l-type chooses between PR and PS2. She is indifferent between

these contracts at α̃2(α1). The value α̃2(α1) is strictly increasing in α1.

Proof. The formal proof for Lemma 11 can be found in Appendix E.
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Having described the l-type’s trade-off between PS2 and PR for given levels of α1 and α2, we now look at

player 2’s opacity choice. Player 2 solves the following maximization problem to determine the optimal level α2

as a best response to a given α1 > αindiff,I
1 :

max
α2

EΠ2 =
1

2
· {1

2
· [2 ·B(gC,l

1 )− cl1 · gC,l
1 −ΠNC

1 ] +
1

2
·ΠNC

2 }

+
1

2
· I1(α1, α2) · {

1

2
· [2 ·B(gC,l

1 )− cl1 · gC,l
1 −ΠNC

1 ] +
1

2
·ΠNC

2 }+ 1

2
· I2(α1, α2) · [2 ·B(gC,l

2 (α2))− c2 · gC,l
2 (α2)−ΠNC

1 ]

(30)

I1(α1, α2) =

0, if α2 > α̃2

1, if α2 ≤ α̃2

I2(α1, α2) =

0, if α2 ≤ α̃2

1, if α2 > α̃2

The first summand describes player 2’s expected payoff if her delegate is of the h-type proposing PR with

certainty. The second summand is player 2’s expected payoff if her delegate is of the l-type proposing PR. This

is the case for α2 ≤ α̃2 and the indicator function I1 taking on the value 1. A delegate of the l-type proposes PS2

for α2 > α̃2, which is described in the third summand. Here, I2 takes on the value 1.

Lemma 12. For α1 > αindiff,I
1 , player 2’s optimal level of opacity α2 avoids her own contributions to the public

good. The best response of player 2 is set valued with α2 ∈ [0, α̃2(α1)].

Proof. The formal proof for Lemma 12 can be found in Appendix F.

At α2 = 0, player 2 prefers PR over PS2. For α2 > 0, player 2 wants to avoid any of her delegates, whose

marginal costs deviate from her own, proposing PS2. Again, we only have to consider the delegate of the l-type,

who chooses between PR and PS2 depending on α2. For α2 = α̃2(α1), the delegate is indifferent between these

two options. As long as α2 ≤ α̃2(α1), the l-type prefers PR.

Lemma 13. The best response correspondence to player 1’s opacity choice is described by α2 ∈ [0, β − α1] for

α1 ≤ αindiff,I
1 – both delegates propose PS1 – and α2 ∈ [0, α̃2(α1)] for α1 > αindiff,I

1 – both delegates propose

PR. α̃2(α1) is the maximum level of opacity making a delegate of the l-type indifferent between PR and PS2.

Proof. Taking Lemma 11 and Lemma 12 together, we obtain the optimal reply correspondence of player 2.

It is never optimal for player 2 to provide the public good in the game with bilateral opacity. Opacity α2 is

chosen in a way that none of her delegates is tempted to propose PS2.

In Figure 3, player 2’s best reply correspondence α2(α1) is illustrated by the red area. Within the range

α1 ∈ [0, αindiff,I
1 ], player 2 chooses α2 ≤ β − α1. The maximum degree of opacity, which can be found along the

segment FB, is decreasing in α1. For any α2 below this maximum value, i.e. α2 ≤ β−α1, c
h
1 ≤ cl2 is maintained.

Any delegate of player 2 proposes PS1 and negotiations succeed with certainty. The realized allocation only

depends on α1 and not on the α2 chosen. For α1 > αindiff,I
1 , player 2 wants both her delegates to propose PR.

Therefore, player 2 has to choose α2 ≤ α̃2(α1). The maximum level of opacity α̃2 – illustrated by the curved

segment BG – is increasing in α1. With α1 given, any α2 ≤ α̃2(α1) will lead to the same allocation. Negotiations

fail if the delegate of player 1 is of the h-type.

Proposition 2. In the case of bilateral delegation, negotiations succeed with certainty. Two sets of subgame-

perfect equilibria arise: (α1, α2) = (min(α∗
1, α

indiff,I
1 ), α2) in the range α2 ∈ [0, β − min(α∗

1, α
indiff,I
1 )] and

(α1, α2) = (β − α2, α2) in the range α2 ∈ [β −min(α∗
1, α

indiff,I
1 ), αindiff

2 ].

Proof. The equilibrium combinations of α1 and α2 in pure strategies are the intersections of the best response

function α1(α2) of player 1 with the optimal reply correspondence of player 2.

In any subgame-perfect equilibrium in pure strategies, negotiations succeed with certainty. Along the segment

BC, both players’ opacity choices are substitutes. In these equilibria, a higher level of α2 corresponds to a lower
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level of α1. Any proposing delegate offers contract PS1, which will be accepted by any responding delegate. Also

in the second set of equilibria along the segment AB, PS1 is proposed and accepted with certainty.8

We turn to the welfare evaluation of our findings. Aggregate welfare according to Kaldor-Hicks is maximized,

if the public good is provided at marginal costs c1 and the quantity is chosen according to the Samuelson Rule.

As player 1 is the only contributor to the public good in any subgame-perfect equilibrium, welfare is increasing,

if α1 is decreasing. As player 1 chooses α1 > 0, the efficient provision of the public good is never achieved.

Proposition 3. The set of subgame-perfect equilibria with bilateral delegation contains the equilibrium with uni-

lateral delegation. According to the Kaldor-Hicks welfare measure, each equilibrium with bilateral opacity is at

least as good as the unilateral equilibrium.

Proof. The unique equilibrium in the game of unilateral delegation is α1 = min(α∗
1, α

indiff
1 ). Player 1’s unre-

stricted opacity choice α∗
1 = argmax

α1

[ΠNC
1 + α1 · gC,h

1 (α1)] is the same in the unilateral and the bilateral game.

In the unilateral game the level of opacity making player 2 indifferent between the safe and the risky pro-

posal is denoted by αindiff
1 . This value is identical to αindiff,I

1 in the bilateral game since the critical value

αindiff,I
1 is independent of player 2’s choice of opacity α2. The unilateral equilibrium α1 = min(α∗

1, α
indiff
1 )

therefore corresponds to the bilateral equilibrium (α1, α2) = (min(α∗
1, α

indiff
1 ), 0). From both an efficiency and

a distribution perspective, the whole set of bilateral equilibria (α1, α2) = (min(α∗
1, α

indiff,I
1 , α2) in the range

α2 ∈ [0, β −min(α∗
1, α

indiff,I
1 )] generates the same outcome as the unilateral game.

For α2 ∈ [β − min(α∗
1, α

indiff,I
1 ), αindiff,I

2 ], α1 and α2 are strategic substitutes. Here, aggregate welfare is in-

creasing in α2:
dW

dα2
= [2 ·B(gC,h

1 ) · ∂g
C,h
1

∂α1
− gC,h

1 − ch1 · ∂g
C,h
1

∂α1
] · dα1

dα2
= −gC,h

1 · dα1

dα2
> 0 (31)

Hence, the equilibria along BC dominate all equilibria on AB, where the outcome is the same as in the case

of unilateral delegation.

Comparing our results to Konrad and Thum (2020), the following differences emerge. In Konrad and Thum

(2020) a positive rent is generated, if the buyer of an asset values it higher than the seller. The rent is determined

by both players’ valuation and therefore fixed. The rent is split among both players by negotiating the asset’s price.

In such a framework, inefficiencies only arise if negotiations fail. Opacity is used as a strategic tool to achieve

a favorable redistribution of the rent. In our framework, the provision level of the public good is determined

endogenously. The motives for delegation are identical to Konrad and Thum (2020). Yet, achieving a favorable

redistribution of the surplus comes at the cost of social welfare. In any subgame-perfect-equilibrium, the proposed

contract aims at the h-type delegate of player 1, who values the public good less than her principal. To avoid

negotiation failure, proposals have to be formulated cautiously. A suboptimally low level of public good provision

is proposed by any delegate of player 2. As in Konrad and Thum (2020), we find a set of equilibria where both

players’ opacity choices are strategic substitutes. The more opaque the delegate of player 2, the less opaque is

the delegate chosen as a best response by player 1 in the equilibrium. This is not only relevant regarding the

distribution of the generated surplus, but also from a welfare perspective. As the public good is provided by

player 1 in any equilibrium, lower degrees of α1 lead to an increase in public good provision and thus in aggregate

welfare. Yet, the welfare optimal allocation cannot be attained in an equilibrium of bilateral opacity as this would

require α1 = 0.

We find negotiations to succeed with certainty in any equilibrium; in Konrad and Thum (2020), there exists a

set of equilibria where negotiations fail with a positive probability. In these equilibria, the players’ opacity choices

become strategic complements. This is the case because different types of proposing delegates follow different

strategies: a proposing delegate with a high valuation for the asset pursues the risky strategy, i.e. proposes a

high price, while the delegate with a low valuation pursues the safe strategy, i.e. proposes a low price. These

types of equilibria can be ruled out in our model framework. There is no risk of failed negotiations. As it is never

attractive for player 1 to choose α1 > αindiff,I
1 , a delegate of player 2 will only choose among safe contracts with

player 1 or player 2 being the contributor. The risk of failed negotiations due to an offer PR can be ruled out.

8The results of the bilateral game hold for all cost structures. For small cost differences, min(α∗
1, α

indiff,I
1 ) ≤ β, there is

only one set of equilibria with α1 and α2 being substitutes. Considering the case c1 > c2, there is no delegation on behalf
of player 1. Player 2 may choose α2 ∈ [0, β], yet delegation neither impacts the distribution nor the allocation of the game.
The formal proofs for the different cost structures are available upon request.
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6 Conclusion

This paper combines the idea of equilibrium opacity through delegation, introduced by Konrad and Thum (2020),

with the private provision of a public good. If both, offer-maker and responder can delegate their decisions to

agents, whose actual decision rules are opaque, the responder will benefit from opacity. Considering the private

provision of a public good in contrast to a fixed rent, we find two main differences to Konrad and Thum (2020).

In our model framework negotiations succeed with certainty. With the bargaining surplus being endogenous,

inefficiencies do not only arise from negotiation failure but also from an inefficient provision level. We show that

the first type of inefficiency vanishes with bilateral delegation; an agreement will always be reached. However,

the public good provision falls short of the socially desirable level. Compared to unilateral delegation, bilateral

delegation is never worse from a welfare perspective.

With the political costs being private information to the delegates, contract offers have to be formulated

less aggressively. This way, the responding player can achieve a markup on the actual per unit cost of public

good provision similar to a monopolist. This paper abstracts from the role experience plays in the bargaining

process. By appointing a political newcomer as a delegate, the principal may face a trade-off between opacity and

experience in negotiations.

The model can be extended in various dimensions. It may be interesting to see how players choose opacity if

it is be randomly assigned, which side proposes and which side responds, after opacity has been chosen. Another

interesting point to consider is how the opacity choice is affected by several rounds of bargaining. This entails the

possibility of the delegate’s type being revealed over time.
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A Proof of Lemma 4

Lemma 4. (a) For marginal costs cm2 ≥ c1 + αindiff,I
1 , PS2 can never be an optimal contract. A delegate of type

m chooses either PS1 or PR; therefore, player 1 is always contributing to the public good. For α1 ≤ αindiff,I
1 ,

the safe contract PS1 will be proposed, otherwise the risky contract PR.

(b) For c1 < cm2 < c1 + αindiff,I
1 , the delegate’s best offers are: PS1 for α1 ≤ αindiff,IIa

1 , PS2 for αindiff,IIa
1 <

α1 ≤ αindiff,IIb
1 and PR for α1 > αindiff,IIb

1 . The critical value αindiff,IIa
1 is implicitly given by ΠS2

del2,m(gC,m
2 ) =

ΠS1
del2,m(gC,h

1 (αindiff,IIa
1 )), and αindiff,IIb

1 is given by ΠS2
del2,m(gC,m

2 ) = EΠR
del2,m(gC,l

1 (αindiff,IIb
1 )).

(c) For cm2 < c1, the delegate’s best offers are: PS2 for α1 ≤ αindiff,IIb
1 and PR for α1 > αindiff,IIb

1

Proof. (a) It has been established that for any α1 ≤ αindiff,I
1 , a delegate of type m will prefer the safe contract

PS1 over the risky contract PR and vice versa for α1 > αindiff,I
1 . Now we rule out that the delegate would

like to propose a contract PS2 with player 2 contributing to the public good. Suppose for the moment that

cm2 = c1 + αindiff,I
1 , i.e. the delegate’s marginal cost cm2 , is at the lower end of the restricted domain. For

α1 = αindiff,I
1 , it will hold, that:

ΠS2
del2,m(gC,m

2 ) = ΠS1
del2,m(gC,h

1 (αindiff,I
1 )) = EΠR

del2,m(gC,l
1 (αindiff,I

1 )). (32)

Hence, for the special case cm2 = c1+αindiff,I
1 , all three options – PS1, PS2 and PR – yield the same expected

payoff for the delegate. As
∂ΠS2

del2,m(g
C,m
2 )

∂α1
= 0,

∂ΠS1
del2,m(g

C,h
1 )

∂α1
< 0 and

∂EΠR
del2,m(g

C,l
1 )

∂α1
> 0, the safe strategy PS1

is strictly preferred for any α1 < αindiff,I
1 . And the risky strategy PR is preferred for any α1 > αindiff,I

1 . PS1

and PR being preferred over PS2 holds a fortiori for cm2 > c1 + αindiff,I
1 .

(b) Due to cm2 < c1+αindiff,I
1 , player 2’s delegate prefers PS2 at α1 = αindiff,I

1 : ΠS2
del2,m(gC,m

2 ) > ΠS1
del2,m(gC,h

1 ) =

EΠR
del2,m(gC,l

1 ). At α1 = 0, both types of delegates have lower costs than player 2’s delegate (c1 < cm2 ), who

therefore prefers PS1 [ΠS2
del2,m(gC,m

2 ) < ΠS1
del2,m(gC,h

1 )]. Due to
∂ΠS1

del2,m(g
C,h
1 )

∂α1
< 0, there must be a unique critical

value αindiff,IIa
1 so that we obtain α1 ≷ αindiff,IIa

1 ⇔ ΠS2
del2,m(gC,m

2 ) ≷ ΠS1
del2,m(gC,h

1 ). The expected profit

from the risky strategy increases in α1 and goes to infinity for α1 → c1, as the marginal costs of the low-type

delegate of player 1 go to zero. Hence, there must be a unique critical value αindiff,IIb
1 so that we obtain

α1 ≷ αindiff,IIb
1 ⇔ EΠR

del2,m(gC,l
1 (α1) ≷ ΠS2

del2,m(gC,m
2 ).

(c) The proof is the same as for (b). The only difference is that PS2 can never be optimal as even for α1 = 0,

player 2’s delegate has lower cost than the high-cost delegate of player 1.

B Proof of Lemma 7

Lemma 7. There is a discontinuity in the expected payoff function of player 1 at the threshold α1 = β − α2. A

local maximum exists both to the left and the right of this threshold. Player 1’s expected payoff EΠ1 is maximized

at min(α∗
1, α

indiff,I
1 , β − α2) for I(α1, α2) = 1 and at max(min(α∗

1, α
indiff,I
1 ), β − α2) for I(α1, α2) = 0.

Proof. We have to consider the existence of two local maxima, one for I(α1, α2) = 1 and one for I(α1, α2) = 0.

These two maxima are determined separately.

1. I(α1, α2) = 1

The maximization problem (27) can be reduced to:

max
α1

EΠ1(I = 1) = ΠNC
1 + α1 · gC,h

1 (c1 + α1) (33)

s.t. α1 ≤ αindiff,I
1

α1 ≤ β − α2

FOC:
∂EΠ1(I = 1)

∂α1
= α1

∂gC,h
1

∂α1
+ gC,h

1 = 0 (34)
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The first-order condition holds with equality at α1 = α∗
1. To receive the safe offer with certainty, player

1 has to ensure that α1 ≤ αindiff,I
1 (otherwise the h-type delegate would propose PR) and α1 ≤ β − α2

(otherwise the l-type would propose PS2). The local maximum is at min(α∗
1, α

indiff,I
1 , β − α2).

2. I(α1, α2) = 0

The maximization problem (27) can be reduced to:

max
α1

EΠ1(I = 0) = ΠNC
1 +

1

2
· α1 · gC,h

1 (c1 + α1) (35)

s.t. α1 ≤ αindiff,I
1

FOC:
∂EΠ1(I = 0)

∂α1
=

1

2
· (α1

∂gC,h
1

∂α1
+ gC,h

1 ) = 0 (36)

The first-order condition holds at the same value α1 = α∗
1 as for the case I(α1, α2) = 1. Whether this value

is feasible depends on the restriction α1 ≤ αindiff,I
1 . Two subcases have to be considered:

(a) min(α∗
1, α

indiff,I
1 ) > β − α2

The local maximum of EΠ1(I = 0) is at α1 = min(α∗
1, α

indiff,I
1 ).

(b) min(α∗
1, α

indiff,I
1 ) ≤ β − α2

The local maximum of EΠ1(I = 0) is at α1 = β − α2.

For I(α1, α2) = 0 the local maximum is described by max(min(α∗
1, α

indiff,I
1 ), β − α2).

By comparing these two local maxima and choosing the one yielding the higher expected payoff, the best

response of player 1 for a given α2 can be determined.

C Proof of Lemma 8

Lemma 8. There is a critical value αindiff
2 making player 1 indifferent between receiving the safe offer PS1 from

both types of delegates or only from the l-type.

Proof. We have to consider the following two cases:

1. min(α∗
1, α

indiff,I
1 ) < β − α2:

Player 1 can realize her unrestricted opacity choicemin(αindiff,I
1 , α∗

1). She receives the offer P
S1 irrespective

of the proposing delegate’s type. The local maximum of EΠ1(I = 1) unambiguously dominates the local

maximum in EΠ1(I = 0).

2. min(α∗
1, α

indiff,I
1 ) > β − α2:

Player 1 cannot realize her preferred unrestricted degree of opacity α1 = min(α∗
1, α

indiff,I
1 . The restric-

tion α1 = β − α2 is binding for EΠ1(I = 1). The function EΠ1(I = 0) is maximized by choosing

min(α∗
1, α

indiff,I
1 ). For min(α∗

1, α
indiff,I
1 ) > β − α2, player 1’s opacity selection between the two possible

local maxima is ambiguous:

ΠNC + (β − α2) · gC,h
1 (β − α2) ⋛ ΠNC +

1

2
·min(α∗

1, α
indiff,I
1 ) · gC,h

1 (min(α∗
1, α

indiff,I
1 )) (37)

The right-hand side (RHS) is unaffected by player 2’s choice of opacity:

∂RHS

∂α2
= 0 (38)

Since α1 = β − α2 < α∗
1, the left-hand side (LHS) is decreasing in α2:

∂LHS

∂α2
= −gC,h

1 − ∂gC,h
1

∂c1
< 0. (39)
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In case 1, player 1’s expected payoff reaches its maximum value. Moving to case 2, as β − α2 becomes

marginally lower than min(α∗
1, α

indiff,I
1 ), player 1 will at first prefer the lower level of opacity over the risk of

failed negotiations. Furthermore, limα2→β = ΠNC
1 , i.e. player 1’s gains from delegation disappear with α2. The

higher level of opacity min(α∗
1, α

indiff,I
1 ) leading to the offer PS1 with probability 50% will be preferred. We can

conclude that both (expected) payoff functions will cross once for β − α2 ∈ [0,min(α∗
1, α

indiff,I
1 ]. Hence, there is

the value αindiff
2 , making player 1 indifferent between choosing α1 = β − α2 and α1 = min(α∗

1, α
indiff,I
1 ). In the

former case, the safe offer PS1 is proposed with certainty. In the latter case, player 1 can realize her unrestricted

opacity choice receiving the offer PS1 with probability 50%.

D Proof of Lemma 10

Lemma 10. For α1 ≤ αindiff,I
1 , the best response of player 2 is set valued with α2 ∈ [0, β − α1], so that PS1 is

proposed.

Proof. The maximization problem (29) has to be evaluated for both cases α2 ≤ β − α2 and α2 > β − α2:

1. α2 ≤ β − α1:

∂EΠ2

∂α2
= 0 (40)

The delegate of the l-type proposes PS1. Changes in α2 do not affect player 2’s expected payoff, since both

delegates propose PS1 with ĝ2 = 0. Player 1’s contribution level ĝ1 = gC,h
1 is determined by her opacity

choice α1.

2. α2 > β − α1:

∂EΠ2

∂α2
=

1

2
[2 ·B

′
(gC,l

2 ) · ∂g
C,l
2

∂α2
− c2 ·

∂gC,l
2

∂α2
] < 0 (41)

with 2 ·B
′
(gC,l

2 ) < c2 and
∂gC,l

2

∂α2
> 0

The delegate of the l-type proposes PS2. A marginal increase in α2 lowers player 2’s expected payoff

because the delegate of the l-type proposes an excessive amount of the public good given player 2’s actual

marginal cost c2.

The h-type delegate will propose PS1 irrespective of α2. Therefore, we only have to show that player 2 prefers

her l-type delegate to propose PS1 over PS2 for any α2 > 0. We do so by comparing the respective payoffs with

the hypothetical payoff from PS2 under self-representation:

2·B(gC,h
1 )−ch1 ·gC,h

1 −ΠNC
1 > 2·B(gC2 )−c2 ·gC2 −ΠNC

1 > 2·B(gC,l
2 (α2 > 0))−cl2(α2 > 0)·gC,l

2 (α2 > 0)−ΠNC
1 (42)

We have established in (41) that player 2’s payoff from her l-type delegate proposing PS2 is strictly decreasing

in α2. Therefore, player 2’s payoff from the proposal PS2 with α2 > 0 is lower than from the contract PS2 under

self-representation (α2 = 0). This is the second inequality in (42). For α1 ≤ αindiff,I
1 , player 2 prefers the offer

PS1 over PS2 at α2 = 0. This is the first inequality in (42).

Player 2 maximizes her (expected) payoff at α1 ≤ αindiff,I
1 if both her delegates propose PS1. This is the

case for α2 ≤ β − α1.

We can conclude that the best response correspondence of player 2 for a given α1 ≤ αindiff,I
1 is α2 ∈ [0, β−α1].

For any α2 ≤ β−α1, the expected payoff EΠ2 is the same for every opacity choice of player 2. Both delegates or

player 2 propose the safe offer PS1, where player 1 contributes.

E Proof of Lemma 11

Lemma 11. For α1 > αindiff,I
1 , a delegate of the l-type chooses between PR and PS2. She is indifferent between

these contracts at α̃2(α1). The value α̃2(α1) is strictly increasing in α1.
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Proof. For every α1 > αindiff,I
1 , there is a value α̃2(α1), so that the l-type delegate is indifferent between PR and

PS2:

α̃2 ⇔ 1

2
· [2 ·B(gC,l

1 (α1))− cl1(α1) · gC,l
1 (α1)−ΠNC

1 ] +
1

2
·ΠNC

2 = 2 ·B(gC,l
2 (α̃2)− cl2(α̃2) · gC,l

2 (α̃2)−ΠNC
1 (43)

Due to the assumption of a sufficiently large cost differential, player 2 proposes PR under self-representation

if α1 > αindiff,I
1 . For values α2 close to zero, an l-type delegate also prefers PR over PS2. The right-hand side of

(43) is strictly increasing in α2 while the left-hand side does not react to changes in α2. If for a given α1 player 2

chooses opacity in a way that cl1 = cl2, a delegate of the l-type clearly prefers PS2 over PR. The l-type’s payoffs

are identical in the case of successful negotiations, but an offer PR fails with probability 50%. The existence of a

unique crossing point α̃2 can be concluded. By implicitly differentiating (43) it can be shown that α̃2 is increasing

in α1:
dα̃2

dα1
=

1
2
· gC,l

1

gC,l
2

> 0 (44)

F Proof of Lemma 12

Lemma 12. For α1 > αindiff,I
1 , player 2’s optimal level of opacity α2 avoids her own contributions to the public

good. The best response of player 2 is set valued with α2 ∈ [0, α̃2(α1)].

Proof. Player 2’s maximization problem (30) has to be evaluated for α2 ≤ α̃2 and α2 > α̃2:

1. α2 ≤ α̃2:
∂EΠ2

∂α2
= 0 (45)

If the delegate of the l-type proposes PR, a marginal change in α2 will not affect the expected payoff of

player 2.

2. α2 > α̃2:
∂EΠ2

∂α2
=

1

2
· [2 ·B

′
(gC,l

2 ) · ∂g
C,l
2

∂α2
− c2 ·

∂gC,l
2

∂α2
] < 0 (46)

If the delegate of the l-type proposes PS2, a marginal increase in α2 will lower the expected payoff EΠ2.

The h-type delegate proposes PR irrespective of player 2’s opacity choice α2. Therefore, we have to show

that player 2 prefers her l-type delegate to propose PR over PS2 for any α2 > 0. We do so by comparing the

respective payoffs with the hypothetical payoff from PS2 under self-representation:

2 ·B(gC,l
2 (α2 > 0))− cl2(α2 > 0) · gC,l

2 (α2 > 0)−ΠNC
1 < 2 ·B(gC2 )− c2 · gC2 −ΠNC

1

<
1

2
· [2 ·B(gC,l

1 (α1))− cl1(α1) · gC,l
1 (α1)−ΠNC

1 ] +
1

2
·ΠNC

2

(47)

We know from (46), that player 2’s payoff if her l-type delegate proposes PS2 is decreasing in α2 if her

delegate of the l-type proposes PS2. Therefore, player 2’s payoff from proposal PS2 with α2 > 0 is lower than

from the hypothetical contract PS2 under self-representation (α2 = 0). This is the first inequality in (47). For

α1 > αindiff,I
1 , player 2 prefers the offer PR over PS2 at α2 = 0, which can be seen from the second inequality in

(47).

Player 2’s payoff is maximized if both her delegates propose PR. This can be guaranteed if she chooses

α2 ≤ α̃2(α1) for a given α1 > αindiff,I
1 . The best response is set valued with α2 ∈ [0, α̃2(α1)]. The maximum

level of opacity α̃2 by player 2 is increasing in α1:
dα̃2
dα1

=
1
2
·gC,l

1

g
C,l
2

> 0.
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