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Abstract 
 
We build a no-arbitrage model of the yield curves in a heterogeneous monetary union with 
sovereign default risk, which can account for the asymmetric shifts in euro area yields during the 
Covid-19 pandemic. We derive an affine term structure solution, and decompose yields into term 
premium and credit risk components. In an extension, we endogenize the peripheral default 
probability, showing that it decreases with central bank bond-holdings. Calibrating the model to 
Germany and Italy, we show that a “default risk extraction” channel is the main driver of Italian 
yields, and that flexibility makes asset purchases more effective. 
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1 Introduction

The sovereign yield curve � also known as the �term structure of interest rates� � is a

crucial indicator of �nancing conditions for any given country. Central banks pay great

attention to the yield curve(s) under their jurisdiction, since they constitute a key

channel of monetary policy transmission, and also provide relevant information about

the shocks hitting the economy. The importance of yield curves for monetary policy

analysis has only increased since the Great Financial Crisis of 2008-09: as (short-term)

policy rates in advanced economies approached their e�ective lower bounds, central

banks resorted to unconventional tools, such as large-scale asset purchases and forward

guidance about future short rates, in order to �atten the yield curve and thus provide

further policy stimulus.

In this context, term structure models have become important analytical tools, both

for central bankers and for scholars of monetary policy. In particular, they underlie the

prevailing view of the e�ects of asset purchase programmes, which revolves around the

�duration risk extraction� channel (e.g. Greenwood and Vayanos, 2014; Hamilton and

Wu, 2012; or Krishnamurthy, 2022). Under this mechanism, net purchases of long-

maturity bonds �atten the yield curve by reducing the term premium that private

markets demand to compensate for duration risk, while the short end of the curve is

anchored by the risk-free short rate. However, the movements of euro area yield curves

(see Figure 1) in response to the pandemic outbreak in early 2020 and to the ECB's

subsequent monetary policy response challenge this view. While duration extraction

might explain the �attening of the German yield curve after the pandemic emergency

purchase programme (PEPP) announcement on March 18, 2020, it o�ers no explanation

of the much larger movements in the Italian and Spanish yield curves. A key feature

of these movements is the large shift in the short end of the peripheral curves, which

cannot be explained by term premium considerations. The same is true for the large

upward shift in peripheral yield curves as the pandemic shock unfolded (before PEPP

was announced), which cannot be explained by invoking the pandemic's impact on the

expected amount of duration risk to be absorbed by the market.

It is not hard to see why the mainstream view of term structure dynamics fails to

explain yields in southern Europe, when we consider that today's workhorse models,

such as the in�uential Vayanos and Vila (2020) framework, abstract from sovereign

default risk. While it may be reasonable to assume that there is no nominal default
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Figure 1: E�ects of the pandemic and the PEPP announcement on German, Spanish,
and Italian yields
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Notes. Data source: Datastream.

Left panel . Shifts in German, Spanish, and Italian zero-coupon yields (annual percentage points)

from the weekly average of 13-19 Feb. 2020 (dashes), to that of 12-18 Mar. 2020 (solid).

Right panel . Shifts in German, Spanish, and Italian zero-coupon yields (annual percentage points)

from 18 March 2020 (dashes, before PEPP announcement) to 20 March 2020 (solid, after).

risk on the debt of the safest issuers, such as the US Treasury, such an abstraction is

less suitable for the euro area, where sovereign issuers that are viewed as safe coexist �

and share a common monetary policy � with other issuers that face high and volatile

credit risk premia. Sovereign credit risk o�ers a possible explanation for the nearly

mirror-image dynamics of European yield curves in response to the pandemic outbreak

and the PEPP announcement, if we view these not as two qualitatively di�erent shocks,

but as two impulses that each a�ect yields through changes, of opposite sign, in the

probability of default.

Motivated by these observations, this paper proposes a micro-founded model of the

term structure of sovereign interest rates designed to address a heterogeneous monetary

union such as the euro area. To do so, we extend the Vayanos and Vila (2020) term

structure model to a multi-country setting with sovereign default risk. Concretely, we

consider a monetary union consisting of two member states: Core, which issues default-

free bonds, and Periphery, which is subject to default risk. The model is populated by

arbitrageurs, who trade bonds across both countries and all maturities, and preferred-

habitat investors, who demand bonds of a speci�c maturity from a speci�c jurisdiction.
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Bond yields in the model are driven by just one stochastic factor, namely the short-

term riskless rate.1 Yields also depend on the net supply of bonds of each maturity and

jurisdiction, by which we mean bond supply from the governments minus the bonds

held by the common monetary authority. For analytical convenience, we treat the

governments' bond supply and central bank bond demand as deterministic sequences;

this may be interpreted as a situation in which the public sector commits to a particular

time path for the net supply of bonds in the market.

We start by analyzing a model version with an exogenous default arrival probability,

following Du�e and Singleton (1999), which is useful for two reasons. First, it shows

how the a�ne solution of the Vayanos and Vila (2020) model generalizes in the presence

of default risk. Second, it highlights key results that are independent of how one models

the probability of sovereign default. In particular, our solution decomposes bond yields

into four components: (i) an expectations term that represents the expected future path

of the risk-free rate; (ii) a term premium representing the risk-averse compensation for

bearing duration risk; (iii) an expected default loss, which captures the compensation

that a risk-neutral investor would require for holding defaultable bonds; and (iv) a credit

risk premium that represents the risk-averse compensation for absorbing default risk

(over and above expected default losses). Thus, while many analyses of asset purchase

programs emphasize the duration extraction channel, our model distinguishes this from

a default risk extraction channel that operates through the credit risk premium rather

than the term premium: risk-averse investors demand less compensation to hold a

defaultable bond when there is less default risk outstanding in the market. Moreover,

we show that the presence of default risk allows for shifts in the front end of the yield

curve in response to shocks that cause the default probability to vary but have otherwise

no e�ect on short-term riskless rates.

While imposing an exogenous default probability simpli�es and clari�es the analysis,

in reality large-scale asset purchase shocks like the PEPP announcement, or other shocks

with �scal implications, such as the pandemic outbreak, are likely to a�ect the default

probability perceived by markets. Therefore, we next extend the model by linking the

default probability to underlying policy choices. To do so, we assume that the peripheral

bond market is subject to rollover crises in the spirit of Calvo (1988) and Cole and Kehoe

(2000). When a rollover crisis arrives, the peripheral �scal authority decides whether to

1Although this is a one-factor model, it can be easily extended to a multifactor environment. The
multifactor case is documented in the help �les for our simulation programs.
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continue servicing its debts or else to partially default by applying a haircut to bonds

of all maturities. We show that, under certain conditions, the peripheral government's

default probability at any given time depends on the present discounted value of the

future expected path of �scal de�cits plus redemptions of privately-held bonds. This is

because redemptions of bonds held by the central bank (or interest payments on those

bonds) represent payments from the treasury to the central bank which will be rebated

back to the treasury through central bank dividends. Therefore, by purchasing sovereign

bonds, the central bank reduces the �scal pressure that the peripheral government will

face if a rollover crisis arrives, and thus reduces its incentives to default, a point made

by Corsetti and Dedola (2016).2 By contrast, when bonds remain in private hands,

they imply a net repayment obligation for the government, making default more likely.

Crucially, all results obtained from the exogenous default probability case carry through

to the endogenous case. However, endogenizing the default probability reinforces the

yield curve impact of asset purchases, both because purchases decrease the expected

default loss and � more importantly � because the default risk extraction channel is

stronger when asset purchases both reduce the net supply of defaultable bonds and

reduce the default risk on each bond.

To evaluate the model's ability to explain how euro area yields reacted to the PEPP,

and to quantify the importance of the di�erent transmission channels, we calibrate our

model to Germany and Italy. The calibration uses yield curve data from the years

before the pandemic, and also from the two-day window around the ECB's initial PEPP

announcement on March 18, 2020, which declared an aggregate purchase envelope of

750 billion euros. The surprise nature of this announcement, in an emergency meeting

of the ECB Governing Council, makes it easy to map this episode into our model. The

calibration revolves around three key parameters: arbitrageurs' risk aversion is identi�ed

by matching the pre-pandemic German term premium; the expected loss due to default

is identi�ed from the pre-pandemic spread on Italian bonds over German bonds; and

the impact of net bond issuance on the default probability is identi�ed by explaining

the fall in Italian yields when PEPP was announced. Given the relatively high degree of

risk aversion needed to explain the German term premium, only a tiny expected default

2We implicitly assume the existence of national central banks that conduct asset purchases on behalf
of the union-wide central bank. This is broadly consistent with Eurosystem practice, where the large
majority of purchases are actually conducted by national central banks, instead of the ECB. Under
this assumption, it is indeed the consolidated budget constraint of each country's �scal authority and
national central bank that matters for the former's default incentives.
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loss is needed to explain the observed spread on Italian debt. Despite its parsimony, our

model replicates well the average pre-pandemic shape of both countries' yield curves,

as well as their asymmetric immediate reaction to the PEPP announcement, including

the large downward shift of the Italian curve.

Decomposing the movements of the yield curves, we �nd that default risk extraction

is the most signi�cant channel � far more relevant than the fall in term premia � to

explain the behavior of yields in our model. It is particularly important for the shape

of the response of the Italian yield curve to the PEPP announcement, and for the

asymmetry of the responses of the German and Italian curves. The downward shift

in the Italian sovereign spread, across all maturities, is explained almost entirely by a

lower credit risk premium, driven both by a small decline in the probability of peripheral

default and by the reduction in the quantity of defaultable assets that the market was

expected to hold from then on. In contrast, the decrease in the expected loss due

to default, by itself, plays only a small role in reducing the sovereign spread. These

results are in line with the empirical evidence put forward by Corradin et al. (2021) for

the same episode, which concludes that a reduction in default risk was the dominant

channel through which the PEPP announcement operated in the case of Italy; likewise

they are consistent with �ndings of Krishnamurthy et al. (2018) and ? regarding earlier

asset purchase programs in Europe.

Our quantitative, structural model also allows us to construct counterfactual scenar-

ios to compare PEPP with other possible asset purchase designs. To ensure an adequate

response to the asymmetric impact of the Covid-19 shock, PEPP was designed to be

�exible in the distribution of purchases over time, across asset classes, and across euro

area jurisdictions. This �exibility contrasted with the ECB's longer-standing Asset

Purchase Programme (APP), which �xed the pace of purchases over time, and allo-

cated purchases across member states by their �capital keys� � i.e., in proportion to the

share of each Eurosystem national central bank in the ECB's capital. Our simulations

show that PEPP's �exible design substantially enhanced its impact, and that �exibility

in the timing of purchases (frontloading) and �exibility in the allocation across coun-

tries (deviations from capital key) complement and reinforce one another. The PEPP

announcement reduced Italian yields by around 80bp across the yield curve, with its

maximal impact at intermediate maturities. Of this overall e�ect, almost 15bp can be

attributed to the �exibility of PEPP, as compared with a counterfactual program un-

der which a constant rate of purchases would be allocated across countries according to
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capital key. Moreover, �exibility matters for the response of average euro-area yields,

because reallocation towards peripheral bonds has a large impact on peripheral yields

but a negligible impact on those of core bonds.

Related literature. This paper links two di�erent strands of literature. First,

we contribute to the �nance literature on term structure models. In liquid markets,

arbitrage links bond returns tightly across maturities and issuers. Ang and Piazzesi

(2003), building on Du�e and Kan (1996), derived an analytical solution for the yield

curve in the absence of arbitrage opportunities under the assumption that all yields are

a�ne functions of a set of autoregressive Gaussian factors. Vayanos and Vila (2020)

showed that an a�ne term structure model (ATSM) of this type applies to a micro-

founded setting featuring arbitrageurs with mean-variance utility functions, together

with �preferred-habitat� investors whose supply or demand for bonds of speci�c matu-

rities is linear in those bonds' yields. This market structure makes it possible to model

a variety of complex bond market interactions and policy interventions. For example,

Greenwood and Vayanos (2014) o�ered empirical support for the model's prediction

that the price of risk increases as arbitrageurs hold larger maturity-weighted positions;

therefore quantitative easing can reduce yields, even if the face value of debt outstand-

ing is unchanged. Further applications include quantitative easing at the e�ective lower

bound (Hamilton and Wu, 2012; King, 2019), repo market dynamics (He et al., 2020),

and exchange rates (Greenwood et al., 2020; Gourinchas et al., 2020). The bond market

structure of Vayanos and Vila (2020) has also been embedded into a New Keynesian

model to analyze monetary policy in general equilibrium (Ray 2019). Motivated by

the theoretical insights of Vayanos and Vila (2020), various papers have incorporated

net supply factors into otherwise standard no-arbitrage ATSMs, including Li and Wei

(2013) and Eser et al. (2019); the latter paper uses security-level data on sectoral bond

holdings to construct a measure of duration risk in the hands of price-sensitive investors

(akin to Vayanos and Vila's arbitrageurs) and to analyze the impact of the APP.

While they have been widely applied, much of the literature using ATSMs has stud-

ied US markets, under the assumption that Treasury securities are nominally riskless.

Applications to �xed exchange rate environments � including monetary unions � or to

commercial debt make it necessary to consider default risk. Hamilton and Wu (2012)

construct an ATSM that includes one-period defaultable non-Treasury debt. A key

insight about defaultable bond prices comes from Du�e and Singleton (1999), who

show that if the loss caused by default is a �xed fraction of the bond's value, then the
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pricing formulas for default-free and defaultable bonds are formally identical, with an

adjustment to the discount factor to account for expected losses due to default. Borgy

et al. (2012) price defaultable euro-area debt under the assumption that the Du�e and

Singleton (1999) condition holds. Altavilla et al. (2021) modelled euro area debt under

the assumption that default risk can be priced like any other Gaussian factor.

We contribute to this literature in several ways. We show how the non-Gaussian risk

of default � speci�cally, partial default on multi-period debt � can be incorporated into a

microfounded ATSM in the Vayanos-Vila tradition. Crucially, we show that default risk

opens up a novel default risk extraction channel of large-scale asset purchases, which

enables the model to generate large, parallel yield curve shifts like those in Figure

1. In addition, we adapt the model to analyze policy interactions in the context of

a heterogeneous monetary union, such as the euro area. Finally, we model explicitly

how central bank asset purchases a�ect the default probability by incorporating the

possibility of rollover crises, showing how this reinforces the default risk extraction

channel vis-à-vis the simpler case with exogenous default probability. This mechanism

can be seen as an extension of the two-period economy of Corsetti and Dedola (2016)

to a fully dynamic environment.

This paper also relates to the literature on monetary-�scal interactions in the pres-

ence of sovereign risk.3 In contrast to previous related work, we focus on how central

bank asset purchases can reduce the probability of default, and how they a�ect the whole

term structure of interest rates. Linking the ATSM literature to that on sovereign risk

is fruitful, because it clari�es that duration extraction is neither the only channel, nor

the primary channel, by which asset purchases transmit to yields in the European con-

text. Instead, our model shows that default risk extraction is the predominant channel

of asset purchases in the euro area, as the extraction of defaultable bonds from private

hands and the associated reduction in the probability of sovereign default reinforce one

another in shrinking the credit risk premium. The quantitative discipline of the ATSM

framework is crucial here � arbitrage pricing implies that the actual expected loss from

default is an order of magnitude smaller than the risk premium that the market de-

mands to hold defaultable debt. The channel we identify is consistent with evidence

of De Grauwe and Ji (2013) showing that sovereign spreads are less stable in the euro

3See Calvo (1988), Cole and Kehoe (2000), Aguiar et al. (2015), Reis (2013), Corsetti and Dedola
(2016), Camous and Cooper (2019), Bacchetta et al. (2018), Nuño et al. (2022), Na et al. (2018),
Arellano et al. (2020), or Bianchi and Mondragon (2018).
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area than in other open economies with independent monetary policies, and �ndings of

Broeders et al. (2021) showing that ECB asset purchases reduced the impact of bond

market volatility on euro area sovereign spreads.

2 Bond market equilibrium with default risk

We begin by building a model of bond market equilibrium that incorporates an exoge-

nous but time-varying probability of partial default. This simple version of our model

shows how introducing default risk in a Vayanos-Vila framework that is entirely stan-

dard � apart from its two-country monetary union structure � modi�es the bond market

equilibrium and shapes the transmission of central bank asset purchases, without taking

a stance on the modelling of sovereign default. Subsequently, we will extend the model

to include a monetary/�scal interactions block that endogenizes the default probability.

Time is continuous, with an in�nite horizon. We consider a monetary union com-

posed of two countries, Core and Periphery, with a single central bank. The key di�er-

ence between the two governments is that Core issues risk-free debt whereas Periphery

may default on its obligations. We denote Core variables with an asterisk, ′∗′. There

exists a continuum of zero-coupon government bonds of di�erent maturities. The time-

t price of a bond with maturity τ is Pt (τ) for Peripheral bonds and P ∗t (τ) for Core

bonds. The yield is the spot rate for maturity τ :

yt (τ) = − logPt(τ)
τ

, y∗t (τ) = − logP ∗t (τ)

τ
.

We assume that default follows a Poisson stochastic process, as in Du�e and Singleton

(1999). Let ψt be the arrival rate of sovereign default by the government of Periphery.

While it is easy to allow for default by both sovereigns, for clarity we focus on the case

where the probability of Core default is zero. Peripheral default, when it occurs, consists

of a restructuring in which the government reneges on fraction δ of its outstanding

bonds. Default a�ects all maturities of Peripheral debt equally.

There exists a short-term (instantaneous) riskless interest rate which is exogenous

and characterized by an Ornstein�Uhlenbeck process,

drt = κ (r̄ − rt) dt+ σdBt, (1)
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where Bt is a Brownian motion and κ and r̄ are constants. The short-term riskless

rate and the default shock itself are the only stochastic processes in this economy. The

Peripheral default arrival rate ψt is deterministic but may depend on time.4

Net bond supply. The public sector of the monetary union determines the net

supply of bonds, consisting of the gross supply issued by the Peripheral and Core

governments minus the bonds held by the common central bank. Let ft(τ) be the stock

of Peripheral sovereign debt of maturity τ outstanding at time t, and let ιt(τ) represent

the rate of issuance of bonds of this type per unit of time. Then the law of motion of

the stock of Peripheral debt is

∂ft (τ)

∂t
= ιt (τ) +

∂ft (τ)

∂τ
, (2)

which implies that the quantity of bonds of residual maturity τ outstanding at time

t, ft (τ), equals the current gross issuance of bonds of that maturity, ιt (τ) dt, plus the

stock of bonds of maturity τ +dt that was outstanding at time t−dt. The dynamics of

the Core debt stock f ∗t (τ), given issuances ι∗t (τ), are formally identical to (2). Likewise,

the central bank purchases ιCBt (τ) bonds of maturity τ from Periphery per unit of time,

resulting in a Peripheral portfolio fCBt (τ) that evolves as

∂fCBt (τ)

∂t
= ιCBt (τ) +

∂fCBt (τ)

∂τ
, (3)

with analogous dynamics for its portfolio of Core bonds. We denote the net supplies of

Periphery and Core bonds by

St (τ) ≡ ft (τ)− fCBt (τ) , S∗t (τ) ≡ f ∗t (τ)− fCB∗t (τ) ,

respectively. For ease of exposition, but without loss of generality, we assume that net

bond supplies are deterministic but possibly time-varying functions.5

Bond demand. We consider two classes of private agents that demand bonds.

Preferred-habitat investors demand bonds of a speci�c jurisdiction and speci�c matu-

rity, as an increasing function of the bonds' yield. Market participants with these char-

4The assumption that ψt is deterministic is essential in order to obtain an a�ne solution, as we will
see below.

5The model in this section can be extended to allow for stochastic net bond supply, by including a
stochastic shift in equation (4), as in Vayanos and Vila (2020), but this is not needed for our purposes.
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acteristics may include pension funds or insurance companies whose liability streams

require them to hold assets paying o� at speci�c times in the distant future, or money-

market mutual funds that must hold assets that provide liquidity at short horizons.

Arbitrageurs are willing to hold bonds of any maturity and jurisdiction, and may also

invest in the riskless short rate, but their positions are limited by their risk aversion.

These players represent liquid, well-informed market participants, such as hedge funds,

which nonetheless are unwilling to take arbitrarily large risks.

As in Vayanos and Vila (2020) we assume that preferred-habitat investors' demand

for bonds of a given jurisdiction and maturity increases with the yield on those bonds:

Zt (τ) = ht (τ)− α (τ) logPt (τ) , Z∗t (τ) = h∗t (τ)− α∗ (τ) logP ∗t (τ) , (4)

where α (τ) , α∗ (τ) ≥ 0 and ht (τ) , h∗t (τ) are deterministic functions.6

The main focus of our analysis is the arbitrageurs, who maximize a mean-variance

objective over instantaneous changes in wealth, as in Vayanos and Vila (2020),

max
{Xt(τ),X∗t (τ)}τ∈(0,∞)

Et (dWt)−
γ

2
Vart (dWt) (5)

subject to the law of motion of wealth:

dWt =

[
Wt −

∫ ∞
0

(Xt (τ) +X∗t (τ)) dτ

]
rtdt

+

∫ ∞
0

(
Xt (τ)

(
dPt (τ)

Pt (τ)
− δdNt

)
+X∗t (τ)

dP ∗t (τ)

P ∗t (τ)

)
dτ, (6)

where γ > 0 is the representative arbitrageur's risk-aversion coe�cient, and Xt (τ)

and X∗t (τ) are the nominal quantities of bonds of di�erent maturities held in the ar-

bitrageur's portfolio. The �rst term in (6) shows the income from investing in the

short-term riskless rate, while the second term shows the capital gains from holding a

portfolio of Peripheral bonds Xt(τ) and Core bonds X∗t (τ), adjusted for the possible

arrival of the default event according to a Poisson process dNt. Note that arbitrageurs

can operate in both markets (Core and Periphery), similar to Gourinchas et al. (2020).

Bond market clearing. Bond market clearing requires consistency between supply

6We set α(τ) = α(τ)∗ = α/τ . Thus, the slope of preferred-habitat demand, as a function of yield,
is given by the constant α: Zt(τ) = ht + αyt(τ), and analogously for Z∗t (τ).
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and demand for bonds of each maturity and jurisdiction:

St (τ) = Zt (τ) +Xt (τ) , S∗t (τ) = Z∗t (τ) +X∗t (τ) . (7)

That is, net supply by the public sector equals demand by preferred-habitat investors

plus that of arbitrageurs.

Bond pricing. We assume that after default, the Peripheral government issues new

bonds to replace the defaulted bonds, thus returning to its initial deterministic path of

gross bond supply.7 Thus, default leaves the state of the bond market unchanged, so

we seek to construct an equilibrium in which bond prices do not depend on previous

default events. We conjecture that there exist two pairs of deterministic functions

(At (τ) , Ct (τ)) and (A∗t (τ) , C∗t (τ)) such that the price of bonds can be expressed in

log-a�ne form:

Pt (τ) = e−[At(τ)rt+Ct(τ)], P ∗t (τ) = e−[A∗t (τ)rt+C∗t (τ)]. (8)

Applying Itô's lemma, the time-t instantaneous return on an undefaulted bond of ma-

turity τ is

dPt (τ)

Pt (τ)
= µt (τ) dt− σAt (τ) dBt,

dP ∗t (τ)

P ∗t (τ)
= µ∗t (τ) dt− σA∗t (τ) dBt, (9)

where8

µt (τ) =

(
∂At
∂τ
− ∂At

∂t

)
rt +

(
∂Ct
∂τ
− ∂Ct

∂t

)
− At (τ)κ (r̄ − rt) +

1

2
σ2 [At (τ)]2 , (10)

and

µ∗t (τ) =

(
∂A∗t
∂τ
− ∂A∗t

∂t

)
rt +

(
∂C∗t
∂τ
− ∂C∗t

∂t

)
− A∗t (τ)κ (r̄ − rt) +

1

2
σ2 [A∗t (τ)]2 . (11)

7Perhaps surprisingly, it would be unrealistic to suppose that debt decreases when default occurs.
On the contrary, Arellano et al. (2019) show that debt is more likely to increase following a restructur-
ing. As in their paper, the model of monetary/�scal interactions that we develop in Section 3 implies
that default serves to alleviate short-term �scal pressure, not to reduce the debt load permanently.

8Note that τ is a state with dynamics dτ = −dt, so Itô's lemma yields derivatives in τ as well as t.
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If we substitute bond returns (9) into the law of motion of wealth (6), we obtain

dWt =

[
Wtrt +

∫ ∞
0

(Xt (τ) (µt (τ)− rt) +X∗t (τ) (µ∗t (τ)− rt)) dτ
]
dt

−
[∫ ∞

0

(Xt (τ)At(τ) +X∗t (τ)A∗t (τ)) dτ

]
σdBt

−
[∫ ∞

0

Xt (τ) dτ

]
δdNt. (12)

Thus, wealth is a�ected by two di�erent types of risk: a Brownian variation in bond

prices (seen in the second line of the formula), together with a Poisson risk of losing

a fraction δ of the investment in Peripheral bonds (third line). Using equation (12) in

(5), one can see that the problem of the arbitrageurs accounts for both these risks:

max
{Xt(τ),X∗t (τ)}τ∈(0,∞)

∫∞
0

(Xt (τ) (µt (τ)− rt) +X∗t (τ) (µ∗t (τ)− rt)) dτ

− γσ2

2

[∫∞
0

(Xt (τ)At(τ) +X∗t (τ)A∗t (τ)) dτ
]2

− ψtδ
[∫∞

0
Xt (τ) dτ

]
− γψt

2
δ2
[∫∞

0
Xt (τ) dτ

]2
.

The �rst two terms represent the expectation and variance of the component associ-

ated with price variation, while the last two terms are derived from default risk, using

E [δdNt] = δψt and Var [δdNt] = δ2ψt.

The �rst-order conditions are

µt (τ) = rt + At (τ)λt + ψtδ + ξt, (13)

µ∗t (τ) = rt + A∗t (τ)λt, (14)

where9

λt = γσ2

[∫ ∞
0

(Xt (τ)At(τ) +X∗t (τ)A∗t (τ)) dτ

]
(15)

is the market price of (interest rate) risk and

ξt = γψtδ
2

∫ ∞
0

Xt (τ) dτ (16)

9Our notation in this section follows Vayanos and Vila (2020), except that we have reversed the
sign on the variables λ and h.
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is the compensation required by risk-averse arbitrageurs for default risk. Equation (14)

shows that the expected growth rate of Core bond prices equals the short-term riskless

rate of return, rt, plus the compensation A∗t (τ)λt for the instantaneous price risk on a

bond of a given maturity τ . Analogous terms apply to the expected growth of Peripheral

bond prices, given by (13), plus the compensation ψtδ for the rate of expected loss due

to default, together with the instantaneous default risk premium ξt.

Constructing an a�ne solution. Market clearing (7) requires that the positions

of arbitrageurs equal those of the public sector minus those of the preferred-habitat

investors. Using this in equations (15) and (16), the risk prices λt and ξt must satisfy:

λt = γσ2

[∫ ∞
0

[(St (τ)− Zt (τ))At (τ) + (S∗t (τ)− Z∗t (τ))A∗t (τ)] dτ

]
, (17)

ξt = γψtδ
2

∫ ∞
0

(St (τ)− Zt (τ)) dτ. (18)

Equations (17)-(18) can be used to solve for the unknown coe�cients At(τ), A∗t (τ),

Ct(τ), and C∗t (τ) in the bond price functions (see Appendix A.2). The solution hinges

on the observation that if ψt is a deterministic function of time, then the left- and right-

hand sides of (18) can both be a�ne functions of rt (since preferred-habitat demand

Z is a�ne in r).10 In this case, we can construct an a�ne solution (8) for prices and

yields, in which the risk prices λt and ξt are also a�ne:

λt = Λtrt + λ̄t, (19)

ξt = Ξtrt + ξ̄t. (20)

Appendix A.2 spells out the a�ne solution in detail, stating the formulas for the factor

loadings Λt and Ξt and intercept terms λ̄t and ξ̄t consistent with (17)-(18).

2.1 Equilibrium yield curves and monetary policy transmission:

analytical results

Our model's analytical solution provides insight into yield curve dynamics and the

transmission of conventional and unconventional monetary policy. Here we discuss four

10If instead ψt is a stochastic process that depends on rt, then there are nonlinear terms on the
right-hand side of (18), so the a�ne solution fails.
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main �ndings. First, we decompose yields to distinguish the familiar expectations and

duration extraction transmission channels of asset purchase policy from our model's

novel default risk extraction channel, which arises when debt is defaultable. Second, we

show how, when the default probability is small, the term premium in the yield curves

of both Core and Periphery depends on the aggregate net bond supply in the monetary

union, irrespective of its distribution across countries. Third, we show that default

risk allows for heterogeneous �uctuations in short-term sovereign rates in a monetary

union, including shifts in the short end of the Peripheral yield curve even when the

short-term riskless rate does not change. Finally, we show that conventional interest

rate policy transmits homogeneously across a monetary union, limiting its scope for

stabilizing asymmetric �uctuations.

Decomposing bond yields. In the absence of default risk, equations (10)-(11)

and (13)-(14) imply identical yield curves for Core and Periphery. But when Peripheral

bonds are defaultable, this opens up a spread relative to Core bonds. Taking expecta-

tions on both sides of (9), then using (13) and the fact that Pt(0) = 1, we can decompose

the yield on a Peripheral bond of maturity τ as follows.11

Proposition 1 (Bond yield decomposition) Peripheral yields yt (τ) can be written

as

yt (τ) =
1

τ
Et
∫ τ

0

rt+sds︸ ︷︷ ︸
Expected rates yEXt (τ)

+
1

τ
Et
∫ τ

0

At+s (τ − s)λt+sds︸ ︷︷ ︸
Term premium yTPt (τ)

(23)

+
1

τ
Et
∫ τ

0

δψt+sds︸ ︷︷ ︸
Expected default loss yDLt (τ)

+
1

τ
Et
∫ τ

0

ξt+sds︸ ︷︷ ︸
Credit risk premium yCRt (τ)

.

For the proof, see Appendix A.3.1. Thus, Peripheral yields decompose into four

11Equivalently, the bond price can be written as a product of log-a�ne factors:

Pt(τ) = PEXt (τ)PTPt (τ)PDLt (τ)PCRt (τ) (21)

P ∗t (τ) = PEX∗t (τ)PTP∗t (τ) (22)

where, for each i ∈ {EX,TP,DL,CR}, we have P it (τ) = exp
(
−τyit(τ)

)
, and likewise for Core.
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a�ne components. The default-related components are zero for Core:

yt(τ) = yEXt (τ) + yTPt (τ) + yDLt (τ) + yCRt (τ), (24)

y∗t (τ) = yEX∗t (τ) + yTP∗t (τ). (25)

The �rst component, which is equalized across countries, yEXt (τ) = yEX∗t (τ), is the

yield in a default-free economy where investors are risk neutral. This is often called

the expected rates term, since it is the yield in a default-free economy where the �ex-

pectations hypothesis� is true: that is, the bond yield equals the expected value of the

short rate over the life of the bond. The second component is the term premium, that

is, the compensation required by a risk-averse arbitrageur for holding a bond with a

risky price. Since the price process of a defaultable bond di�ers from that of a default-

free bond, the Core and Peripheral term premia, yTP∗t (τ) and yTPt (τ), are not exactly

equal. The third component, in the case of Peripheral bonds, is the expected default

loss yDLt (τ), which requires compensation even for a risk-neutral investor. Fourth, the

yield on Peripheral bonds also carries a credit risk premium yCRt (τ), which is the ad-

ditional return required, beyond the expected default loss, in order for a risk-averse

arbitrageur to be willing to hold a defaultable bond. Together, the two components

yDLt (τ) + yCRt (τ), plus the cross-country di�erence in term premia yTPt (τ) − yTP∗t (τ),

constitute the (sovereign) spread between Peripheral and Core debt.

This decomposition highlights four di�erent channels of monetary policy transmis-

sion. First, policy transmits through anticipated changes in the future path of interest

rates (e.g. due to forward guidance). Second, it operates through duration extraction,

by which central bank bond purchases reduce the market price of interest rate risk, as

in the one-factor version of Vayanos and Vila (2020). Third, policy transmits through

changes in the expected default loss, as central bank purchases may reduce the likeli-

hood of sovereign default, as explained in Section 3 below. Finally, it transmits through

default risk extraction, as we can see by using (18) to write the credit risk premium as

yCRt (τ) =
γδ2

τ
Et
∫ τ

0

[
ψt+s

∫ ∞
0

(St+s (τ)− Zt+s (τ)) dτ

]
ds .

This shows that central bank bond purchases reduce credit risk premia, both by ex-

tracting defaultable debt St+s (τ) from the market, and � once it is allowed to depend

on central bank purchases � by lowering the probability of default ψt+s on that debt.
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Term premium in a monetary union. While our decomposition highlights a new

transmission channel going through credit risk, our model also delivers basic insights

about the transmission of asset purchases via term premia in a monetary union. For

simplicity, but without loss of generality, we focus on the model's stochastic steady

state, in which the short rate rt is stochastic, but there is no further time variation in

the model's parameters. We suppress time subscripts wherever possible when analyzing

the stochastic steady state. As shown in Appendix A.3.2, in the stochastic steady state

the coe�cients At(τ) and A∗t (τ) are given by

A∗ (τ) =
1− e−κ̂τ

κ̂
, A (τ) =

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂

, (26)

where

κ̂ = κ− Λ = κ+ γσ2

∫ ∞
0

α (τ)

(
(1 + Ξ)

(
1− e−κ̂τ

)
κ̂

)2

+ α∗ (τ)

(
1− e−κ̂τ

κ̂

)2
 dτ,

is the risk-neutral counterpart of κ, and Ξ = −γψδ2
∫∞

0
α (τ)A (τ) dτ < 0 is the steady

state value of the loading of the default risk price ξt on the short rate (eq. 20). We

then obtain the following result:

Proposition 2 (Term premia in a monetary union with low default risk) Let

the default probability ψ be arbitrarily close to zero, ψ → 0, so that Ξ → 0. In this

limiting case, A (τ) = A∗ (τ). Term premia are then equalized across the two countries:

yTPt (τ) =
1

τ
Et
∫ τ

0

A (τ − s)λt+sds = yTP∗t (τ),

and the market price of duration risk depends on the aggregate net bond supply in the

monetary union:

λt = γσ2

∫ ∞
0

[(S (τ) + S∗ (τ))− (Zt (τ) + Z∗t (τ))]︸ ︷︷ ︸
aggregate net bond supply

A (τ) dτ.

A policy implication of this result is that, when default risk is arbitrarily small, asset

purchases a�ect Core and Peripheral term premia symmetrically, and this e�ect depends

only on the aggregate amount of purchases and not on how they are distributed across

17



jurisdictions. This benchmark will be helpful in interpreting our subsequent numerical

results, since our calibrated default probability turns out to be fairly small.

What drives the short end of the yield curve? For a country without default

risk, the shortest maturity yield coincides with the short-term riskless rate:

lim
τ→0

y∗t (τ) = lim
τ→0

[
1

τ
Et
∫ τ

0

rt+sds+
1

τ
Et
∫ τ

0

A∗t+s (τ − s)λt+sds
]

= lim
τ→0

[rt + A∗t (0)λt] = rt,

where the second equality applies L'Hôpital's rule and the Leibniz rule and the fact that

A∗t (0) = 0. Therefore, in the absence of default risk, changes in structural parameters

can produce changes in the slope of the yield curve, but the short end of the curve is

pinned down to equal the short-term rate.12

Hence, if we abstract from default, our model cannot reproduce yield curve shifts

like those observed in Europe in the context of Covid-19 and the PEPP announcement

(see Figure 1 above). But once we allow for default risk, parallel shifts are possible,

even in the absence of changes in the short-term riskless rate.

Proposition 3 (Default risk-related shifts in the Peripheral yield curve) In a

country with default risk, the yield curve in the stochastic steady state is the sum of a

constant term that depends on default
(
ψδ + ξ̄

)
and a maturity-dependent a�ne term:

yt (τ) =
A (τ) rt + C (τ)

τ

=
(
ψδ + ξ̄

)
+

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂τ

rt +

∫ τ
0

[
A (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (u)]2

]
du

τ
.

Therefore, the short-term Peripheral yield is given by

lim
τ→0

yt (τ) = (1 + Ξ) rt +
(
ψδ + ξ̄

)
.

For proof details, see Appendix A.3.2. Note that the default-related term ψδ + ξ̄

is independent of maturity τ , so this term produces a parallel shift in the yield curve

when any of its components change. Hence, the possibility of default a�ects even the

12This result generalizes beyond the one-factor model considered here. Even in a multi-factor context,
an instantaneous bond without default risk satis�es A∗ (0) = 0 and C∗ (0) = 0, implying y∗t (0) = rt.
See Vayanos and Vila (2020), Lemma 3.
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shortest yields, generating a spread between the shortest-maturity Peripheral yield and

the risk-free short rate. The spread includes the expected default loss ψδ. The second

term is the intercept ξ̄ of the credit risk premium ξ from (20), which is

ξ̄ = γψδ2

∫ ∞
0

(S (τ)− h (τ)− α (τ)C (τ)) dτ. (27)

Equation (27) shows that changes in the default arrival rate ψ, the haircut δ or the

risk aversion parameter γ will, ceteris paribus, modify the credit risk premium and

hence shift the Peripheral yield curve. Asset purchases will also shift Peripheral yields,

including the shortest yields, by decreasing ξ̄ through two channels. First, they extract

default risk from arbitrageurs' balance sheets (reducing the quantity S(τ) that private

markets must hold). Second, if asset purchases reduce the probability of default, this

will amplify the decrease in ξ̄. In the next section, we show how monetary and �scal

interactions like those in the euro area imply that central bank sovereign bond purchases

reduce �scal pressure, and thereby lower the probability of Peripheral default.

Conventional monetary policy transmission. Finally, we analyze how default

risk shapes the transmission of conventional (interest rate) monetary policy across the

monetary union. For the purpose of this particular discussion, we interpret rt as rep-

resenting the interest paid by the central bank on its deposit facility.13 Concretely, as

in Vayanos and Vila (2020), we may assume that arbitrageurs are actually commercial

banks, with access to the central bank's deposit facility. We can then show:

Proposition 4 (Response to short-term rates) The reaction of the instantaneous

forward rate, it (τ) ≡ −∂ log(Pt(τ))
∂τ

, is identical in Core and Periphery:

∂it (τ)

∂rt
= − ∂

∂rt

∂ log (Pt (τ))

∂τ
= e−κ̂τ =

∂i∗t (τ)

∂rt
.

If we instead consider the yield curve itself, then the initial response to a monetary

policy shock at time t is:

∂y∗t (τ)

∂rt
=

1− e−κ̂τ

τ κ̂
>

(1 + Ξ)
(
1− e−κ̂τ

)
τ κ̂

=
∂yt (τ)

∂rt
.

13This implies that the short-term Core yield, limτ→0 y
∗
t (τ), coincides with the deposit facility rate.

Of course, this is not precisely true in the euro area data, where the yield on short-term core (e.g.
German) bonds typically exhibits a non-negligible and time-varying spread vis-à-vis the ECB's deposit
facility rate, re�ecting institutional features that fall outside the scope of our analysis.
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This response subsequently decays at rate κ with the time since the shock.

Since Ξ < 0 (see appendix A.2), the reaction of Peripheral yields is damped in

comparison to that of Core yields. But in practice, the di�erence is negligible: if the

default arrival rate ψ is su�ciently close to zero, then Ξ ≈ 0, so the responses of the

two yield curves are approximately equal. In the quantitative section below we will

see that the data imply a small value for ψ. Hence our calibrated model implies that

the impact of conventional monetary policy on Core and Peripheral yields is virtually

indistinguishable.

3 A simple model of default risk

Thus far, we have treated the default arrival rate ψt as an arbitrary exogenous sequence.

In practice, however, policy shocks like the PEPP announcement or the pandemic

outbreak are likely to endogeneously a�ect the probability of default perceived by the

market. Therefore, we next build a minimalist model of monetary and �scal interactions

that endogenizes ψt in a way that will su�ce for our analysis of the yield curve. We

assume that the governments and the monetary authorities commit to �xed time paths

for their respective issuances and purchases of bonds, as long as no rollover crisis occurs.

The one key policy choice that we will endogenize is Periphery's decision whether to

repay or default in case of a rollover crisis.

The �ow budget constraint of the Peripheral government can be written as

Primary de�cit︷︸︸︷
dt +

Debt maturing︷ ︸︸ ︷
ft (0) =

Bond issuance︷ ︸︸ ︷∫ ∞
0

Pt (τ) ιt (τ) dτ +

Seigniorage︷︸︸︷
Γt +

Emergency taxation︷︸︸︷
Πt , (28)

where dt is the primary de�cit and ft (0) the amount of debt maturing, which must

be �nanced either by issuing new bonds ιt (τ), collecting revenues from seigniorage Γt

related to central-bank asset purchases, or through emergency taxation Πt. Emergency

taxation is zero in normal times, but may be positive during rollover crises.

Mirroring Corsetti and Dedola (2016), we focus on self-ful�lling debt crises à la

Calvo (1988) or Cole and Kehoe (2000). We assume that investors sometimes, with

a certain probability, coordinate on a pessimistic equilibrium in which they stop pur-

chasing Periphery's debt, thus forcing its government to stop bond issuance (ιt (τ) = 0,
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for all τ).14 The arrival of this rollover crisis is governed by a Poisson process with

rate parameter η. At the onset of the crisis, the government must decide whether to

default on its debts or to keep on repaying bonds that mature. If it decides to repay,

the duration of the crisis is stochastic, governed by a Poisson process with parameter

φ, and the government will be forced to �nance its de�cits and debt repayments with

the revenues it obtains from emergency taxation and/or seigniorage as long as the crisis

persists. Emergency taxes represent a utility loss for the government, which it seeks to

minimize. Under these assumptions, the government's cost of repayment conditional

on a rollover crisis at time 0, denoted by V R
0 , incorporates the present discounted value

of emergency taxation incurred during the crisis, valued at a subjective discount rate

r̂, plus the continuation cost Vt
[
ft (·) , fCBt (·)

]
after the crisis ends:

V R
0

[
f0 (·) , fCB0 (·)

]
= E0


∫ ∞

0

e−(r̂+φ)t

 Πt︸︷︷︸
Flow of emergency taxes

+ φVt
[
ft (·) , fCBt (·)

]︸ ︷︷ ︸
Loss after the crisis

 dt

 .

(29)

If instead the government decides to default, it restructures by repudiating a �xed

fraction δ of all outstanding bonds, while honoring the remainder. This restructuring

ends the rollover crisis, but imposes a stochastic �xed cost χ on the government, with

c.d.f. Φ(χ). Thus, the loss due to default is the post-crisis continuation cost plus the

�xed cost:

V D
0

[
f0 (·) , fCB0 (·)

]
= V0

[
f0 (·) , fCB0 (·)

]
+ χ. (30)

Note that (30) says that default leaves the �scal position of the government unchanged,

with the same debts it faced before the crisis. While this may seem counterintuitive,

we make this assumption for two reasons. First, it is empirically realistic: Arellano

et al. (2019) show that debt is rarely decreased by a restructuring. Second, it simpli�es

our asset pricing analysis, keeping the outstanding bond supply �xed, allowing us to

seek a bond price solution that is unchanged by default.15 Thus, in our model, default

14We assume that the central bank cannot purchase sovereign new bonds at issuance, consistently
with actual restrictions on the ECB's asset purchase programs. Thus, the fact that private investors
stop purchasing new bonds e�ectively prevents the Peripheral government from issuing new bonds.

15Our interpretation of (30) is that after default, the Peripheral government immediately issues
bonds that return it to the previously anticipated path of debt. Bondholders lose a fraction δ of their
holdings, while the proceeds from the sale of new bonds accrue to international organizations, such as
the IMF, that may intervene in the case of a sovereign debt crisis.
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serves only to relieve short-term �scal pressure during a rollover crisis, not to improve

the government's long-term �scal standing.

The government's decision to default at the beginning of a crisis will thus depend

on min
[
V R

0 , V
D

0

]
. The continuation cost is given by

V0

[
f0 (·) , fCB0 (·)

]
= E0


∫ ∞

0

e−(r̂+η)t ηmin
[
V R
t , V

D
t

]︸ ︷︷ ︸
Loss at onset of next crisis

dt

 . (31)

Equations (29)-(31) jointly determine the loss functions V R
t , V D

t , and Vt. For simplicity,

we focus on the limit where crises are low-probability events (η → 0),16 which means

that the continuation cost is approximately zero, Vt → 0, so that V D
0 → χ. Then the

probability of default, conditional on a rollover crisis at time 0, is the probability that

the cost of repayment exceeds the �xed cost χ:

P (default at time 0|crisis) = P
(
V R

0 > V D
0

)
≈ P

(
V R

0 > χ
)

= Φ
(
V R

0

)
. (32)

Equations (32), (29) and (28), and the fact that there are no issuances during the

rollover crisis (ιt (τ) = 0 for all τ), imply that the unconditional arrival rate of default

is ψt = ηΦt, where

Φt ≡ P (default at time t|crisis) = Φ

(∫ ∞
0

e−(r̂+φ)s {dt+s + ft+s(0)− Γt+s} ds
)
. (33)

Therefore, conditional on a rollover crisis materializing at time t, the probability that

the government chooses to default increases with the discounted stream of primary

de�cits and bond redemptions during the crisis, and decreases with the discounted

stream of remittances from the central bank during the crisis.

To evaluate expression (33), we must specify the central bank's seigniorage rule

during a rollover crisis. It is plausible to conjecture that, should a full-blown rollover

crisis hit a national government, the central bank would follow a rule under which an

increased �ow of central bank purchases of that government's bonds would not imply

less resources for that government for the duration of the crisis.17 We may refer to rules

16In our simulations of the e�ective lower bound period 2013-2019 in Section 4, the quantity ψt ≡ ηΦt
is never expected to exceed �ve basis points per month, so the assumption that η is tiny is reasonable.

17The central bank is assumed to stick to its bond purchase commitments when the private bond
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of this kind as being sovereign-supportive. Formally, we de�ne a sovereign-supportive

rule Γt = Γ
({
fCBt+u(τ)

}
u≥0,τ≥0

)
as a rule that, in a rollover crisis, satis�es:

∂

∂α

[∫ ∞
0

e−(r̂+φ)uΓ
({
fCBt+u (τ) + αht+u (τ)

}
u≥0,τ≥0

)
du

]
≥ 0, (34)

where ht+u (τ) ≥ 0 is a non-negative perturbation to the time-(t + u) central bank

holdings of Periphery bonds with residual maturity τ . That is, under a sovereign-

supportive remittance rule, a central bank's decision to increase its future holdings of

peripheral debt would not decrease the discounted stream of dividend payments to the

peripheral government in case of � and for the duration of � a rollover crisis. It trivially

follows that, for any rule satisfying this property, an increase in central bank purchases

of peripheral bonds (weakly) reduces the endogenous default arrival rate.

Having established this general result, we still need to specify a particular crisis-

time remittance rule for the purpose of our numerical analysis. We assume a tractable

rule that corresponds roughly to actual Eurosystem practice. In particular, we assume

the rule Γt = fCBt (0) − Γ̄, meaning that the central bank rebates to the Peripheral

government the in�ows it receives from bond redemptions, minus an amount Γ̄ aimed

at protecting the central bank's capital during the rollover crisis. Currently, in the Eu-

rosystem, most sovereign bonds are held by the national central banks of the sovereigns

that issued them, with only a small fraction of holdings subject to �risk sharing�. There-

fore much of the income from sovereign bond redemptions accrues as dividend revenue

to the original issuers. Thus, our key assumption here is simply that the central bank

would not suddenly cut o� this revenue �ow upon the arrival of a rollover crisis. More-

over, the above rule can be shown to be �sovereign-supportive� as de�ned before.18 The

intuition is simple: increased central bank bond holdings lead to higher subsequent

in�ows from bond redemptions and thus higher remittances to Periphery's government.

Therefore, increased purchases of Periphery bonds reduce that country's default rate.

market enters into a rollover crisis.

18Under the given rule, Γ
({
fCBt+u (τ) + αht+u (τ)

}
u≥0,τ≥0

)
= fCBt+u (0) + αht+u (0) − Γ̄. Therefore,

∂Γ
∂α = {ht+u(0)}u≥0, and hence the condition (34) is just

∫∞
0
e−(r̂+φ)uht+u(0)du ≥ 0, which is true

since the perturbation h is non-negative.
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Under our assumed remittance rule, the default rate is

ψt = ηΦ

(∫ ∞
0

e−(r̂+φ)s
{
dt+s + St+s(0) + Γ̄

}
ds

)
. (35)

Equation (35) shows that the sovereign default probability depends on future de�cits

dt+s at horizons s ≥ 0, but it likewise implies that the central bank can a�ect the de-

fault probability via the future �ow of redemptions of bonds in private hands, St+s(0) =

ft+s(0)−fCBt+s (0). Ceteris paribus, if central bank policy reduces the amount of maturing

public debt held by the private sector, the sovereign default probability will decrease.

Under this remittance rule, we can calculate the default probability using only projec-

tions of future de�cits and net redemptions, which a�ect the default probability through

a single su�cient statistic which we will call �scal pressure, Ft:

Ft ≡
∫ ∞

0

e−(r̂+φ)s (dt+s + St+s (0)) ds, (36)

so that ψt = ηΦ
(
Ft + Γ̄

r̂+φ

)
.

This framework makes several stark assumptions which, together, deliver tractabil-

ity. On one hand, we focus on perfect-foresight scenarios for �scal policy and central

bank purchases, assuming that the government returns to its previous path of debt

after default occurs. Moreover, our assumed remittance rule ensures that the default

probability depends only on de�cits and net debt outstanding.19 Together, these as-

sumptions imply that �scal pressure is foreseeable, so default is an event that arrives at

a known, deterministic Poisson rate ψt = ηΦt. This means we can apply the framework

of Du�e and Singleton (1999) to obtain an a�ne solution for the term structure and

to decompose bond yields into components related to the dynamics of the risk-free rate

and components related to default, as we described in Section 2.1.20 Unanticipated

changes in �scal conditions will shift the default probability, with potential to explain

the yield curve dynamics seen over the course of the Covid-19 crisis. We next calibrate

19Alternative remittance rules could include maintaining a constant level of central bank capital, or
paying out the central bank's net cash �ow. These rules would make remittances depend on the stock
of central bank reserves. Such alternative rules are less tractable both because they imply additional
state variables (e.g. the stock of reserves), and because the default probability will in general depend
on the dynamics of future bond prices, implying an additional �xed point loop in the solution. See
Appendix A.1 for a discussion of the dynamics of the central bank's reserves and capital.

20As we saw earlier, our a�ne solution fails when the default probability itself is stochastic.
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our model to perform a quantitative evaluation of the PEPP announcement, which then

provides a basis for counterfactual analysis of alternative asset purchase policies.

4 Quantitative analysis

4.1 Calibration: pre-pandemic conditions

We calibrate the model under the assumption that the two countries in the union, Core

and Periphery, represent Germany and Italy, respectively, and we interpret the risk-free

short rate rt as the yield on one-month German sovereign bonds.21 The yield curve

decomposition (24)-(25) suggests a clear set of empirical targets to identify the three

key model parameters. First, (17) implies that the German term premium is increasing

in the risk aversion parameter γ. Second, for any γ, the sovereign premium on Italian

debt will increase with the probability of default, ψt. We will target the German yield

curve and the Italian sovereign premium under pre-pandemic conditions, which we take

to mean the period 2013-2019 in which the ECB policy rate remained close to the

e�ective lower bound, or �ELB period� for brevity. Third, the impact of the PEPP

announcement on Italian yields will depend on the slope of the default probability with

respect to �scal pressure, ∂ψ
∂F

= η ∂Φ
∂F
. We will jointly estimate γ, and the level and slope

of ψt, conditional on a value of the preferred-habitat slope, α = 500, which �ts the data

well. The asset purchase e�ects we identify are largely una�ected by α, over a wide

range of possible values of this parameter.22

Interest rate data. We will evaluate our model by comparing it to monthly data

from Datastream on zero-coupon German and Italian sovereign yields at one-month,

one-year, �ve-year and ten-year maturities. To identify the model parameters we must

also calibrate the stochastic factor that drives yields, namely, the risk-free rate rt. For

consistency with pre-pandemic conditions, we set the standard deviation of rt to σelb =

32bp, which is the sample standard deviation of the one-month German zero-coupon

rate over 2013-2019.23 We set the long-run value of the short-term riskless rate to

21Similar results are obtained if we calibrate to Germany and Spain instead. See Appendix B.

22The precise value of α is not crucial for our results, as long as preferred-habitat demand is not
too elastic. A highly elastic speci�cation is rejected, because it implies that yields are no longer
monotonically decreasing with purchases. Illustrative simulations are available upon request.

23We use the subscript �elb� to denote sample and model moments over the ELB period.
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r̄ = 1%, which is consistent with long-run expectations in the ECB's Survey of Monetary

Analysts (SMA).24 In other words, the ELB period can indeed be characterized as a

prolonged deviation from the expected long-run level of eurozone interest rates.25 Lastly,

we set the autocorrelation of rt by matching the anticipated half-life of its deviation

from its long-run value, as observed in the SMA. This leads us to set the monthly

autocorrelation of rt at 0.992, or equivalently κ = 0.096.

Fiscal pressure. Yields during the ELB period will also depend on market par-

ticipants' expectations about �scal trends at that time. As regards gross bond supply,

we calibrate expectations using ECB/Eurosystem quarterly projections, from 2013 to

2019 vintages, of German and Italian general government debt securities over a ten

year horizon.26 Regarding bond absorption, we construct ten-year-ahead projections of

Eurosystem asset purchases based on ECB announcements and analysts' expectations

on APP purchases reported in Bloomberg surveys.27 We interpolate the forecasts to

monthly frequency, and we assume for simplicity that bonds are issued with maturities

from one month to ten years, and that the stock of bonds is uniform across maturities.28

Under these assumptions, we can calculate the anticipated net supplies of German and

Italian bonds, f ∗t+s (τ) − fCB,∗t+s (τ) and ft+s (τ) − fCBt+s (τ) for each forecast vintage t,

each forecast horizon s, and each maturity τ � including τ = 0, which gives us net bond

redemptions. We average over vintages t to obtain an average net supply forecast for

the ELB period, at all horizons s.

Likewise, we can aggregate forward to calculate �scal pressure.29 For time aggrega-

24The ECB started conducting the SMA in March 2019. In the six surveys conducted in 2019, the
year before the pandemic, the median (across surveyed analysts) long-run expectation for euro area
short-term riskless rates averaged 1.08%, and stood at 1% in the last four rounds. The results from
the SMA have been published since June 2021 and are available here.

25Alternatively, we could allow for regime shifts, regarding the ELB period as one possible regime,
and calibrate the model to �t that regime, setting the mean and standard deviation of rt to relb =
−49bp and σelb = 32bp. This procedure gives similar results, as we show in Appendix B.

26Debt is assumed constant after the last forecasted value. The same assumption is applied to all
the other �scal forecasts we use.

27Since these forecasts were constructed prior to 2020, they do not include PEPP purchases; but fore-
cast vintages from 2015 onwards include anticipated purchases under the ECB's earlier asset purchase
programme, the APP.

28Hence the weighted average maturity of debt in our simulations, in the ELB period and at the
time of the PEPP announcement, is �ve years. This is somewhat lower than the values observed for
German and Italian debt during the ELB period (6.5 years and 7.1 years, respectively).

29We do not have access to previous vintages of de�cit forecasts from the ELB period. Therefore,
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tion, we use the annual discount rate r̂ + φ = 0.5. This discount rate is the sum of the

government's subjective discount rate, and the rate at which rollover crises come to an

end; we do not attempt to identify these two components separately.30 Then, using our

projections for primary de�cits and net bond redemptions and integrating using (36),

we can calculate the anticipated �scal pressure {Ft+s}s≥0 facing Italy at each time t

in the ELB period, at each horizon s. Averaging across forecast vintages t, we obtain

an average sequence of anticipated �scal pressure {Felb(s)}s≥0 for each forecast horizon

s. On average over the ELB period, �scal pressure was expected to increase over the

forecast horizon; hence we �nd that Felb(s) is increasing with s, which will be important

for our results since it implies that the sovereign spread increases with maturity. We

will write the average �scal pressure actually experienced by Italy over the ELB period

(i.e. the average at horizon s = 0) as Felb ≡ Felb(0).

Preferred-habitat investors. Finally, to calculate pre-pandemic yields we also

need to know the fraction of net debt held by preferred-habitat investors (as opposed

to arbitrageurs) in the pre-pandemic period. Eser et al. (2019), Table 1, report that

the fraction of net debt of the big-four euro area economies held by non-Eurosystem

preferred-habitat investors was 41.4% in 2014, and 47.0% in 2018. We calibrate the

intercept terms in the preferred-habitat equations by taking the average of these two

�gures, that is, 44.2% of each country's ELB period net debt. Together with the

simplifying assumption that bond supply was uniform across maturities over this period,

these data nail down the intercept terms helb(τ) and h∗elb(τ) in the preferred-habitat

demand equations.

Calibrating risk aversion. Turning now to the degree of risk aversion γ, note that

the Core term premium yTP∗(τ) is zero at γ = 0, and increases with γ. Hence, after

subtracting the expectations component implied by the calibrated short rate process out

of the yield curve, the German term premium o�ers us a natural target for identifying γ.

Considering an initial risk-free rate rt = relb = −49bp, and given the average anticipated

debt market dynamics from the ELB period described above, we �nd that setting

γ = 0.103 best �ts the German 10-year yield from 2013-2019. The �t is illustrated in

the left panel of Figure 2, which shows the model-generated German yield curve (solid

to evaluate the anticipated de�cits dt+s in equation (36), we use actual realizations of de�cits up to
2019, and 2019-vintage forecasts thereafter.

30Similar results are obtained if we instead double or halve the discount rate, setting r̂ + φ = 1 or
0.25. These results are available upon request.
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Figure 2: Decomposing model-generated yield curves: Germany and Italy
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Notes. Sources: Datastream and model simulations.

Left panel . Stars: average yields (annualized, basis points) on zero-coupon 1m, 1Y, 5Y and 10Y

German sovereign bonds, 2013-2019.

Blue lines: Decomposition of model-generated pre-pandemic German yield curve y∗elb(τ) into ex-

pectations component (dotted) plus term premium (solid).

Right panel . Stars: average yields (annualized, basis points) on zero-coupon 1m, 1Y, 5Y and 10Y

Italian sovereign bonds, 2013-2019.

Red lines: Decomposition of model-generated pre-pandemic Italian yield curve yelb(τ) into ex-

pectations component (dotted), plus term premium (dash-dotted), plus expected default loss

(dashed), and plus credit risk premium (solid).

line) for the ELB period. The expectations component yEX∗elb (τ) is shown as a dotted

line; it is increasing because the low risk-free rate of the ELB period is expected to

converge back to its long-run value, r̄ = 1%. The di�erence between the dotted and

solid lines is the term premium component yTP∗elb (τ).31 The stars show mean German

yields, 2013-2019, for 1m, 1Y, 5Y and 10Y maturities.

Calibrating the default probability. Next, conditional on γ, we estimate the

default probability function by matching Italian yields from the ELB period, and their

31The resulting average German 10-year term premium over the ELB period is slightly above 50
bp. This is in the ballpark of empirical estimates for this time period (see e.g. Fig. 1 of Lemke and
Werner, 2020).

28



response to the PEPP announcement. Of course, yields are also a�ected by the default

haircut δ; we set δ = 0.25 in light of international evidence.32 To calibrate the prob-

ability function, we assume that the distribution of the default cost, Φ(χ), is uniform

over an interval [F , F ] su�ciently wide to include all the �scal scenarios we consider.

Then, using ψt = ηΦ(Ft + const.), the default probability can be written as

ψt = ψelb + θ (Ft − Felb) . (37)

where θ ≡ η/(F − F ) equals the arrival rate η of a rollover crisis times the density

1/(F − F ) of the uniform distribution Φ, and ψelb is an intercept term associated with

the average �scal pressure experienced in the ELB period.33

Minimizing the distance from the model's predictions to the Italian yield curve in

the pre-pandemic ELB period (2013-2019) and to the shift in the curve induced by the

PEPP announcement (discussed in the next section) we estimate ψelb = 3bp per annum,

and θ = 4.03×10−5, respectively.34 Thus, the expected instantaneous default loss, δψelb,

evaluated at the mean �scal pressure Felb actually experienced during the ELB period,

was very small, less than one basis point annually. However, �scal conditions were

not expected to be constant over this period. Instead, �scal pressure was expected,

on average, to increase over the forecast horizon (Felb(s) increases with s), implying a

rising default probability over time, reaching ψt+s = 57bp at a horizon of ten years.

Even so, this still implied a very small expected default loss yDLelb (τ), seen as the distance

between the dash-dot and dashed lines in the right panel of Figure 2. The much larger

component of the sovereign spread is the credit risk premium yCRelb (τ), which is the

distance between the dashed and solid lines in the �gure. Note that the two premia,

yDLelb (τ) and yCRelb (τ), are both increasing with maturity τ , because of the anticipated

trend in �scal pressure and the default probability. Together, the two components are

consistent with the level and term structure of the Italian sovereign premium (the red

stars in the �gure show Italian yields, 2013-2019).35

32Cruces and Trebesch (2013) �nd haircuts on the order of 50% in evidence drawn mostly from
emerging markets; for advanced economies we feel that a smaller haircut is more plausible.

33The uniformity assumption implies that the slope θ inferred by matching the impact of the PEPP
announcement can also be used to infer the impact of the alternative policies analyzed in Sec. 5.

34We estimate the response of the default probability to �scal pressure, θ, without attempting to
identify the arrival rate of a rollover crisis, η, separately from the derivative Φ′ = 1/(F − F ).

35In the alternative calibration strategy discussed in the appendix, where we treat the ELB period
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4.2 Dynamics: the PEPP announcement, the pandemic, and

the yield curve

The slope parameter θ that links �scal pressure with the default probability is also

crucial for matching the shifts in peripheral yields observed over the course of the

pandemic. Strikingly, the yield curve impact of the PEPP announcement looks almost

like a mirror image of the preceding shifts caused by the pandemic, as Figure 1 showed.

As the pandemic began to spread, the Spanish and Italian yield curves shifted up in

a roughly parallel fashion, with a modest downwards shift and steepening in German

yields (the left panel of the �gure compares average yields over the week of Feb 13-

19 with yields one month later, over the week of 12-18 March, just before the PEPP

announcement). Much of this rise was reversed, by roughly parallel downward shifts in

Spanish and Italian yields, upon the announcement of PEPP (the right panel compares

end-of-day yield curves for March 18 and 20, before and after the announcement).

Expectations before and after the PEPP announcement. As the pandemic

took hold in Italy, Spain, and the rest of Europe, it became clear that a massive �scal

response would be needed, implying higher expected gross debt levels. But shortly

thereafter, the PEPP announcement revealed that much of this new debt would be

taken onto the Eurosystem's balance sheet. In standard (no default) models of risk-

averse arbitrageurs, these changes in net supply would steepen the yield curves as the

pandemic spread, and �atten them when PEPP was announced, via changes in term

premia. But in our model, the impact of purchases on yields is reinforced by several

additional e�ects related to default. On one hand, a reduction in the net supply of

defaultable bonds St(τ) shrinks the credit risk premium yCRt (τ) that markets demand

to hold those bonds. This e�ect operates even when the default probability is exogenous.

On the other hand, with endogenous default, lower net bond supply decreases future

net redemptions St+s(0) and hence reduces the default probability (both at t and at

future times t+ s). This lowers the expected default loss yDLt (τ) and also reinforces the

fall in the credit risk premium (see eqs. 18 and 23).

To evaluate the impact of the PEPP announcement, we use the ECB/Eurosystem

projections of German and Italian gross debt around that announcement. For an

initial time t that corresponds to March, 2020, we simulate a no-PEPP scenario,

as if it were a steady state, the components yDLelb (τ) and yCRelb (τ) are instead constant across maturities.
This is counterfactual, since it makes the sovereign spread approximately independent of maturity.
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{fCBt+s (τ), fCB∗t+s (τ)}beforeτ≥0,s≥0, in which ECB bond holdings are determined by the ear-

lier Asset Purchase Programme (including the expansion of APP on March 12, 2020),

and a scenario {fCBt+s (τ), fCB∗t+s (τ)}afterτ≥0,s≥0, in which the APP is complemented by PEPP

purchases, as announced on March 18, 2020. We interpret the di�erence between the

two scenarios as the e�ect of the PEPP announcement. Both scenarios assume the

same sequences {dt+s,ft+s(τ), f ∗t+s(τ)}τ≥0,s≥0 of de�cits and gross bond supply, which

are averages of �scal forecasts from March and June, 2020.36 With these data in hand,

we can calculate the e�ects on the term premium and the credit risk premium that go

directly through the net stock of bonds, as well as the e�ects on the credit risk premium

that go through �scal pressure and the default probability via equations (36)-(37).

We focus on the immediate e�ects of PEPP as it was originally announced in March,

with an overall envelope of 750 billion euros to be spent over the course of 2020; these

e�ects capture well the actual causal impact of the announcement, given its unexpected

nature.37 Since the path of purchases under PEPP was �exible, rather than pre-de�ned

like the APP, we must make some assumptions regarding arbitrageurs' expectations

about the eventual use of PEPP's �exibility at the time of the March announcement.

Our baseline scenario assumes that arbitrageurs anticipated PEPP purchases through

June 2020 with perfect foresight � implying some frontloading, and some excess pur-

chases of Italian debt, compared with Italy's capital key (the upper left panel of Figure

7 graphs purchases in this scenario). We assume that from July to December, PEPP

purchases were expected to accrue at a constant pace, up to the original PEPP envelope,

while maintaining the deviations from capital key that were observed through June.38

We then estimate the parameter θ to �t the shift in the Italian yield curve when expec-

tations are revised, following the March 18 announcement, from the no-PEPP scenario

36To adequately capture expectations of future de�cits and net bond supply in the early, pre-
PEPP weeks of the pandemic crisis, we average across �scal forecasts in the March and June, 2020,
ECB/Eurosystem projections. Due to the closing date for the March 2020 projections, these still did
not include estimates of the full impact of the pandemic on national government debts, so they do not
capture investor expectations right before the PEPP announcement. The June projections did include
a more updated, realistic estimate, but based partly on information that was not available to investors
in mid-March. Thus, the average of the March and June �scal projections provides a reasonably good
proxy of investors expectations immediately ahead of the PEPP announcement.

37Subsequent recalibrations of the PEPP purchase envelope (in June and December that year) were
largely anticipated by the market, according to di�erent surveys.

38Note that our simulation scenarios treat the PEPP envelope as a limit on the total face value of
purchases. In reality, it limited the total market value of purchases. Assuming a limit on the face value
instead simpli�es our calculations, since it allows us to avoid a �xed point loop in the bond price.
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Figure 3: E�ects of PEPP announcement: baseline scenario.
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Notes. Sources: Datastream and model simulations.

Left panel . Blue stars: shift in German yields, 18 to 20 March 2020.

Blue lines: model decomposition of shift in German yields into expectations component (dotted)

plus term premium (solid), in response to purchase announcement seen in top, left panel of Fig.

7.

Right panel . Red stars: shift in Italian yields, 18 to 20 March 2020.

Red lines: model decomposition of shift in Italian yields into expectations component (dotted),

plus term premium (dashed-dotted), plus expected default loss (dashed), and plus credit risk

premium (solid), in response to purchase announcement seen in top, left panel of Fig. 7.

to the PEPP scenario.

Impact of PEPP announcement. The results under the estimated value of θ are

shown in Figure 3, where stars indicate the change in yields between March 18 (pre-

announcement) and March 20, 2020 (after the PEPP announcement).39 The blue stars

in the left panel show that the PEPP announcement had a small, nonmonotonic impact

on German yields, which rose at a one-year maturity and fell at �ve- and especially ten-

year maturities. In contrast, the impact on Italian yields was dramatic (right panel,

red stars), showing a hump-shaped decline that had its largest impact, of almost 90

39We take the change from March 18 to 20 as our measure of the impact of the PEPP announcement,
because yields were still volatile across Europe on the 19th, but settled down from the 20th onwards.
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basis points, at a �ve-year maturity. Hence, across all maturities, the announcement

was associated with a large reduction in average eurozone bond yields, together with a

sharp drop in cross-country di�erentials.

Our model does a good job of reproducing the e�ect on yields in both countries.

Given the degree of risk aversion implied by our calibration, the PEPP announcement

is predicted to cause a modest decline in the German term premium, of roughly three

basis points.40 The e�ect on the Italian term premium is similar. This is to be expected

in the light of Proposition 2, which says that term premia are approximately equalized

in a monetary union if the default probability is low. However, the sovereign spread

on Italian debt declines sharply, �rst of all because the increased absorption of credit

risk makes the market much more willing to take part of this risk into its own hands.

Moreover, under our estimated parameters, the PEPP announcement caused a small

decline in the expected default costs on Italian debt, on the order of three basis points

per annum, seen as the di�erence between the dashed and dash-dot lines in the right

panel of Fig. 3. While this change is small in absolute terms, it represents a nontriv-

ial reduction in the already small level of the expected default loss on Italian debt.

Concretely, the model-implied expected default loss hovered between 12 and 14 basis

points per annum over the initial months of the pandemic in the absence of PEPP,

so the announcement appears to have reduced the default probability by almost one

quarter. Therefore, the model suggests that the extraction of defaultable bonds from

the market, together with the resulting reduction in their default risk, jointly caused a

large decrease in the credit risk premium yCRt (τ), which accounts for the largest share

of the response to the PEPP announcement.

The reduction in Italian yields at the time of the announcement is large at all

maturities, but is strongest for bonds of intermediate duration, which will be maturing

when cumulative net purchases are still large. In contrast, one-month bonds mature

before many purchases have taken place. At the opposite extreme, for ten-year bonds,

our scenario implies that most net redemptions will have occurred, and hence yields

will be rising again, by the time the bonds mature. Since yields are forward-looking,

the future return to normality limits the change in 10-year yields on impact.

Beyond its powerful e�ect upon announcement, our model also implies that PEPP

has a persistent e�ect on yields over time. Figure 4 illustrates the impulse responses

40Since the model treats the riskless short rate as an exogenous factor, changing the path of purchases
has no impact on the expectations component yEXt (τ).
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Figure 4: Persistence of PEPP e�ects: baseline scenario.
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Left panel . PEPP e�ects on German yields over time, for one month, one year, �ve year, and ten

year maturities, under the baseline purchase program seen in top, left panel of Fig. 7.

Right panel . PEPP e�ects on Italian yields over time, for one month, one year, �ve year, and ten

year maturities, under the baseline purchase program seen in top, left panel of Fig. 7.

of yields to the PEPP announcement, for one-month, 12-month, 60-month, and 120-

month maturities, under the assumption that the purchase program unfolds as expected

under our baseline scenario. The small decrease in German yields (left panel) mostly

a�ects long bonds, and decays smoothly, with a half-life of roughly three years. The

much larger reduction in Italian yields (right panel) is very persistent, but di�ers across

durations. The impact on 10-year bonds declines smoothly over time, while for one-

month and one-year bonds the e�ect is initially increasing, building up to a reduction

in yields of roughly 90 basis points in the second year after the announcement.

To understand how these responses vary with duration, note that our simulations

assume that gross public issuance and gross ECB purchases are both uniform across

maturities, and that purchases are held to maturity. The e�ect on short yields increases

over the course of 2020, because the quantity of short bonds held increases over that

period, accumulating new purchases with bonds purchased earlier at slightly greater

maturity. The trough in short yields occurs just as gross purchases cease. From this
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Figure 5: Impact of PEPP on sovereign premium and CDS spreads
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Notes. Sources: Datastream and model simulations.

E�ects of the PEPP announcement on the sovereign premium and CDS spreads (March 18-20,

2020). Black stars show the change in the sovereign premium on Italian over German debt (1

month, 12 month, 5 year, and 10 year maturities). Green circles show the change in the Italian

CDS spread (6 month, 12 month, 5 year, and 10 year maturities). The solid blue line shows the

model-generated change in the sovereign premium.

time onwards, the whole portfolio gradually matures; the decrease in 10-year yields

from 2021 onwards (i.e. after the end of the net purchase phase envisioned in the

original PEPP announcement) is only due to arbitrage across durations, not because

the program still holds any bonds with a 10-year residual maturity. As the average

maturity of the PEPP portfolio shortens, its impact on long yields fades away, followed

by its impact on short yields. The �nal e�ects of the program disappear as the last

bonds mature, 120 months after the end of gross purchases.

CDS spreads. To further validate the performance of our model, we can also

examine the e�ect of the PEPP announcement on credit default swap (CDS) spreads,

shown by the green circles in Figure 5. When a default (or related credit event) occurs,

a CDS pays o� the di�erence between the face value of the defaulted bond and its
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remaining market value. Hence the payo� to a CDS is equal to that of a portfolio that

is long one default-free bond and short one defaultable bond. Ignoring transactions costs

and assuming absence of arbitrage, this implies that the per-period price of holding a

CDS (the spread that is paid as a premium on the CDS contract) must equal the price of

holding such a portfolio (Du�e, 1999) which in our case is simply the sovereign spread,

that is, the yield on an Italian bond minus the yield on a German bond of the same

maturity. Hence, abstracting from transactions costs and arbitrage opportunities, upon

the announcement of PEPP, CDS spreads and the Italian-German sovereign spread

should fall by the same amount. This prediction is close to being true at 5-year and

especially 10-year maturities, but fails at short maturities, where the observed decrease

in the CDS spread is substantially smaller than the observed decline in the sovereign

premium. Interestingly, our model's prediction for the impact of PEPP lies mostly

between the observed impacts on CDS spreads and sovereign spreads.

Impact of the pandemic outbreak. As an additional quantitative cross-check

on our model, we can study how the pandemic itself a�ected German and Italian

yields. In this context, we view the economic impact of the pandemic as a large,

unexpected increase in de�cits and public debt issuance over the medium term. To

quantify this change in �scal expectations, we take December 2019 ECB/Eurosystem

�scal projections for Germany and Italy as a proxy for expectations in the absence

of the pandemic, and we take the average of the corresponding March 2020 and June

2020 forecasts as a proxy for expectations that include the pandemic and the associated

pre�PEPP policy responses.41 Figure 6 shows the model-generated shift in yield curves

associated with this change in expectations. The model response is compared to the

observed shift in yields from the week of 13-19 February, 2020, when the pandemic

was not yet expected to have a major impact, to the week of 12-18 March, when

peripheral yields were spiking in response to the pandemic but the PEPP had not yet

been announced.

Beyond the change in �scal expectations related to the pandemic, there was also

a decrease in German short-term rates between February and March 2020, which our

simulations treat as a shock to rt. Together, the revised �scal expectations and the

41The ECB's expansion of the Asset Purchase Programme envelope by 120 billion euros on March
12, 2020 is accounted for in the updated March-June �scal expectations. As explained before, the
average of the March and June �scal projections provides a reasonable proxy of investors' expectations
in the �rst few weeks of the pandemic crisis, before the original PEPP announcement.
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Figure 6: Impact of the pandemic outbreak
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Notes. Sources: Datastream and model simulations.

Left panel . Blue stars: shift in weekly average German yields from week of 13-19 February 2020

to week of 12-18 March 2020.

Blue lines: model decomposition of shift in German yields into expectations component (dotted)

plus term premium (solid), in response to revised �scal expectations associated with the pandemic.

Right panel . Red stars: shift in weekly average Italian yields from week of 13-19 February 2020

to week of 12-18 March 2020.

Red lines: model decomposition of shift in Italian yields into expectations component (dotted),

plus term premium (dashed-dotted), plus expected default loss (dashed), plus credit risk premium

(solid), in response to revised �scal expectations associated with the pandemic.

shock to the riskless rate explain the downward shift and steepening of the German

yield curve shown in the left panel of Fig. 6. The downward shock to the riskless rate

causes the expectations component yEX∗t (τ) to become steeper, while the change in �scal

expectations steepens the term premium yTP∗t (τ) by a similar amount; together, these

two e�ects are quantitatively consistent with the observed change in the slope of the

German yield curve (blue stars in the �gure). The right panel of the �gure shows that

the change in �scal expectations associated with the pandemic generates a large upward

shift in Italian yields in our model (red curves), of the same order of magnitude as the

shift observed in bond markets from February to March 2020 (red stars). The model
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overpredicts somewhat the market reaction at short maturities, and underpredicts it

for ten-year bonds, but for �ve-year yields the model-generated change is very close

to that in the data, rising by approximately 140bp. Most importantly, our model is

consistent with the upward shift observed in the Italian yield curve, a feature that

cannot be explained by a standard model without default. Thus, applying our model

to the initial pandemic shock appears to validate the calibration that best matches

the impact of PEPP. In both contexts, our model of endogenous default probabilities

allows us to generate large shifts in yields across all maturities, driven by the credit

risk premium component yCRt (τ), in contrast with the impact that would be observed

if duration extraction were the only relevant transmission channel.

5 Counterfactual policy experiments: �exibility and

e�ectiveness of purchases

Since our assumption that the peripheral default probability varies with the degree

of �scal pressure appears to match the impact of PEPP well, across jurisdictions and

maturities, we now apply our model to evaluating counterfactual policy scenarios. In

particular, we are interested in evaluating how the �exible design of the PEPP purchases

altered their impact, relative to the design of earlier ECB programs. Figure 7 illustrates

four of the policy scenarios we will consider.

The top, left panel shows the baseline scenario that we used in Section 4.2 as a stand-

in for expectations regarding the PEPP upon its announcement. The blue line shows

our scenario for cumulative PEPP purchases of German sovereign bonds (expressed in

face value, in billions of euros) for months 3-12 (indicating March-December, 2020).

Likewise, the red line shows our scenario for Italian purchases. The path of purchases

up to the end of June represents actual PEPP purchases, which accumulated almost

linearly over time, at a pace that, if continued, would have exhausted the envelope before

the end of the year. As a fraction of the monthly total, Italian purchases exceeded Italy's

capital key, while purchases of German bonds were close to capital key (purchases of

French bonds were substantially below capital key). Since our scenario is intended

to model the e�ects of the initial announcement, we abstract from the actual path

of purchases after June (when a recalibration of the PEPP purchase envelope was

announced), and instead suppose that purchases from July onwards would use up the
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Figure 7: Baseline purchase scenario and counterfactual experiments.
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Top, left panel : Baseline model scenario for PEPP purchase expectations as of March 2020. Blue

circles: Germany; red squares: Italy; black: aggregate face value. E�ect on yields is shown in

Figs. 3-4.

Top, right panel : Comparing baseline PEPP scenario vs. in�exible �APP-style� scenario with a

constant pace of purchases and allocations equal to capital keys. Blue circles: Germany; red

squares: Italy; black: aggregate face value. E�ect on yields is shown in Fig. 8.

Bottom, left panel : Comparing in�exible �APP-style� scenario with a scenario that reallocates

purchases by ±5%. Blue circles: Germany; red squares: Italy; black: aggregate face value. E�ect

on yields shown as a black dash-dot line in the left panel of Fig. 9.

Bottom, right panel : Comparing in�exible �APP-style� scenario with a �frontloading� scenario

that completes all purchases by July. Blue circles: Germany; red squares: Italy; black: aggregate

face value. E�ect on yields shown as a green dotted line in the left panel of Fig. 9.
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remaining PEPP envelope at a constant pace, while maintaining the initial deviations

in capital key. The black line represents cumulative purchases of the whole PEPP

program in our two-country model � that is, it is the sum of the blue and red lines.

APP-style purchases. We �rst compare our PEPP scenario to a counterfactual

alternative following the in�exible design principles of the earlier Asset Purchase Pro-

gramme (APP). That program imposed a constant pace of purchases over a pre-speci�ed

period of time, and allocated purchases according to each eurozone state's capital key.

Building upon these features, we design a hypothetical �APP-style� purchase announce-

ment whereby the ECB would have committed to the same overall envelope, but would

have distributed the purchases linearly over time, and according to a strict application

of the capital key. This comparison is illustrated in the top, right panel of Fig. 7.

There, the blue dashed line represents a constant rate of German bond purchases from

March to December that add up to Germany's capital-key share (26.4%) of the PEPP

envelope.42 Likewise, the red dashed line represents purchases of Italian bonds, at a

constant rate, that add up to Italy's capital-key share (17.0%) of the PEPP envelope.

The black dashed line represents total cumulative purchases under our �APP-style�

counterfactual, so it is the sum of the blue and red dashed lines. As before, the blue,

red, and black solid lines represent cumulative purchases under our benchmark �exible

PEPP scenario (German, Italian, and total bonds, respectively). Clearly, our PEPP

scenario imposes frontloading, with an initial pace of purchases faster than the APP

design would permit. Simultaneously, our PEPP scenario allocates more purchases to

Italy than the APP design would, while total purchases of German debt in our PEPP

scenario are similar to those in our APP scenario (close to capital key). Hence total

PEPP purchases (black solid line) end up slightly above the intended envelope (black

dashed line) since our two-country simulation abstracts from the jurisdictions where

purchases were lowest, relative to capital key.

Figure 8 shows how the e�ects of the purchase program di�er between the PEPP

and APP designs. The �gure shows the yields resulting from the PEPP scenario minus

those under the APP scenario, so the fact that the di�erences shown in the graphs

are negative indicates that the PEPP design reduces yields more than the APP design

does. The top row (like Fig. 3) decomposes the e�ects on the yield curve at the time of

the announcement; the left column refers to Germany, while the right column refers to

42While the total PEPP envelope was 750 billion euros, we only analyze the part that was dedicated
to sovereign bonds (608 billion), abstracting from private-sector and supranational purchases.
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Figure 8: Comparing impact of PEPP scenario with �in�exible� alternative
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Panels show the di�erence between the baseline PEPP scenario and an �APP-style� scenario that

imposes a constant pace of purchases and allocations equal to capital keys, as illustrated in top,

right panel of Fig. 7.

Italy. The PEPP design causes a small extra reduction in German yields, by half a basis

point at longer maturities, compared to the APP-style program. But the reduction in

yields is much more signi�cant in the Italian case, where PEPP shifts the yield curve

by almost �fteen additional basis points at most maturities, compared with the APP

design. Most of the di�erence between the PEPP and APP designs is attributable to a

decline in the credit risk premium (the distance between the dashed and solid red lines

in the top, right panel of the �gure). In the bottom row (as in Fig. 4), we see that the

additional impact of the �exible PEPP design is persistent. The impact of �exibility

on ten-year and �ve-year yields has a half life of about four and six years, respectively.

E�ects of �exibility in cross-country allocation and timing. Which aspect

of the �exibility of PEPP is most important for its stronger impact on yields, as com-
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pared with an APP design? We next perform additional counterfactual experiments to

distinguish the role of �exibility in the cross-country allocation of purchases from �ex-

ibility in their timing. The black dash-dot line in the left panel of Figure 9 documents

the e�ect of cross-country allocation alone. Taking the APP design as a starting point,

it considers the impact of reallocating purchases worth �ve percentage points of the

overall PEPP envelope from Germany to Italy. This change in purchases is illustrated

in the bottom, left corner of Fig. 7, which shows an increase in Italian purchases and a

decrease in German purchases, with total purchases (black line) unchanged. The impact

on Italian yields is striking. Reallocating purchases causes a large, persistent decrease

in Italian yields (top panel of Fig. 9) of 16 to 19 basis points across most maturities,

which is quite similar to the overall impact of the PEPP design. In contrast, the impact

on German yields (not shown) is negligible, as we saw earlier in Fig. 8.

These results again re�ect Proposition 2, which showed that when default risk is

low, term premia are driven by the overall quantity of purchases, not their distribution

across jurisdictions. Since the expectations term is not a�ected by purchases at all in

our model, we can furthermore conclude that if Italian default risk is low, then the

German yield curve is determined by the total quantity of purchases, regardless of how

those purchases are distributed. But for Italy, country-speci�c purchases are crucial for

yields, because decreasing free-�oating default risk makes the market more willing to

hold this risk. Again, the actual impact on expected losses from default is tiny � the

additional purchases of Italian debt decrease the expected losses from Italian default

by less than one basis point (the �DL� component). But when part of this risk is

taken o� the market, arbitrageurs become much more willing to bear the remaining

risk, lowering the credit risk premium by almost 20bp at intermediate maturities (the

�CR� component). Hence, from the point of view of reducing average euro area yields,

reallocating purchases from Germany to Italy makes the purchase program much more

e�ective. In other words, �exibility in allocation across countries is an important factor

in explaining the e�ectiveness of the PEPP design.

The green dotted line in the left panel of Figure 9 instead isolates the impact of

�exibility in timing. It considers a frontloading scenario in which all purchases are

realized in the �rst �ve months of the purchase program, as compared with the APP

scenario in which the pace of purchases is constant through December 2020 (these

two possible purchase paths are compared in the bottom, right panel of Fig. 7). This

comparison relates to timing only, so it does not contemplate any deviation from capital
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Figure 9: E�ects of �exibility in cross-country allocation and timing
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Comparing the impacts on Italian yields of reallocation of purchases across countries, and front-
loading over time, separately and jointly.
Left panel . The black dash-dot line shows the e�ect of reallocating 5% of the total PEPP en-
velope from Germany to Italy; the green dotted line shows the e�ect of frontloading all PEPP
purchases into the �rst �ve months, instead of maintaining a constant purchase pace from March
to December.
Right panel . The green dashed line shows the sum of the two e�ects from the left panel. The
black solid line shows the combined impact of implementing the reallocation and frontloading
policies together.

keys; but note that the frontloading in this exercise is substantially stronger than the

frontloading in our baseline PEPP scenario. This frontloading causes a tiny decrease, on

impact, in the German yield curve (not shown). For Italy (left panel of Fig. 9) it causes

a large decrease in short yields on impact, of more than 15bp for six-month maturities,

but at the same time, it causes a tiny increase in ten-year yields. Frontloading implies an

increase in the �ow of purchases early in the program, but by the same token it implies

a decrease in this �ow later, and eventually causes the whole portfolio to mature earlier.

Hence, the impact of frontloading over time is a sharp decrease in most yields at the

beginning of the program, but a small increase later, when the portfolio matures. These

future e�ects are priced into Italian ten-year yields from the very beginning.

We have seen that reallocation can have a big impact on Italian yields, with negligi-
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ble e�ects on German ones, while frontloading trades o� a large decrease in short-term

Italian yields against a small increase in the longest Italian yields. But how do these

policies interact? The right panel of Figure 9 addresses this question by comparing

the individual e�ects of �exibility across jurisdictions, and �exibility over time, to their

joint e�ect. The green dashed line sums the impact of �exibility across jurisdictions

only plus the impact of frontloading only (that is, it sums the the two curves from the

left panel). The black solid line instead shows the joint, nonlinear e�ect of a policy that

combines reallocation across jurisdictions (redistributing purchases from Germany to

Italy, away from their capital keys, as illustrated in the lower, left panel of Fig. 7) with

frontloading over time (as illustrated in the lower, right panel of Fig. 7). Hence, the

di�erence between the black solid line and the green dashed line shows that reallocation

and frontloading interact in a nonlinear way. In particular, combining reallocation with

frontloading decreases short yields by up to 32 basis points, while the impact of the two

policies separately sums to only 28 basis points for the same maturities. We conclude

that �exibility across jurisdictions and �exibility across time are complements, rather

than substitutes: each aspect of �exibility contributes individually to the e�ectiveness

of asset purchases, and more so jointly.

Reinvestments. Finally, we analyze the importance of another design feature that

increases the e�ectiveness of asset purchases, namely, reinvestment of maturing bonds.

Without changing the structure of the initial purchases, the impact of the program on

yields is increased if maturing bonds are reinvested after net purchases end, thus pre-

serving the central bank's absorption of duration and default risk over a longer horizon.

In Figure 10, we consider a variation on our baseline PEPP scenario (which abstracts

from reinvestment commitments, consistently with the original PEPP announcement)

that includes a commitment to reinvest all maturing bonds in 10-year bonds, for a pe-

riod of �ve years, after which the whole portfolio is held to maturity. Note that since

our baseline PEPP scenario assumed that purchases would be uniform across maturi-

ties, reinvesting in 10-year bonds maintains this uniform distribution across maturities

throughout the �ve-year reinvestment period.

Figure 10 reports the di�erence in the behavior of yields between the PEPP scenario

with reinvestment, and the baseline PEPP scenario we saw earlier. Even though the

pro�le of purchases over the net investment period is unchanged, committing to rein-

vestment already has a large impact on yields at the time of announcement, especially
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Figure 10: Impact of reinvestments
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Panels show the di�erence between a scenario in which all maturing bonds are reinvested in new

purchases of 10Y bonds, for �ve years after the end of net purchases, and the baseline PEPP

scenario without reinvestment.

for longer bonds.43 Upon announcement, the program with reinvestment decreases the

yield on German 10-year bonds by an additional two basis points, and that on Italian

10-year bonds by an additional 23 basis points. As before, the impact on Italian bonds

goes mainly through the credit risk premium, since the reinvestment program decreases

for several years the net supply of defaultable bonds that private agents must hold. The

decrease in German and Italian yields is persistent, and actually increasing for some

time, with the maximum impact on 10-year Italian bonds after �ve years, and that

on Italian short-term bonds (almost 100 basis points) more than ten years down the

line. Note that currently the PEPP and APP programs both incorporate reinvestment

43For comparability with our earlier exercises, we assume that the whole time path of each scenario
is known at the time of the initial PEPP announcement, i.e. March 2020.
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commitments.44 Our results suggest that these commitments may signi�cantly boost

the e�ectiveness of these programs at lowering sovereign bond yields.

6 Conclusions

In this paper, we propose a micro-founded model of the term structure of sovereign in-

terest rates in a heterogeneous monetary union. We extend the Vayanos and Vila (2020)

a�ne term structure model to a two-country monetary union in which one of the two

sovereign issuers (Periphery) faces default risk, due to the possibility of rollover crises.

In addition to the standard and well-documented duration risk extraction channel of

asset purchase programs, our model features a default risk extraction channel, whereby

announcements of central bank asset purchases reduce both the expected amount of

defaultable bonds to be absorbed by the market and the sovereign default probability

itself, thus reducing the compensation risk-averse investors require to absorb default

risk.

We apply our model to analyze the impact of the ECB's pandemic emergency pur-

chase programme (PEPP), announced in March 2020 in a context of rising expected

issuance of euro area sovereign debt as a consequence of the Covid-19 crisis. We cali-

brate the model to data on German and Italian yields, by targeting the average shape

of both countries' sovereign yield curves in the pre-pandemic period and the change in

Italian yields over the two days following the PEPP announcement. Under the inferred

parameters, the sovereign credit risk premium is an order of magnitude larger than the

expected loss due to default. We show analytically that under this parameter con�gu-

ration, the term premium and hence German yields depend approximately on aggregate

asset purchases, regardless of their cross-country distribution. In contrast, the Italian

yield curve depends strongly on how asset purchases are allocated across countries.

Quantitatively, we conclude that default risk extraction is the most signi�cant channel

to explain the response of the Italian yield curve to the PEPP announcement, much

more so than duration extraction.

We then perform counterfactual simulations to evaluate how important the PEPP's

�exible design was for its impact. A key feature of the PEPP was �exibility in the

44The March 2020 PEPP announcement did not commit to reinvestments, which is why there is
no reinvestment under our benchmark scenario. A reinvestment commitment was �rst announced for
PEPP at the end of June, 2020, and remains in place at the time of this writing.
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distribution of purchases over time and across jurisdictions. We �nd that the �exi-

ble allocation of purchases permitted by the PEPP design substantially enhanced its

impact. The PEPP announcement reduced Italian yields by around 80bp across the

yield curve, of which almost 15bp can be attributed to the �exibility of PEPP, as

compared with a hypothetical announcement with the same overall envelope but an

APP-style design (a constant pace of purchases, allocated across countries accord-

ing to the ECB's capital key). Overall, since the impact of asset purchase redistri-

butions on German yields is negligible, average euro-area yields depend strongly on

the cross-country allocation of purchases, through their e�ect on peripheral yields.

References

Aguiar, M., M. Amador, E. Farhi, and G. Gopinath (2015). Coordination and crisis in

monetary unions. Quarterly Journal of Economics 130 (4), 1727�1779. 3

Altavilla, C., G. Carboni, and R. Motto (2021). Asset purchase programs and �nancial

markets: Lessons from the euro area. International Journal of Central Banking 17,

1�48. 1

Ang, A. and M. Piazzesi (2003). A no-arbitrage vector autoregression of term struc-

ture dynamics with macroeconomic and latent variables. Journal of Monetary Eco-

nomics 50, 745�787. 1

Arellano, C., Y. Bai, and G. P. Mihalache (2020). Monetary policy and sovereign risk

in emerging economies (NK-default). NBER Working Paper 26671. 3

Arellano, C., X. Mateos-Planas, and V. Ríos-Rull (2019). Partial default. NBER

Working Paper 26076. 7, 3

Bacchetta, P., E. Perazzi, and E. van Wincoop (2018). Self-ful�lling debt crises: Can

monetary policy really help? Journal of International Economics 110, 119�134. 3

Bianchi, J. and J. Mondragon (2018). Monetary independence and rollover crises.

Working paper 755, Federal Reserve Bank of Minneapolis. 3

47



Borgy, V., T. Laubach, J.-S. Mésonnier, and J.-P. Renne (2012). Fiscal sustainability,

default risk, and euro area sovereign bond spreads. Banque de France DT350. 1

Broeders, D., L. de Haan, and J. W. van den End (2021). How QE changes the nature

of sovereign risk. Manuscript, De Nederlandsche Bank. 1

Calvo, G. (1988). Servicing the public debt: The role of expectations. American

Economic Review 78 (4), 647�661. 1, 3, 3

Camous, A. and R. Cooper (2019). "Whatever it takes" is all you need: Monetary policy

and debt fragility. American Economic Journal: Macroeconomics 11 (4), 38�81. 3

Cole, H. L. and T. J. Kehoe (2000). Self-ful�lling debt crises. Review of Economic

Studies 67 (January), 91�116. 1, 3, 3

Corradin, S., N. Grimm, and B. Schwaab (2021). Euro area sovereign bond risk premia

during the Covid-19 pandemic. ECB Working Paper 2561. 1

Corsetti, G. and L. Dedola (2016). The mystery of the printing press: Monetary policy

and self-ful�lling debt crises. Journal of the European Economic Assocation 14 (6),

1329�1371. 1, 3, 3

Cruces, J. and C. Trebesch (2013). Sovereign defaults: The price of haircuts. American

Economic Journal: Macroeconomics 5, 85�117. 32

De Grauwe, P. and Y. Ji (2013). Self-ful�lling crises in the eurozone: An empirical test.

Journal of International Money and Finance 34, 15�36. 1

Del Negro, M. and C. Sims (2015). When does a central bank's balance sheet require

�scal support? Journal of Monetary Economics 73, 1�19. A.1

Du�e, D. (1999). Credit swap valuation. Financial Analysts Journal 55 (1), 73�87. 4.2

Du�e, D. and R. Kan (1996). A yield-factor model of interest rates. Mathematical

Finance 6 (4), 379�406. 1

Du�e, D. and K. Singleton (1999). Modeling term structures of defaultable bonds.

Review of Financial Studies 12 (4), 687�720. 1, 2, 3

48



Eser, F., W. Lemke, K. Nyholm, S. Radde, and A. Vladu (2019). Tracing the impact of

the ECB's asset purchase programme on the yield curve. ECB Working Paper 2293.

1, 4.1

Gourinchas, P.-O., W. Ray, and D. Vayanos (2020). A preferred-habitat model of term

premia and currency risk. Manuscript, London School of Economics. 1, 2

Greenwood, R., S. Hanson, J. Stein, and A. Sunderam (2020). A quantity-driven theory

of term premia and exchange rates. Manuscript, Harvard University. 1

Greenwood, R. and D. Vayanos (2014). Bond supply and excess bond returns. Review

of Financial Studies 27 (3), 663�713. 1, 1

Hamilton, J. and J. C. Wu (2012). The e�ectiveness of alternative monetary pol-

icy tools in a zero lower bound environment. Journal of Money, Credit and Bank-

ing 44 (Supplement), 1�46. 1, 1, 48

He, Z., S. Nagel, and Z. Song (2020). Treasury inconvenience yields during the Covid-19

crisis. Manuscript, Univ. of Chicago. 1

King, T. B. (2019). Expectation and duration at the zero lower bound. Journal of

Financial Economics 134 (3), 736�760. 1

Krishnamurthy, A. (2022). Quantitative easing: What have we learned? Seminar

presentation, Princeton Univ., 24 March. 1

Krishnamurthy, A., S. Nagel, and A. Vissing-Jorgensen (2018). ECB policies involving

government bond purchases: Impact and channels. Review of Finance 22 (1), 1�44.

1

Lemke, W. and T. Werner (2020). Dissecting long-term Bund yields in the run-

up to the ECB's public sector purchase programme. Journal of Banking and Fi-

nance 111 (105682). 31

Li, C. and M. Wei (2013). Term structure modeling with supply factors and the Fed-

eral Reserve's large-scale asset purchase programs. International Journal of Central

Banking 9 (1), 375�402. 1

49



Na, S., S. Schmitt-Grohe, M. Uribe, and V. Yue (2018). The twin Ds: Optimal default

and devaluation. American Economic Review 108 (7), 1773�1819. 3

Nuño, G., S. Hurtado, and C. Thomas (2022). Monetary policy and sovereign debt

sustainability. Journal of the European Economic Association Forthcoming. 3

Ray, W. (2019). Monetary policy and the limits to arbitrage: Insights from a New

Keynesian preferred habitat model. Manuscript, UC Berkeley. 1

Reis, R. (2013). The mystique surrounding the central bank's balance sheet, applied to

the european crisis. American Economic Review 103 (3), 135�140. 3, A.1

Vayanos, D. and J.-L. Vila (2020). A preferred habitat model of the term structure of

interest rates. Econometrica Forthcoming. 1, 5, 2, 2, 9, 2.1, 12, 2.1, 6

A Appendix: Modelling details

A.1 Central bank accounting

This paper has focused primarily on bond market equilibrium, without spelling out the

broader �nancial or macroeconomic context. In this appendix, we brie�y sketch how

our model of central bank behavior �ts into a wider environment and is consistent with

its budget constraint.

Besides the arbitrageurs and preferred-habitat investors, �nancial market partici-

pants include commercial banks that can hold short-term riskless bonds and central

bank reserves (indeed, some of the arbitrageurs may be commercial banks). Arbitrage

then ensures that the short-term riskless rate equals the interest rate on reserves.

The balance sheet of the common central bank consists of sovereign bonds on the

assets side and bank reserves and capital on the liabilities side. We assume that the

central bank maintains separate accounts associated with each national government in

the monetary union, and determines seignorage transfers in relation to its holdings of

each country's bonds. This structure roughly corresponds to the Eurosystem, in which

most bonds are held by the national central banks of the countries that issued those

bonds, with only a small fraction of holdings subject to �risk sharing� across the national

central banks.
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Section 3 showed that the government's loss function in case of repayment depends

on the seigniorage policy of the central bank during a rollover crisis. We assume that

during a crisis, the central bank pays out to the national government the income it

receives from redemptions of the government's bonds minus a �xed amount Γ̄ aimed

at protecting the central bank's capital during the crisis. In other words, we assume a

seigniorage rule of the form

Γt = fCBt (0)− Γ̄, (38)

so that payments from the government to the central bank to redeem maturing bonds

are partially transferred back again to the government in the form of seigniorage. Gen-

erally speaking, a rule like (38) may not su�ce to avoid an increase in reserves liabilities

during a crisis. In normal times, the reserves associated with purchases of peripheral

bonds follow45

Ḋt = rtDt +

∫
Pt (τ) ιCBt (τ) dτ + Γt − fCBt (0) . (39)

In a rollover crisis, equation (38) implies

Ḋt = rtDt +

∫
Pt (τ) ιCBt (τ) dτ − Γ̄. (40)

This will lead to an expansion in the volume of reserves when Γ̄ < rtDt+
∫
Pt (τ) ιCBt (τ) dτ .

We can de�ne the national central bank's capital as

Kt ≡
∫
P̃t (τ) fCBt (τ) dτ −Dt,

where, as in Del Negro and Sims (2015), P̃t (τ) is a "historical" price that changes only

when gross purchases are positive (ιCBt (τ) > 0). Capital then evolves as follows,

K̇t =

∫ (
∂P̃t (τ)

∂t
fCBt (τ) + P̃t (τ)

∂fCBt (τ)

∂t

)
dτ − Ḋt.

45In what follows, for ease of exposition we abstract from the implications of Core bond purchases for
the evolution of the common central bank's reserves liabilities and capital. However, it is straightfor-
ward to generalize the algebra to account for those implications, without a�ecting any of our arguments.
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During a rollover crisis, equation (40) implies

K̇t =

∫ (
∂P̃t (τ)

∂t
fCBt (τ) + P̃t (τ)

∂fCBt (τ)

∂t

)
dτ − rtDt −

∫
Pt (τ) ιCBt (τ) dτ + Γ̄.

Capital can thus decrease during a crisis, potentially falling below zero. This will depend

on the maturity structure of the central bank assets, the path of interest payments on

reserves, and the constant term Γ̄. In particular, a su�ciently large capital retention

term Γ̄ can make the probability of a negative capital event arbitrarily small. In any

case, as discussed by Del Negro and Sims (2015) and Reis (2013), a central bank can

operate with low or even negative capital (within certain limits). Hence the small

probability that the central bank could at some time face negative capital is inessential

for our analysis.

A.2 Model solution

Since preferred habitat demand is assumed to be an a�ne function of yield, equations

(17) and (18) imply that the risk prices λt and ξt must be a�ne too. Hence, a solution

requires λt = Λtrt + λ̄t and ξt = Ξtrt + ξ̄t, where

Λt ≡ − γσ2

∫ ∞
0

(
α (τ) [At (τ)]2 + α∗ (τ) [A∗t (τ)]2

)
dτ,

λ̄t ≡ γσ2

∫ ∞
0

[(St (τ)− ht (τ)− α (τ)Ct (τ))At (τ) + (S∗t (τ)− h∗t (τ)− α∗ (τ)C∗t (τ))A∗t (τ)] dτ,

Ξt ≡ − γψtδ2

∫ ∞
0

α (τ)At (τ) dτ,

ξ̄t ≡ γψtδ
2

∫ ∞
0

(St (τ)− ht (τ)− α (τ)Ct (τ)) dτ,

where α(τ) = α/τ . With this notation, if we substitute µt (τ) and µ∗t (τ) from (10)-(11)

into (13)-(14), the �rst-order conditions on the arbitrageurs' portfolio weights are:

0 = −
(
∂At
∂τ
− ∂At

∂t

)
rt −

(
∂Ct
∂τ
− ∂Ct

∂t

)
+ At (τ)κ (r̄ − rt)−

1

2
σ2 [At (τ)]2 + rt

+ At (τ)
(
Λtrt + λ̄t

)
+ ψtδ +

(
Ξtrt + ξ̄t

)
,
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and

0 = −
(
∂A∗t
∂τ
− ∂A∗t

∂t

)
rt −

(
∂C∗t
∂τ
− ∂C∗t

∂t

)
+ A∗t (τ)κ (r̄ − rt)−

1

2
σ2 [A∗t (τ)]2 + rt

+ A∗t (τ)
(
Λtrt + λ̄t

)
.

Substituting in Λt, λ̄t, Ξt, and ξ̄t, and grouping the terms with and without r, we get

0 = −∂At
∂τ

+
∂At
∂t
− At (τ)κ+ 1 + ΛtAt (τ) + Ξt. (41)

0 = −∂Ct
∂τ

+
∂Ct
∂t

+ At (τ)κr̄ − 1

2
σ2 [At (τ)]2 + λ̄tAt (τ) + ψtδ + ξ̄t. (42)

0 = −∂A
∗
t

∂τ
+
∂A∗t
∂t
− A∗t (τ)κ+ 1 + ΛtA

∗
t (τ) (43)

0 = −∂C
∗
t

∂τ
+
∂C∗t
∂t

+ A∗t (τ)κr̄ − 1

2
σ2 [A∗t (τ)]2 + λ̄tA

∗
t (τ) . (44)

This provides a system of PDEs to determine functions (At (τ) , Ct (τ)) and (A∗t (τ) , C∗t (τ)),

verifying our guess that the bond price is an a�ne function of rt.

A.3 Derivation of analytical results in Section 2.1

A.3.1 Proof of Proposition 1

We start with the de�nition of yields:

yt (τ) = − logPt(τ)

τ
,

and the fact that a bond with price Pt(τ) at time t will have a price equal to its face

value, Pt+τ (0) = 1, at time t+ τ :

0 = logPt+τ (0) = logPt(τ) + Et
∫ τ

0

d logPt+s (τ − s) ds.

Then, substituting for Pt(τ) in the de�nition of the yield, we have
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yt (τ) =
1

τ
Et
∫ τ

0

d logPt+s (τ − s) ds =
1

τ

∫ τ

0

Et
dPt+s (τ − s)
Pt+s(τ − s)

ds

=
1

τ

∫ τ

0

Etµt+s(τ − s)ds

=
1

τ
Et
∫ τ

0

rt+sds︸ ︷︷ ︸
Expected rates yEXt (τ)

+
1

τ
Et
∫ τ

0

At+s (τ − s)λt+sds︸ ︷︷ ︸
Term premium yTPt (τ)

+
1

τ
Et
∫ τ

0

δψt+sds︸ ︷︷ ︸
Expected default loss yDLt (τ)

+
1

τ
Et
∫ τ

0

ξt+sds︸ ︷︷ ︸
Credit risk premium yCRt (τ)

,

where the second line applies equation (9) and third line applies (13).

A.3.2 Details of Propositions 2-4

To derive the formulas on which Propositions 2, 3, and 4 are based, we start with the

system of equations (41)-(44) from Appendix A.2. In steady state, the system simpli�es

to

0 = −∂A
∂τ
− A (τ)κ+ 1 + ΛA (τ) + Ξ. (45)

0 = −∂C
∂τ

+ A (τ)κr̄ − 1

2
σ2 [A (τ)]2 + λ̄A (τ) + ψδ + ξ̄. (46)

0 = −∂A
∗

∂τ
− A∗ (τ)κ+ 1 + ΛA∗ (τ) (47)

0 = −∂C
∗

∂τ
+ A∗ (τ)κr̄ − 1

2
σ2 [A∗ (τ)]2 + λ̄A∗ (τ) , (48)

where we have suppressed the time index as functions are time-invariant. Di�erential

equations (45) and (47) can be solved as

A∗ (τ) =
1− e−κ̂τ

κ̂
, A (τ) =

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂

, (49)

where

κ̂ = κ− Λ = κ+ γσ2

∫ ∞
0

α (τ)

(
(1 + Ξ)

(
1− e−κ̂τ

)
κ̂

)2

+ α∗ (τ)

(
1− e−κ̂τ

κ̂

)2
 dτ.
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Then, integrating equations (46) and (48), we get

C∗ (τ) =

∫ τ

0

[
A∗ (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A∗ (u)]2

]
du,

C (τ) =
(
ψδ + ξ̄

)
τ +

∫ τ

0

[
A (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (u)]2

]
du.

Next, we analyze the limit as maturity converges to zero:

lim
τ→0

yt (τ) =
(
ψδ + ξ̄

)
+ lim

τ→0

[
(1 + Ξ)

(
1− e−κ̂τ

)
κ̂

rt + A (τ)
(
κr̄ + λ̄

)
− 1

2
σ2 [A (τ)]2

]
= (1 + Ξ) rt +

(
ψδ + ξ̄

)
.

Here we have used L'Hôpital's rule to obtain

lim
τ→0

(1 + Ξ)
(
1− e−κ̂τ

)
κ̂τ

= lim
τ→0

(1 + Ξ) κ̂e−κ̂τ

κ̂
= (1 + Ξ) ,

and the fact that A (0) = 0 to derive

lim
τ→0

∫ τ
0

[
A (u)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (u)]2

]
du

τ
= limτ→0A (τ)

(
κr̄ + λ̄

)
− 1

2
σ2 [A (τ)]2 = 0.

B Appendix: Robustness exercises

This appendix presents two alternative calibrations that illustrate the robustness of our

results. Di�erent calibration procedures change the estimated parameters, but preserve

the main theoretical and policy conclusions. We consistently �nd that sovereign risk

can explain large yield curve shifts, including at short maturities, and that default risk

extraction is the most important transmission channel of asset purchases. As long as

the model is calibrated to match the observed impact of the PEPP announcement, the

policy comparison across alternative purchase designs is quantitatively similar.

Alternative calibration: steady state. Our benchmark calibration supposes

that the e�ective lower bound period was a prolonged, low-probability deviation from

typical euro area yields, and takes account of �scal forecasts looking forward from

that time. An alternative is simply to assume that the e�ective lower bound period

represented �uctuations around a steady state of the model (possibly one of several
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conditional steady states), and calibrate accordingly. This alternative assumption leads

us to calibrate the mean and standard deviation of the risk-free rate to their sample

values, relb = −49bp and σelb = 32bp. Similarly, �scal variables are assumed constant,

equal to at their mean values from 2013-2019. We must then reestimate the parameters

γ, ψss, and θ (we use the subscript �ss� to indicate the steady state value of the default

probability, and de�ne the default probability function around the intercept ψss). Fig.

11 shows the resulting steady-state yield curve for Italy.

Figure 11: Robustness: steady state calibration
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Notes. This �gure shows the results of a calibration that treats the ELB period as a steady state
of the model. The values of γ, ψss, and θ are recalibrated to match the German term premium,
the Italian sovereign spread, and the impact of PEPP on Italian yields.
Left panel . Italian steady state yield curve decomposition. Red lines: steady state yields (model).
Red stars: Italian yields, 2013-2019 (from Datastream).
Right panel . Shift in Italian yields from 18 March 2020 (before PEPP) to 20 March 2020 (after).
Red lines: model. Red stars: Data (from Datastream)

On the left, we show the steady-state yield curve for Italy. The red lines decompose

the model-generated yield curve; the red stars are the mean yields from 2013-2019. In

this case, the expectations term is simply a �at line at yEXss (τ) = −49bp, since yields

are expected to remain at their steady state value. Hence, compared to our benchmark

calibration, this alternative infers a larger steady state term premium � 104bp for

ten-year bonds � that fully accounts for the slope of the German yield curve. On

top of these terms, the default-related terms yDLss (τ) and yCRss (τ) are almost constant
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across maturities. This occurs because �scal variables are assumed constant in this

steady state, which implies that the sovereign premium does not vary with maturity.

In contrast, our benchmark calibration strategy infers that �scal pressure is expected to

increase over time, so the sovereign premium increases with maturity, better matching

the data.

In the right panel, we see the impact of PEPP under this speci�cation, which is

almost identical to our benchmark results. Since this calibration requires higher risk

aversion (to match a higher term premium than that in our benchmark calibration), a

smaller change in the default probability su�ces to match the Italian yield curve shift

after the PEPP announcement. Hence we see a slightly smaller change in the expected

default premium yDLt (τ) than we observed under the benchmark parameters (compare

Figure 3). But this is hardly noticeable, since again the vast majority of the decrease in

yields is explained by a fall in the credit risk premium yCRt (τ). Likewise, the comparison

across more and less �exible asset purchase designs (not shown, available on request)

is virtually identical to the results reported in Sec. 5. Thus, while this alternative

calibration procedure is less successful at matching data from the ELB period, the

resulting policy analysis is essentially the same as in our benchmark results.

Alternative calibration: Germany and Spain. Our main results were cali-

brated to describe a union made up of Germany and Italy. PEPP had especially strong

e�ects on Italian yields, since Italy has a large outstanding stock of sovereign bonds,

and faces a high sovereign premium. Nonetheless, a simple recalibration shows that

our model also �ts well for a union consisting of Germany and Spain. Since Spain has

less debt than Italy, a higher risk aversion parameter, γ = 0.14, is needed to match the

German term premium in this case. The probability parameters are quite similar to

those of the German and Italian calibration, with ψelb = 0.0009 and θ = 5.04 ∗ 10−5.

The main results are shown in Fig. 12. The left panel compares the model-generated

decomposition of the Spanish yield curve to average Spanish yields over 2013-2019. As

in the case of Italy, �scal forecasts predict increasing �scal pressure over the ELB period,

resulting in sovereign spreads that increase with maturity. The right panel shows the

shift in Spanish yields when PEPP was announced, in the model (red lines) and data

(stars). Since Spain has a lower debt-to-GDP ratio than Italy, its steady state sovereign

premium and the e�ects of PEPP are smaller for Spain than they are for Italy, but model

�t is very similar when mapping either country to Periphery. Results for Germany (not

shown) are almost identical to those seen in Figs. 2 and 3.
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Figure 12: Modelling Germany and Spain
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Notes. This �gure shows the results of applying our model to a monetary union consisting of

Germany and Spain. The values of γ, ψelb, and θ are recalibrated to match the German term

premium, the Spanish sovereign spread, and the impact of PEPP on Spanish yields.

Left panel . Spanish yield curve decomposition. Red lines: steady state yields (model). Red stars:

Spanish yields, 2013-2019 (from Datastream).

Right panel . Shift in Spanish yields from 18 March 2020 (before PEPP) to 20 March 2020 (after).

Red lines: model decomposition of shift in yield curve. Red stars: Data (from Datastream).
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Internet Appendix

C Appendix: Computing the solution

C.1 Numerical algorithm: continuous time

C.1.1 Finite-di�erence computation of the stochastic steady state

The stochastic steady state of our model must satisfy the system of ODEs (45)-(48).

These can be solved by a �nite di�erence method.46 To do so, we consider a grid of

maturities (τ1, .., τI) with τ0 = 0 and constant step size ∆τ , so that τi ≡ τ(i) = i∆τ .

De�ne

Ai = A (τi) , A
∗
i = A∗ (τi) , Ci = C (τi) , C

∗
i = C∗ (τi) ,

Si = S (τi) , S
∗
i = S∗ (τi) , αi = α (τi) , α

∗
i = α∗ (τi) ,

h = h (τi) , h
∗
i = h∗ (τi) .

The boundary conditions are A0 = A (0) = 0 and C0 = C (0) = 0 because an in-

stantaneous bond trades at par. We begin with a guess of Ani , A
n∗
i , with n = 0. For

instance, we can begin with Ani = An∗i = τi and C
n
i = Cn∗

i = 0. Then, considering a

backward �nite-di�erence approximation ∂An+1(τ(i))
∂τ

≈ An+1
i −An+1

i−1

∆τ
, and likewise for the

other unknown functions, we approximate the ODEs as:

An+1
i − An+1

i−1

∆τ
= An+1

i Λn − An+1
i κ+ 1 + Ξn,

Cn+1
i − Cn+1

i−1

∆τ
= An+1

i λ̄n + An+1
i κr̄ − 1

2
σ2
[
An+1
i

]2
+ ψssδ + ξ̄n,

A
(n+1)∗
i − A(n+1)∗

i−1

∆τ
= A

(n+1)∗
i Λn − A(n+1)∗

i κ+ 1,

C
(n+1)∗
i − C(n+1)∗

i−1

∆τ
= A

(n+1)∗
i λ̄n + A

(n+1)∗
i κr̄ − 1

2
σ2
[
A

(n+1)∗
i

]2

,

46We have de�ned and computed both continuous-time and discrete-time versions of the model. The
discrete time version is described in the next section. Numerical simulations of both versions give the
same results.
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where

Λn = −γσ2

I∑
i=1

(
αi [A

n
i ]2 + α∗i [An∗i ]2

)
∆τ,

λ̄n = γσ2

I∑
i=1

[(Si − hi − αiCn
i )Ani + (S∗i − h∗i − α∗iCn∗)An∗i ] ∆τ,

Ξn = −γψssδ2

I∑
i=1

αiA
n
i ∆τ.

ξn = γψssδ
2

I∑
i=1

[(Si − hi − αiCn
i )] ∆τ.

In matrix form, this amounts to

Fn︷ ︸︸ ︷

1
∆τ
− Λn + κ 0 0 · · · 0

− 1
∆τ

1
∆τ
− Λn + κ 0 · · · 0

... − 1
∆τ

1
∆τ
− Λn + κ · · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ
− Λn + κ



An+1︷ ︸︸ ︷

An+1
1

An+1
2
...

An+1
I−1

An+1
I


=

fn︷ ︸︸ ︷

1 + Ξn

1 + Ξn

...

1 + Ξn

1 + Ξn


,

(50)



1
∆τ
− Λn + κ 0 0 · · · 0

− 1
∆τ

1
∆τ
− Λn + κ 0 · · · 0

... − 1
∆τ

1
∆τ
− Λn + κ · · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ
− Λn + κ



A(n+1)∗︷ ︸︸ ︷

A
(n+1)∗
1

A
(n+1)∗
2
...

A
(n+1)∗
I−1

A
(n+1)∗
I


=

f∗︷ ︸︸ ︷

1

1
...

1

1


,

(51)
G︷ ︸︸ ︷

1
∆τ

0 0 · · · 0

− 1
∆τ

1
∆τ

0 · · · 0
... − 1

∆τ
1

∆τ
· · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ



Cn+1︷ ︸︸ ︷

Cn+1
1

Cn+1
2
...

Cn+1
I−1

Cn+1
I


=

gn+1︷ ︸︸ ︷

An+1
1 λ̄n + An+1

1 κr̄ − 1
2
σ2
[
An+1

1

]2
+ ψssδ + ξ̄n

An+1
2 λ̄n + An+1

2 κr̄ − 1
2
σ2
[
An+1

2

]2
+ ψssδ + ξ̄n

...

An+1
I−1 λ̄

n + An+1
I−1κr̄ − 1

2
σ2
[
An+1
I−1

]2
+ ψssδ + ξ̄n

An+1
I λ̄n + An+1

I κr̄ − 1
2
σ2
[
An+1
I

]2
+ ψssδ + ξ̄n


,

(52)
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

1
∆τ

0 0 · · · 0

− 1
∆τ

1
∆τ

0 · · · 0
... − 1

∆τ
1

∆τ
· · · ...

0 0 · · · . . . 0

0 0 · · · − 1
∆τ

1
∆τ



C(n+1)∗︷ ︸︸ ︷

C
(n+1)∗
1

C
(n+1)∗
2
...

C
(n+1)∗
I−1

C
(n+1)∗
I


=

g(n+1)∗︷ ︸︸ ︷

A
(n+1)∗
1 λ̄n + A

(n+1)∗
1 κr̄ − 1

2
σ2
[
A

(n+1)∗
1

]2

A
(n+1)∗
2 λ̄n + A

(n+1)∗
2 κr̄ − 1

2
σ2
[
A

(n+1)∗
2

]2

...

A
(n+1)∗
I−1 λ̄n + A

(n+1)∗
I−1 κr̄ − 1

2
σ2
[
A

(n+1)∗
I−1

]2

A
(n+1)∗
I λ̄n + A

(n+1)∗
I κr̄ − 1

2
σ2
[
A

(n+1)∗
I

]2


,

(53)

where we have already applied the boundary conditions.

The idea is to solve equations (50) and (51) iteratively from the initial guess, up-

dating Λn and Ξn and at each step, and then calculate λ̄n and ξ̄n in order to solve (52)

and (53) in a single step.

C.1.2 Computation of the dynamics

To compute the dynamics, consider a distant terminal time T at which the model has

converged to its steady state. We solve the PDEs (41)-(44) backwards from time T

with time steps of size ∆t ≡ ∆τ , so that backwards induction step n refers to calendar

time t(n) ≡ T − n∆τ . Using the fact that An+1
i − Ani ≈ −

∂An(τ(i))
∂t

∆τ , the PDEs can

be discretized as follows::

An+1 −An

∆τ
+ FnAn = fn,

A(n+1)∗ −An∗

∆τ
+ FnAn∗ = f∗,

Cn+1 −Cn

∆τ
+ GCn = gn,

C(n+1)∗ −Cn∗

∆τ
+ GCn∗ = gn∗.

Matrices Fn,G, fn, f∗, gn, and gn∗ are de�ned as before, except that we calculate Λt, Ξt,

λ̄t, and ξ̄t under time-varying conditions. In particular, we evaluate them conditional

on the net bond supply St(τ) and default probability ψt at time t = t(n).47

47Inspecting the de�nitions of the matrices in (50)-(53), we can see that this algorithm calculates
equilibrium objects at time t(n) − ∆τ using the risk prices λt(n) and ξt(n) from time t(n). It would
therefore be incorrect to apply this algorithm with a large time step ∆τ , but in the limit as ∆τ → 0 ,
it gives the correct solution of the continuous-time PDE.
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C.2 Discrete time representation

It is straightforward to derive and compute a discrete-time framework that is equivalent

to our continuous-time model. In discrete time, we write the price of a bond with a

maturity of i periods, issued by jurisdiction j ∈ {P,C} (�Periphery� or �Core�), as

P j
i,t = exp

(
pji,t
)

= exp
(
−Aji,trt − C

j
i,t

)
. Let the rate on reserves follow rt+1 = ρrt + (1−

ρ)r̄ + σεt+1, where εt+1 ∼ N(0, 1). If arbitrageurs maximize a mean-variance utility

function over the increase of their wealth, then if the time period is su�ciently short,

their optimization problem can be approximated as follows:48

max
{Xj

i,t}

(
Wt −

∑I
i=1

∑
j∈{P,C}X

j
i,t

)
rt

+
∑I

i=1

∑
j∈{P,C}X

j
i,t

(
−Cj

i−1,t+1 − A
j
i−1,t+1 ((1− ρ)r̄ + ρrt) + Cj

i,t + Aji,trt + σ2

2

(
Aji−t,t+1

)2 − δψjt
)

− γσ2

2

[∑I
i=2

∑
j∈{P,C}X

j
i,tA

j
i−1,t+1

]2

− γψPt
2
δ2
[∑I

i=1 X
P
i,t

]2

.

where ψCt = 0 denotes the Core default probability, and ψPt = ψt is the Peripheral

default probability, given by (35). Hence, the �rst-order condition on the investment

Xj
i,t in bonds of maturity i from jurisdiction j is

rt = −
(
Cj
i−1,t+1 + Aji−1,t+1 ((1− ρ)r̄ + ρrt)

)
+
(
Cj
i,t + Aji,trt

)
+
σ2

2

(
Aji−t,t+1

)2−δψjt−A
j
i−1,t+1λt−ξ

j
t ,

where

λt = γσ2

 I∑
i=2

∑
j∈{P,C}

Xj
i,tA

j
i−1,t+1

 ,
ξjt = γψjt δ

2

I∑
i=1

Xj
i,t .

Note that since Aj0,t = Cj
0,t = 0, the �rst-order condition for holdings of one-period Core

bonds is simply

rt = yC1,t = Cj
i,t + Aji,trt ,

48See Hamilton and Wu (2012) for details.
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and the FOC for longer bonds can be interpreted as

pji,t = −rt + Etp
j
i−1,t+1 +

1

2
V artp

j
i−1,t+1 − A

j
i−1,t+1λt − δψ

j
t − ξ

j
t ,

or equivalently

P j
i,t = exp

(
−rt − Aji−1,t+1λt − δψ

j
t − ξ

j
t

)
EtP

j
i−1,t+1.

We now apply the market clearing condition Xj
i,t = Sji,t − Zj

i,t, where preferred-

habitat demand is Zj
i,t = hji,t − αjip

j
i,t, and we write the risk compensation terms in

a�ne form as λt = Λtrt + λ̄t and ξ
P
t = ΞP

t rt + ξ̄Pt , with ξ
C
t = ΞC

t = ξ̄Ct = 0. Then, the

�rst-order conditions imply the following restrictions on the a�ne pricing coe�cients:

Aji,t = AC1,t + Aji−1,t+1 (ρ+ Λt) + Ξj
t , (54)

Cj
i,t = CC

1,t + Cj
i−1,t+1 −

1

2

(
σAji−1,t+1

)2
+ Aji−1,t+1

(
(1− ρ) r̄ + λ̄t

)
+ δψt + ξ̄jt ,(55)

where

Λt = −γσ2

I∑
i=2

∑
j∈{P,C}

Aji−1,t+1

(
αjiA

j
i

)
, (56)

λ̄t = γσ2

I∑
i=2

∑
j∈{P,C}

Aji−1,t+1

(
Sji,t − h

j
i,t − α

j
iC

j
i

)
, (57)

ΞP
t = −γδ2ψPt

I∑
i=1

(
αPi A

P
i

)
, (58)

ξ̄Pt = γδ2ψPt

I∑
i=1

(
SPi,t − hPi,t − αPi CP

i

)
. (59)

These di�erence equations can be solved by backwards induction, starting from a

distant time T at which we assume that the pricing functions are known, bearing in

mind that Aj0,t = Cj
0,t = 0 for all j and t. To ensure a correct solution of the discrete-time

model, we can apply a �xed-point calculation at each time step:

1. Guess Aji,t = Aji,t+1 and Cj
i,t = Cj

i,t+1.

2. Calculate Λt, ΞP
t , λ̄t, and ξ̄

P
t from (56)-(59).
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3. Update Aji,t = Aji,t+1 and Cj
i,t = Cj

i,t+1 using (54)-(55).

4. Iterate to convergence.

Once the time t equilibrium has been calculated, we can step backwards to calculate

the time t− 1 equilibrium by the same method.
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