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Abstract 
 
We study the role of expectations of naive agents in a general equilibrium version of the Ramsey 
model with quasi-hyperbolic discounting. When agents recognize others’ naivete, as strongly 
suggested by empirical evidence, they revise consumption paths, correctly anticipating prices in 
a resulting sliding equilibrium (perfect foresight). When agents are unaware of others’ naivete, as 
is typically assumed in the literature, they revise both consumption paths and price expectations 
(quasi-perfect foresight). We prove the existence of sliding equilibrium under perfect foresight 
for the class of isoelastic utility functions. We show that generically quasi-hyperbolic discounting 
matters for saving behavior: sliding equilibrium under perfect foresight is observationally 
equivalent to some optimal path in the standard Ramsey model if and only if utility is logarithmic. 
We compare sliding equilibria under different types of foresight and show that perfect foresight 
implies a higher saving rate, long-run capital stock, and consumption level than quasi-perfect 
foresight. 
JEL-Codes: D150, D840, D910, E210, O400. 
Keywords: quasi-hyperbolic discounting, time inconsistency, naivete, sliding equilibrium, perfect 
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1 Introduction

Most of us tend to revise and change our previously chosen course of action.
Economists refer to this time-inconsistent behavior as naivete. Many examples
of naive behavior such as procrastination are ubiquitous and empirically well-
documented. Moreover, there is experimental evidence that while people are un-
aware of their own time inconsistency, they hold remarkably correct beliefs about
others’ time inconsistency.1 This evidence suggests that naivete originates not
so much from unawareness but rather from self-deception: people are naive not
because they fail to realize that their preferences will change but due to overconfi-
dence about their self-control. This distinction between the sources of naivete does
not matter for the analysis of individual decision making but appears crucial for
the analysis of general equilibrium. In a standard dynamic model without time in-
consistency, equilibrium is based on perfect foresight: agents correctly anticipate
the sequences of prices in the economy, that is, they form correct expectations
about others’ behavior. However, when decisions are time-inconsistent, the notion
of perfect foresight in equilibrium is unclear. In this paper, we study and clarify
the role of expectations of naive agents in a general equilibrium framework.

Specifically, this paper studies the behavior of naive agents in a general equi-
librium version of the Ramsey model with quasi-hyperbolic discounting. We
argue that self-deceptive naivete leads to perfect foresight about prices, while
unawareness-related naivete leads to quasi-perfect foresight, as discussed in detail
below. We define a sliding equilibrium path under perfect foresight (perfect sliding
equilibrium, PSE), prove that within the class of isoelastic utility functions there
exists a PSE starting from any initial state, and show that a non-stationary PSE
is observationally equivalent to an optimal path in the standard Ramsey model if
and only if utility is logarithmic. We also define a sliding equilibrium path un-
der quasi-perfect foresight (quasi-perfect sliding equilibrium, QSE), and compare
PSE with QSE for both the case with log-utility and Cobb–Douglas production
technology and the case of stationary equilibria. Our results suggest that perfect
foresight implies a higher saving rate and a higher long-run consumption level than
quasi-perfect foresight.

Time-inconsistent behavior, as first recognized by Strotz (1955), is induced
by non-constant (time-declining) discounting. Strotz shows that if an agent can-
not commit to their actions, then the preferred path as viewed from any future
date coincides with the initially preferred path only for an agent with constant
(exponential) discounting. An agent with another type of discounting is time-

1 See, e.g., the discussion and references in Ericson and Laibson, 2019.
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inconsistent and has a new preferred path at each date. It is common to model
time-inconsistent behavior employing the assumption of quasi-hyperbolic discount-
ing (see, e.g., Phelps and Pollak, 1968; Laibson, 1996), which captures the empir-
ical observation that discount rates are higher in the short run than in the long
run (see, e.g., Ainslie, 1992; DellaVigna, 2009).

Pollak (1968) clarifies the ideas of Strotz and distinguishes between two types
of agents. A naive agent revises their optimal path at each date, which results
in a naive path.2 A sophisticated agent recognizes their time inconsistency and
acts strategically, which results in a time-consistent sophisticated path.3 There
are supporting arguments for both approaches: naivete is closer to real-world
decision making, while sophistication is more consistent with the standard notion
of rationality (see, e.g., the discussion and references in Findley and Caliendo,
2014).

In the prior literature, the effects of quasi-hyperbolic discounting on consump-
tion and savings decisions within a neoclassical growth model are studied for both
naive and sophisticated agents. Phelps and Pollak (1968) characterize naive and
sophisticated paths in a model with general isoelastic utility and linear produc-
tion technology, and show that under log-utility both paths coincide. In another
seminal contribution, Barro (1999) studies the Ramsey model with general time-
declining discounting and log-utility, and provides a solution for an agent who
revises their consumption path at each instant of time, that is, he implicitly as-
sumes a naive agent and obtains a naive path.4

Two important features of the literature on time-inconsistent decision making
are worth noting. First, most of the models focus on the agent’s beliefs about their
own future behavior. The formation of expectations about others’ behavior, which
is crucial for the analysis of general equilibrium, is typically overlooked in the
characterization of agents’ decisions.5 Second, almost all results about both naive
and sophisticated paths are obtained only for those cases in which expectations

2 The concept of a naive path resembles the notion of a sliding path or a rolling plan (see, e.g.,
Goldman, 1968; Kaganovich, 1985).
3 A sophisticated agent is typically modelled as a sequence of autonomous temporal selves
with conflicting preferences who play a dynamic game among themselves. Sophisticated paths
correspond to the symmetric Markov perfect Nash equilibria of such a game.
4 Barro implicitly considers a naive agent, but since under log-utility the propensity to consume
is constant, his solution looks like a time-consistent one. Perhaps, this is the reason why many
subsequent authors mistook Barro’s naive agent for a sophisticated agent.
5 Notable exceptions are game-theoretic models with different types of time-inconsistent agents.
Such models (see, e.g., Akin, 2007; Schweighofer-Kodritsch, 2018) explicitly acknowledge that
equilibrium outcome depends not only on agents’ beliefs about their future selves, but also on
agents’ beliefs about opponents.
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play no role: (i) for log-utility; (ii) for an exogenous and constant interest rate.6

Our paper contributes to the existing literature by studying those cases in which
expectations about others’ behavior matter. We fully characterize the behavior of
naive agents in a general equilibrium framework with an endogenously changing
interest rate and isoelastic utility, and clarify the notion of perfect foresight under
time inconsistency.

In the Ramsey model with quasi-hyperbolic discounting, a naive agent at each
date chooses a consumption path and believes that in the future they will commit
to this path. However, due to dynamic inconsistency, the agent revises their
decision at any future date, and a different consumption path is obtained. A
natural concept to describe the behavior of a naive agent is a sliding equilibrium
path (cf. Borissov, 2013). The idea is to consider a step-by-step procedure where
an agent at each date revises their consumption path and implements only the
current step.

The consumption path chosen by an agent at each date depends on their expec-
tations about future interest and wage rates. Thereby, every sliding equilibrium
path critically depends on the formation of expectations about prices. The ques-
tion is: would a naive agent who revises their consumption path also revise their
expectations about interest and wage rates? Clearly, the answer to this question
depends on the beliefs about others’ behavior that are affected by the source of
naivete. If a decision maker forms expectations about their own future behavior,
then it can be shown that “it does not matter whether a self holds an explicit
belief on the lack of change in her preferences, or whether she believes she will
simply fail to act on such changes, or that she has strong beliefs in her own will- or
pre-commitment power” (Meder et al., 2017, p. 47). However, if a decision maker
forms expectations about others’ behavior, then whether the agent is naive about
their own naivete becomes crucial for the type of their foresight. Depending on the
source of naivete, we distinguish between two types of expectations in equilibrium.

Consider a continuum of identical naive agents in the economy. Suppose that
their naivete originates from unawareness : any agent believes they will commit to
the originally chosen path because the agent fails to take into account their time-
inconsistent preferences. Then it is clear that the agent is also unaware of time
inconsistency of other agents and (incorrectly) believes that all the others would
also commit to the original path. In this case, at each date τ , the agent expects

6 Krusell et al. (2002) provide a closed-form solution for the sophisticated path in the Ramsey
model with quasi-hyperbolic discounting, log-utility and Cobb–Douglas production technology.
Sophisticated paths under general isoelastic utility and a constant interest rate are also studied
in Bernheim et al. (2015); Cao and Werning (2018). Ahn et al. (2020) develop an axiomatic
theory of naivete and apply it to a consumption-savings problem with constant interest rate.
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those interest and wage rates that occur on a “temporary” date-τ equilibrium path,
as if this path would be followed in the future. We refer to this type of foresight
as quasi-perfect foresight : at each date the agent revises both their consumption
path and expectations about interest and wage rates.

Suppose now that an agent’s naivete originates from self-deception. It is known
that people tend to have unrealistically positive self-images which results in over-
estimating the extent to which they have control over their future actions (see,
e.g., discussion in Benabou and Tirole, 2002). Moreover, it is not the absolute
level of self-image that matters but the relative one (see, e.g., Johansson-Stenman
and Martinsson, 2006).7 People are over-confident about themselves, while they
are aware of the self-control problems of others. There is recent experimental ev-
idence that clearly confirms this observation: Ludwig and Nafziger (2011) report
that most subjects overestimate their abilities while at the same time believing
that others are unbiased; and Fedyk (2021) shows that subjects are unaware of
their own time inconsistency but correctly expect time inconsistency in others.

The implications of this relative self-deception in a general equilibrium frame-
work are as follows. The agent incorrectly believes that they will commit to the
originally chosen path, but at the same time correctly believes that all the others
are time-inconsistent, cannot commit to their actions and would revise their deci-
sions at each date. We refer to this type of foresight as perfect foresight : at each
date the agent revises their consumption path but correctly anticipates interest
and wage rates that occur on the resulting sliding equilibrium path.8

Thus, by distinguishing between two sources of naivete, we can distinguish
between two types of sliding equilibria which differ in the type of foresight. First,
a sliding equilibrium path under perfect foresight (PSE) is an outcome of interaction
of agents who are self-deceptive about their own decisions but can perfectly foresee
the decisions of the others. This is a novel equilibrium concept, so we prove that
it is well-defined and study its properties. Second, a sliding equilibrium path
under quasi-perfect foresight (QSE) is an outcome of interaction of agents who are
unaware both of their own time inconsistency and of the others’ time inconsistency.
A QSE picks only the date-τ elements of each “temporary” date-τ equilibrium

7There is a large theoretical and empirical literature emphasizing the importance of social com-
parison in terms of status (see, e.g., Wendner and Goulder, 2008; Dioikitopoulos et al., 2020).
8 It can be argued that perfect foresight captures the case of a partially naive agent. Following
O’Donoghue and Rabin (2001), the literature on partial naivete assumes that an agent recognizes
their naivete but underestimates its impact. If a decision maker acts in isolation, then the
behavior of a partially naive agent who is completely unaware of the degree of their naivete is
the same as that of a naive agent who is unaware of their naivete. Our paper contributes to the
discussion of partial naivete by noting that in a general equilibrium framework an agent may
not recognize their own time inconsistency but can have perfect foresight about future prices.
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path. Therefore, its existence is guaranteed by the existence of a “temporary”
date-τ equilibrium path.

The difference between a PSE and a QSE is illustrated in Fig. 1. In both
cases, agents believe that they will commit to the currently chosen path but re-
vise their path, which is an indication of naivete. If this naivete originates from
unawareness, then agents’ beliefs about others behavior coincide with their be-
liefs about themselves, and they form expectations which are correct only from
the current perspective. However, if this naivete originates from self-deception,
then agents’ beliefs about the others are model-consistent and are correct from
the sliding perspective.

Source of naivete Belief about theirself Belief about others Action

Self-deception Commit Revise Revise PSE

Unawareness Commit Commit Revise QSE

Figure 1: Different sources of naivete lead to different types of foresight

For both PSE and QSE, we investigate the impact of quasi-hyperbolic dis-
counting on macroeconomic variables. Specifically, we study the question of ob-
servational equivalence, that is, whether the observable outcome of consumption
and savings decisions made by agents with quasi-hyperbolic discounting differ
from that of agents with exponential discounting. A number of models (e.g.,
Laibson, 1996; Krusell et al., 2002) show that observational equivalence holds for
sophisticated paths under log-utility. Barro (1999) shows that a naive path under
log-utility and a concave production function is observationally equivalent to an
optimal path in the standard Ramsey model. These results are extended by Find-
ley and Caliendo (2014), who prove that for any fixed and constant finite planning
horizon, there is observational equivalence of naive paths under quasi-hyperbolic
discounting either for log-utility or for general isoelastic utility and an exogenous
and constant interest rate.

In contrast to the existing literature, which emphasizes the prevalence of ob-
servational equivalence, we prove that within the class of isoelastic utility func-
tions, there is no observational equivalence for PSE beyond the standard case of
log-utility. We also note that, to the best of our knowledge, observational equiva-
lence of QSE holds only in the case with log-utility and Cobb–Douglas production
technology.9 Our results imply that under naivete, quasi-hyperbolic discounting

9 Observational equivalence also holds for stationary PSE and stationary QSE, where the interest
rate is constant.
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almost always matters for saving behavior.
The rest of the paper is organized as follows. Section 2 introduces the central

object of our study, a PSE, and Section 3 proves its existence. In Section 4 we
report the general results concerning observational equivalence of PSE. In Section
5 we consider quasi-perfect foresight and compare PSE with QSE. Section 6 con-
cludes. The Appendix contains proofs and mathematical details supporting the
analysis in the main text.

2 The model

We consider a general equilibrium version of the Ramsey model with quasi-
hyperbolic discounting and perfect foresight.10 Time is discrete. The consumption
side is characterized by a continuum of agents of measure one. Each agent at each
date τ has (intertemporal) utility of the form

u(cτ ) + β
∞∑

t=τ+1

δt−τu(ct) = u(cτ ) + βδu(cτ+1) + βδ2u(cτ+2) + . . . ,

where c denotes consumption, u(c) is the instantaneous utility function, β is the
present bias parameter, and δ is the long-run discount factor. We assume that
0 < β < 1, 0 < δ < 1, and u(c) is isoelastic: u(c) = c1−ρ/(1 − ρ) for ρ > 0, with
the convention that ρ = 1 refers to the logarithmic case u(c) = ln c. We assume
that each agent is naive, that is, at each date τ the agent believes they would
commit to the path chosen at date τ but revises this path at date τ + 1.

At date τ , given initial savings sτ−1, each agent faces the following problem:

max
ct≥0

u(cτ ) + β

∞∑
t=τ+1

δt−τu(ct) , s. t. cτ +
∞∑

t=τ+1

ct
(1 + rτ+1) ··· (1 + rt)

≤ (1 + rτ )sτ−1 + wτ +
∞∑

t=τ+1

wt
(1 + rτ+1) ··· (1 + rt)

,

(1)

where interest rates {rt}∞t=τ and wage rates {wt}∞t=τ are taken as given by the
agent.

We call a sequence {cτt , sτt }∞t=τ , a date-τ consumer optimum starting from sτ−1

at given {rt}∞t=τ and {wt}∞t=τ , if {cτt }∞t=τ is a solution to problem (1) and {sτt }∞t=τ
is determined recursively by sτt = (1 + rt)s

τ
t−1 + wt − cτt .

10 This model resembles the general equilibrium version of the standard Ramsey model (Cass,
1965; Koopmans, 1965).
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Due to dynamic inconsistency, each agent at each date τ revises their consumer
optimum and implements only the current step. If a solution to problem (1)
exists, it satisfies the budget constraint as equality and the following first-order
conditions: cττ+1 = (βδ(1 + rτ+1))

1
ρ cττ , and cτt = (δ(1 + rt))

1
ρ cτt−1 for t ≥ τ + 2.

Substituting the first-order conditions into the budget constraint, we obtain the
date-τ consumption in a date-τ consumer optimum:

cττ =
(1 + rτ )sτ−1 + wτ +

∑∞
t=τ+1

wt
(1+rτ+1)···(1+rt)

1 + (βδ)
1
ρ (1 + rτ+1)

1−ρ
ρ + ...+ (βδt)

1
ρ ((1 + rτ+1) ··· (1 + rτ+t))

1−ρ
ρ + ...

. (2)

The production side is characterized by a neoclassical production function
F (k, l), where l is labor input and function F is homogeneous of degree one.
The amount of labor is fixed and normalized to 1. The production function in
intensive form, f , is given by f(k) = F (k, 1). Capital is the only variable factor,
and it is assumed to depreciate completely within one period. The production
function f(k) satisfies the standard assumptions: f(0) = 0, f ′(k) > 0, f ′′(k) < 0,
limk→0 f

′(k) = +∞, and limk→∞ f
′(k) = 0. At each date t, producers take as

given the interest rate rt and solve the following profit maximization problem:

max
kt≥0

f(kt)− (1 + rt)kt . (3)

Under perfect foresight, each agent correctly anticipates the sequences of inter-
est and wage rates that would prevail in the economy. At each date τ , the agent
maximizes their utility and determines the current capital supply which coincides
with the date-τ savings in a date-τ consumer optimum at equilibrium interest and
wage rates. Producers maximize profit and determine the current capital demand
as the required level of investment. Interest and wage rates are given by the re-
spective marginal products. An equilibrium occurs when the output and capital
markets clear at each date, that is, savings are equal to investment. We define a
PSE as follows.

Definition 1. A sequence {c∗t , s∗t , k∗t+1, r
∗
t , w

∗
t }∞t=0 is a sliding equilibrium path

under perfect foresight (PSE) starting from s∗−1, if

1. Consumption and savings at each date τ are obtained from the date-τ con-
sumer optimum starting from s∗τ−1 at given {r∗t }∞t=τ and {w∗t }∞t=τ ;

2. Prices at each date τ are equal to marginal products: 1 + r∗τ = f ′(k∗τ ) and
w∗τ = f(k∗τ )− f ′(k∗τ )k∗τ ;

3. Savings at each date τ are equal to investment: s∗τ = k∗τ+1.
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Definition 1 deserves several comments. First, note that a PSE is associated
with infinitely many infinite sequences of corresponding consumer optima, that
is, infinitely many optimization problems of the form (1). A PSE is a sequence
{c∗t , s∗t , k∗t+1, r

∗
t , w

∗
t }∞t=0 which is characterized as follows:

• there is a date-0 consumer optimum starting from s∗−1 at given {r∗t }∞t=0 and
{w∗t }∞t=0, which we denote by {c∗∗0t , s∗∗0t }∞t=0, and its first elements are pre-
cisely the date-0 consumption and savings in a PSE: c∗0 = c∗∗00 and s∗0 = s∗∗00 ;

• there is a date-1 consumer optimum starting from s∗0 at given {r∗t }∞t=1 and
{w∗t }∞t=1 (truncated sequences of sliding equilibrium prices), denoted by
{c∗∗1t , s∗∗1t }∞t=1, and its first elements are the date-1 consumption and sav-
ings in a PSE: c∗1 = c∗∗11 and s∗1 = s∗∗11 ;

• the same reasoning applies for t ≥ 2; so that the resulting capital stock
sequence k∗t+1 = s∗t = s∗∗tt determines the sliding equilibrium sequences of
interest and wage rates which are correctly expected by the agent solving
for consumer optima at each date.

The construction of a PSE is illustrated in Fig. 2.

s∗−1

s∗∗00

(r∗0, w
∗
0)

s∗0

s∗∗01

(r∗1, w
∗
1)

s∗∗11

(r∗1, w
∗
1)

s∗1

s∗∗02

(r∗2, w
∗
2)

s∗∗12

(r∗2, w
∗
2)

s∗∗22

(r∗2, w
∗
2)

s∗2

s∗∗03

(r∗3, w
∗
3)

s∗∗13

(r∗3, w
∗
3)

s∗∗23

(r∗3, w
∗
3)

s∗∗33

(r∗3, w
∗
3)

s∗3

. . . . . . . . . . . . . . .
. . .

=:

=

=:

= =

=:

= = =

=:

Figure 2: Savings in consumer optima and in a PSE

Second, perfect foresight implies that the sequences of interest and wage rates
expected at date τ coincide with those realized on the PSE, and hence they are
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the same for different dates τ (that is, in each row in Fig. 2). While the agent does
not recognize their time inconsistency (hence revising their consumer optimum at
each date), the agent has perfect foresight about sliding equilibrium prices (hence
never recalculating the expected prices). This is a natural consequence of self-
deceptive naivete. If agents’ naivete originates from perceiving that they have more
willpower than others, then each agent overlooks their own time inconsistency but
recognizes time inconsistency of the others. At each date, agents (incorrectly)
believe that in the future they will behave in a manner consistent with their long-
run preferences but (correctly) expect that all other agents will revise their plans
to satisfy their short-run impatience. In this case the resulting interest and wage
rates are those that prevail in a sliding equilibrium, which is precisely the sense in
which “the market knows best” in a model with quasi-hyperbolic discounting.

Third, our definition of a PSE essentially clarifies some ideas of Barro (1999).
His argument implies that the agent revises their consumption path at each instant
of time but does not revise their expectations. Hence Barro implicitly assumes
a naive agent who correctly anticipates prices taking into account that the equi-
librium itself will change. Thus, Barro (1999) considers a PSE in terms of our
Definition 1.

3 Equilibrium existence theorem

The following theorem proves the existence of a PSE.

Theorem 1. There exists a sliding equilibrium path under perfect foresight starting
from any s∗−1 > 0.

Proof. We prove the existence of a PSE in two steps. First, we consider a PSE
in the finite horizon model and show that for any T ∈ N there exists a finite
T -horizon PSE. Second, we construct a candidate for a PSE in the infinite horizon
model by applying a diagonalization procedure to the sequence of finite T -horizon
PSE, and show that this candidate is indeed a PSE.

Fix a finite horizon T ≥ 1. For any date 0 ≤ τ ≤ T , consider the following
T -horizon date-τ problem:

max
ct≥0

u(cτ ) + β
T+1∑
t=τ+1

δt−τu(ct), s. t. cτ +
T+1∑
t=τ+1

ct
(1 + rτ+1) ··· (1 + rt)

≤ f(kτ ) +
T+1∑
t=τ+1

wt
(1 + rτ+1) ··· (1 + rt)

,

(4)

10



where the initial capital stock kτ > 0 and sequences of interest rates {rt+1}Tt=τ and
wage rates {wt+1}Tt=τ are taken as given by the agent.

We call the sequence {cτt , sτt }T+1
t=τ a T -horizon date-τ consumer optimum start-

ing from kτ at given {rt+1}Tt=τ and {wt+1}Tt=τ if {cτt }T+1
t=τ is the solution to problem

(4), and {sτt }T+1
t=τ is given recursively by sττ = f(kτ ) − cττ and sτt = (1 + rt)s

τ
t−1 +

wt − cτt .
A finite T -horizon PSE is formally defined as follows.

Definition 2. A sequence {c∗t (T ), s∗t (T ), k∗t+1(T ), r∗t+1(T ), w∗t+1(T )}Tt=0 is a T -
horizon sliding equilibrium path under perfect foresight starting from s∗−1 = k∗0
if

1. Consumption and savings at date τ are the elements of the T -horizon
date-τ consumer optimum starting from k∗τ (T ) at given {r∗t+1(T )}Tt=τ and
{w∗t+1(T )}Tt=τ ;

2. Prices at each date are equal to marginal products: for 1 ≤ t ≤ T + 1,
1 + r∗t (T ) = f ′(k∗t (T )) and w∗t (T ) = f(k∗t (T ))− f ′(k∗t (T ))k∗t (T );

3. Savings at each date are equal to investment: s∗t (T ) = k∗t+1(T ) for 0 ≤ t ≤ T .

Lemma 1.1. There exists a T -horizon sliding equilibrium path under perfect fore-
sight starting from any s∗−1 = k∗0 > 0.

Proof. See Appendix A. �

Importantly enough, the sequence of capital stocks on a T -horizon PSE is
bounded from both below and above. To define the bounds, let {ct(T ), kt+1(T )}T+1

t=0

be a solution to the following problem given k0 = k∗0:

max
ct≥0, kt+1≥0

T+1∑
t=0

(βδ)tu(ct) , s. t. ct + kt+1 = f(kt) , 0 ≤ t ≤ T + 1 , (5)

and let {c̄t(T ), k̄t+1(T )}T+1
t=0 be a solution to the following problem given k̄0 = k∗0:

max
ct≥, kt+1≥0

T+1∑
t=0

δtu(ct) , s. t. ct + kt+1 = f(kt) , 0 ≤ t ≤ T + 1 . (6)

Lemma 1.2. For all T ≥ 1, and for all 0 ≤ t ≤ T ,

kt+1(T ) < k∗t+1(T ) < k̄t+1(T ) . (7)

Proof. See Appendix A. �
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Now consider the sequence
[
{k∗t+1(T )}Tt=0

]
T≥1

, whose elements are the se-
quences of capital stocks on the T -horizon PSE starting from the same s∗−1 = k∗0,
for increasing horizons T = 1, 2, ....

Let us apply the following procedure to the sequence
[
{k∗t+1(T )}Tt=0

]
T≥1

. At
the first step of the procedure, consider the sequence {k∗1(T )}T≥1, take a cluster
point k∗1 of this sequence and extract a subsequence {T1n}∞n=1 from {T}T≥1 such
that {k∗1(T1n)}∞n=1 converges to k∗1. At the second step, consider the sequence
{k∗2(T1n)}∞n=1, take a cluster point k∗2 of this sequence and extract a subsequence
{T2n}∞n=1 from the sequence {T1n}∞n=1 such that T21 > 1 and {k∗2(T2n)}∞n=1 converges
to k∗2. This procedure continues ad infinitum.

Finally, consider the sequence {c∗t , s∗t , k∗t+1, r
∗
t+1, w

∗
t+1}∞t=0, where {k∗t+1}∞t=0 is

obtained by the diagonal procedure described above and for all τ ≥ 0,

c∗τ = f(k∗τ )− k∗τ+1, s∗τ = k∗τ+1, 1 + r∗τ = f ′(k∗τ ), w∗τ = f(k∗τ )− f ′(k∗τ )k∗τ . (8)

The following lemma shows that this sequence is a PSE.

Lemma 1.3. The sequence {c∗t , s∗t , k∗t+1, r
∗
t+1, w

∗
t+1}∞t=0 is a sliding equilibrium path

under perfect foresight starting from s∗−1 = k∗0.

Proof. See Appendix A. �

Thus, we obtain a PSE and prove the theorem. �

4 Observational equivalence

After defining a general equilibrium in the model with quasi-hyperbolic discounting
and proving its existence, we investigate the effects of discounting. It is frequently
argued that the observable outcome of consumption and savings decisions made by
agents with quasi-hyperbolic discounting does not necessarily differ from that of
agents with exponential discounting, which is known as observational equivalence.

Consider the standard Ramsey model, that is, the optimal growth model with
exponential discounting:

max
ct≥0, kt+1≥0

∞∑
t=0

γtu(ct) , s. t. ct + kt+1 = f(kt), t ≥ 0 , (9)

where 0 < γ < 1 is a constant discount factor. We call a solution to problem (9)
the γ-optimal path starting from k0.

The reasonable question to ask is whether the sequence of consumption and
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capital in a PSE coincides with some optimal path in the standard Ramsey model.
We formally define observational equivalence of PSE as follows.

Definition 3. A sliding equilibrium path under perfect foresight in the Ramsey
model with quasi-hyperbolic discounting starting from s∗−1, {c∗t , s∗t , k∗t+1, r

∗
t , w

∗
t }∞t=0,

is observationally equivalent to a γ-optimal path, if there exists γ for which the
sequence {c∗t , k∗t+1}∞t=0 is a solution to problem (9) starting from k∗0 = s∗−1.

In what follows we show that in the cases with log-utility and with stationary
sliding equilibria observational equivalence holds. We then prove that there is no
observational equivalence in the general case: within the class of isoelastic utility
functions, observational equivalence of PSE holds if and only if either utility is
logarithmic or the interest rate is constant.

4.1 Logarithmic utility

Consider the log-utility case. Then the following result holds.

Proposition 1. Suppose that u(c) = ln c. Then, irrespective of the production
technology, a sliding equilibrium path under perfect foresight exists, is unique, and
is observationally equivalent to the γ∗-optimal path, where γ∗ = βδ

1−δ+βδ .

Proof. It follows from (2) that when ρ = 1, the date-τ consumption in the date-
τ consumer optimum starting from s∗τ−1 at given {r∗t }∞t=τ and {w∗t }∞t=τ , satisfies
c∗∗ττ = 1−δ

1−δ+βδM
∗
τ , where M∗

τ = (1 + r∗τ )s
∗
τ−1 + w∗τ +

∑∞
t=τ+1

w∗t
(1+r∗τ+1)···(1+r∗t )

is the
present (date-τ) value of the expected date-τ lifetime income. For the formal
argument that M∗

τ <∞, see the proof of Lemma 1.3 in Appendix A.
By definition, a PSE starting from s∗−1 is a sequence {c∗t , s∗t , k∗t+1, r

∗
t , w

∗
t }∞t=0

such that for all τ ≥ 0,

c∗τ =
1− δ

1− δ + βδ
M∗

τ , k∗τ+1 = s∗τ = (1 + r∗τ )s
∗
τ−1 + w∗τ − c∗τ ,

1 + r∗τ = f ′(k∗τ ), w∗τ = f(k∗τ )− f ′(k∗τ )k∗τ .

It follows that lifetime incomes expected at dates τ and τ + 1 are linked:
M∗

τ − (1 + r∗τ )s
∗
τ−1 − w∗τ =

M∗τ+1

1+r∗τ+1
− s∗τ , and hence M∗

τ+1 = (1 + r∗τ+1)(M∗
τ − c∗τ ).

Therefore,

c∗τ+1 =
1− δ

1− δ + βδ
M∗

τ+1 = (1+r∗τ+1)

(
c∗τ −

1− δ
1− δ + βδ

c∗τ

)
=

βδ

1− δ + βδ
(1+r∗τ+1)c∗τ .
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Thus, in a PSE, the consumption levels at two adjacent dates are linked via
the following “first-order conditions”: c∗t+1 = βδ

1−δ+βδ (1 + r∗t+1)c∗t . Now it is clear
that the sequence {c∗t , k∗t+1}∞t=0 extracted from a PSE is the γ∗-optimal path, where
γ∗ = βδ

1−δ+βδ , and hence observational equivalence holds. �

Three comments about Proposition 1 are in order. First, Proposition 1 implies
that in the case with log-utility, observing only the path {c∗t , k∗t+1}∞t=0, one cannot
determine whether the agent has β–δ discounting and is time-inconsistent or the
agent has γ∗ discounting and is time-consistent. The equivalent discount factor γ∗

does not depend on technology and lies in between the short-run discount factor
βδ and the long-run discount factor δ, βδ < γ∗ < δ.

Second, Krusell et al. (2002) prove observational equivalence of a sophisticated
equilibrium path in the Ramsey model with quasi-hyperbolic discounting, log-
utility and Cobb–Douglas production technology, and obtain the same equivalent
discount factor γ∗. However, Krusell et al. (2002) consider sophisticated agents,
while we consider naive agents; and they consider only a Cobb–Douglas technology,
while our result holds irrespective of the technology. Thus, Proposition 1 implies
that self-deceptive naivete might be an alternative to sophistication for explaining
high saving rates of agents with quasi-hyperbolic discounting.

Third, Proposition 1 establishes the link between observational equivalence
and a controlled comparison of discount functions (see, e.g., Myerson et al., 2001;
Caliendo and Findley, 2014). Note that the equivalent discount factor is such that
γ∗ discounting provides the same degree of overall impatience as β–δ discounting:∑∞

t=0(γ∗)t = 1 + β
∑∞

t=1 δ
t. Under log-utility, controlling for overall impatience

implies that the paths of consumption and capital under exponential and quasi-
hyperbolic discounting are observationally equivalent.

4.2 Stationary sliding equilibrium

Before turning to the general results, consider a stationary sliding equilibrium
under perfect foresight (stationary perfect sliding equilibrium, SPSE).

Definition 4. A tuple {c∗, s∗, k∗, r∗, w∗} is a stationary sliding equilibrium under
perfect foresight if the sequence {c∗t , s∗t , k∗t+1, r

∗
t , w

∗
t }∞t=0, satisfying for each t ≥ 0,

c∗t = c∗, s∗t = s∗, k∗t+1 = k∗, r∗t = r∗, and w∗t = w∗, is a sliding equilibrium path
under perfect foresight starting from s∗.

By the definition of PSE, {c∗, s∗} are obtained from the associated date-τ
consumer optimum starting from s∗ at given constant interest rate r∗ and wage rate
w∗. It is clear that this underlying date-τ consumer optimum, which determines
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a SPSE, does not depend on τ . The following theorem states that a SPSE exists,
is unique and there is always observational equivalence.

Theorem 2. There is a unique stationary sliding equilibrium under perfect fore-
sight. It is observationally equivalent to a stationary γ∗-optimum, where

γ∗ =
(γ∗)

1
ρ − (βδ)

1
ρ

δ
1
ρ − (βδ)

1
ρ

. (10)

Proof. Take some r∗ > 0 and w∗ > 0. Let {c∗∗τt }∞t=τ be consumption in a date-τ
consumer optimum starting from s∗ at given constant interest rate r∗ and wage rate
w∗, that is, the solution to problem (1) for {rt}∞t=τ = {r∗, r∗, . . .} and {wt}∞t=τ =

{w∗, w∗, . . .}. The following lemma characterizes this consumer optimum.

Lemma 2.1. Suppose that δ(1+r∗)1−ρ < 1. A date-τ consumer optimum starting
from s∗ at given r∗ and w∗ exists, is unique, and the date-τ consumption satisfies

c∗∗ττ =
1− δ

1
ρ (1 + r∗)

1−ρ
ρ

1− δ
1
ρ (1 + r∗)

1−ρ
ρ + (βδ)

1
ρ (1 + r∗)

1−ρ
ρ

· 1 + r∗

r∗
· (r∗s∗ + w∗) . (11)

Proof. See Appendix B. �

By the definition of SPSE, c∗∗ττ = c∗ = (1 + r∗)s∗ + w∗ − s∗ = r∗s∗ + w∗. It
now follows from (11) that the interest rate in a SPSE is such that

1 + r∗ =
1− δ

1
ρ (1 + r∗)

1−ρ
ρ + (βδ)

1
ρ (1 + r∗)

1−ρ
ρ

(βδ)
1
ρ (1 + r∗)

1−ρ
ρ

,

that is, r∗ satisfies

1

1 + r∗
=

(
1

1+r∗

) 1
ρ − (βδ)

1
ρ

δ
1
ρ − (βδ)

1
ρ

. (12)

The following lemma shows that there exists a unique solution to equation
(12), and it is compatible with the existence of a date-τ consumer optimum.

Lemma 2.2. There is a unique solution r∗ to equation (12), and δ(1+r∗)1−ρ < 1.

Proof. See Appendix B. �

It follows that the tuple {c∗, s∗, k∗, r∗, w∗}, where r∗ is the solution to equation
(12), and s∗ = k∗ = (f ′)−1 (1 + r∗), w∗ = f(k∗)− f ′(k∗)k∗, and c∗ = r∗s∗ + w∗, is
the unique SPSE.

Furthermore, denote γ∗ = 1
1+r∗

. It is clear that since r∗ satisfies (12), γ∗

satisfies (10). Since f ′(k∗) = 1/γ∗, it follows that {c∗, k∗} is a stationary optimum
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in the standard Ramsey model with the discount factor γ∗. Therefore, a SPSE is
observationally equivalent to a stationary γ∗-optimum. �

It is easily checked that the stationary equivalent discount factor γ∗ lies in
between the short-run discount factor βδ and the long-run discount factor δ, βδ <
γ∗ < δ, and is increasing both in β and in δ. Note also that in the case of stationary
equilibria with log-utility, Theorem 2 and Proposition 1 yield the same result.

4.3 The general case

Consider now the question of observational equivalence of a PSE for general isoelas-
tic utility. The following theorem proves that there is no observational equivalence
in the general case: a PSE is observationally equivalent to some γ-optimal path if
and only if either utility is logarithmic or the interest rate is constant.

Theorem 3. A sliding equilibrium path under perfect foresight starting from s∗−1 6=
s∗ is observationally equivalent to a γ-optimal path if and only if ρ = 1.

Proof. Suppose that a PSE, {c∗t , s∗t , k∗t+1, r
∗
t , w

∗
t }∞t=0, is observationally equivalent to

some γ-optimal path. It follows from Theorem 2 that the equivalent discount factor
must be γ∗, and {c∗t , s∗t , k∗t+1, r

∗
t , w

∗
t }∞t=0 converges to the SPSE {c∗, s∗, k∗, r∗, w∗}

characterized in Theorem 2.
Let ∆t+1 be given by

∆t+1 = δ
1
ρ (1 + r∗t+2)

1−ρ
ρ + δ

2
ρ (1 + r∗t+2)

1−ρ
ρ (1 + r∗t+3)

1−ρ
ρ + . . . . (13)

It is easily seen that

∆t+1 = δ
1
ρ (1 + r∗t+2)

1−ρ
ρ (1 + ∆t+2) . (14)

Lemma 3.1. Let {c∗t , s∗t , k∗t+1, r
∗
t , w

∗
t }∞t=0 be a PSE. Then

c∗t+1 = c∗t
(
βδ(1 + r∗t+1)

) 1
ρ

1 + ∆t+1

1 + β
1
ρ∆t+1

. (15)

Proof. See Appendix C. �

Due to observational equivalence, c∗t+1 = c∗t
(
γ∗(1 + r∗t+1)

) 1
ρ . Taking account of

(15), we obtain that for all t ≥ 0,

(
γ∗

βδ

) 1
ρ

=
1 + ∆t+1

1 + β
1
ρ∆t+1

, and hence ∆t+1 =
(γ∗)

1
ρ − (βδ)

1
ρ

(βδ)
1
ρ − (βγ∗)

1
ρ

.
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Therefore, the value of ∆t+1 is constant over time. Using (14) and (10), we can
restate this condition in terms of interest rates as follows:

(1 + r∗t+2)
1−ρ
ρ =

1

(γ∗)
1
ρ

· (γ∗)
1
ρ − (βδ)

1
ρ

δ
1
ρ − (βδ)

1
ρ

= (γ∗)1− 1
ρ ,

or (
γ∗(1 + r∗t+2)

) 1−ρ
ρ = 1, t ≥ 0 . (16)

Clearly, (16) holds only in the following two cases. First, ρ = 1, which is
the log-utility case. Second, r∗t = r∗, which is the case of stationary equilibrium
with s∗−1 = s∗. Thus, in the Ramsey model with quasi-hyperbolic discounting and
isoelastic utility, a PSE starting from s∗−1 6= s∗ is not observationally equivalent
to an optimal path in the Ramsey model with exponential discounting unless
ρ = 1. �

The intuition behind Theorem 3 is as follows. Under perfect foresight the
expected prices are not revised and remain the same at each date. Therefore, in
a PSE the consumption levels at two adjacent dates are linked and satisfy the
“first-order conditions” (15). These conditions are compatible with the first-order
conditions in the standard Ramsey model if and only if either utility is logarithmic
or the interest rate is constant. Only then a PSE is observationally equivalent to
some γ-optimal path. In the case with log-utility considered in Proposition 1
the equivalent discount factor is given by γ∗ = βδ

1−δ+βδ . In the case of a SPSE
considered in Theorem 2 the equivalent discount factor γ∗ satisfies Eq. (10). In
all other cases, a PSE is not observationally equivalent to any γ-optimal path.

5 Quasi-perfect foresight

As we have seen, a self-deceptive naive agent has perfect foresight, being over-
confident about their time inconsistency but correctly anticipating the behavior of
all other agents in the economy. Here we consider how the outcome of the model
changes if agent’s naivete is unawareness-related, that is, an agent overlooks not
only their own time inconsistency but also time inconsistency of all other agents.
In this case, the agent at each date revises both their consumer optimum and their
expectations about prices, and hence has quasi-perfect foresight. In what follows
we formally define a QSE, introduce a corresponding sliding optimal path (SOP)
and characterize their properties.
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5.1 Sliding equilibrium path under quasi-perfect foresight

Consider the general equilibrium version of the Ramsey model with quasi-
hyperbolic discounting described in Section 2. At date τ , agents solve problem (1).
Producers at each date t ≥ τ solve problem (3). Suppose that at date τ each agent
believes that their date-τ consumer optimum would be followed in the future and
expects those interest and wage rates that are consistent with this belief. This
yields the “temporary” date-τ equilibrium path.

Formally, a date-τ equilibrium path (under quasi-hyperbolic discounting) start-
ing from sτ−1 is a sequence {c∗τt , s∗τt , k∗τt+1, r

∗τ
t , w

∗τ
t }∞t=τ , such that (i) agents

maximize utility correctly anticipating the prices from the date-τ perspective:
{c∗τt , s∗τt }∞t=τ is a date-τ consumer optimum starting from sτ−1 at given {r∗τt }∞t=τ
and {w∗τt }∞t=τ ; (ii) at each date prices are equal to marginal products from the
date τ perspective: 1 + r∗τt = f ′(k∗τt ) and w∗τt = f(k∗τt )− f ′(k∗τt )k∗τt ; (iii) at each
date savings are equal to investment: s∗τt−1 = k∗τt .

Clearly, the date-τ equilibrium path differs from the truncation of any previous-
date equilibrium path, and hence at each date τ there arises a new equilibrium.11

Therefore, each agent revises their expectations at each date: on the date-τ equilib-
rium path, the date-τ consumer optimum is obtained under expectations {r∗τt }∞t=τ
and {w∗τt }∞t=τ , while on the date-τ ′ equilibrium path, the date-τ ′ consumer opti-
mum is obtained under different expectations {r∗τ ′t }∞t=τ ′ and {w∗τ

′
t }∞t=τ ′ . It turns

out that each agent correctly anticipates prices on the date-τ equilibrium path
but cannot take into account that the equilibrium itself will change. This moti-
vates the definition of a QSE which is constructed by applying at each date τ the
corresponding date-τ equilibrium path.

Definition 5. A sequence {c◦t , s◦t , k◦t+1, r
◦
t , w

◦
t }∞t=0 is a sliding equilibrium path

under quasi-perfect foresight (QSE) starting from s◦−1, if

1. Consumption and savings at each date τ are obtained from the date-τ equi-
librium path, that is, from the date-τ consumer optimum starting from s◦τ−1

at given {r∗τt }∞t=τ and {w∗τt }∞t=τ ;

2. Prices at each date τ are equal to marginal products: 1 + r◦τ = f ′(k◦τ ) and
w◦τ = f(k◦τ )− f ′(k◦τ )k◦τ ;

3. Savings at each date τ are equal to investment: s◦τ = k◦τ+1.

11 Indeed, agent’s discount factor between periods τ + 1 and τ equals βδ from the date τ per-
spective, while it is equal to δ from any earlier perspective. Therefore, the value c∗τt planned at
date τ for the date-t consumption will never be optimal when date t comes.
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Definition 5 also deserves several comments. First, note that a QSE depends
on all date-τ equilibrium paths for τ ≥ 0. Under our assumptions, a date-τ
equilibrium path exists and is unique, and therefore there exists a unique QSE.
The structure of a QSE is illustrated in Fig. 3.
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Figure 3: Savings on date-τ equilibria and QSE

Second, the label quasi-perfect foresight highlights unawareness-related naivete
of the agent. In a QSE, an agent at each date is unaware of both their own time
inconsistency (hence revising their consumer optimum) and time inconsistency of
all other agents (hence revising the expected prices). The important difference
between a PSE and a QSE is precisely the formation of price expectations in
the consumer optimum. Under quasi-perfect foresight, the sequences of interest
and wage rates expected at each date τ coincide with those realized on the date-
τ equilibrium path (in each column in Fig. 3) but not on the sliding path. In
contrast, under perfect foresight, the sequences of interest and wage rates expected
at date τ coincide with those realized in PSE.

5.2 Sliding optimal paths

In order to study the properties of a QSE, it is convenient to introduce the cor-
responding sliding optimal path (see Definition 6 below). Given an initial capital
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stock kτ > 0, consider the following date-τ utility maximization problem:

max
ct≥0, kt+1≥0

u(cτ ) + β
∞∑

t=τ+1

δt−τu(ct) , s. t. ct + kt+1 = f(kt), t ≥ τ . (17)

A solution to problem (17), {c∗τt , k∗τt+1}∞t=τ , is the date-τ optimal path (under quasi-
hyperbolic discounting) starting from kτ .

Note that the date-τ equilibrium and the date-τ optimal paths are essentially
the same — a sequence {c∗τt , k∗τt+1}∞t=τ extracted from the date-τ equilibrium path is
the date-τ optimal path (starting from kτ = sτ−1).12 Similarly, a QSE is essentially
the same as a SOP which picks only the date-τ elements of each date-τ optimal
path.

Definition 6. A sequence {c◦t , k◦t+1}∞t=0 is a sliding optimal path starting from
k0 in the Ramsey model with quasi-hyperbolic discounting, if for each τ ≥ 0,
consumption and capital stock at date τ are obtained from the date-τ optimal path
under quasi-hyperbolic discounting starting from k◦τ : c◦τ = c∗ττ and k◦τ+1 = k∗ττ+1.

Clearly, a SOP exists and is unique. Note that a SOP is essentially character-
ized by the first step in problem (17), that is, by the first elements of the date-τ
optimal path {c∗τt , k∗τt+1}∞t=τ . This fact allows us to describe a SOP in terms of
dynamic programming (see Appendix D).

By construction, a sequence {c◦t , k◦t+1}∞t=0 extracted from a QSE is a SOP start-
ing from k0 = s−1. Thus, instead of studying the properties of a QSE, we can
study the properties of the corresponding SOP, which turns out to be much easier.

In particular, we are again interested in whether a SOP under quasi-hyperbolic
discounting coincides with some γ-optimal path. We formally define observational
equivalence of SOP as follows.

Definition 7. A sliding optimal path in the Ramsey model with quasi-hyperbolic
discounting, {c◦t , k◦t+1}∞t=0, is observationally equivalent to the γ-optimal path if
there exists γ for which {c◦t , k◦t+1}∞t=0 is a solution to problem (9).

To the best of our knowledge, a SOP is observationally equivalent to a γ-
optimal path only in the following two cases. First, in the case of a stationary
sliding optimum.

Definition 8. A pair {c◦, k◦} is a stationary sliding optimum if the sequence
{c◦t , k◦t+1}∞t=0, where for each t ≥ 0, c◦t = c◦ and k◦t+1 = k◦, is a sliding optimal
path starting from k◦.

12 This should be taken as a loose way of saying that in the Ramsey model the first and the
second fundamental theorems of welfare economics hold.
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Clearly, a stationary sliding optimum is observationally equivalent to a stationary
γ◦-optimum for γ◦ = 1/f ′(k◦). It can be checked that γ◦ < δ (see Appendix D).

Second, in the case with log-utility and Cobb–Douglas production technology.

Proposition 2. Suppose that u(c) = ln c and f(k) = kα. Then a sliding opti-
mal path in the Ramsey model with quasi-hyperbolic discounting is observationally
equivalent to the γ◦-optimal path, where γ◦ = βδ

1−αδ+αβδ .

Proof. See Appendix D. �

For a QSE, observational equivalence holds only in two cases:13 the case with
log-utility and Cobb–Douglas production technology and the case of stationary
equilibrium.

5.3 Comparison

Finally, we compare the properties of a PSE and a QSE in terms of saving rates,
long-run capital stocks and consumption.

As we have seen, already in the simplest case where u(c) = ln c and f(k) = kα,
PSE and QSE differ. By Proposition 1, the PSE is observationally equivalent to
the γ∗-optimal path, where γ∗ = βδ

1−δ+βδ (which does not depend on the production
technology). By Proposition 2, the QSE is observationally equivalent to the γ◦-
optimal path, where γ◦ = βδ

1−αδ+αβδ (which depends on the technology parameter
α). Comparing the equivalent discount factors, it is easily seen that βδ < γ◦ <

γ∗ < δ. Thus, the equivalent exponential discount factor is higher under perfect
foresight than under quasi-perfect foresight.

It is well known that for u(c) = ln c and f(k) = kα, the saving rate on the
γ-optimal path is constant and given by αγ. Therefore, the saving rate is always
higher under perfect foresight than under quasi-perfect foresight. It follows that
if the two economies start from the same initial condition, then the capital stock
at each date on the PSE is higher than the capital stock on the QSE. Conse-
quently, while initially consumption is higher on the QSE, starting from some
date, the PSE provides higher consumption. Therefore, the stationary capital
stock and consumption level are higher under perfect foresight than under quasi-
perfect foresight. Loosely speaking, the source of naivete is crucial for savings
decisions. In the considered case, when agents are unaware of their naivete, they
save less than sophisticated agents. However, when agents’ naivete originates from
self-deception, they save precisely as much as sophisticated agents.

13 We say that a QSE is observationally equivalent to a γ-optimal path if the corresponding SOP
is observationally equivalent to a γ-optimal path.
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The result about stationary states can be generalized — it also holds for station-
ary sliding equilibria when intertemporal elasticity of substitution in consumption
is sufficiently high. Recall that a SPSE was defined in Section 4.2. A stationary
sliding equilibrium under quasi-perfect foresight (SQSE) can be defined similarly.

Definition 9. A tuple {c◦, s◦, k◦, r◦, w◦} is a stationary sliding equilibrium under
quasi-perfect foresight if the sequence {c◦t , s◦t , k◦t+1, r

◦
t , w

◦
t }∞t=0, satisfying for each

t ≥ 0, c◦t = c◦, s◦t = s◦, k◦t+1 = k◦, r◦t = r◦, and w◦t = w◦, is a sliding equilibrium
path under quasi-perfect foresight starting from s◦ = k◦.

By the definition of QSE, {c◦, s◦, k◦, r◦, w◦} are the elements of the associated
date-τ equilibrium path starting from s◦. While this underlying date-τ equilibrium
path, {c∗τt , s∗τt , k∗τt+1, r

∗τ
t , w

∗τ
t }∞t=τ , does not depend on τ (all columns in Fig. 3 are

identical), the sequences of prices on this date-τ equilibrium path are not constant.
An important difference between SPSE and SQSE again lies in the formation

of price expectations in the consumer optimum. Consumption and savings on
a SQSE, {c◦, s◦}, are the first elements of the consumer optimum starting from
s◦ at given non-constant sequences

{
r◦, r◦, {r∗τt }∞t=τ+2

}
and

{
w◦, w◦, {w∗τt }∞t=τ+2

}
.

At the same time, consumption and savings on a SPSE, {c∗, s∗}, are the first
elements of the consumer optimum starting from s∗ at given constant sequences
{r∗, r∗, r∗, . . .} and {w∗, w∗, w∗, . . .}.

The comparison of consumer optima at given constant and non-constant se-
quences of interest and wage rates, allows us to compare SPSE with SQSE. The
following theorem shows that when 0 < ρ ≤ 1, a stationary capital stock is higher
under perfect foresight than under quasi-perfect foresight, irrespective of a pro-
duction technology.

Theorem 4. Let {c∗, s∗, k∗, r∗, w∗} be a stationary sliding equilibrium under per-
fect foresight, and {c◦, s◦, k◦, r◦, w◦} be a stationary sliding equilibrium under
quasi-perfect foresight. If 0 < ρ ≤ 1, then

c∗ > c◦, s∗ > s◦, k∗ > k◦, r∗ < r◦, w∗ > w◦ .

Proof. For the formal proof, see Appendix E. The idea is to assume the opposite
and obtain a contradiction. Suppose that k∗ ≤ k◦. It then follows that r◦ ≤ r∗

and w◦ ≥ w∗. Let c(r◦, w◦) be the date-τ consumption in the date-τ consumer
optimum starting from s◦ at given constant interest rate r◦ and wage rate w◦.

Since c◦ is consumption in a SQSE, it can be checked that k◦ ≥ k∗ implies
c(r◦, w◦) ≥ c◦. However, when 0 < ρ ≤ 1, it is easily seen from (2) that the
date-τ consumption in the date-τ consumer optimum starting from sτ−1 at given
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{rt}∞t=τ and {wt}∞t=τ is monotonically increasing in wt and decreasing in rt for all
t ≥ τ +1. Therefore, c(r◦, w◦) is lower than the date-τ consumption on the date-τ
equilibrium path starting from s◦, that is, c(r◦, w◦) < c◦. This contradiction shows
that for 0 < ρ ≤ 1 we must have k∗ > k◦. It then follows that s∗ > s◦, r∗ < r◦,
w∗ > w◦, and c∗ = f(k∗)− k∗ > f(k◦)− k◦ = c◦. �

We conjecture that the above result also holds for ρ > 1. A large number of
simulations with different values of β and δ supports this conjecture.

6 Conclusion

We study a general equilibrium version of the Ramsey model with quasi-hyperbolic
discounting. In order to capture the prevalent time-inconsistent behavior, naivete
of agents is taken as a point of departure. Naive agents revise their consumer
optima at each date, which results in a sliding equilibrium path. In general
equilibrium, a naive agent’s behavior depends on their expectations about other
naive agents’ behavior which determine future prices. We distinguish between
two sources of naivete (self-deception and unawareness), and argue that differ-
ent sources of naivete lead to different expectations about others’ future behavior
which in turn lead to different types of foresight about prices in equilibrium.

An agent whose naivete originates from self-deception has perfect foresight.
Such an agent is over-confident about their own time inconsistency but correctly
anticipates that all others will revise their paths, in accordance with significant
recent empirical evidence. Under perfect foresight, the expected sequences of
interest and wage rates at each date coincide with those realized in a sliding
equilibrium. The resulting sliding equilibrium path under perfect foresight (PSE)
is a novel equilibrium concept.

In contrast, an agent whose naivete originates from unawareness has quasi-
perfect foresight. Such an agent is unaware both of their own time inconsistency
and of the others’ time inconsistency, as is typically assumed in the literature.
Under quasi-perfect foresight, an agent at each date revises both their consumer
optimum and expectations about interest and wage rates. The resulting sliding
equilibrium path under quasi-perfect foresight (QSE) is constructed by applying
at each date τ the corresponding “temporary” date-τ equilibrium path.

We prove the existence of a PSE for the class of isoelastic utility functions
and note that the implications of perfect foresight and quasi-perfect foresight
differ. We compare PSE with QSE in terms of saving rates for the case with
log-utility and Cobb–Douglas production technology and for the case of station-
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ary equilibria with any utility function and production technology. We show that
self-deceptive naivete leads to higher capital accumulation in the long run than
unawareness-related naivete: perfect foresight implies a higher capital stock and
a higher consumption level than quasi-perfect foresight.

We show that neither PSE nor QSE is generically observationally equivalent to
some optimal path in the standard Ramsey model. We prove that observational
equivalence of non-stationary PSE holds if and only if utility is logarithmic. We
also prove that observational equivalence of QSE holds in the case with log-utility
and Cobb–Douglas production technology.

There are several open questions to be addressed by future studies. Of special
interest is the dynamics of PSE, that is, whether or not a PSE converges to a
stationary PSE. Also, the conditions under which observational equivalence holds
for QSE are yet to be fully characterized.

Our research can be extended in a number of ways. It is worthwhile to compare
PSE with QSE in terms of welfare, which is not an obvious task, as welfare criteria
under time inconsistency are not clearly defined. Another possible direction of
future research is to consider sliding equilibrium paths in a model where agents
are heterogeneous in their time preferences or differ in their source of naivete (that
is, some agents have perfect foresight, and some have quasi-perfect foresight).

This paper clarifies the concept of naivete and its relation to expectations in
the neoclassical growth model with quasi-hyperbolic discounting. We believe that
our approach can be used in a much wider range of applications and will be useful
for studying many other problems related to time-inconsistent decision making.

Appendix

A Proof of Theorem 1

A.1 A T -horizon PSE

Fix a finite horizon T ≥ 1 and consider a T -horizon date-τ consumer optimum.
Similarly to the infinite horizon case (cf. Eq. (2)), it is easily checked that for all
0 ≤ τ ≤ T , date-τ consumption level on a T -horizon date-τ consumer optimum
starting from kτ at given {rt+1}Tt=τ and {wt+1}Tt=τ satisfies

cττ =
f(kτ ) +

∑T+1
t=τ+1

wt
(1+rτ+1)···(1+rt)

1 + (βδ)
1
ρ (1 + rτ+1)

1−ρ
ρ + ...+ (βδT+1−τ )

1
ρ ((1 + rτ+1) ··· (1 + rT+1))

1−ρ
ρ

.
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Also, similarly to the infinite horizon case, a T -horizon PSE is associated with
T + 1 optimization problems of the form (4), i.e., with the sequence of the corre-
sponding T -horizon consumer optima. More precisely, a T -horizon PSE starting
from s∗−1 = k∗0 is a sequence {c∗t , s∗t , k∗t+1, r

∗
t+1, w

∗
t+1}Tt=0 characterized as follows:

• there exists a T -horizon date-0 consumer optimum starting from k∗0 at given
{r∗t+1}Tt=0 and {w∗t+1}Tt=0, which we denote by {c∗∗0t , s∗∗0t }T+1

t=0 , and its first
elements are precisely the date-0 consumption and savings on a T -horizon
PSE: c∗∗00 = c∗0 and s∗∗00 = s∗0;

• there exists a T -horizon date-1 consumer optimum starting from k∗1 at given
{r∗t+1}Tt=1 and {w∗t+1}Tt=1, denoted by {c∗∗1t , s∗∗1t }T+1

t=1 , and its first elements
are the date-1 consumption and savings on a T -horizon PSE: c∗∗11 = c∗1 and
s∗∗11 = s∗1;

• and so on, till the T -horizon date-T consumer optimum starting from k∗T
given r∗T+1 and w∗T+1, denoted by {c∗∗Tt , s∗∗Tt }T+1

t=T , whose first elements are
the date-T consumption and savings on a T -horizon PSE: c∗∗TT = c∗T and
s∗∗TT = s∗T ;

• so that the resulting sliding equilibrium capital stock sequence {k∗t+1}Tt=0 =

{s∗∗tt }Tt=0 determines precisely those interest and wage rates which were cor-
rectly expected by the agent when solving for consumer optima at each date.

A.2 Proof of Lemma 1.1

Step 1. Lower bounds for capital.
Let {ct(T ), kt+1(T )}T+1

t=0 be a solution to problem (5). Let for 0 ≤ t ≤ T + 1,
st(T ) = kt+1(T ), 1 + rt(T ) = f ′(kt(T )), and wt(T ) = f(kt(T )) − f ′(kt(T ))kt(T ).
It is well known that the sequence {ct(T ), st(T ), kt+1(T ), rt(T ), wt(T )}T+1

t=0 is a T -
horizon equilibrium path starting from s−1 = k0 in the standard Ramsey model
with the discount factor βδ. In what follows, a finite horizon T is fixed, so we
shall omit the notation “(T )” as long as it does not lead to confusion.

In particular, {ct}T+1
t=0 is a solution to the problem

max
ct≥0

T+1∑
t=0

(βδ)tu(ct), s. t. c0 +
T+1∑
t=1

ct
(1 + r1) ··· (1 + rt)

≤ f(k0) +
T+1∑
t=1

wt
(1 + r1) ··· (1 + rt)

,

and the following observation holds.
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Claim A.1. For all 0 ≤ τ ≤ T ,

cτ =
f(kτ ) +

∑T+1
t=1

wt
(1+r1)···(1+rt)

1 + (βδ)
1
ρ (1 + rτ+1)

1−ρ
ρ + ...+ (βδ)

T+1−τ
ρ
(
(1 + rτ+1) ··· (1 + rT+1)

) 1−ρ
ρ

.

Proof. The solution {ct}T+1
t=0 satisfies the following first-order conditions:

ct+1 =
(
βδ(1 + rt+1)

) 1
ρ ct, 0 ≤ t ≤ T. (A.1)

Substituting (A.1) into the budget constraint which holds as equality, we get

c0

(
1 +

T+1∑
t=1

(βδ)
t
ρ ((1 + r1) ··· (1 + rt))

1−ρ
ρ

)
= f(k0) +

T+1∑
t=1

wt
(1 + r1) ··· (1 + rt)

,

which proves the claim for τ = 0. To prove it for 1 ≤ τ ≤ T , it is sufficient to
note that the corresponding budget constraint holds for any τ :

cτ +
T+1∑
t=τ+1

ct
(1 + rτ+1) ··· (1 + rt)

= f(kτ ) +
T+1∑
t=τ+1

wt
(1 + rτ+1) ··· (1 + rt)

, (A.2)

and repeat the argument. �

Step 2. Constructing a fixed point.
Consider the following set consisting of bounded sequences of length T + 1:

ST =
{
{kt+1}Tt=0 | k1 ≤ k1 ≤ f(k∗0), and kt+1 ≤ kt+1 ≤ f(kt), 1 ≤ t ≤ T

}
.

Clearly, ST is a non-empty compact convex set. Now, given {kt+1}Tt=0 ∈ ST ,
consider the sequence {k̃t+1}Tt=0 constructed recursively as follows:

k̃1 = max{k1, f(k∗0)− c0
0}, k̃τ+1 = max{kτ+1, f(k̃τ )− cττ}, 1 ≤ τ ≤ T,

where cττ is the date-τ consumption on a T -horizon date-τ consumer optimum
starting from kτ at given interest and wage rates determined by the sequence
{kt+1}Tt=τ as 1 + rt = f ′(kt), and wt = f(kt)− f ′(kt)kt.

By construction, we have k̃t+1 ≥ kt+1 for all 0 ≤ t ≤ T . Moreover, since cττ ≥ 0

and kt+1 ≤ f(kt), it also follows that k̃1 ≤ f(k∗0) and k̃t+1 ≤ f(k̃t) for 1 ≤ t ≤ T .
Therefore, {k̃t+1}Tt=0 ∈ ST .

Thus we have a continuous mapping from a compact convex set ST to itself
such that {kt+1}Tt=0 maps into {k̃t+1}Tt=0. By the Brouwer’s fixed point theorem,
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there is a sequence {k∗t+1}Tt=0 ∈ ST , which is a fixed point of this mapping.

Step 3. Useful claims.
For the obtained fixed point {k∗t+1}Tt=0, let {r∗t+1}Tt=0 and {w∗t+1}Tt=0 be given by

1 + r∗t = f ′(k∗t ) and w∗t = f(k∗t ) − f ′(k∗t )k∗t for all 0 ≤ t ≤ T . Let {c∗∗τt , s∗∗τt }T+1
t=τ

be a T -horizon date-τ consumer optimum starting from k∗τ at given {r∗t+1}Tt=τ and
{w∗t+1}Tt=τ . Denote the date-τ consumption on this T -horizon date-τ consumer
optimum by c∗τ = c∗∗ττ . For all 0 ≤ τ ≤ T (cf. Section A.1),

c∗τ =

f(k∗τ ) +
∑T+1

t=τ+1
w∗t

(1+r∗τ+1)···(1+r∗t )

1 + (βδ)
1
ρ (1 + r∗τ+1)

1−ρ
ρ + ...+ (βδT+1−τ )

1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗T+1)

) 1−ρ
ρ

.
(A.3)

The following claim establishes a useful property of the sequence {c∗t}Tt=0.

Claim A.2. For 0 ≤ t ≤ T − 1,

c∗t+1 ≥ c∗t
(
βδ(1 + r∗t+1)

) 1
ρ

1 + ∆T
t

1 + β
1
ρ∆T

t

(= if k∗t+1 > kt+1) , (A.4)

where ∆T
t = δ

1
ρ (1 + r∗t+2)

1−ρ
ρ + . . .+ δ

T+1−t
ρ (1 + r∗t+2)

1−ρ
ρ ··· (1 + r∗T+1)

1−ρ
ρ .

Proof. Note that for 0 ≤ t ≤ T − 2, we have ∆T
t = δ

1
ρ (1 + r∗t+2)

1−ρ
ρ
(
1 + ∆T

t+1

)
(cf. Eq. (14)). Then (A.3) can be rewritten as

c∗t

(
1 + (βδ)

1
ρ (1 + r∗t+1)

1−ρ
ρ (1 + ∆T

t )
)

= f(k∗t )+
T+1∑
s=t+1

w∗s
(1 + r∗t+1) ··· (1 + r∗s)

. (A.5)

By construction of k∗τ+1, we have c∗τ + k∗τ+1 ≥ f(k∗τ ) (= if k∗τ+1 > kτ+1), and
hence it follows from (A.5) for t = τ that

c∗τ (βδ)
1
ρ (1 + r∗τ+1)

1−ρ
ρ (1 + ∆T

τ ) ≤ k∗τ+1 +
T+1∑
t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

, (A.6)

(with equality when k∗τ+1 > kτ+1).
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Consider the value c∗τ+1

(
1 + β

1
ρ∆T

τ

)
. By (A.5) for t = τ + 1 and (A.6), we get

c∗τ+1

(
1 + β

1
ρ∆T

τ

)
= c∗τ+1

(
1 + (βδ)

1
ρ (1 + r∗τ+2)

1−ρ
ρ (1 + ∆T

τ+1)
)

= (1 + r∗τ+1)k∗τ+1 + w∗τ+1 +
T+1∑
t=τ+2

w∗t
(1 + r∗τ+2) ··· (1 + r∗t )

= (1+r∗τ+1)

(
k∗τ+1 +

T+1∑
t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

)
≥ c∗τ (βδ)

1
ρ (1+r∗τ+1)

1
ρ (1+∆T

τ )

(with equality when k∗τ+1 > kτ+1).
Therefore, the consumption levels c∗τ+1 and c∗τ are linked as follows:

c∗τ+1 ≥ c∗τ
(
βδ(1 + r∗τ+1)

) 1
ρ

1 + ∆T
τ

1 + β
1
ρ∆T

τ

, (= if k∗τ+1 > kτ+1) ,

and this holds true for all 0 ≤ τ ≤ T − 1. �

Claim A.2 allows us to prove that the lower bound in ST is never binding for
our fixed point.

Claim A.3. For all 0 ≤ t ≤ T , we have k∗t+1 > kt+1.

Proof. First, let us prove that k∗t+1 > kt+1 for all t < T . Suppose the opposite,
i.e., that k∗τ+1 = kτ+1 for some τ ≤ T − 1. Then, by construction of k∗τ+1,

c∗τ ≥ f(k∗τ )− k∗τ+1 ≥ f(kτ )− k∗τ+1 = f(kτ )− kτ+1 = cτ . (A.7)

Let us show that in this case k∗τ+2 = kτ+2. Indeed, suppose the opposite, i.e.,
k∗τ+2 > kτ+2. Then, by construction of k∗τ+2,

c∗τ+1 = f(k∗τ+1)− k∗τ+2 = f(kτ+1)− k∗τ+2 < f(kτ+1)− kτ+2 = cτ+1.

However, since 1 + ∆T
τ > 1 + β

1
ρ∆T

τ , it follows from (A.4), (A.7) and (A.1) that

c∗τ+1 ≥ c∗τ
(
βδ(1 + r∗τ+1)

) 1
ρ

1 + ∆T
τ

1 + β
1
ρ∆T

τ

>
(
βδ(1 + r∗τ+1)

) 1
ρ c∗τ ≥

(
βδ(rτ+1)

) 1
ρ cτ = cτ+1.

This contradiction shows that k∗τ+2 = kτ+2. Similarly to (A.7), it follows that

c∗τ+1 ≥ f(k∗τ+1)− k∗τ+2 = f(kτ+1)− kτ+2 = cτ+1. (A.8)

Repeating the argument, we obtain that if k∗τ+1 = kτ+1, then k∗t+1 = kt+1 for
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all τ + 1 ≤ t ≤ T , and hence the sequence {k∗t+1}Tt=τ coincides with the sequence
{kt+1}Tt=τ . However, in this case for all τ ≤ t ≤ T , we have 1 + r∗t+1 = 1 + rt+1 and
w∗t+1 = wt+1, and it follows from Claim A.1 and (A.3) that

cτ+1 =
f(k∗τ+1) +

∑T+1
t=τ+2

w∗t
(1+r∗τ+2)···(1+r∗t )

1 + (βδ)
1
ρ (1 + r∗τ+2)

1−ρ
ρ + ...+ (βδ)

T+1−τ
ρ
(
(1 + r∗τ+2) ··· (1 + r∗T+1)

) 1−ρ
ρ

>

f(k∗τ+1) +
∑T+1

t=τ+2
w∗t

(1+r∗τ+2)···(1+r∗t )

1 + (βδ)
1
ρ (1 + r∗τ+2)

1−ρ
ρ + ...+ (βδT+1−τ )

1
ρ
(
(1 + r∗τ+2) ··· (1 + r∗T+1)

) 1−ρ
ρ

= c∗τ+1,

because in the denominator β < 1. This contradiction to (A.8) shows that for all
0 ≤ t ≤ T − 1, we have k∗t+1 > kt+1.

Second, let us prove that k∗T+1 > kT+1. Suppose the opposite, i.e., k∗T+1 = kT+1,
and hence 1 + r∗T+1 = 1 + rT+1 and w∗T+1 = wT+1. By construction of k∗T+1,

c∗T ≥ f(k∗T )− k∗T+1 ≥ f(kT )− k∗T+1 = f(kT )− kT+1 = cT . (A.9)

Consider now the T -horizon date-T consumer optimum starting from k∗T at
given 1 + r∗T+1 and w∗T+1. By the first-order condition, (A.9) and (A.1), we have

c∗∗TT+1 =
(
βδ(1 + r∗T+1)

) 1
ρ c∗T =

(
βδ(1 + rT+1)

) 1
ρ c∗T >

(
βδ(1 + rT+1)

) 1
ρ cT = cT+1.

At the same time, it follows from the budget constraint, (A.9) and (A.2) that

c∗∗TT+1 = (1 + r∗T+1) (f(k∗T )− c∗T ) + w∗T+1 ≤ (1 + r∗T+1)k∗T+1 + w∗T+1

= f(k∗T+1) = f(kT+1) = (1 + rT+1) (f(kT )− cT ) + wT+1 = cT+1.

This contradiction shows that k∗T+1 > kT+1, which proves the claim. �

Step 4. Ensuring existence.
Claim A.3 shows that for all 0 ≤ τ ≤ T , our obtained fixed point satisfies

k∗τ+1 > kτ+1. Let for 0 ≤ τ ≤ T , s∗τ = k∗τ+1. Then s∗τ = f(k∗τ ) − c∗τ , and hence
by construction c∗τ and s∗τ are the first elements of the T -horizon date-τ consumer
optimum starting from k∗τ at given {r∗t+1}Tt=τ and {w∗t+1}Tt=τ .

It follows that the obtained fixed point determines the T -horizon PSE starting
from s∗−1 = k∗0. Formally, the sequence {c∗t , s∗t , k∗t+1, r

∗
t+1, w

∗
t+1}Tt=0, where {k∗t+1}Tt=0

is the fixed point of the described mapping ST → ST , and for all 0 ≤ τ ≤ T ,
c∗τ = f(k∗τ )− k∗τ+1, s∗τ = k∗τ+1, 1 + r∗τ = f ′(k∗τ ), and w∗τ = f(k∗τ )− f ′(k∗τ )k∗τ , satisfies
Definition 2 and hence is a T -horizon PSE.
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A.3 Proof of Lemma 1.2

It follows from Claim A.3 that the sequence of capital stocks on a T -horizon PSE
is bounded from below by the sequence of capital stocks {kt+1(T )}Tt=0. It remains
to show that it is also bounded from above.

Step 1. Upper bounds for capital.
Let {c̄t(T ), k̄t+1(T )}T+1

t=0 be a solution to problem (6). Let for 0 ≤ t ≤ T + 1,
s̄t(T ) = k̄t+1(T ), 1 + r̄t(T ) = f ′(k̄t(T )), and w̄t(T ) = f(k̄t(T )) − f ′(k̄t(T ))k̄t(T ).
Then the sequence {c̄t(T ), s̄t(T ), k̄t+1(T ), r̄t(T ), w̄t(T )}T+1

t=0 is a T -horizon equilib-
rium path starting from s̄−1 = k̄0 in the standard Ramsey model with the discount
factor δ. In what follows we omit the notation “(T )”, as there will be no confusion.

Similarly to (A.1) and (A.2), it is easily checked that {c̄τ}T+1
τ=0 satisfies

c̄τ+1 = (δ(1 + r̄τ+1))
1
ρ c̄τ , (A.10)

c̄τ +
T+1∑
t=τ+1

c̄t
(1 + r̄τ+1) ··· (1 + r̄t)

= f(k̄τ ) +
T+1∑
t=τ+1

w̄t
(1 + r̄τ+1) ··· (1 + r̄t)

. (A.11)

Step 2. Upper and lower bounds for the consumption growth rate.
Let {c∗t , s∗t , k∗t+1, r

∗
t+1, w

∗
t+1}Tt=0 be a T -horizon PSE starting from s∗−1 = k∗0.

We already know that date-τ consumption on this path is given by (A.3). The
following claim provides upper and lower bounds for the consumption growth rate
on a T -horizon PSE.

Claim A.4. On a T -horizon PSE we have

(βδ(1 + r∗t+1))
1
ρ <

c∗t+1

c∗t
< (δ(1 + r∗t+1))

1
ρ . (A.12)

Proof. By Claims A.2 and A.3, on a T -horizon PSE the consumption levels at any
two adjacent dates are linked via the following “first-order conditions” (cf. Eq.
(15)): c∗t+1 = c∗t

(
βδ(1 + r∗t+1)

) 1
ρ 1+∆T

t

1+β
1
ρ∆T

t

. Since 1+∆T
t > 1+β

1
ρ∆T

t > β
1
ρ +β

1
ρ∆T

t ,

we have
c∗t+1

c∗t
=
(
βδ(1 + r∗t+1)

) 1
ρ

1 + ∆T
t

1 + β
1
ρ∆T

t

>
(
βδ(1 + r∗t+1)

) 1
ρ ,

and
c∗t+1

c∗t
=
(
δ(1 + r∗t+1)

) 1
ρ
β

1
ρ + β

1
ρ∆T

t

1 + β
1
ρ∆T

t

<
(
δ(1 + r∗t+1)

) 1
ρ ,

and hence (A.12) holds. �

Step 3. Proof of the lemma.
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Now we can show that the sequence of capital stocks on a T -horizon PSE is
bounded from above by the sequence {k̄t+1(T )}Tt=0.

Claim A.5. For all 0 ≤ t ≤ T , we have k∗t+1 < k̄t+1.

Proof. Suppose the opposite, i.e., that while k∗0 = k̄0 and k∗τ < k̄τ (if τ > 0), we
have k∗τ+1 ≥ k̄τ+1 for some τ ≤ T − 1. Then

c∗τ = f(k∗τ )− k∗τ+1 ≤ f(k̄τ )− k∗τ+1 ≤ f(k̄τ )− k̄τ+1 = c̄τ . (A.13)

Let us show that also k∗τ+2 ≥ k̄τ+2. Suppose the opposite, i.e., k∗τ+2 < k̄τ+2.
Then c∗τ+1 = f(k∗τ+1) − k∗τ+2 ≥ f(k̄τ+1) − k∗τ+2 > f(k̄τ+1) − k̄τ+2 = c̄τ+1. At the
same time, it follows from (A.12), (A.13) and (A.10) that

c∗τ+1 <
(
δ(1 + r∗t+1)

) 1
ρ c∗τ ≤ (δ(1 + r̄t+1))

1
ρ c∗τ ≤ (δ(1 + r̄t+1))

1
ρ c̄τ = c̄τ+1.

This contradiction shows that k∗τ+2 ≥ k̄τ+2.
Repeating the argument, we obtain that if k∗τ+1 ≥ k̄τ+1, then k∗t+1 ≥ k̄t+1 for

all τ + 1 ≤ t ≤ T . It then follows from (A.12) that c∗t ≤ c̄t for all τ ≤ t ≤ T .
Consider now the T -horizon date-T consumer optimum starting from k∗T at

given 1 + r∗T+1 and w∗T+1. Since β < 1, by the first-order condition and (A.10),

c∗∗TT+1 <
(
δ(1 + r∗T+1)

) 1
ρ c∗T ≤ (δ(1 + r̄t+1))

1
ρ c∗T ≤ (δ(1 + r̄t+1))

1
ρ c̄T = c̄T+1. How-

ever, it follows from the budget constraint and (A.11) that

c∗∗TT+1 = (1 + r∗T+1) (f(k∗T )− c∗T ) + w∗T+1 = (1 + r∗T+1)k∗T+1 + w∗T+1

= f(k∗T+1) ≥ f(k̄T+1) = (1 + r̄T+1)
(
f(k̄T )− c̄T

)
+ w̄T+1 = c̄T+1,

and this contradiction shows that indeed k∗t+1 < k̄t+1 for all 0 ≤ t ≤ T . �

A.4 Proof of Lemma 1.3

Step 1. Upper and lower bounds for capital.
Let {ct, kt+1}∞t=0 be the βδ-optimal path, i.e., the optimal path starting from

k0 = k∗0 in the standard Ramsey model with a discount factor βδ. It is clear that
ct = limT→∞ ct(T ) and kt+1 = limT→∞ kt+1(T ).

Similarly, let {c̄t, k̄t+1}∞t=0 be the δ-optimal path, i.e., the optimal path starting
from k̄0 = k∗0 in the standard Ramsey model with a discount factor δ. As above,
it is clear that c̄t = limT→∞ c̄t(T ) and k̄t+1 = limT→∞ k̄t+1(T ).

Step 2. A closed-form expression for consumption.
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Now note that by construction of the sequence (8), {c∗t , s∗t , k∗t+1, r
∗
t+1, w

∗
t+1}∞t=0,

we have c∗t = limT→∞ c
∗
t (T ), s∗t = limT→∞ s

∗
t (T ), k∗t+1 = limT→∞ k

∗
t+1(T ), r∗t+1 =

limT→∞ r
∗
t+1(T ), and w∗t+1 = limT→∞w

∗
t+1(T ).

Taking the limit T →∞ in (7), we obtain that kt+1 ≤ k∗t+1 ≤ k̄t+1 for all t ≥ 0.
It immediately follows that st ≤ s∗t ≤ s̄t, wt ≤ w∗t ≤ w̄t, and r̄t ≤ r∗t ≤ rt.

Note also that c∗0 = f(k∗0)− k∗1 = f(k̄0)− k∗1 ≥ f(k̄0)− k̄1 = c̄0, and taking the
limit T →∞ in (A.12), we get

c∗t+1

c∗t
= lim

T→∞

c∗t+1(T )

c∗t (T )
≥ (βδ(1 + r∗t+1))

1
ρ ≥ (βδ(1 + r̄t+1))

1
ρ ,

so that c∗t > 0 for all t ≥ 0.
Let us show that c∗τ is given by a limit of (A.3) as T →∞.

Claim A.6. For all τ ≥ 0, we have

c∗τ =

f(k∗τ ) +
∑∞

t=τ+1
w∗t

(1+r∗τ+1)···(1+r∗t )

1 + (βδ)
1
ρ (1 + r∗τ+1)

1−ρ
ρ + ...+ (βδt)

1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗τ+t)

) 1−ρ
ρ + ...

.
(A.14)

Proof. Note that (A.3) can be written as

c∗τ (T )

(
1 +

T+1∑
t=τ+1

(βδt−τ )
1
ρ
(
(1 + r∗τ+1(T )) ··· (1 + r∗t (T ))

) 1−ρ
ρ

)

= f(k∗τ (T )) +
T+1∑
t=τ+1

w∗t (T )

(1 + r∗τ+1(T )) ··· (1 + r∗t (T ))
. (A.15)

By (7), the right hand side in (A.15) is bounded from above for any T , and
hence there exists a finite limit as T →∞:

lim
T→∞

{
f(k∗τ (T )) +

T+1∑
t=τ+1

w∗t (T )

(1 + r∗τ+1(T )) ··· (1 + r∗t (T ))

}

= f(k∗τ ) +
∞∑

t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

≤ f(k̄τ ) +
∞∑

t=τ+1

w̄t
(1 + r̄τ+1) ··· (1 + r̄t)

.

It then follows from (A.15) that there exists a finite limit of its left hand side
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as T →∞, and hence the following series converges:

lim
T→∞

(
1 +

T+1∑
t=τ+1

(βδt−τ )
1
ρ
(
(1 + r∗τ+1(T )) ··· (1 + r∗t (T ))

) 1−ρ
ρ

)
= 1 + (βδ)

1
ρ (1 + r∗τ+1)

1−ρ
ρ + . . .+ (βδt)

1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗τ+t)

) 1−ρ
ρ + . . . .

Therefore, taking the limit T →∞ in (A.15), we obtain (A.14). �

Step 3. Infinite horizon date-τ consumer optimum.
For each τ ≥ 0, consider the sequence {c∗∗τt }∞t=τ , which is defined as follows:

c∗∗ττ = c∗τ , c∗∗ττ+1 =
(
βδ(1 + r∗τ+1)

) 1
ρ c∗∗ττ ,

c∗∗τt+1 =
(
δ(1 + r∗t+1)

) 1
ρ c∗∗τt , t ≥ τ + 1 .

(A.16)

Claim A.7. The sequence {c∗∗τt }∞t=τ is the sequence of consumptions on the date-τ
consumer optimum starting from k∗τ at given {r∗t+1}∞t=τ and {w∗t+1}∞t=τ .

Proof. Let us show that {c∗∗τt }∞t=τ is the solution to the following problem:

max
ct≥0

u(cτ ) + β
∞∑

t=τ+1

δt−τu(ct) , s. t. cτ +
∞∑

t=τ+1

ct
(1 + r∗τ+1) ··· (1 + r∗t )

≤ f(k∗τ ) +
∞∑

t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

.

It follows from (A.16) that {c∗∗τt }∞t=τ satisfies the first-order conditions for the
solution to this problem. By combining (A.16) and (A.14), it is easily seen that

c∗∗ττ +
∞∑

t=τ+1

c∗∗τt

(1 + r∗τ+1) ··· (1 + r∗t )
= c∗τ

(
1 + (βδ)

1
ρ (1 + r∗τ+1)

1−ρ
ρ + ...

+(βδt)
1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗τ+t)

) 1−ρ
ρ + ...

)
= f(k∗τ )+

∞∑
t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

,

so that {c∗∗τt }∞t=τ satisfies the budget constraint in this problem.
Consider the utility on the path {c∗∗τt }∞t=τ , Uτ = u(c∗∗ττ )+β

∑∞
t=τ+1 δ

t−τu(c∗∗τt ).
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Using (A.16) and (A.14), we obtain that

Uτ =
(c∗∗ττ )1−ρ

1− ρ
+β

∞∑
t=τ+1

δt−τ
(c∗∗τt )1−ρ

1− ρ
=

(c∗∗ττ )1−ρ

1− ρ

(
1 + β

∞∑
t=τ+1

δt−τ
(
c∗∗τt

c∗∗ττ

)1−ρ
)

=
1

1− ρ
c∗∗ττ

(c∗∗ττ )ρ

(
1 +

∞∑
t=τ+1

(βδt−τ )
1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗t )

) 1−ρ
ρ

)

=
1

1− ρ
1

(c∗τ )
ρ

(
f(k∗τ ) +

∞∑
t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

)
.

It is now clear that −∞ < Uτ <∞, which completes the proof of the claim. �

Step 4. Ensuring existence.
Claim A.7 shows that the sequence {c∗∗τt }∞t=τ , determined by (A.16), is the

sequence of consumptions on the date-τ consumer optimum starting from k∗τ at
given {r∗t+1}∞t=τ and {w∗t+1}∞t=τ . Therefore, for each τ , c∗τ and s∗τ = f(k∗τ ) − c∗τ
are the first elements of the date-τ consumer optimum starting from k∗τ at given
{r∗t+1}∞t=τ and {w∗t+1}∞t=τ . Thus the sequence {c∗t , s∗t , k∗t , r∗t , w∗t }∞t=0, given by (8), is
a sliding equilibrium path under perfect foresight starting from s∗−1 = k∗0, which
completes the proof of Lemma 1.3 and the proof of existence theorem as well.

B Proof of Theorem 2

B.1 Proof of Lemma 2.1

Since 1
1+r∗

< 1, the right-hand side of the budget constraint in problem (1) under
constant interest rate r∗ and wage rate w∗ is finite:

(1 + r∗)s∗ +
∞∑
t=0

w∗

(1 + r∗)t
= (1 + r∗)s∗ +

w∗

1− 1
1+r∗

=
1 + r∗

r∗
(r∗s∗ + w∗) < +∞.

It now follows from (2) that

c∗∗ττ =
1+r∗

r∗
(r∗s∗ + w∗)

1 + (βδ)
1
ρ (1 + r∗)

1−ρ
ρ + . . .+ (βδt)

1
ρ (1 + r∗)

t(1−ρ)
ρ + . . .

.
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Since δ(1 + r∗)1−ρ < 1, the sum in the denominator is finite:

1 + (βδ)
1
ρ (1 + r∗)

1−ρ
ρ

(
1 + (δ(1 + r∗)1−ρ)

1
ρ + (δ(1 + r∗)1−ρ)

2
ρ + . . .

)
= 1 +

(βδ)
1
ρ (1 + r∗)

1−ρ
ρ

1− δ
1
ρ (1 + r∗)

1−ρ
ρ

=
1− δ

1
ρ (1 + r∗)

1−ρ
ρ + (βδ)

1
ρ (1 + r∗)

1−ρ
ρ

1− δ
1
ρ (1 + r∗)

1−ρ
ρ

.

Thus a date-τ consumer optimum at given r∗ and w∗ exists and is unique. In this
optimum, c∗∗ττ is given by (11).

B.2 Proof of Lemma 2.2

The interest rate on a SPSE, r∗, satisfies

1 + r∗ =
1− δ

1
ρ (1 + r∗)

1−ρ
ρ + (βδ)

1
ρ (1 + r∗)

1−ρ
ρ

(βδ)
1
ρ (1 + r∗)

1−ρ
ρ

.

Rearranging the above equation, we get

(βδ)
1
ρ (1 + r∗)

1
ρ = 1− δ

1
ρ (1 + r∗)

1−ρ
ρ + (βδ)

1
ρ (1 + r∗)

1−ρ
ρ ,

and hence 1
1+r∗

=
( 1
1+r∗ )

1
ρ−(βδ)

1
ρ

δ
1
ρ−(βδ)

1
ρ

. Thus r∗ is the solution to equation (12).

Denote γ∗ = 1
1+r∗

. It is clear that equations (10) and (12) are essentially the
same. Let us show that there exists a unique solution to equation (10), and this
solution satisfies δ < (γ∗)1−ρ, i.e., δ(1 + r∗)1−ρ < 1.

Consider the functions L(γ) = γ, and R(γ) = γ
1
ρ−(βδ)

1
ρ

δ
1
ρ−(βδ)

1
ρ
. Both L(γ) and R(γ)

are monotonically increasing in γ. Moreover, R(βδ) = 0 < βδ = L(βδ), and
R(δ) = 1 > δ = L(δ). Since R(γ) is strictly convex for ρ < 1, linear for ρ = 1, and
strictly concave for ρ > 1, for any ρ there is a unique γ∗ such that L(γ∗) = R(γ∗).
This γ∗ is the solution to equation (10), and it is clear that βδ < γ∗ < δ.

Since ρ > 0, we also have (βδ)
1
ρ < (γ∗)

1
ρ < δ

1
ρ , and hence

γ∗ =
(γ∗)

1
ρ − (βδ)

1
ρ

δ
1
ρ − (βδ)

1
ρ

<
(γ∗)

1
ρ

δ
1
ρ

.

Therefore, δ < (γ∗)1−ρ, which completes the proof of the lemma.
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C Proof of Lemma 3.1

Let c∗∗ττ be the date-τ consumption in the date-τ consumer optimum starting from
s∗τ−1 at given {r∗t }∞t=τ and {w∗t }∞t=τ . It follows from (2) that

c∗∗ττ =
(1 + r∗τ )s

∗
τ−1 + w∗τ +

∑∞
t=τ+1

w∗t
(1+r∗τ+1)···(1+r∗t )

1 + (βδ)
1
ρ (1 + r∗τ+1)

1−ρ
ρ + ...+ (βδt)

1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗τ+t)

) 1−ρ
ρ + ...

.

Due to the properties of r∗ (cf. Lemma 2.2), c∗∗ττ is well-defined for all τ :

w∗t+1

(1 + r∗τ+1) ··· (1 + r∗t+1)

(1 + r∗τ+1) ··· (1 + r∗t )

w∗t
=
w∗t+1

w∗t

1

1 + r∗t+1

−−−→
t→∞

1

1 + r∗
< 1,

(βδt+1)
1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗t+1)

) 1−ρ
ρ

(βδt)
1
ρ
(
(1 + r∗τ+1) ··· (1 + r∗t )

) 1−ρ
ρ

= δ
1
ρ (1 + r∗t+1)

1−ρ
ρ −−−→

t→∞
δ

1
ρ (1 + r∗)

1−ρ
ρ < 1.

By the d’Alembert’s ratio test both infinite series in the equation for c∗∗ττ converge.
Let ∆t+1 be given by (13). By the same argument as above, 0 < ∆t < ∞ for

all t. Now, in a PSE, we have for all τ ≥ 0,

c∗τ = c∗∗ττ =
(1 + r∗τ )s

∗
τ−1 + w∗τ +

∑∞
t=τ+1

w∗t
(1+r∗τ+1)···(1+r∗t )

1 + (βδ)
1
ρ (1 + r∗τ+1)

1−ρ
ρ (1 + ∆τ+1)

, (C.1)

k∗τ+1 = s∗τ = (1 + r∗τ )s
∗
τ−1 + w∗τ − c∗τ , 1 + r∗τ = f ′(k∗τ ), w∗τ = f(k∗τ )− f ′(k∗τ )k∗τ .

Consider the value c∗τ+1(1 + β
1
ρ∆τ+1). By (14) and (C.1), we have

c∗τ+1

(
1 + β

1
ρ∆τ+1

)
= c∗τ+1

(
1 + (βδ)

1
ρ (1 + r∗τ+2)

1−ρ
ρ (1 + ∆τ+2)

)
= (1 + r∗τ+1)

(
s∗τ +

∞∑
t=τ+1

w∗t
(1 + r∗τ+1) ··· (1 + r∗t )

)
= (1 + r∗τ+1)

(
s∗τ − (1 + r∗τ )s

∗
τ−1

−w∗τ + c∗τ + c∗τ (βδ)
1
ρ (1 + r∗τ+1)

1−ρ
ρ (1 + ∆τ+1)

)
= c∗τ (βδ)

1
ρ (1 + r∗τ+1)

1
ρ (1 + ∆τ+1).

Thus, in a PSE the consumption levels at two adjacent dates are linked via
the “first-order conditions” (15), which proves the lemma.

D Characterization of sliding optimal paths

A SOP is essentially characterized by the first step in problem (17), i.e., by the
first elements from the date-τ optimal path {c∗τt , k∗τt+1}∞t=τ . After the first step
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is implemented at date τ (c∗ττ is consumed and k∗ττ+1 remains as the new capital
stock), the remaining problem is problem (9) with the constant discount factor δ.

Let Vγ(k) be the value function of problem (9):

Vγ(k) = max
0≤k′≤f(k)

u(f(k)− k′) + γVγ(k
′) . (D.1)

The associated policy function gγ(k) is implicitly given by the functional equation:

u′(f(k)− gγ(k)) = γV ′γ(gγ(k)) . (D.2)

Thus the γ-optimal path in the standard Ramsey model is fully determined by
value function Vγ(k) or policy function gγ(k).

Since the continuation of the date-τ optimal path is the δ-optimal path, the
first step in problem (17) can be described as follows:

max
0≤k′≤f(k)

u(f(k)− k′) + βδVδ(k
′) .

Therefore, the policy function h(k) which solves the functional equation

u′(f(k)− h(k)) = βδV ′δ (h(k)) , (D.3)

determines a SOP which is a sequence {c◦t , k◦t+1}∞t=0 such that c◦t = f(k◦t ) − h(k◦t )

and k◦t+1 = h(k◦t ).
Clearly, a SOP under β–δ discounting is observationally equivalent to some

γ-optimal path if and only if h(k) = gγ(k) for all k, which, using (D.2) and (D.3),
can be written as

γV ′γ(k) = βδV ′δ (k), ∀k . (D.4)

Therefore, observational equivalence of SOP depends on the properties of a value
function of the standard Ramsey model.

It is very hard to expect that the derivative of a value function, γV ′γ(k), simply
scales when a discount factor changes, i.e., that equation (D.4) holds. To the best
of our knowledge, a SOP under quasi-hyperbolic discounting is observationally
equivalent to a γ-optimal path either for log-utility and Cobb–Douglas production
technology or for a stationary sliding optimum.

Proof of Proposition 2. When u(c) = ln c and f(k) = kα, there is a closed-
form solution for (D.1): Vγ(k) = 1

1−γ

(
ln(1− αγ) + αγ

1−αγ ln(αγ)
)

+ α
1−αγ ln k, and

the associated policy function is given by gγ(k) = αγkα. Then equation (D.3)
which determines the policy function h(k) associated with a SOP takes the form
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1
kα−h(k)

= βδV ′δ (h(k)), which can be rewritten as 1
kα−h(k)

= αβδ
1−αδ

1
h(k)

, so that
h(k) = αβδ

1−αδ+αβδk
α. Hence h(k) coincides with the policy function gγ◦(k) associ-

ated with the γ◦-optimal path for γ◦ = βδ
1−αδ+αβδ . Therefore, a SOP is observa-

tionally equivalent to γ◦-optimal path. �

A stationary sliding optimum is observationally equivalent to a stationary γ◦-
optimum for γ◦ = 1/f ′(k◦). Let us show that γ◦ < δ, which is equivalent to
k◦ < kδ, where kδ is the modified golden rule capital stock for the discount factor
δ. Indeed, k◦ is the solution to equation (D.3) for h(k) = k:

f(k)− k = (βδV ′δ (k))
− 1
ρ . (D.5)

Consider the functions L(k) = f(k) − k and R(k) = 1

(βδV ′δ (k))
1
ρ
. Clearly, L(k)

monotonically increases for k < kδ, is concave, and L(0) = 0. At the same time,
since Vδ(k) is concave, we have R′(k) =

(
1/ρ(βδ)

1
ρ

)
|V ′′δ (k)|/ (V ′δ (k))1+ 1

ρ > 0.
Thus, R(k) also monotonically increases for k < kδ, and R(0) = 0. When β = 1,
the solution to (D.5) is kδ. As β decreases, R(k) shifts upward, and hence the
capital stock which solves equation (D.5) decreases. This means that for β < 1,
we have k◦ < kδ, i.e., γ◦ < δ.

E Proof of Theorem 4

The proof is by contradiction. Suppose that k∗ ≤ k◦, so r◦ ≤ r∗ and w◦ ≥ w∗. Let
c(r◦, w◦) be the date-τ consumption in the date-τ consumer optimum starting from
s◦ at given constant r◦ and w◦. The following lemma shows that c(r◦, w◦) ≥ c◦.

Lemma E.1. Suppose that 0 < ρ ≤ 1, and k∗ ≤ k◦. Then c(r◦, w◦) ≥ c◦.

Proof. Since r◦ ≤ r∗ and 0 < ρ ≤ 1, we have δ(1 + r◦)1−ρ ≤ δ(1 + r∗)1−ρ < 1. It
then follows from Lemma 2.1 that c(r◦, w◦) exists and is given by

c(r◦, w◦) =
1− δ

1
ρ (1 + r◦)

1−ρ
ρ

1− δ
1
ρ (1 + r◦)

1−ρ
ρ + (βδ)

1
ρ (1 + r◦)

1−ρ
ρ

· 1 + r◦

r◦
· (r◦s◦ + w◦).

Taking into account that c◦ = (1 + r◦)s◦ + w◦ − s◦ = r◦s◦ + w◦, we get
c(r◦, w◦) = Q(r◦)c◦, where the function Q(r) is defined as

Q(r) =
1− δ

1
ρ (1 + r)

1−ρ
ρ

1− δ
1
ρ (1 + r)

1−ρ
ρ + (βδ)

1
ρ (1 + r)

1−ρ
ρ

· 1 + r

r
.
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It follows from the proof of Lemma 2.1 that Q(r∗) = 1, where r∗ is the interest
rate on a SPSE.

Let us show that for all r ≤ r∗, Q(r) ≥ Q(r∗) = 1. Repeating the argument

used in the proof of Theorem 2, we find that Q(r) ≥ 1 for 1
1+r
≤ ( 1

1+r )
1
ρ−(βδ)

1
ρ

δ
1
ρ−(βδ)

1
ρ

.

Let γ = 1
1+r

, and consider the functions L(γ) = γ and R(γ) = γ
1
ρ−(βδ)

1
ρ

δ
1
ρ−(βδ)

1
ρ

(cf. proof of Lemma 2.2). Since they are monotone and R(γ∗) = L(γ∗), while
R(δ) = 1 > δ = L(δ), it follows that R(γ) ≥ L(γ) for all γ such that γ∗ ≤ γ < δ.
In terms of interest rates, Q(r) ≥ 1 for r ≤ r∗. Since by assumption r◦ ≤ r∗,
Q(r◦) ≥ Q(r∗) = 1. Thus, c(r◦, w◦) = Q(r◦)c◦ ≥ c◦, which proves the lemma. �

However, the following lemma shows that the opposite inequality holds.

Lemma E.2. Suppose that 0 < ρ ≤ 1, and k∗ ≤ k◦. Then c◦ > c(r◦, w◦).

Proof. Recall that c◦ is the date-τ consumption in the date-τ consumer optimum
starting from s◦ at given {r∗τt }∞t=τ and {w∗τt }∞t=τ . It follows from (2) that

c◦ =
(1 + r◦)s◦ + w◦ + w◦

1+r◦
+
∑∞

t=τ+2
w∗τt

(1+r◦)···(1+r∗τt )

1 + (βδ)
1
ρ (1 + r◦)

1−ρ
ρ + ...+ (βδt)

1
ρ ((1 + r◦) ··· (1 + r∗ττ+t))

1−ρ
ρ + ...

. (E.1)

Let us check that c◦ is well-defined. Since the truncation of the date-τ optimal
path which starts at date τ + 1 is the δ-optimal path, r∗τt and w∗τt converge to the
corresponding modified golden rule levels for the discount factor δ. Thus,

w∗τt+1

(1 + r◦) ··· (1 + r∗τt+1)

(1 + r◦) ··· (1 + r∗τt )

w∗t
=
w∗τt+1

w∗τt

1

1 + r∗τt+1

−−−→
t→∞

δ < 1,

(βδt+1)
1
ρ
(
(1 + r◦) ··· (1 + r∗τt+1)

) 1−ρ
ρ

(βδt)
1
ρ ((1 + r◦) ··· (1 + r∗τt ))

1−ρ
ρ

= δ
1
ρ (1 + r∗τt+1)

1−ρ
ρ −−−→

t→∞
δ

1
ρ δ

ρ−1
ρ = δ < 1.

By the d’Alembert’s ratio test both infinite series in (E.1) converge.
Let us compare c◦ with c(r◦, w◦). Since {r∗τt }∞t=τ+2 is the sequence of interest

rates on the δ-equilibrium path starting from k◦ < kδ, it is decreasing, and r∗τt+2 <

r◦. Similarly, the sequence {w∗τt }∞t=τ+2 is increasing, and w∗τt+2 > w◦.
It is evident from (E.1) that c◦ is increasing in w∗τt for all t ≥ τ + 2. The

numerator in (E.1) is decreasing in r∗τt , and for 0 < ρ ≤ 1, the denominator in
(E.1) is non-decreasing in r∗τt . Hence when 0 < ρ ≤ 1, c◦ is decreasing in r∗τt for
any t ≥ τ + 2. Therefore, c◦ > c(r◦, w◦), which proves the lemma. �

Since Lemmas E.1 and E.2 contradict each other, k∗ > k◦ for 0 < ρ ≤ 1, and
hence s∗ > s◦, r∗ < r◦, w∗ > w◦, and c∗ = f(k∗)− k∗ > f(k◦)− k◦ = c◦.
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