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1 Introduction

Economies of density are a particular category of economies of scale. These economies are
present in many industries in which production takes place in geographical space, or when
transportation plays a substantial role. They are characterized by the fact that unit costs
decrease when the density of clients increases, keeping the overall scale of operations and input
levels fixed. Economies of density may explain why some markets have a tendency towards
monopolization, and may carry important consequences in terms of efficient regulation. This
notion is a useful concept, not only in Industrial Organization, but also in Urban Economics and
Regional Science, because it lies at the heart of agglomeration economies as a basic principle.

In the present paper, we study economies of density in a sector with a very simple and transparent
technology: the Home Care Services for the elderly. In this industry, in essence, caregivers
drive to visit patients scattered in a district and deliver various care services at the patient’s
home. To study the technological properties of these services, we use a unique data set, made
available to us by a large nonprofit network of Home Care Services located in France. The data,
with a standard panel structure, records the hours of service and the exact number of miles
traveled by each employee, every month, during several years and in many different districts.1

With the help of these data we study the technical relationship linking miles traveled to hours
of service at the patient’s home — a real transportation cost function — and estimate the
intensity of economies of density. It is rarely possible to estimate a cost function with the
help of completely disaggregated data, allowing separate observations of each employee. As
a preliminary step, we use standard regression and panel-data econometric tools, applied to
log-linear models, to show the existence of economies of density. Our regression work can be
interpreted as a statistical test of organizational efficiency, based on the Beardwood-Halton-
Hammersley Theorem (see Beardwood et al. (1959)).2 According to this view, the data does
not exhibit significant inefficiencies in the network’s transportation expenditures.

We then go further and estimate non-linear (quadratic-in-logs) models with a finite set of latent
types, or latent groups: a finite-mixture model, to capture the unobserved heterogeneity of the
network’s employees. These models are estimated by the Maximum Likelihood method, using
a sequential EM algorithm to produce accurate preliminary estimates. Results show the robust
presence of economies of density, taking the form of U-shaped unit cost curves. In other words,
the ratio of miles traveled to hours of service at the patient’s home substantially declines with the
latter hours of service on a sizeable interval of hours. These average cost curves are themselves
the weighted average of curves estimated for each latent type of employee taken separately. We
show that some of these type-contingent curves, in turn, exhibit economies of density, albeit
with various degrees of intensity. The economies of density are mainly generated by district

1Distance traveled is recorded because each employee’s transportation cost is reimbursed by the organization.
2The Beardwood-Halton-Hammersley 1959 theorem is a well-known result in combinatorial optimization. The

theorem sheds light on the Traveling Salesman Problem. See our discussion below.
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effects, that we interpret as team synergies operating at the district (i.e., local branch) level.3

The analysis of latent types shows that some types only are responsible for the economies of
density, and that these types are concentrated in rural districts.

Finally, we estimate several variants of our model with a number of latent types varying from 1 to
9. Unobserved groups are said to be well-identified, or equivalently, individuals are well-classified,
if each observation belongs to a given group with a sufficiently high posterior probability. If
this is generally the case, the quality of classification generated by the model is deemed good.
We discuss the choice of the appropriate number of latent types, using traditional information
criteria (such as Akaike and Bayesian Information Criteria, i.e., AIC and BIC) combined with
entropy indices, to assess the quality of classification produced by the EM and ML estimates.
We conclude that, even if 6 or 8 types are optimal according to BIC or AIC, a model with two
types only should be selected, for two types is the best compromise if we value well-identified
groups.

Our contribution is twofold: the estimation results themselves, to the extent that they entail
consequences for regulation policy, and the way these results are established by means of a
finite-mixture model. The consequences for public policies and regulation are of course related
to the structure of density economies that we uncover. The latter economies, possibly combined
with the existence of economies of scope, could justify a shift from the current, relatively free
competition regime4 to a regime of local regulated monopolies, with a form of franchise bidding,
as is often the case, for instance, in the garbage collection services. Given that, in France, the
clients of home care services are heavily subsidized, the government has a sizeable stake in a
regulatory reform. Indeed, we show that, using our estimated elasticities, the French government
could save around a hundred million euros every year.

The methodological originality of our approach is to use a finite-mixture approach with panel
data, collected at the level of the individual employee, to analyze the role played by the unob-
served heterogeneity of workers and local situations in the estimation of a cost or production
function. The statistical model, which is a form of automatic classification method, goes be-
yond what ordinary methods can achieve by showing that economies of density, arising in less
densely populated, rural and peripheral areas, are in fact generated by a specific fraction of the
employees only.

Economies of density have been studied in the literature. A pioneering paper, devoted to Amer-
ican airline companies, is due to Caves et al. (1984); see also Braeutigam et al. (1984). These
economies are present in many industries, in particular in postal services, parcel-delivery and
garbage-collection services. This notion is crucial to understand the growth of online e-commerce
companies like Amazon, but also firms like UPS and Fedex. On economies of density at Amazon,

3All other things equal, an isolated employee’s travelled distance is proportional to her hours of service at the
patient’s home.

4There exists some regulatory barriers to entry and some licensing rules, though.
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see Houde et al. (2017). On returns to scale in postal services, see, e.g., Cazals et al. (2001)).
On garbage collection, see Dubin and Navarro (1988). Economies of density are of course also
present in transportation firms: on airlines, see Brueckner and Spiller (1994); on railroad freight
transportation, see Bitzan and Keeler (2007); on container shipping, see Xu and Itoh (2018).
Economies of density in international transportation may have a strong influence: the agglomer-
ation process in a given country can be influenced by the geography of another country through
the channel of trade (more precisely the development and location of ports); see Behrens et al.
(2006); Mori and Nishikimi (2002). Economies of density are also present in network industries:
on electricity distribution, see Roberts (1986); on local telephone networks, see, e.g., Guldmann
(1990); on the U.S. water utility industry, see Torres and Morrison-Paul (2006). We find these
economies in various personal service industries, see, e.g., Morikawa (2011); in chain stores like
Wal-Mart, see Holmes (2011); in the retail banking sector, see, Aguirregabiria et al. (2016), and
also in the agricultural sector, see Holmes et Lee (2012).

More generally, economies of density are related to the important theme of agglomeration
economies in Regional and Urban Economics (cf. Combes et Gobillon (2015), Rosenthal et
Strange (2020)). The present article shows a pure case of density economies, that is, the direct
result of the interaction of a production technology and geographical space, in the presence
of random shocks, without any need for the presence of externalities (on this problematic, see
Ciccone et Hall (1996)).

The present article can be viewed as a contribution to the study of teams in firms, since economies
of density are ultimately generated by a better organization, coordination and team work.5 The
routing and scheduling of the caregivers and nurses’ tours constitute a complicated variant of
the Traveling Salesman Problem, i.e., the problem of finding the shortest path joining a given
number of points on a map. This is a classic and difficult problem in Combinatorial Optimization
with direct applications in Home Care and Home Health Care industries.6 The recent years have
witnessed the development of an important literature on the so-called Home Care Routing and
Scheduling Problem in applied Operations Research and Computer Science. This line of research
proposes different algorithms to improve the allocation of tasks and the daily tours of nurses
and caregivers. For a presentation and further references, see the surveys of Fikar and Hirsch
(2017), Cissé et al. (2017).

There exists a growing empirical literature on Home Care Services in Health Economics. The
recent literature has addressed many questions, but to the best of our knowledge, did not study
the problem posed here.7

5See for instance, among other contributions: on incentives in teams, Bandiera et al. (2013); on the team
work of nurses, Bartel et al. (2014); on emergency departments and moral hazard, Chan (2016); on the effect of
team bonuses, Friebel et al. (2017); on team-specific human capital (among doctors), Chen (2021); on social skills
and teams, Weidman and Deming (2021); on team-specific capital in innovation processes, Jaravel et al. (2018).

6On the Traveling Salesman Problem, and the Beardwood-Halton-Hammersley Theorem, see Applegate et al.
(2006). The asymptotic behavior of the length of an optimal tour, joining a set of randomly selected points in a
given space is the topic of the Beardwood, Halton and Hammersley Theorem.

7A recent article by David and Kim (2018), close to ours insofar as it uses personnel data, studies the
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In the following, Section 2 presents the intuition for the existence of economies of density in the
home care services. Section 3 presents the results obtained with log-linear models, using stan-
dard regressions and panel data econometrics. Section 4 presents the model with unobserved
heterogeneity and latent groups, discusses ML estimation results and derives the U-shaped av-
erage cost curves. Section 5 presents results obtained about the prior and posterior probabilities
of latent types and discusses the optimal number of latent groups. Section 6 gathers conclud-
ing remarks. A series of appendices provide additional material, estimation results and some
additional robustness tests.

2 Economies of Density in the Home Care Services Industry

The technology of home care services is extremely simple. The territory is divided into districts.
In each district, there is a team of employees, the caregivers. Employees travel everyday to visit
the homes of elderly or disabled persons who need help. The caregivers, mostly women, typically
help the patients to accomplish various everyday life tasks: they serve meals, assist ablutions,
etc. They spend some time at a patient’s home and then drive to visit another patient.

2.1 The Caregivers’ Tours

In each district, a manager is in charge of planning the tours of a team of employees. The
routing and scheduling is frequently revised to adapt to random shocks: employees on sick
leave, resignations, temporary absence of patients, changes in the list and addresses of clients,
etc.

The district manager tries to reach certain goals as much as possible, for instance: seeks to
always send the same caregiver to help a given client; send a person everyday at noon sharp,
etc. An optimal organization minimizes the distance traveled by employees, subject to various
constraints. To increase flexibility, the home care services have recourse to a combination of
full-time, part-time and temporary workers. It follows that the total miles traveled by each
employee randomly fluctuates. This variability is of course a blessing for the econometrician,
being a source of natural experiments that allows one to identify some key parameters of the
firm’s cost function.

Let us now provide some intuitions for the reasons why home care services must exhibit
economies of density. Consider a portion of geographical space that is served by a given service.

importance of care continuity, estimating the impact of nurse handoffs, due to unplanned employee absences, on
hospital readmissions. Forder et al. (2014) use a production function approach to explain the home-care patient’s
quality of life as a function of service intensity. A few papers have used structural microeconometric models to
discuss intergenerational family choices concerning formal and informal care (see, e.g., Stabile et al. (2006), Byrne
et al. (2009)). On this theme, see also Bonsang (2009). On the impact of subsidies on recourse to home health
care, see Orsini (2010).
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Figure 1. Distance Traveled Between Two Clients and Density of Clients

On Figure 1, the left-hand square is the map of some area. On this map, the points are elderly
clients. Distances — as the crow flies — between the clients’ homes can easily be measured. The
solid line segment between two points represents the distance between a client and the nearest
next patient. Suppose that we now double the density of clients on the territory. This can be
the result of changing for an area with a higher density of seniors, like moving from some small
town in the north of France to a region near Nice, on the Riviera, or it can be the result of a
merger of several competing home-care services on the same area. The right-hand square has
twice as many points to visit. As suggested by the figure, the mean distance between a point
and the nearest visit is smaller in the right-hand square. If we double the density of clients,
the distance between a client and the nearest stop in the tour is reduced by 30%. The area of
the disc centered on a client and including the nearest visit point with a given probability p

is divided by two when we double the number of clients. A precise mathematical statement of
this result is proposed in Appendix A. It is therefore natural to expect that the ratio of miles
traveled to the number of hours of service at the client’s home will be smaller in a more densely
populated area.

2.2 Kilometers Traveled per Hour of Service at the Patient’s Home

Some descriptive statistics will provide a preliminary test for the declining miles-per-hour-of-
service property.
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2.2.1 Data

The dataset has been constructed thanks to Groupe Avec’s personnel management software and
records. Groupe Avec operates in more than 20 counties8. The firm’s activity is very much scat-
tered over the French territory. Each county is divided into several districts.9 The density of
the senior population varies from one district to another, as well as the firm’s market share. In-
deed, in some locations, there are many competitors. In each district, the management software
precisely records the realized hours of service of each employee and the miles traveled between
visits. Miles are recorded because they are reimbursed to employees, based on a per-kilometer
rate determined by bargaining with trade unions at the national level, i.e., an agreement with
unions called a convention collective. The time spent driving or traveling between clients by
caregivers is also compensated at a wage rate close to the minimum wage.

Figure 2. Kilometers Traveled to Hours of Service at the Patient’s Home Ratio
as a Function of Hours of Service per Month

Note. To compute the statistics used for Fig. 2, we consider all caregivers and all the months during which
they are observed. We partition the monthly hours in bins with a width of 5 hours. In each bin, we compute
the mean L/H ratio, that is, the number of kilometers traveled per month divided by the number of hours of
service at the patient’s home in the same month.

We obtained these data on a monthly basis. This allowed us to build an unbalanced panel.
This panel covers 16 counties, divided into 53 branches, themselves including 98 districts, with
a total of 3688 caregivers. The first observed month is November 2015 and the last is June 2019.

8Counties are the French départements here. There are 100 such départements in France.
9In fact, each county is divided into several branches (i.e., called agences), each branch itself includes one or

several districts, i.e., local branches called secteurs.
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Each caregiver is observed during 30 months on average, and the total number of observations is
57 136. We can therefore easily compute the ratio of miles traveled to hours of service, hereafter
the L/H ratio, at the level of each individual employee.

Figure 2 plots the ratio of kilometers over hours of service, as a function of an employee’s
monthly hours of service at the patient’s home — i.e., not including travel time. Fig. 2 shows
the average ratio computed in bins with a 5-hour width. On Fig. 2, the L/H ratio declines
from 5 km to about 1.5 km.10 A ratio that is decreasing with the hours of service indicates the
possible presence of economies of density. If we tried to fit a smooth function on Fig. 2, we
would find a U-shaped curve. Economies of density exist when the L/H ratio is a decreasing
function of hours H. In general, the functional relationship between L/H and H may not be
convex and U-shaped. To show the presence of density economies, it would be sufficient to find
a decreasing portion of a curve, for instance, a decreasing relationship on a sufficiently wide and
relevant interval of hours.

Figure 3. Ratio of Kilometers Traveled per Hour of Service at the Patient’s
Home, as a Function of the Density of People Aged 80 and More, by County

Figure 3 gives a different view: namely, the relationship between the density of persons aged 80
and more in the county and the ratio of kilometers traveled per hour of service at the patient’s
home. Fig. 3 exhibits the same declining relationship, but this time, the density is a purely
demographic, exogenous factor. Some explanations about French geography will clarify the
picture. The Rhone county is dense and includes Lyon, which is a major city and urban cluster.
The Alpes-Maritimes includes the cities of Cannes and Nice, and the French Riviera: this county

10The firm’s personnel is a mixture of full-time and part-time employees (often half or 80% time). Fig. 2
presents averages but, actually, this ratio varies much more. Some employees provide a small number of hours
per month. There exists a number of these “small contracts”, used to fill gaps and to ensure a steady service.
The L/H ratio can reach 20 km per hour of service for these “small contract” employees.
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is not only dense, but also has a high density of retired people. These dense counties have small
L/H ratios.

The economies of density are visible, but in a very imperfect way. For instance, Meurthe-et-
Moselle, surrounding the city of Nancy, and Moselle, surrounding the city of Metz, are neigh-
boring counties in the east of France. The average densities of the senior populations are about
the same in the two counties, but the difference comes from the firm’s market share, which is
much higher in Moselle (around 33%) than in Meurthe-et-Moselle (around 1%). On Fig. 3, the
dotted curve is a suggested hyperbolic function that roughly fits the data.

3 Econometric Analysis of Transportation Costs in the Home
Care Services Industry: Log-Linear Models

3.1 Unbalanced Panel Structure. Notations

Our dataset is an unbalanced panel. The employees (i.e., caregivers) are indexed i with i ∈ I =
{1, . . . , n}. The time periods (months), are indexed by t with t ∈ T = {1, . . . , τ}. Each i is
observed during a subset of periods of T denoted Ti. Let τi denote the number of periods in Ti.

We also consider the districts. Districts are indexed by s in a set S. Districts form a partition
of the set I of employees, since employees do not move from one district to another in the data
set. Let As denote the subset of employees i in district s. Some districts are not observed in
all periods t (because some branches have been recently acquired by the firm). District s is
observed during a subset of periods of T denoted Ts. Let τs denote the number of periods in
Ts. The set of employees i belonging to district s at time t, denoted Ast can also vary with t,
for easily understandable reasons.11

Fundamentally, we observe a set of pairs (i, t) indexing employees i at time t. We can view each
district s as a set of pairs denoted Bs = {(i, t) | i ∈ Ast, t ∈ T}. The number of pairs (i, t) in
district s is denoted ns. Let also nst denote the number of employees of district s at time t.12

Conventionally, we set nst = 0 if s is not observed at time t. We will also need the average
number of employees in district s, that is, n̄s = τ−1

s

∑
t nst. Let finally N be the total number

of observations (i, t).

Now, for each (i, t) in some district, we observe some variables. Let Hit denote employee i’s
hours of service in the patients’ homes during month t. Let Lit denote the kilometers traveled
by i during her tours in month t. The corresponding lower-case letters denote the logarithms of
these variables. We define `it = ln(Lit); hit = ln(Hit).

11The subset As includes all the employees i observed at least once in district s. We have As =
⋃
t∈Ts

Ast.
12Formally, we have ns =

∑
i∈As

τi. We also have, ns =
∑

t∈Ts
nst.
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3.2 A Basic Model

We start the study with a very simple model. The assumption is that the L/H ratio is a declining
function of H. We assume,

L

H
= A

Hγ
, (1)

where A varies with district and employee characteristics, and where γ measures the importance
of density economies. We drop the indices (i, t) here because our hypothesis could be tested
at various aggregation levels (see below). When γ = 0, there are no economies of density and
kilometers are proportional to hours of service (that is, L/H = A). When γ = 1, economies
of density are very strong, because the traveled kilometers do not depend on hours (that is,
L = A): kilometers are like a fixed cost, a distance that must be traveled each day or each
month, come rain or shine. Economies of density exist as soon as γ > 0. Taking logarithms,
with α = ln(A), we obtain ` = α+ (1− γ)h.

This simple model is also suggested by the Beardwood-Halton-Hammersley Theorem (see Beard-
wood et al. (1959)). According to this mathematical result, under some assumptions, if the care-
givers’ tours are optimized to minimize their length, then we should find γ ' 1/2, or L ' A

√
H

(see Appendix A for technical details, and our discussion below). It so happens that we obtain
credible estimates of γ around 0.5 with the basic model.

3.3 Log-Linear Models

Using the notations introduced above, to analyze economies of density in the home care services,
we define the intertemporal average of employee i’s log-hours as follows,

h̄i =
∑
t∈Ti

hit
τi
, (2)

and with a similar definition for the average log-distance ¯̀
i. We also define the district average

of log-hours at date t as follows,
h̄st =

∑
i∈Ast

hit
nst

, (3)

with a similar definition for the average ¯̀
st. Then, we specify the following econometric model,

that we shall call the β1-β2-model,

`it = α+ β1hit + β2h̄st +Xitδ + vit. (4)

In the above equation, (α, β1, β2, δ) are parameters; vit is a random error term with a zero
mean; Xit is a vector of control variables; we also have s = s(i, t), that is, by definition, when
s = s(i, t), we have i ∈ Ast . This model expresses that economies of density may appear at
different levels: γ = 1 − β1 measures economies of density at the employee level, and we will
see below that γ̄ = 1− (β1 + β2) measures economies of density at the aggregate district level.
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The h̄st term captures specific effects of the district that are supposed to depend on the average
level of activity in district s. We can also add district dummies if needed in Xit.

If we take the average of equation (4), summing over all i ∈ Ast with weights 1/nst, we easily
obtain,

¯̀
st = α+ (β1 + β2)h̄st + X̄stδ + v̄st, (5)

with obvious notations for the mean of errors in district s at time t, denoted v̄st and the
corresponding mean of controls X̄st. Equation (5) shows that β1 + β2 measures the economies
of density at the level of district aggregates. It is clearly possible to exploit the variability of
h̄st to estimate the model ¯̀

st = α+ β3h̄st + X̄stδ+ v̄st. It will be possible to check that we have
β̂3 ' β̂1 + β̂2. Equation (5) can typically be estimated by a fixed effects, panel data method,
defining districts as groups. In fact this model will yield the most credible results, revealing a
positive and significant γ at the district level, that we interpret as a team synergy. Finally, if
we sum over all observations (i, t) in Bs with an equal weight, we define,

h̄s = 1
ns

∑
(i,t)∈Bs

hit, (6)

with a similar definition for the district average ¯̀
s, and we have ¯̀

s = α+β3h̄s + X̄sδ+ v̄s, using
obvious notations.

3.4 Log-linear Models: Estimation Results

We assume that random errors have the following structure: vit = ui + εit where εit is a random
variable independent of other variables and ui is an individual effect, i.e., a fixed effect. Then,
β1, β2 and β3 are identified and can be estimated by means of a within estimator. We will see
that the endogeneity biases are limited with our data. Table 1 gives descriptive statistics for the
main variables used in the present article.

3.4.1 Preliminary Results: OLS on Pooled Data and Fixed-Effect Estimates

To start the analysis, we estimated the simplest model, that is, `it = α+βhit+uit, called Model
A, by means of OLS on pooled data, with the possible addition of controls. The parameter of
interest is γ = 1− β, where β is the coefficient of log-hours. Results for the simplest model are
given in Appendix B. In this appendix, column (1) in Table 8 shows that, in essence, β̂ ' 1.
This means that returns to scale are constant at the individual employee level. Yet, it may be
that the endogeneity of hours causes an upward bias. Columns (2) and (3) of Table 8 show that
adding controls does not change the result, even if, as in column (3), we add the complete set of
district dummies. Economies of density may be hidden by caregiver population heterogeneity.
Adding some flexibility changes the picture a little bit (see Appendix B), but we do not find
economies of density at the level of individual employees. This preliminary test naturally leads
to the estimation of Model β1-β2, as specified by Equation (4).
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Table 1: Summary Statistics

Mean Standard Dev. Median Observations∗

Kilometers Traveled (Lit) 210.78 193.97 158.06 57,136

Hours per month (Hit) 110.04 45.78 115 57,136

Part-Time Dummy 0.225 0.418 0 12,903

80%-Time Dummy 0.487 0.500 0 27,810

Full-Time Dummy 0.287 0.452 0 16,423

Rural District Dummy 0.271 0.445 0 15,516

Urban District Dummy 0.360 0.480 0 20,580

Competition 15.84 15.08 15 57,136

Density of 80 years old+ 7.64 3.21 9.00 57,136

Speed 34.93 13.03 35.12 57,088

Note: The density of 80 years old and more is measured in inhabitants per square kilometer (in the county),
using French Census data, INSEE 2015. Competition is the number of competitors of the firm established in
the main town of district s or in its suburbs (in 2019). Speed is defined for each (i, t) as the ratio Lit/Θit, in
kilometers per hour, where Θit is the time spent driving between visits. Density is the logarithm of the density of
population aged 80 and more in the county (French Census, INSEE 2015). Rural and urban districts are defined
by the French National Statistics Institute, i.e., INSEE, based on Census data. (∗) The Observations column is
the number of available observations in the data set for the continuous or count variables; it is the number of
observations with a value equal to 1 for dummies.

Table 2 gives the estimation results of Model β1-β2, obtained by OLS and the fixed-effects,
within estimator. Estimated β1 coefficients are significant, precise and stable across different
specifications, around 1.45. In Table 2, column (1) has no controls and no district dummies;
column (2) shows that adding a full set of district dummies does not change the β1 coefficient
in a significant way; column (3) has controls but we still find β1 ' 1.40. In all columns, the
district effect, that is, the coefficient β2 of the average hours per month in the district, i.e., h̄st, is
significant and negative; column (4) shows that the district and individual effects, resp. β2 and
β1 are still significant with the within estimator, but the magnitudes are somewhat smaller.13

The most remarkable property of Table 2 is that column (2) gives β̂ols1 + β̂ols2 ' 1.451− 0.867 =
0.584, column (4) yields β̂fe1 + β̂fe2 = 1.109 − 0.522 = 0.587, in principle, the most reliable
estimate. This is not by chance, and we will see below that β̂3 ' β̂2+β̂1 when we directly estimate
the model at the level of district aggregates. We know that 1− β1 − β2 is supposed to measure
economies of density at the aggregate district level. If this is true, we have γ = 1−β1−β2 ' 0.42.

13In column (4), the constant is the average of individual fixed effects.



Table 2: Traveled Kilometers. Estimation of Model β1-β2

(1) (2) (3) (4)
OLS OLS OLS FE

hit 1.447∗∗∗ 1.451∗∗∗ 1.404∗∗∗ 1.109∗∗∗

(0.020) (0.020) (0.021) (0.018)

h̄st -0.795∗∗∗ -0.867∗∗∗ -0.767∗∗∗ -0.522∗∗∗

(0.032) (0.044) (0.042) (0.028)

Constant 1.828∗∗∗ 1.261∗∗∗ 2.457∗∗ 2.128∗∗∗

(0.168) (0.252) (0.696) (0.137)

Speed . . 0.031∗∗∗ .
(.) (.) (0.006) (.)

Density of 80+ years old . . -0.542∗∗∗ .
(.) (.) (0.161) (.)

Competition . . 0.080∗∗ .
(.) (.) (0.026) (.)

Time (month) . . 0.002∗ .
(.) (.) (0.001) (.)

District dummies NO YES YES NO

Observations 56,878 56,878 56,830 56,878
R2 0.268 0.488 0.553 .
R2 within 0.232
R2 between 0.258
R2 overall 0.267
F 2789.78∗∗∗ 383.67∗∗∗ 453.94∗∗∗ 1842.08∗∗∗

Note: Significance is indicated by: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Estimates of columns (1)-(3) have
been obtained by OLS on pooled data. The dependent variable is `it. Column (4) gives the within-employee,
fixed-effects estimator. Standard deviations are robust. The Time variable is the month, ranging from t = 1 to
t = 44, between November 2015 and June 2019. Variable Competition is the number of competitors of the firm
in district s. Speed is kilometers traveled in the month divided by time spent driving. Density is the log of the
density of population aged 80 and more in the county.

We conclude that our preliminary results show the presence of significant economies of density,
but these economies are generated at the district level, within a specific and relatively stable
team of workers who must coordinate efforts to achieve an efficient way of servicing a local group
of patients. It follows that the most likely explanation is that we observe a team-synergy effect:
when employees work more together in a given district, they are more efficient in the use of
transportation: they drive less per hour of service. This effect may be generated by the added
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flexibility of a team in which employees are working longer hours on average per day or per
month. The effect may also be generated in a larger team: we will study this effect later.14

3.4.2 Evaluation of potential transportation cost economies

These economies of density matter for public policy. Using the above results we can estimate the
transportation-cost economies that could be achieved by a shift to a franchise bidding regime
with local monopolies. More precisely, an increase in the density of clients leads to a substantial
drop in these costs. It follows that to exploit the economies of density, public authorities could in
principle divide the territory into regions, and auction the right to run a single, local monopoly
Home-Care service in each of these regions — i.e., create a franchise bidding regime. With the
help of the model, we can compute a simple simulation: If each local branch of the company
under study was granted the exclusive right to operate in its county, how much could the network
save in terms of caregivers’ transportation costs per hour of service at the patient’s home?

Assume that each local branch of the company becomes the unique provider on its territory, or
district, and inherits all of the patients: the market share of each branch becomes 100%. As a
consequence, the number of hours of service at the patient’s home will increase and the number
of kilometers per hour of service will drop. Table 3 shows the results of this simulation exercise.
The middle columns of Table 3 give the percentage decrease of transportation costs per hour of
service for various initial market shares, from 1/10th to 1/2, and for two values of γ, namely
0.5, that we believe is likely to be the right value, and 0.25, a conservative estimate. We see
that the decrease in costs is sizable, even for the small value of γ. For instance, with an initial
market share of 1/4th, the expected gains are between 30% and 50%.15

At this point, it is possible to estimate the transportation costs saved in the entire country, if
everywhere we changed for a system of exclusive territory concessions. The right-hand column
of Table 3 gives the estimated gains for France in an entire year, assuming that the initial market
share is everywhere equal to that indicated in the left-hand column. To obtain this result we
multiply a few figures. There are 768, 837 seniors receiving public subsidies for Home Care
services.16 A subsidized patient of Home Care services consumes 269.4 hours of service by year
on average.17 On average, these hours generate a traveled distance very close to 2 km per hour

14But the results may not necessarily be caused by the fact that employees work harder when they work
together more, in a given district. We remain agnostic about moral hazard in teams here: in fact, the team effect
could be purely technological.

15By assumption, the local branch of district s jumps from Ps, a value smaller than 1, to 1, that is 100%. The
hours then increase by xs%, so that the market share becomes 100%, that is, (1+xs)Ps = 1. Next, the kilometers
per hour of service in district s, denoted ks, is given by the estimated model, predicting that ks = As/H

γ
s , where

As is a constant characterizing district s and Hs is total hours in the district. The upward jump in hours causes
a change in the ratio of kilometers to hours that drops from ks to k′s. The relative variation of the ratio can then
be written (k′s/ks)− 1 = (1/(1 + xs))γ − 1 = P γs − 1. The square root of the market share minus one is thus the
percentage decrease in transportation costs per hour of service if γ = 1/2.

16More precisely, the APA, allocation personnalisée d’autonomie, in 2017, according to official figures of the
Ministry of Public Health, DREES.

17According to data provided by Groupe Avec, 2015-2019.
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of service. Finally, each of these kilometers costs 0.6746 euros on average, taking the form of
travel cost reimbursements and paid working time.18 Multiplying these figures we obtain an
estimate of the total transportation cost of Home Care services in France during a given year,
namely, in euros,

279, 289, 064 = 768, 837× (269.4)× 2× (0.6746).

A 50% reduction of this total amounts to 140 million euros par year.

Table 3: Estimation of the reduction in transportation costs, per year, in France,
after a move to exclusive territories

Initial % Drop in transportation costs Gains if γ = 0.5
market share if γ = 0.5 if γ = 0.25 (million euros)

1/10 −68% −43% 190,48

1/8 −64% −40% 179,28

1/6 −59% −36% 165,27

1/5 −55% −33% 154,07

1/4 −50% −29% 140,06

1/3 −42% −24% 117,65

1/2 −29% −16% 81,23

Note: If the initial market share of the provider is 1/n and if γ = 1/2, then, the percentage drop in transportation
costs per hour of service is

√
1/n− 1. More generally, this percentage drop can be expressed as (1/n)γ − 1, and

n can be interpreted as the number of competitors initially sharing the market.

To increase the density of clients on a given area, an obvious possibility is thus to end the division
of the market in this area. Some available data, and anecdotal evidence suggest that the current
French Home-Care Services market generates excess entry. Market concentration is very low in
many French counties (i.e., départements).19 This is indeed causing market instability: in the
recent years, the sector has witnessed an unprecedented wave of bankruptcies, and the recent
pandemic only made things worse. This happened a few years after governmental decisions
partially liberalized the sector and eased the entry of new for-profit companies in the market.
These factual elements show that economies of density, and more generally economies of scale,
are important to understand the Home Care industry, in spite of the fact that this activity does
not require large amounts of capital.

18Again according to Avec figures in the period 2015-2019.
19There exists a website listing all the licensed Home Care services in France, l’Annuaire sanitaire et social (cf.

sanitaire-social.com). This website shows 237 services in the county surrounding Bordeaux (i.e., the Gironde),
with 108 structures for Bordeaux itself (in 2020). Even if we take into account that some of these businesses are
not independent, because they are local branches of larger networks, and the possibility that some firms do not
serve the entire market, the degree of market fragmentation seems very high.
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3.4.3 Fixed Effects Estimation Using District-Level Aggregates

We now aggregate hours and kilometers at the district level. Even if the endogeneity of hours
does not seem to be a big concern, we estimated the log-linear model given by Equation (5) by
means of a fixed-effects estimator at the district level. We also directly controlled for district
effects with the help of district dummies. In addition, it is natural to estimate weighted regres-
sions in which observations (s, t) are weighted by the number of employees of district s at time
t, denoted nst. Another possibility is to use the average number of observations in district s,
denoted n̄s, as regression weights — we tried both ways.

The regressions presented in Table 4 use the variability of average log-hours per employee h̄st,
and kilometers per employee ¯̀

st, across the time dimension, in each district s. This variability is
large enough to yield precise estimates of β3. Economies of density appear at the district level;
they are again stable and significant, with 1 − β = γ ' 0.5. The estimates of Table 4, with
β3 < 1, also reveal the operation of team synergies at the district level. Districts with more
intense activity have significantly smaller L/H ratios.

In the first three columns of Table 4, the idea is to use weighted OLS and to control for district
effects, either by means of the set of district dummies or by means of the continuous variable
h̄s. On Table 4, in the regression of column (1), district effects are controlled by h̄s and we find
β̂3 = 0.502; in column (2), district effects are controlled by means of district dummies, and the
estimation of β is very similar, we have β̂3 = 0.498; column (3) is just the same as column (1)
but districts are declared as clusters: the β3 estimate remains very significant. The last three
columns treat the fixed effect problem by differencing. In principle, these treatments take care
of the bulk of a possible endogeneity-of-hours problem. Differences with the time average purge
the results from the possible correlation of district fixed effects with district log-hours, and the
value of β̂3 must be the same as that of column (2). Column (4) is a simple OLS regression
of (¯̀

st − ¯̀
s) on (h̄st − h̄s), weighted by nst. Column (5) uses a weighted fixed-effect, within

estimator, but the Econometrics software uses n̄s as a weight: this explains the difference in the
estimated value of β, which remains close to 0.5 anyway. Finally, column (6) of Table 4 displays
the weighted first-differences estimator of β, somewhat lower than 0.5 — thus pointing towards
stronger economies of density. So, it could be that the real value of β lies somewhere between
0.4 and 0.5.

On Table 4, the identification of regressions (2), (4), (5) and (6) is correct if (with obvious
notations) v̄st = ūs + ε̄st, that is, if the district effect ūs can be eliminated by differencing.
These results suggest that β̂ = 0.498 ' 0.5. If we compute the regressions of Table 4 without
weighting, we obtain the same qualitative results — that is, economies of density are significant
— but the estimated β3 becomes close to 0.6.20

20This seems to indicate that smaller districts have smaller economies of density. The unweighted results are
available upon request.



Table 4: Kilometers Traveled. District Level. Weighted Regressions

(1) (2) (3) (4) (5) (6)
OLS OLS OLS Fixed Fixed First

Clustered Effects† Effects Differences

hs 0.774∗∗∗ . 0.774 . . .
(0.110) (.) (0.635) (.) (.) (.)

hst . 0.498∗∗∗ . . 0.515∗∗∗ .
(.) (0.046) (.) (.) (0.051) (.)

hst − hs 0.502∗∗∗ . 0.502∗∗∗ 0.498∗∗∗ . .
(0.097) (.) (0.051) (0.046) (.) (.)

∆h̄st . . . . . 0.429∗∗∗

(.) (.) (.) (.) (.) (0.057)

Constant 1.265∗∗ 1.641∗∗∗ 1.265 0.001 2.465∗∗∗ -0.000
(0.513) (0.217) (2.963) (0.004) (0.237) (0.005)

District Dummies NO YES NO NO NO NO

Observations 3,117 3,117 3,117 3,117 3,117 3,065
Groups . . 98 . 98 .

R2 0.027 0.891 0.027 0.074 . 0.072
F 37.50∗∗∗ 327.91∗∗∗ 47.48∗∗∗ 117.98∗∗∗ 100.86∗∗∗ 57.16∗∗∗

R2 within . . . . 0.087 .
R2 between . . . . 0.052 .
R2 overall . . . . 0.024 .
σu . . . . 0.719 .
σε . . . . 0.214 .
ρ . . . . 0.918 .

Note: Significance is indicated by: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Estimates have been obtained with
data aggregated at the (district, month) level. Variable t denotes the month, numbered from t = 1 to t = 44,
between November 2015 and June 2019. All regressions are weighted. For columns (1) to (4) and (6) observations
are weighted by the number of employees of district s in month t, that is nst. The regression of column (5) is
weighted by the mean number of employees in district s, i.e., n̄s. The dependent variable is ¯̀

st in columns(1)-(3)
and ∆¯̀

st = ¯̀
st − ¯̀

s,t−1 for column (6). Robust standard deviations are provided for the coefficients of column
(1). For the regression of column (2), the district dummies are the only controls; standard deviations are again
robust (White correction). In column (3), districts s are defined as clusters. †The dependent variable of column
(4) is (¯̀

st − ¯̀
s), and the explanatory variable is (h̄st − h̄s). Column (5) is estimated by the fixed-effects within

estimator where districts s are the groups; the constant here can be interpreted as the average of fixed effects ; the
values of σu and σε are the standard deviations of the district fixed effects and of the error term ε, respectively;
the ρ statistic is the percentage of variance due to district effects. Column (6) is estimated by OLS with robust
standard deviations; ∆h̄st = h̄st − h̄s,t−1 is the explanatory variable; the first observations in each district are
lost. The F statistic tests the overall significance of the model.
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In Appendix C (Table 9), we report the results obtained when travel time is used instead
of kilometers traveled. The results are very similar. In particular, when the β1-β2 Model is
estimated with travel time as the dependent variable, we still find, with a fixed-effects, within
employee estimator, β̂1 + β̂2 = 1.047 − 0.485 = 0.562 (see column (4) of Table 9). This shows
the robustness of our result.

3.5 Relationship with the Beardwood-Halton-Hammersley Theorem

The combinatorial optimization literature provides us with results that shed light on the analysis
presented here. Coming back to Fig. 1 above, assume that there are ν points (x1, . . . , xν) drawn
at random, independently and identically distributed on the unit square [0, 1]2. Let L(x1, . . . , xν)
denote the minimal length in the set of all tours joining the ν points, where the distance between
the points is the usual Euclidean distance. The BHH Theorem (i.e., Beardwood, Halton and
Hammersley (1959)) states that if the points xi are i.i.d and distributed on a territory, denoted
X, with a nonzero area, and included in the plane, then, there exists a positive constant ρ such
that, with probability 1,

L(x1, . . . , xν)√
ν

−→ ρ as the number of visits ν →∞.

In our case, the constant ρ depends on the district X, and on the distribution of xi. But, the
crucial point is the square-root property: almost surely, the minimal length of a tour21 with ν
visits is asymptotically close to ρ

√
ν. The average care time spent per visit, excluding the time

spent driving, denoted V , is a random variable. Assume that V = V0e
−2ε where ε is a random

shock with a zero mean and V0 = v(s) is a function of district s. We have H = νV0e
−2ε. If the

tours are efficiently organized, as a consequence of the BHH Theorem, for ν large enough, we
have, L ' ρeε

√
H/V0. Taking logarithms, we find the model,

` = α+ h

2 + ε,

where α = ln(ρ)− (1/2) ln(V0) also depends on district characteristics.

Empirically, we can take H to be the individual hours during a day tour, but the number of
visits of this tour is probably not large enough. So we can aggregate the hours of service of an
employee during month t or even during all periods. If the visit schedules are efficient, this is
like pasting efficient tours together, yielding a long efficient tour. We can also aggregate the
tour lengths and the hours of different employees in a given district s. Again, pasting together
the efficient tours of individuals sharing a given district may yield a long efficient tour of the
district team. It is then justified to run the regressions of Table 4 and to expect β̂ ' 1/2. As a
robustness check, we ran regressions with the total sum of hours and kilometers in districts, that
is ln

(∑
i∈Ast Hit

)
and ln

(∑
i∈Ast Lit

)
. We also regressed the individual aggregate ln

(∑
t∈Ti Hit

)
21For more detailed explanations, see Appendix A.
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on ln
(∑

t∈Ti Lit
)
. If the coefficient of the log-sum of hours is close to one half, we do not detect

inefficiencies in the scheduling of tours. Table 5 reports the results of this type of regression.

Table 5: Kilometers Traveled: Log-linear Regressions with Total Hours and Km

(1) (2) (3) (4)
OLS OLS FE FE

Dependent Variable: ln(∑t∈Ti Lit) ln(∑i∈Ast Lit) ln(∑i∈Ast Lit) ln(∑i∈Ast Lit)

ln(∑t∈Ti Hit) 0.987∗∗∗ . . .
(0.016) (.) (.) (.)

ln(∑i∈Ast Hit) . 0.438∗∗∗ 0.699∗∗∗ 0.561∗∗∗

(.) (0.035) (0.070) (0.090)

Constant -0.504∗ 4.130∗∗∗ 2.709∗∗∗ 3.897∗∗∗

(0.195) (0.274) (0.524) (0.699)

District Dummies YES YES NO NO
Observations 3,687 3,117 3,117 3,117

Weights 1 nst 1 n̄s

R2 0.831 0.950 . .

F 141.39∗∗∗ 820.18∗∗∗ 98.18∗∗∗ 38.77∗∗∗

Note: Significance is indicated by ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. 3,687 is the number of employees in the
employee base and 3,117 is the number of observed (district, month), i.e., (s, t) pairs. The regression of column
(1) is not weighted. The regression of column (2) is weighted with nst. Columns (3) and (4) report fixed-effects,
within estimates. Column (4) reports the results of a weighted FE regression with weights n̄s.

The results of Table 5 are striking. In the regression of column (1), we use the total hours and
kilometers aggregated at the employee level, and, in essence, we find constant returns to scale.
In contrast, if we aggregate at the district level, and control for district effects, we find economies
of density. Column (2) shows that β ' 0.44, more or less as predicted by the BHH Theorem.
The result is confirmed by the weighted fixed-effect estimate of column (4), yielding β̂fe = 0.56.
The regression of column (3) is not weighted. The BHH assumptions are not rejected by the
data.22 The BHH Theorem is by definition true if the assumptions on points xi and X are true.
Tours may not be modeled as loops in a subset of the plane; or finally, tours are not efficiently
organized. Our regressions are a joint test of these assumptions. Appendix A recalls that the
BHH Theorem is valid in three dimensions (points are then randomly drawn in a cube). In
the latter case, we expect β = 2/3, not far from the unweighted estimate of column (3). The
regressions of Table 5 do not seem to reject the efficiency or near efficiency of tours, within a

22The ordinary F -test of H0: β = .5 in regression (2) of Table 4 yields a p-value of 0.96; the same test of β
in regression (5), Table 4, yields a p-value of 0.76; finally, the same test of β in regression (4), Table 5, yields a
p-value of 0.51.
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district. Besides this, we confirm that team synergies seem to operate in districts, leading to
smaller L/H ratios in more active districts.

4 U-shaped Curves and Unobserved Heterogeneity

The results that we obtained above with the log-linear models may be viewed as a preliminary
step. We suspect that there is a substantial amount of unobserved heterogeneity in the data. If
the true model is not linear in logs at the individual or at the district level, and if, in addition, the
β parameter varies with observable and unobservable characteristics of employees and districts,
as suggested by Table 8, it is fully justified to estimate more flexible forms of our model. We
will add flexibility by assuming that the model is quadratic in log-hours, and by assuming
the existence of a finite set of latent types. In other words, we will now estimate variants of a
finite-mixture version of a quadratic-in-logs model. We will show that the latter models typically
generate U-shaped average transportation cost curves and uncover the unobserved heterogeneity
of workers.

Let K denote the number of latent employee types in the population. Types, or groups, are
indexed by k = 1, . . . ,K. The fact that quadratic terms are significant justifies the use of
a quadratic model. Next, a difficulty with finite mixture models is the choice of the number
of groups K. We use a combination of criteria, including usual likelihood-based information
criteria. AIC and BIC, that is, Akaike and Bayesian Information Criteria have a tendency to
select too many latent types; in other words, they lead to overfitting. With our data, the BIC is
minimized when K = 8. We therefore combine the usual criteria with entropy-based criteria, to
assess the quality of classification of employees by our model. We will see that two types provide
a good representation of the underlying heterogeneity of workers. When K > 2, the quality of
classification declines — i.e., entropy rises. When K > 2, we find that the marginal gain of an
additional type in terms of the log-likelihood is not worth the cost of the added complexity, and
all the more since individuals are not well identified as members of a given group.

4.1 Modeling Unobserved Heterogeneity with Latent Types

Let K be the number of unobserved types, indexed by k. We assume that employee i, at date
t, belongs to group k with prior probability pk. Each group can be described by a quadratic
model. The simplest model, called Model A, is specified as follows. If i belongs to group k at
time t, we assume,

`it = αk + δkhit + ζkh
2
it + εikt. (7)

It happens that this model is too simple, insofar as it doesn’t explicitly allows for local, i.e.,
district-based, team effects. Yet, Model A yields significant values of ζk. The analysis of Model
A is presented in Appendix E: in spite of its simplicity, this model generates U-shaped curves
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giving Lit/Hit as a function of Hit.

We will mainly focus on the following richer specification, called Model B. If i belongs to group
k at time t, we assume,

`it = αk + βkh̄st + νkh̄
2
st + δkhit + ρk (1/nst) + εikt, (8)

where εikt ∼ N (0, σ2
k), and (αk, βk, νk, δk, ρk) are parameters that depend on group k. We assume

that the εikt are i.i.d random variables, independent of hours conditional on group k. The groups
k = 1, . . . ,K are therefore taking care of the possible endogeneity problem that would arise in
a model assuming that parameters are independent of k. The normality assumption improves
tractability but the reader must keep in mind that any distribution of `it can be approximated
by a mixture of normal distributions, to any desired degree of precision. Model B can capture
district-based team effects through h̄st, h̄2

st and 1/nst. The average hours in district s capture
an “intensive” form of the economies of density, while 1/nst captures an “extensive” form (if
ρk > 0).

4.1.1 Interpretation of the Models

To understand the meaning of Model B more completely, define first the log-ratio of kilometers
to hours in district s at time t as κ̄st = ¯̀

st − h̄st. We then aggregate equation (8) over all
observations i ∈ Ast, expressing the ratio κ̄st, and dropping index k to lighten notation, we
easily obtain,

κ̄st = α+ (β + δ − 1)h̄st + νh̄2
st + ρ(1/nst) + ε̄st, (9)

We expect that (β+δ−1) and ν will provide a convex curve for exp(κ̄), typically with β+δ−1 < 0
and ν > 0, but to show the presence of density economies, it is sufficient to find a curve that
is decreasing on a relevant interval of hours — say, between 0 and 200. Note that exp(κ̄st) is
just the geometric mean of the ratio Hit/Lit for i ∈ Ast, and κ̄st = n−1

st ln
[∏

i∈Ast(Lit/Hit)
]
.

The intuition for the use of n−1
st as a right-hand side variable is straightforward.23 Economies of

density in the “extensive” sense exist if ρ > 0 because a larger team implies a smaller average
L/H ratio.

To draw the average L/H curves generated by Model B, we compute the expectation of exp(κ̄st),
as given by equation (9). Dropping index st to lighten notation, we have,

E
(
exp(κ̄)

∣∣ h̄, k, n) = exp
{
αk + (βk + δk − 1)h̄+ νkh̄

2 +
(
ρk + σ2

k

2

)
1
n

}
, (10)

where n stands for team size nst.24 We obtain the average transportation cost curve by taking

23Equation (9) means that when nst increases, given a fixed average value of hours h̄st, then, ρ > 0 implies
that ¯̀

st has to adjust downward: the average distance travelled by each worker must decrease.
24We find (10) because κ̄ ∼ N (µ, n−1σ2

k), conditional on h̄, k and n. Since µ is a function of h̄ and 1/n, it
follows that E(eκ̄|h̄, k, n) = exp(µ+ σ2

k/(2n)).
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the expectation of (10) over k, that is,

E
(
exp(κ̄)

∣∣ h̄, n) =
∑
k

pkE
(
exp(κ̄)

∣∣ h̄, k, n) , (11)

where pk is the frequency of group k. The curves (10) and (11) can be computed with the help
of the estimated values of parameters, including σk and pk.

4.1.2 Estimation Method

These models can be estimated by a straightforward likelihood maximization routine, provided
that good preliminary estimates are available. The preliminary estimates are obtained by means
of an EM algorithm. We will present the ML, and some EM estimates of the model. In essence,
the log-likelihood is maximized when a particular weighted regression is estimated with weights
equal to the posterior probabilities that each observation (i, t) belongs to group k. This posterior
probability, denoted pitk is derived from the likelihood function by means of Bayes’ Theorem.
This particular EM algorithm is described in Appendix D. The same method has been justified
and advocated by various authors (see, e.g., Arcidiacono and Jones (2003), Bonhomme and
Robin (2009)); there are also various applications in other works.25

Let Λitk be the contribution to likelihood of observation (i, t), conditional on type k and the
explanatory variables. We have,

Λitk =
( 1
σk

)
f

(
εitk
σk

)
, (12)

where εitk is given by (8) and f(x) = (
√

2π)−1e−x
2/2. The contribution to likelihood of obser-

vation (i, t) is therefore,

Λit =
K∑
k=1

pkΛitk.

The likelihood Λ is the product of the Λit contributions over all t ∈ Ti and all i. The log-
likelihood is therefore,

L = ln Λ =
n∑
i=1

∑
t∈Ti

ln
(

K∑
k=1

pkΛitk
)
. (13)

To compute the posterior probabilities of an individual’s type, we apply Bayes’ rule. We obtain,

pitk = Pr(k|i, t, `it, hit) = pkΛitk∑K
j=1 pjΛitj

. (14)

These individual posterior probabilities are computed with the help of contributions to likelihood,
evaluated at the estimated values of the model parameters. These probabilities tell us how
likely it is that individual i belongs to group k at time t. If for each i, the individual posterior

25See, for instance, Gary-Bobo et al. (2016), Cassagneau-Francis et al. (2021). On finite mixtures in general,
see McLachlan and Peel (2000), Bouveyron et al. (2019). We use straightforward MLE here but there exists other
methods, see e.g., Bonhomme and Manresa (2015), Su, Shi and Phillips (2016).
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probability is close to 1 for some k, individuals are very well classified. If, on the contrary,
all individual posterior probabilities are near 1/K, the system of latent groups is completely
ineffective at characterizing individuals: every i is represented by a uniform lottery on a set of
virtual types.

4.2 Estimation Results

The results obtained for Model A are presented in Appendix E, for the sake of completeness.
We focus here on Model B. We present the results obtained with K = 1, 2, 3. We discuss below
the reasons why we think that K = 2, i.e., two types only, is the best choice. But we estimated
the model up to K = 9. The results obtained with K = 6 are presented in Appendix G for the
sake of completeness.

To estimate the prior probabilities pk, we use a classic parametrization making sure that all
probabilities remain in [0, 1] and sum to one. To this end, we define the vector of parameters
(r1, . . . , rk) such that

pk = erk∑K
j=1 e

rj
, (15)

and we impose the constraint r1 = 0. The likelihood is maximized with respect to r, without
any constraints.

4.2.1 Model B

The ML estimation results of Model B are reported in Table 6. Each column of Table 6 gives the
parameters of equation (8) in the (K, k) case, i.e., for a number of types K = 1, 2, 3 and k ≤ K.
At first glance, we see that all model parameters are precisely estimated for (K, k) = (2, 1), i.e.,
the first type in a model with 2 types. Column (2, 1) shows that the estimated κ̄-ratio curve will
be convex with respect to h̄st, since βk + δk − 1 < 0 and νk > 0. When K = 2, type k = 2 has
some nonsignificant parameters and will yield a flat curve. When K = 3, the results seem to
indicate that type 2 is very flat and that type 1 and 3 have significant quadratic terms but with
opposite signs. The prior probabilities of types are always non-negligible. Yet the probability
of types is estimated with good precision only in the case of two types (columns (2, 1), (2, 2)).
A huge improvement of the likelihood is achieved when we move from K = 1 to K = 2, but the
gains of a third type are limited. We will see below that the quality of classification is maximal
with 2 types. To understand the meaning of these results, we will draw the average L/H curves,
as given by Equations (10) and (11), with the estimated values of the model’s parameters in
Table 6.

Using the estimated values of parameters given by Table 6, Figure 4 gives the plots of (10) for
k = 1 (solid line) and k = 2 (dotted line), on the left-hand panel, and the average curve (11),
on the right-hand panel. To draw these pictures, (1/n) is fixed at its median value, that is
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(1/n) = 0.043 (the median value of nst is equal to 23).

Figure 4. Model B
L/H Curves Conditional on Type k and Average L/H Curve, for K = 2.
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a. Type 1 (solid line); Type 2 (dotted line) b. Average L/H curve

Type 2, a minority, has a low ratio, below 1 km per hour of service, and type 2’s L/H curve
reaches a minimum at H = 150 hours per month (the solid line on the left panel of Fig. 4). If
we take the average of the two curves we find a convex, U-shaped curve, as shown by Fig. 4b.
We conclude that economies of density exist, and that they seem to be exhausted as soon as
employees reach an average number of hours per month around 150, but there are employees
(i.e., Type 2) for which economies of density do not exist, or are negligible in practice.

We now briefly discuss the estimated model with three types (columns (3, k) on Table 6). The
pictures of L/H curves are given by Figure 5. On Fig. 5a, we see that Type 3, a minority with
a probability of 16%, has a quasi-concave (in fact log-concave) curve and a very low L/H ratio
(below .25 km per hour of service). Type 3, which is a kind of offshoot of Type 2, is not very
useful. But when K = 3, Type 1 is still present and exhibits clear economies of density. Type
1’s curve is still U-shaped and convex and reaches a minimum at H = 187. It follows that, in
practice, Type 1 is still driving the overall economies of density in the aggregate. Fig. 5b shows
that the average L/H curve is U-shaped. In the case of Model B, we conclude that economies of
density not only exist, but also play a major role. A possible explanation for the “anomalous”
quasi-concave look of Types 2 and 3 is that these types capture some employees that happen to
live very close to their patients. Further scrutiny shows that these individuals are thinly spread
almost everywhere, but mainly concentrated in a dozen of districts. To select the real-life type-2
individuals, we select the subsample of observations (i, t) such that pit2 > 0.85. We then observe
that the districts s in which more than 10% of the employees are identified as type 2 in this sense
are some big cities, like Lyon and Nice, but also other Riviera cities like Cannes, Menton and
Antibes, as well as rural places or districts centered around small towns: like Sens (in Burgundy)
and, curiously, many districts in Corsica (Bastia, Borgo, Corte, Ile-Rousse and a village called
Saint Florent). This means that type-2 employees are not necessarily operating in high-density
urban districts. We will learn more about this below.
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Table 6: Traveled Kilometers
Maximum Likelihood Estimation of Model B.

(K, k) (1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

h̄st −0.168 −8.125∗∗∗ 0.071 −8.666∗∗∗ −0.375 5.908∗∗

(0.600) (0.812) (0.915) (1.088) (0.670) (2.081)

h̄2
st −0.067 0.798∗∗∗ −0.127 0.830∗∗∗ −0.023 −0.786∗∗

(0.066) (0.088) (0.102) (0.119) (0.074) (0.229)

hit 1.460∗∗∗ 1.118∗∗∗ 2.268∗∗∗ 0.983∗∗∗ 1.734∗∗∗ 2.616∗∗∗

(0.010) (0.010) (0.033) (0.012) (0.025) (0.052)

1/nst −0.447∗∗∗ 0.522∗∗∗ −1.468∗∗∗ 3.220∗∗∗ −0.173 −1.857∗∗∗

(0.096) (0.105) (0.233) (0.189) (0.106) (0.329)

Constant 0.323 20.495∗∗∗ −3.987 23.076∗∗∗ −1.068 −18.901∗∗∗

(1.376) (1.876) (2.062) (2.497) (1.513) (4.774)

σk 1.057∗∗∗ 0.688∗∗∗ 1.211∗∗∗ 0.590∗∗∗ 0.679∗∗∗ 1.262∗∗∗

(0.003) (0.004) (0.009) (0.006) (0.010) (0.015)

rk . 0 −0.866∗∗∗ 0 0.069 −0.886∗∗∗

(.) (0) (0.034) (0) (0.045) (0.061)

pk 1 0.704 0.296 0.403 0.431 0.166

Log-Lik −84, 254.79 −79, 507.32 −79, 507.32 −78, 522.24 −78, 522.24 −78, 522.24
Observ. 57,130 57,130 57,130 57,130 57,130 57,130

Note : Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model B. The dependent
variable is always `it. Estimates have been obtained by Maximum Likelihood. Column (1,1) has K = 1 (or no
group); Column (2,k) gives the coefficients of the model for type k = 1, 2 with K = 2 and Column (3,k) gives the
coefficients of the model for type k = 1, 2, 3 when K = 3. The σk line gives the estimated standard deviations of
the error term for each type.
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Until now, we explored the “intensive” economies of density, but in addition, there are extensive
economies of density driven by the number of employees nst. Consider Model B with two types,
i.e., K = 2. Figure 6 gives 3-dimensional representations of the L/H surface as a function of H
and n when K = 2, based on the results of Table 6 again. It is very clear, on Figure 6, that
only Type 1 exhibits both kinds of economies of density. Type 2, dwarfed by Type 1 because of
much smaller L/H ratios, has a surface that looks like a textbook production function with two
factors.

Figure 5. Model B
L/H Curves Conditional on Type k and Average L/H Curve, for K = 3.
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a. Type 1 (solid line), Type 2 (dashed line), b. Average L/H curve
Type 3 (dotted line)

Figure 6. Model B. 3D Plots of L/H Surfaces Conditional on Type k, for K = 2

a. Type 1 b. Type 2

4.3 Robustness

4.3.1 Model B in Urban and Rural Districts

The system of types is not simply replicating the urban/rural divide. To check the robustness of
our findings, we re-estimated Model B with indicators of two subsamples, the urban and rural
districts, interacting with the parameters of Model B. The urban or rural denomination is not
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our choice, but the official classification of the National Institute of Statistics, i.e., INSEE). The
full results are presented in Appendix F, in Tables 13 and 14, for Urban and Rural districts
respectively. We discuss here the average L/H curves that are computed with the help of
subsample estimates.26

Figure 7 gives the L/H curves of the 2-types version of Model B in the rural districts. Fig. 7a
shows that Type 1, the majority type with a frequency of nearly 70%, has a typical, convex
U-shaped curve. Type 1 exhibits economies of density. Type 2 has a much smaller L/H ratio
and a quasi-concave curve, with rather negligible economies of density. Figure 7b gives the
average curve, which is U-shaped and convex. We know that economies of density are due to
the presence of Type 1.

Figure 7. Model B. L/H Curves and 3D Surfaces, Conditional on Type k and
Average L/H Curve, for K = 2, in the Rural Districts
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a. Rural Type 1 (solid) and Type 2 (dashed)) b. Rural Average L/H curve

c. Rural Type 1 d. Rural Type 2

Figures 7c and 7d, show that economies of density are also extensive for both types, the curves
being decreasing with the size of the team n. The results are very different in urban districts.
Figure 8 depicts the L/H curves of the 2-type version of Model B, in urban districts. Figure
8a shows that Type 2 has a convex and U-shaped L/H curve but Type 1 exhibits decreasing

26Model B is re-estimated by ML, adding interactions of all variables with dummies indicating the Rural or
Urban classification of each district.
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returns on the relevant range of hours. Since Type 1 is more frequent, Figure 8b shows that the
average curve is increasing on the relevant range. Figures 8c and 8d, give the 3D surfaces, that
is, L/H as a function of H and n, for Type 1 and Type 2 respectively: the extensive economies
of density are negligible. To sum up, in the urban districts, economies of density play a minor
role.

Some interesting conclusions can be drawn from this exercise. The finding that there are “con-
vex” and “quasi-concave” types seems to be robust. The quasi-concave types are more frequent
in urban districts while the convex, U-shaped types are more frequent in rural districts. The
concave types typically have a low L/H ratio (less than 1.5 km per hour of service): these types
do not spend much time driving. The economies of density observed in the aggregate are driven
by the convex U-shaped types. Besides, the low L/H, quasi-concave types are not confined to
urban districts. We are not surprised to see that the kilometers consumed per hour of service are
below 1.5 in urban districts, because the density of patients in geographical space is high. But
there are concave types with a low L/H ratio in rural districts too: presumably, these employees
stay in the same village.

Figure 8. Model B. L/H Curves and 3D Surfaces, Conditional on Type k and
Average L/H Curve, for K = 2, in the Urban Districts
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a. Urban Type 1 (solid) and Type 2 (dashed)) b. Urban Average L/H curve

c. Urban Type 1 d. Urban Type 2
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4.3.2 Model B with 6 Types

Our general conclusion resists conditioning on observable characteristics like rural or urban
districts, but the distinction between district categories may be inadequate for the study of our
problem. A legitimate approach is then to increase flexibility by increasing the number of types
and let the likelihood maximization algorithm speak. We estimated Model B with 6 types by
means of the sequential EM algorithm (the full results are displayed in Appendix G, Table 15
and Table 16), and the results confirm our general conclusion that economies of density are
present in the home care industry, and more precisely, mostly present in rural districts.

Figure 9 displays the L/H curves computed with the estimated parameters of a 6-type version
of Model B, estimated by means of the sequential EM algorithm described in Appendix D,
and in the rural districts.27 Figure 9a plots the six curves simultaneously. Three types out
of six, i.e., Types 2, 3 and 6, exhibit decreasing and convex L/H curves. Types 1, 4 and 5
have quasi-concave hump-shaped curves, with a decreasing portion, but they do not consume
many kilometers: their L/H ratios are below 1.5 km per hour of service. Figure 9b shows the
quasi-concave curves of types 1, 4 and 5 separately.

Fig. 9c depicts the L/H curves of types 2, 3 and 6 separately. Types 2, 3 and 6 together amount
to 65% of the employees in rural districts. So we find more or less the same proportion of
convex types as in the model with K = 2 (i.e., Table 13, column (2,1)). Figure 9d gives the
average L/H curve of the 6-type model. This curve has the typical convex and decreasing shape
characterizing economies of density on the relevant range; it is essentially the same as before,
when K = 2, but expressed as an average of 6 curves instead of 2 or 3. We conclude that Model
B exhibits economies of density with two, three or six types. Our finding is therefore robust.
The question is now to choose the appropriate value of K. It may be that using 6 types is just
a form of overfitting.

27The curves are drawn with 1/n fixed at its median value.
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Figure 9. Model B. L/H Curves Conditional on Type k and Average Curve,
for K = 6, in Rural Districts
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d. Average L/H curve over 6 types

30



5 Choice of the Number of Types K. Quality of Classification

We estimated several versions of the model. How should we choose K, the number of types?
When K = 6, the model fits the data better than a model with only two types, but are the 6
types interpretable? In other words, is the type of each individual well-identified? Do all types
correspond to real-world individuals? For instance, we know that many low-ratio employees
live near the French Riviera or in Corsica. To answer these questions, we will first study the
empirical distribution of estimated posterior probabilities p̂itk for each type k. We will then
study a battery of criteria: the classic information criteria, and measures of entropy.

5.1 Empirical Distributions of Posterior Probabilities pitk.

If the probability distribution of the posterior probabilities p̂itk has only masses close to zero and
one, then, type k is well-identified (or well-classified). We know which employees belong or not
to group k. Figure 10 below shows the empirical distributions of pit1 and pit2 for Model B with
K = 2. Fig. 10a exhibits a probability mass between 0.75 and 1 and Fig 10b is a mirror image
of Fig. 10a because pit2 = 1 − pit1. Type 2 is visibly a minority. These pictures are typical of
a case in which individual types are (relatively) well-identified. In other words, for K = 2, the
partitioning of observations associated with Model B is excellent.

Figure 11 shows the equivalent results for the 3-type version of Model B. Fig. 11a shows that
type 1 is easy to recognize (and it is relatively easy to point which observations do not belong to
group 1 with a probability greater than .8, but the other two groups are difficult to distinguish,
as shown by Fig. 11b and Fig. 11c. Many (i, t)s have a probability around 0.45 or .5 of belonging
to group 2 and a probability around 0.5 of belonging to group 3.28 It seems that types 2 and 3
cannot easily be distinguished from other types. The classification is much fuzzier when K = 3,
as compared to K = 2.

Figure 12 displays the densities of the p̂itk, k = 1, . . . , 6 in the six-type version of Model B. Visual
inspection of Figure 12 shows that the types of the 6-type model are difficult to recognize. Yet
some types are better identified than others. Understandably, the quasi-concave types 1, 4 and
5 are relatively easy to separate from others because they have markedly different L/H ratios.
This is because we see masses at and near zero for these types. We know who’s not a Type 1,
4 or 5. But they constitute only a minority. The convex types, that is, 2, 3 and 6, are typically
not well identified (the distributions of pit2, pit3 and pit6 have substantial masses around 0.3).
Again, we know only relatively well who’s not a Type 2, 3 or 6. Visual inspection (Fig. 9) shows
that types 2 and 3 are difficult to distinguish. The essence of the underlying structure seems to
be uncovered with only two types.

28There are masses at point 0 on Figures 11b and 11c, but these masses only indicate that we know that many
observations do not belong to group 2 (or 3) with a high probability.
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Figure 10. Model B. Distribution of Posterior Probabilities pitk, with K = 2
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Figure 11. Model B. Distribution of Posterior Probabilities pitk, with K = 3
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Figure 12. Model B. Distribution of Posterior Probabilities pitk, with K = 6
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5.2 Information and Entropy Criteria

When it comes to the choice of the number of typesK, there exists a tension between Information
and Entropy criteria. First of all, the log-likelihood of the model with K types, denoted L(K),
is typically increasing and concave: an additional type will always lead to some improvement of
L(K), but with decreasing marginal values. Next, the Akaike and Bayesian Information Criteria
(i.e., AIC and BIC) penalize the number of parameters of the model (see Akaike (1974), Schwarz
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(1978)), and both criteria will in principle reach a minimum for some value of K.

But AIC and BIC are not a very good guide in the context of finite mixture models. AIC tends
to overestimate the correct number of components (AIC pushes towards over-fitting). BIC
corrects for these difficulties but tends to underestimate K.29 Celeux and Soromenho (1996)
have proposed a simple choice criterion based on the notion of entropy called the Normalized
Entropy Criterion, or NEC (see Appendix H for some details).

In our context, entropy E must be defined as follows,

E(K) = −
n∑
i=1

∑
t∈Ti

K∑
k=1

p̂itk ln(p̂itk). (16)

It is easy to check that E(1) = 0 and 0 ≤ E(K) ≤ N ln(K), whereN is the number of observations
(i, t). The entropy is maximal when pitk = 1/K for all k and all (i, t). Entropy is maximal
when types cannot be distinguished because any observation can belong to every group with
the same probability 1/K. Entropy is minimal (equal to zero) when partitioning is perfect.
Indeed, if for all (i, t), there exists a type k = k(i, t) such that pitk = 1, then, E(K) = 0. We
can divide entropy by its maximum value to obtain an index taking values in [0, 1]. Define
E(K) = (N ln(K))−1E(K). This index should be small to ensure a good classification.

To define the NEC, we consider the gains, in terms of the Log-Likelihood, with respect to K = 1,
that is L(K)−L(1). Entropy is now divided by this gain. NEC is defined as follows, for K > 1,

NEC(K) = E(K)
L(K)− L(1) . (17)

Another simple criterion that measures the quality of classification is the Average Hirschman-
Herfindahl Index. This index is defined as follows,

AHHI(K) = 1
N

n∑
i=1

∑
t∈Ti

K∑
k=1

p̂2
itk (18)

Note that AHHI is equal to 1 if all observations (i, t) are perfectly classified (i.e., there exists
k = k(i, t) such that pitk = 1). In addition we have, 1/K ≤ AHHI(K) ≤ 1. It follows that the
lower bound of AHHI is decreasing with K.30 A normalized index can be constructed as follows.
For K > 1, define H(K) = (K ∗AHHI− 1)/(K − 1). We have 0 ≤ H(K) ≤ 1. AHHI and H(K)
may increase with K (as we will see below); if these indices drop, this is because the quality of
classification deteriorates when K increases.

29For references on these problems and the discussion of other information criteria, see Celeux and Soromenho
(1996).

30On the use of AHHI in classification problems, see Windham and Cutler (1992).
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Table 7: Model B. Information and Entropy Criteria. Choice of K

K 1 2 3 4 5 6 7 8 9

L(K) -82,468 -77,013 -75,819 -75,133 -74,718 -74,497 -74,321 -74,143 -74,118

BIC 165,112 154,388 152,186 151,001 150,357 150,100 149,935 149,765 149,902

AIC 164,698 154,093 151,738 150,401 149,605 149,196 148,880 148,557 148,542

E(K) 0 24,132 43,992 51,263 64,836 73,234 76,956 82,018 88,938

NEC . 4.424 6.616 6.989 8.366 9.187 9.446 9.852 10.651

E(K) 0 0.609 0.701 0.723 0.705 0.715 0.692 0.690 0.708

AHHI 1 0.733 0.529 0.487 0.397 0.345 0.330 0.306 0.273

H(K) . 0.466 0.293 0.316 0.246 0.214 0.218 0.206 0.182
Note: Model B has been estimated by the EM algorithm repeatedly with values of K ranging from K = 1 to
K = 9. Model B has been estimated, adding interactions of the K types with the indicators of three subsamples:
the Urban, Peri-Urban and Rural districts (that partition the dataset). Parameters therefore vary not only with
type, but also with the three types of district. L(K) is the estimated Log-Likelihood with K types. BIC is the
Bayesian Information Criterion. AIC is Akaike’s Information Criterion. E(K) is entropy as defined above. NEC is
Celeux and Soromenho’s Normalized Entropy Criterion. E(K) is just E(K) divided by its maximal value, N ln(K).
AHHI is the Average Hirschman-Herfindahl Index defined in the text. H(K) is the normalized Herfindahl index
defined in the text. In the case of Model B; BIC seems to reach a minimum for K = 8; AIC never reaches a
minimum between K = 1 and K = 9; NEC is minimal for K = 2. Most of the gains in terms of L(K) are achieved
with K = 2 or K = 3.

We can now discuss the optimal value of K with the help of the various criteria. First we look
at increments in the log-likelihood. We observe on Table 7 that a large part of the task of
improving the model with a mixture is achieved with only two types.

Table 7 displays information, entropy and Herfindahl criteria for Model B from K = 1 to
K = 9.31 First, we find that the likelihood increment L(2) − L(1) is the largest among all
the increments L(K + 1) − L(K). At the same time, AIC is never minimized (in the range
K = 1, . . . , 8), but it is very flat for K > 3, while BIC seems to be minimized at K = 8, and
NEC and E(K) are minimized at K = 2. Finally, Herfindahl indices are maximized at K = 2.
Model B provides a case in which the entropy and information criteria disagree. Note that E(K)
and H(K) are nonmonotonic. (See Appendix E for another instance of nonmonotonic Herfindahl
indices). We conclude that K = 2 is the most reasonable choice.

The usual information criteria, likelihood, AIC and BIC, are imperfect guides to choose the
number of types. To make our final choice, we combined the information criteria with two other

31To compute Table 7, Model B has been estimated with added interactions. More precisely, we added the
interactions of types with three indicators of urban, rural and peri-urban districts (the latter being just districts
that are neither rural nor urban). This version of the Model is more flexible.
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requirements: (i), a model with precisely estimated coefficients and (ii), a model with sufficiently
well-separated types. Entropy and Herfindahl indices measure this quality of classification: both
types of indices indicate that K = 2, for model B, is the best compromise.

6 Conclusion

We used a unique data set with a panel structure, reporting the activity of a network of Home
Care Services. The data provide monthly observations of the hours of service at the patients’
homes and of the kilometers traveled, for each employee, during several years and in many dis-
tricts scattered on the French territory. We first estimated log-linear models of a real transporta-
tion cost function that exhibit substantial economies of density. We discussed the connection of
our results with the Bearwood-Halton-Hammersley Theorem. The latter theorem characterizes
the asymptotic behavior of the minimal length of a tour visiting a number of points randomly
scattered on a plane. We show that our results do not obviously reject the mathematical model,
predicting that the minimal distance is asymptotic to the square root of the number of visited
points. The results strongly suggest that economies of density are the result of team or group
synergies operating at the district (i.e., local branch) level.

We then investigated the data further to take the unobserved heterogeneity of employees into
account. A finite mixture, quadratic-in-logs model, estimated by Maximum Likelihood, yielded
improved results and we uncovered a set of latent groups. Each latent group of employees is
characterized by its own average transportation cost curve. The finite-mixture model generates
an average cost curve that is typically U-shaped for a majority of individuals. We discussed the
best choice of the number of latent groups, using, not only standard information criteria such as
AIC and BIC, but also entropy indices, to better measure the quality of classification generated
by the model. We conclude that a model with 2 types is enough to capture the essential result.
The average transportation cost function is the weighted average of the cost functions of two
latent groups of employees: a majority group with a convex decreasing, i.e., U-shaped average
cost curve, and a minority group with a much smaller consumption of kilometers and a quasi-
concave curve. These results confirm the existence of substantial economies of density in the
Home Care Industry, and hence carry possible consequences in terms of regulation, because
free competition inflates transportation costs in an industry that has a local natural monopoly
structure.
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A Appendix: Density, Distance and the Beardwood-Halton-
Hammersley Theorem

A.1 Density of Clients and Miles Traveled

To rationalize Figure 1, consider the unit square [0, 1]2. Let n denote the number of patients.
Let (x1, . . . , xn) denote the array of points representing the clients’ locations, and define the set
of locations Xn = {x1, . . . , xn}, with each xi ∈ [0, 1]2, i = 1, . . . , n. We assume that the points
xi are independent, identically distributed (i.i.d), uniformly distributed random variables drawn
in [0, 1]2. Let now y(x) denote the nearest neighbor of patient x in the unit square (in the sense
of Euclidean distance). Let z = ‖x−y(x)‖, be the distance between x and the nearest neighbor.
Suppose that x is in the interior of the square. Then, the probability that y(x) is located out of
a closed disc of center x and radius r can be written,

Pr(z > r) =
∏

y∈Xn\{x}
Pr(‖x− y‖ > r) =

(
1− πr2

)n−1
,

provided that r > 0 is small enough to ensure that πr2 < 1 and that the disc is entirely included
in the square. We then immediately derive the probability of finding the nearest neighbor in the
disc with center x and radius r, denoted Fn(x, r), that is,

Fn(x, r) = Pr(z ≤ r) = 1−
(
1− πr2

)n−1
.

It is possible to show that the expected value of z goes to 0 when n tends towards infinity.
Let us now fix p, the probability that the nearest neighbor is located at a distance smaller
than r, that is, fix Fn(x, r) = p. Next, compute the radius r′ ensuring that this probability
remains equal to p when the number of clients is doubled, that is, p = F2n(x, r′). We must
have (n− 1) ln[1− πr2] = (2n− 1) ln[1− π(r′)2]. If n is large enough, using the approximation
ln(1 + u) ' u for small values of u, we easily find,

1
2 '

n− 1
2n− 1 '

(
r′

r

)2
.

The ratio of r′ to r is approximately,

r′

r
'
√

1
2 ' 0.707.

Hence, the distance to the nearest neighbor is 30% smaller when the number of patients is
doubled. Let us denote r = rn(p) the radius of the disc in which the nearest neighbor is located
with probability p. Then, we see that the area of the disc with radius r′, that is, π(r′)2 = πr2

2n(p)
is near one half of the area of the disc with radius r = rn(p), i.e, πr2

n(p), when the number of
clients grows from n to 2n.
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A.2 The Theorem of Beardwood, Halton and Hammersley

Consider now tours, defined as paths joining all points in Xn = {x1, . . . , xn}. The distance
between two points is the Euclidean distance. Let L(x1, . . . , xn) denote the length of the smallest
tour joining all points in Xn. Then we can state the following result.

Theorem (Beardwood, Halton, Hammersley, 1959) Let x1, x2, . . . , xn be independent and iden-
tically distributed, uniformly distributed random variables in [0, 1]2. There exists a constant ρ
such that, with probability 1,

lim
n→∞

L(x1, . . . , xn)√
n

= ρ.

For a proof of this result, see Beardwood et al. (1959). More recent developments and further
references will be found in Steinerberger (2015) and Arlotto and Steele (2016). The exact value
of the constant ρ is still unknown, but various arguments have shown that ρ ' 0.712. A more
general statement of the above result considers i.i.d variables, randomly distributed with respect
to some probability distribution on the unit square of the plane (not necessarily a continuous
distribution without mass points). Let f(x) denote the density of the absolutely continuous part
of this probability distribution, and denote coordinates x = (y, z), then we have,

lim
n→∞

L(x1, . . . , xn)√
n

= ρ

∫ 1

0

∫ 1

0
f(y, z)1/2dydz.

A particular case is of course the uniform distribution on the unit square. In this case, since
f = 1, the double integral above is the area of the square and boils down to 1. Suppose that
X is a bounded subset of the plane with positive area (i.e., positive Lebesgue measure), and let
a(X) denote the area of X, then, there exists a constant ρ such that, with probability 1,

lim
n→∞

L(x1, . . . , xn)√
n

= ρ
√
a(X).

A difficulty comes from the fact that the i.i.d condition in the statement of the Beardwood-
Halton-Hammersley Theorem cannot be weakened without caution. Some weaker forms of the
independence condition lead to a weakened statement saying that the expectation of L converges
towards ρ

√
n as n→∞ (cf. Arlotto and Steele (2016)).

Finally, it is interesting to note that the BHH Theorem is also valid in spaces of higher dimension.
Some districts being mountainous, it could be useful to consider the shortest tour visiting points
in a cube. If xi ∈ [0, 1]3, we can state that there exists a constant ρ3 such that, with probability
1,

lim
n→∞

L(x1, . . . , xn)
n2/3 = ρ3.
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B Appendix: Ordinary Least Squares

Table 8: Kilometers Traveled: OLS on Pooled Data

(1) (2) (3) (4) (5) (6*)

hit 1.013∗∗∗ 1.050∗∗∗ 1.049∗∗∗ . . .
(0.025) (0.025) (0.025) (.) (.) (.)

hit ∗ Part time . . . 0.972∗∗∗ 0.973∗∗∗ 0.973∗∗∗

(.) (.) (.) (0.040) (0.041) (0.052)

hit ∗ 80% time . . . 1.046∗∗∗ 1.113∗∗∗ 1.113∗∗∗

(.) (.) (.) (0.022) (0.018) (0.027)

hit ∗ Full time . . . 1.127∗∗∗ 1.255∗∗∗ 1.255∗∗∗

(.) (.) (.) (0.037) (0.033) (0.045)

80% 0.470∗∗∗ 0.391∗∗∗ 0.392∗∗∗ 0.146 -0.222 -0.222
(0.018) (0.018) (0.018) (0.197) (0.192) (0.262)

Full time 0.663∗∗∗ 0.641∗∗∗ 0.642∗∗∗ -0.070 -0.692∗∗ -0.692∗

(0.023) (0.024) (0.024) (0.250) (0.237) (0.307)
Constant -0.259∗ -2.519∗∗∗ 0.259 -0.093 0.601 0.601

(0.104) (0.129) (0.646) (0.168) (0.662) (1.784)

Speed . 0.031∗∗∗ 0.031∗∗∗ . 0.031∗∗∗ 0.031∗

(.) (0.006) (0.006) (.) (0.006) (0.015)
Density of 80+ years old . . -0.545∗∗ . -0.553∗∗ -0.553

(.) (.) (0.160) (.) (0.160) (0.477)
Competition . . 0.079∗∗ . 0.080∗∗ 0.080

(.) (.) (0.026) (.) (0.026) (0.078)
Time (in months) . . 0.002∗∗∗ . 0.002∗∗ 0.002

(.) (.) (0.001) (.) (0.001) (0.002)
District dummies NO YES YES NO YES YES

Observations 56,878 56,830 56,830 56,878 56,830 56,830
R2 0.280 0.568 0.568 0.280 0.568 0.568
F 4530.44 589.26 589.51 3284.13 616.55 92.41

Note: Significance is indicated by: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The dependent variable is always the
log-km `it. Estimates are obtained by OLS on pooled data. (∗) Equation (6) is estimated by clustering at the
employee i level; there are 3686 clusters. Time is just calendar time t, ranging from t = 1 to t = 44 (between
Novembre 2015 and June 2019). Variables hit ∗ Full Time, hit ∗ 80% Time and hit ∗ Part Time are interactions
of log-hours h with the indicators of an interval of average hours. Competition is the number of competitors of
the firm in district s. Speed is the ratio of kilometers to hours spent traveling. Density is the log of the density
of population aged 80 and more in the county.

44



For the models of columns (4), (5) and (6) in Table 8, we defined three sub-samples, partitioning
the set of employees, based on the value of an employee’s average monthly hours. The three
bins are called Full-Time, 80%-Time and Part-Time. There is in fact a good deal of variation
of hours in each of the bins, defined as wide intervals. When log-hours and the constant are
interacted with the bin-dummies, column (4) of Table 8 shows that β is slighty smaller than one
for part-time employees, with respectively β̂ ' 0.97 and that β̂ ' 1.13 for full-time employees.
At the same time, the constant of full-time employees is much lower than the constant of the
part-time ones (they consume much less kilometers). Adding controls and a complete set of
district dummies does not change the result, in essence. Column (6) of Table 8 shows that
clustering the data at the employee level does not change the key result, that is, estimates of β
are still significant and around one.
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C Appendix: Time Spent Travelling instead of Kilometers

Table 9: Time Spent Travelling

(1) (2) (3) (4) (5) (6)
OLS OLS OLS FE OLS FE

hit 1.327∗∗∗ 1.361∗∗∗ 1.362∗∗∗ 1.047∗∗∗ . .
(0.019) (0.018) (0.018) (0.017) (.) (.)

h̄st -0.282∗∗∗ -0.758∗∗∗ -0.751∗∗∗ -0.485∗∗∗ 0.350∗∗∗ 0.383∗∗∗

(0.023) (0.034) (0.034) (0.025) (0.039) (0.045)

Constant -3.495∗∗∗ -1.955∗∗∗ 0.279 -1.275∗∗∗ -0.656∗∗∗ -0.432∗

(0.127) (0.195) (0.302) (0.122) (0.182) (0.206)

Speed . . -0.596∗∗∗ . . .
(.) (.) (0.038) (.) (.) (.)

Density of 80+ . . -0.076 . . .
(.) (.) (0.055) (.) (.) (.)

Competition . . 0.004 . . .
(.) (.) (0.009) (.) (.) (.)

Time (month) . . 0.004∗∗∗ . . .
(.) (.) (0.000) (.) (.) (.)

District dummies NO YES YES NO YES NO

Observations 57,091 57,091 57,091 57,091 3,100 3,100

R2 0.313 0.482 0.485 . 0.833 .
R2 within . . . 0.247 . 0.043
R2 between . . . 0.302 . 0.095
R2 overall . . . 0.310 . 0.048
σu . . . 0.920 . 0.562
σe . . . 0.513 . 0.228
ρ . . . 0.762 . 0.859

Note: Significance is indicated by: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. In columns 1-4, the dependent variable
is the log-time spent travelling θit = ln(Θit), for the employees with a nonzero reported time. The dependent
variable is the average of travel time at time t in district s, θ̄st for columns (5) and (6). Estimates are obtained
by OLS on pooled data (columns 1,2,3,5) or the fixed-effects, within estimator (columns 4 and 6). Time is just
calendar time t, ranging from t = 1 to t = 44 (between November 2015 and June 2019). Competition is the
number of competitors of the firm in district s. Speed is the ratio of kilometers to hours spent traveling. Density
is the log of the density of population aged 80 and more in the county. Columns (4) and (6) report the fixed-effects
within estimates where districts s are the groups; the constant here can be interpreted as the average of fixed
effects; the values of σu and σε are the standard deviations of the district fixed effects and of the error term ε,
respectively; the ρ statistic is the percentage of variance due to district effects. In column (5) the regression is
weighted by n̄st and in column (6) it is weighted by n̄s.
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D Appendix: Estimation Method; EM Algorithm

D.1 Score of a Linear Model

Let us consider the following linear model. If observation (i, t) belongs to group k, we specify

`it = ak + bkhit + ckh̄st + dkh̄
2
st + gkn

−1
st + εitk, (19)

where `itk = `it, hitk = hit for all k, etc, and where (ak, bk, ck, dk, gk) are parameters, and
s = s(i, t), as defined above. Let us now write the score with respect to bk. The formula
for other parameters (ak, ck, ...) is very similar to ∂L/∂bk = 0. To simplify notation, denote∑

(i,t) = ∑n
i=1

∑
t∈Ti . We have,

∂L
∂bk

=
∑
(i,t)

(
pkΛitk∑K
j=1 pjΛitj

)(
εitk
σk

)
hit = 0, (20)

where εitk is defined by equation (19). Using Bayes’ rule (14), equation (20) can be equivalently
rewritten, ∑

(i,t)
pitkεitkhit = 0. (21)

Equation (21) is just a normal equation for weighted OLS with weights pitk. If we write the
score for another parameter than bk, we obtain,

∑
(i,t)

pitkεitkxit = 0. (22)

When xit takes the values, xit = 1, xit = h̄it, xit = h̄st, xit = h̄2
st and xit = 1/nst, we obtain a

different normal equation for each of the model’s coefficients.

To derive the estimator of σ2
k, we just compute ∂L/∂σk = 0, that is,

∂L
∂σk

=
∑
(i,t)

pitk

(
ε2itk
σ3
k

− 1
σk

)
= 0, (23)

and we easily derive from (23),

σ2
k =

∑
(i,t)

pitkε
2
itk∑

(i,t)
pitk

, (24)

the formula of a weighted estimator for the variance of error terms, based on squared residuals.

Finally, we write the score for the prior probabilities pk, with k = 2, . . . ,K, under the constraint
p1 = 1− p2 − · · · − pK . We easily obtain, for k > 1,

∂L
∂pk

=
∑
(i,t)

(
pitk
pk
− pit1

p1

)
= 0. (25)
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Next, we multiply equation (25) by pk for each k and sum these equations over k. We obtain,
Np1 = ∑

(i,t) pit1, where N = Σiτi, and τi = |Ti|. Finally, using (25), we derive the ML estimator
of pk, that is, for all k,

pk = N−1 ∑
(i,t)

pitk. (26)

D.2 Iterative Estimation Method (E-M) Based on a Weighted Regression

The above derivation of the score shows that our linear model can be estimated by an iterative
method using a weighted linear regression with weights pitk. The steps are as follows.

1°) Choose initial values for pk and pitk.

2°) With K types, create a database where all lines are replicated (K copies of each line (i, t)).
Let θk(itκ) be the indicator of type k. We add the K indicators as control variables. Each
copy (i, t, k) of (i, t) has θk(itk) = 1 and θk(itκ) = 0 for κ 6= k. We consider the interactions of
indicators θk with the explanatory variables xit.

3°) Run a weighted OLS regression with weights pitk, and estimate

`itκ =
∑
k

akθk(itκ)+
∑
k

bkθk(itκ)hit +
∑
k

ckθk(itκ)h̄st

+
∑
k

dkθk(itκ)h̄2
st +

∑
k

gkθk(itκ)n−1
st + εitκ,

(27)

where `itκ = `it for all κ = 1, . . . ,K.

4°) Probabilities are updated with the help of the residuals εitk of the weighted regression (27)
and the weighted etimator of σ2

k (given by (24)): compute the updated value of contributions
to likelihood Λitk (given by (12)). Probabilities pitk can then be updated using Bayes’ rule (14).
We then obtain the updated weights p′itk. Prior probabilities pk are also updated using (26).

5°) Iterate, going back to 3°), until the convergence criterion ∑k

∑
(i,t)(p′itk − pitk)2 < 10−m is

met. Store the last estimated parameters and the last estimated probabilities.

6°) Use the results as preliminary estimates to run a standard likelihood maximization routine.
The ML algorithm will then yield the standard deviations of all estimated parameters, including
the rks, from which p̂k’s are derived using Equation (15).



E Appendix: Estimation Results of Model A

Table 10: Maximum Likelihood Estimation of Model A, with K = 1, 2, 3

K = 1 K = 2 K = 3

(1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

hit -0.609∗∗∗ -0.139∗ 0.487 1.670∗∗∗ -1.142∗∗∗ -2.376∗∗∗

(0.074) (0.068) (0.255) (0.099) (0.327) (0.152)

h2
it 0.239∗∗∗ 0.147∗∗∗ 0.181∗∗∗ -0.108∗∗∗ 0.389∗∗∗ 0.480∗∗∗

(0.009) (0.008) (0.029) (0.013) (0.038) (0.019)

Constant 2.484∗∗∗ 2.628∗∗∗ -2.246∗∗∗ 0.073 0.435 5.357∗∗∗

(0.153) (0.138) (0.557) (0.192) (0.696) (0.287)

σk 1.058∗∗∗ 0.718∗∗∗ 1.270∗∗∗ 0.624∗∗∗ 1.287∗∗∗ 0.660∗∗∗

(0.003) (0.005) (0.011) (0.006) (0.016) (0.009)

rk . 0 -1.101∗∗∗ 0 -0.937∗∗∗ 0.000
(.) (0) (0.038) (0) (0.065) (0.063)

pk 1 0.750 0.250 0.418 0.163 0.418

Log-Likelihood -84,266.527 -79,929.198 -78,966.303

Observations 57,130 57,130 57,130

Note: Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model A. The dependent
variable is always `it. Estimates have been obtained by Maximum Likelihood. Column 1 has K = 1 (or no
group); Column (2,k) gives the coefficients of the model for type k = 1, 2 with K = 2 and Column (3,k) gives the
coefficients of the model for type k = 1, 2, 3 when K = 3. The σk line gives the estimated values of the standard
deviation.

To illustrate the predictions of Model A, we draw the L/H curves with the estimated values of
parameters in the case of three types. The expression of the curve is very simple in this case.
We have

E[exp(κ) |h, k] = exp
[
αk + (δk − 1)h+ ζkh

2 + (1/2)σ2
k

]
.

Figure E1a displays the L/H curves for the three types and Fig. E1b gives the average L/H curve.
Model A yields results that are roughly similar to Model B. In particular, the ML estimates
with K = 3 yield a U-shaped curve (Type 3) a hump-shaped curve (Type 1) and a increasing
curve with small ratios (Type 2). The weighted average of the three curves yields the expected
U-shaped curve. Results obtained with K = 2 and K = 4 (see below) are similar.

Table 12 displays information, entropy and Herfindahl criteria from K = 1 to K = 7. To
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compute Table 12, Model A has been estimated with added interactions. More precisely, we
added interactions of types with three indicators of urban, rural and peri-urban districts (the
latter are just districts that are neither rural nor urban). This version of the Model is more
flexible and yields similar results. We again find that the likelihood increment L(2) − L(1)
is the largest among the L(K + 1) − L(K). At the same time, AIC is minimized at K = 6,
NEC is mimimized at K = 2 and E(K) is minimized at K = 4. Finally, Herfindahl indices are
maximized at K = 2 (with “bumps” at K = 4). We have found a case in which the criteria
disagree. Note that AHHI and H(K) are nonmonotonic. We conclude that K = 2 seems to be
the most reasonable choice.

Figure E1. Model A. L/H Curves Conditional on Type k and Average L/H Curve,
for K = 3
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a. Type 1 (solid), Type 2 (dashed), Type 3 (dotted) b. Average L/H curve

Figure E2. Model A. EM Estimation. L/H Curves Conditional on Type k and
Average L/H Curve, for K = 4
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Table 11: EM Estimation of Model A with K = 4

(K, k) (4,1) (4,2) (4,3) (4,4)

hit 1.796∗∗∗ -2.199∗∗∗ 2.271∗∗∗ -1.690∗∗∗

(0.040) (0.044) (0.354) (0.061)

h2
it -0.125∗∗∗ 0.451∗∗∗ 0.007 0.447∗∗∗

(0.005) (0.005) (0.041) (0.007)

Constant -0.096 5.240∗∗∗ -8.510∗∗∗ 1.854∗∗∗

(0.084) (0.123) (0.761) (0.153)

σk 0.155 0.152 0.809 0.279

pk 0.391 0.406 0.005 0.198

Log-Likelihood -78,901.07

Observations 57,130

R2 0.621

Note: Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model A. The dependent
variable is always `it. Column (K, k) gives the coefficients of the model for type k = 1, 2, 3, 4 with K = 4. The σk
line gives the estimated values of the standard deviations of error terms. Estimates have been obtained by means
of an EM algorithm, described in Appendix B. The standard deviations of coefficients are those of a weighted
least squares regression in which each observation (i, t) is replicated K times and the weights are the posterior
probabilities pitk. These standard deviations underestimate the true ones, but typically not enough to invalidate
significance, due to the large number of observations. The pks are estimated by taking the arithmetic average
of the pitk summed over (i, t) for each type k. The posterior probabilities pitk are estimated using Bayes’ rule
iteratively.



Table 12: Model A: Information and Entropy Criteria. Choice of K

K 1 2 3 4 5 6 7

L(K) -82,150.62 -77,022.56 -76,679.12 -75,988.17 -75,342.42 -75,186.77 -75,182.32

BIC 164,410.77 154,275.14 153,708.74 152,447.33 151,276.31 151,085.50 150,364.64

AIC 164,321.24 154,087.14 153,422.28 152,062.41 150,792.94 150,503.69 150,516.84

E(K) 0 22,231.14 42,668.87 42,829.05 60,359.18 69,871.3 76,063.41

NEC . 4.391 8.380 6.879 8.816 10.117 10.850

E(K) 0 0.561 0.680 0.541 0.656 0.682 0.684

AHHI 1 0.761 0.541 0.543 0.431 0.370 0.333

H(K) . 0.522 0.312 0.390 0.288 0.245 0.221

Note: Model A has been estimated by the EM algorithm repeatedly with values of K ranging from K = 1 to
K = 7. Model A has been estimated on the entire employee base, adding interactions of the K types with the
indicators of three subsamples: the Urban, Peri-Urban and Rural districts (that partition the dataset). Parameters
therefore vary not only with type, but also with the three types of district. L(K) is the estimated Log-Likelihood
with K types. BIC is the Bayesian Information Criterion. AIC is Akaike’s Information Criterion. E(K) is entropy
as defined above. NEC is Celeux and Soromenho’s Normalized Entropy Criterion. E(K) is just E(K) divided
by its maximal value, N ln(K). AHHI is the Average Hirschman-Herfindahl Index defined in the text. H(K) is
the normalized Herfindahl index defined in the text. In the case of Model A; AIC is minimal for K = 6; NEC is
minimal for K = 2; E(K) is minimal for K = 4.
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F Appendix: Robustness. Estimations of Model B in Rural and
Urban Subsamples

Table 13: Traveled Kilometers
Estimation of Model B by ML in Rural Areas

(K, k) (1,1) (2,1) (2,2)

h̄st -3.484∗∗ -8.342∗∗∗ 7.332∗∗

(1.177) (0.952) (2.587)

h̄2
st 0.239 0.788∗∗∗ -0.997∗∗∗

(0.127) (0.103) (0.281)

hit 1.465∗∗∗ 1.040∗∗∗ 2.349∗∗∗

(0.019) (0.017) (0.053)

1/nst 1.203∗∗∗ 2.975∗∗∗ 1.005∗∗∗

(0.183) (0.330) (0.258)

Constant 9.383 22.311∗∗∗ -18.963∗∗∗

(2.722) (2.204) (5.974)

σk 1.021∗∗∗ 0.636∗∗∗ 1.175∗∗∗

(0.003) (0.004) (0.008)

rk . . −0.804∗∗∗

(.) (.) (0.031)
pk 1 0.691 0.309

Observations 57,130

Log-Likelihood −82,269.24 −76,782.39 −76,782.39
Note: Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model B. The dependent
variable is always `it. Estimates have been obtained by Maximum Likelihood, adding interactions with a dummy
for urban and for rural districts. Column (1,1) has K = 1 (or no group); Column (2,k) gives the coefficients of
the model for types k = 1, 2 with K = 2.
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Table 14: Traveled Kilometers
Estimation of Model B by ML in Urban Areas

(K, k) (1,1) (2,1) (2,2)

h̄st -3.612∗∗∗ 0.753 -6.482∗∗

(0.964) (0.878) (2.478)

h̄2
st 0.402∗∗∗ -0.079 0.718∗∗

(0.105) (0.095) (0.269)

hit 1.513∗∗∗ 1.199∗∗∗ 2.240∗∗∗

(0.016) (0.015) (0.051)

1/nst -0.542∗∗∗ 2.134∗∗∗ -1.343∗∗∗

(0.128) (0.202) (0.213)

Constant∗ -3.671 -24.771∗∗∗ 27.033∗∗

(3.511) (2.933) (8.261)

σk 1.021∗∗∗ 0.636∗∗∗ 1.175∗∗∗

(0.003) (0.004) (0.008)

rk . . −0.804∗∗∗

(.) (.) (0.031)
pk 1 0.691 0.309

Observations 57,130

Log-Likelihood −82,269.24 −76,782.39 −76,782.39
Note: Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model B. The dependent
variable is always `it. Estimates have been obtained by Maximum Likelihood adding interactions with dummy
variables indicating rural and urban districts. Column 1 has K = 1 (or no group); Column (2.k) gives the
coefficients of the model for type k = 1, 2 with K = 2. (∗)The rural districts are the reference; it follows that to
obtain the constant of urban districts, the constant of Table 13 should be added to the constant of the present
Table 14.
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G Appendix: Estimation Results with K=6.

Table 15: Traveled Kilometers
Estimation of Model B in Rural Districts, by Means of the EM Algorithm, when
K = 6

(K, k) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

h̄st 1.122 -12.126∗∗∗ -7.906∗∗∗ 46.825∗∗∗ 8.441∗∗∗ -3.079∗∗∗

(0.877) (0.810) (0.573) (4.631) (1.361) (0.589)

h̄2
st -0.334∗∗∗ 1.227∗∗∗ 0.690∗∗∗ -5.227∗∗∗ -1.100∗∗∗ 0.184∗∗

(0.095) (0.088) (0.062) (0.499) (0.148) (0.064)

hit 2.477∗∗∗ 0.709∗∗ 1.166∗∗∗ 3.421∗∗∗ 1.606∗∗∗ 1.490∗∗∗

(0.018) (0.021) (0.010) (0.084) (0.022) (0.010)

1/nst 7.209∗∗∗ -1.251∗∗∗ 12.886∗∗∗ 1.147∗∗∗ 0.820∗∗∗ 6.216∗∗∗

(0.188) (0.105) (0.233) (0.306) (0.134) (0.122)

Constant∗ -5.169∗ 37.514∗∗∗ 26.906∗∗∗ -111.632∗∗∗ -13.092∗∗∗ 13.570∗∗∗

(2.037) (2.766) (2.431) (10.981) (3.739) (2.453)

pk 0.149 0.255 0.161 0.078 0.128 0.229

Observations 57,130

Note: Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model B. The dependent
variable is always `it. Estimates have been obtained by the sequential EM algorithm, adding interactions with a
dummy for urban and for rural districts. There are 6 types (K = 6); Column (6,k) gives the coefficients of the
model for types k = 1, . . . , 6. (∗) To read the line of constants: note that type 1 in rural districts is the reference,
so that the constant of column (6,1) should be added to the constants of other columns.

55



Table 16: Traveled Kilometers
Estimation of Model B in Urban Districts, by Means of the EM Algorithm, when
K = 6

(K, k) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

h̄st 13.868∗∗∗ 10.481∗∗∗ 15.295∗∗∗ -25.085∗∗∗ -12.532∗∗∗ 2.453∗∗∗

(1.302) (0.923) (0.880) (4.815) (1.673) (0.362)

h̄2
st -1.551∗∗∗ -1.163∗∗∗ -1.765∗∗∗ 2.683∗∗∗ 1.517∗∗∗ -0.167∗∗∗

(0.141) (0.099) (0.094) (0.523) (0.181) (0.039)

hit 3.218∗∗∗ 2.278∗∗∗ 1.141∗∗∗ 2.767∗∗∗ 0.345∗∗∗ 1.564∗∗∗

(0.019) (0.012) (0.009) (0.061) (0.023) (0.010)

1/nst -5.354∗∗ -1.400∗∗∗ -0.518∗∗∗ 0.110 6.110∗∗∗ 6.213∗∗∗

(0.151) (0.079) (0.072) (0.212) (0.225) (0.123)

Constant∗ -36.482∗∗∗ -24.301∗∗∗ -27.450∗∗∗ 53.848∗∗∗ 32.978∗∗∗ -5.161∗

(3.637) (2.956) (2.886) (11.292) (4.359) (2.202)

pk 0.149 0.255 0.161 0.078 0.128 0.229

Observations 57,130

Note: Significance is indicated by ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Model B. The dependent
variable is always `it. Estimates have been obtained by the sequential EM algorithm, adding interactions with a
dummy for urban and for rural districts. There are 6 types (K = 6); Column (6,k) gives the coefficients of the
model for types k = 1, . . . , 6. (∗) To read the line of constants: note that type 1 in rural districts is the reference,
so that the constant of column (6,1) in Table 15 should be added to the constants of the present Table 16.
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H Appendix: The Normalized Entropy Criterion

Let the maximized Log-Likelihood be denoted

L̂(K) =
∑
(i,t)

ln
[∑
k

p̂kΛ̂itk
]
.

Using the notation introduced above and (14), we can break the maximized log-likelihood as
follows,

L̂(K) = Ĉ(K) + Ê(K), (28)

where Ê(K) is entropy, as defined by (16), but computed with the estimated values p̂itk, and

Ĉ(K) =
∑
(i,t)

K∑
k=1

p̂itk ln
(
p̂kΛ̂itk

)
. (29)

When sorting is perfect, that is, if for each (i, t), there exists k = k(i, t) such that pitk = 1, then
entropy is nil and L̂(K) = Ĉ(K). Now, given that E(1) = 0, we have L̂(1) = Ĉ(1). Given that
likelihood increases with K, we can write, for K > 1,

1 = Ĉ(K)− Ĉ(1)
L̂(K)− L̂(1)

+ Ê(K)
L̂(K)− L̂(1)

, (30)

and we define NEC as Ê(K)/(L̂(K)− L̂(1)). The criterion must be minimized. Note that NEC
may be greater than 1 since the first term on the right-hand side of (30) may be negative. See
Celeux and Soromenho (1996) for details.
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