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Abstract 
 
In unavoidable traffic accidents, autonomous vehicles (AVs) face the dilemma of protecting either 
the passenger(s) or third parties. Recent studies show that most people prefer AVs following a 
utilitarian approach by minimizing total harm. At the same time, however, they would adopt an 
AV only if it prioritizes the passenger(s), i.e. themselves. As AVs exhibit a lower accident risk in 
the first place, a regulator therefore faces a trade-off: the harm-minimizing behavior of AVs (ex 
post efficiency) hampers the willingness to adopt them (ex ante efficiency). Using a game-
theoretic model, we analyze how the second-best optimal level of AV passenger protection 
depends on (i) the AV safety advantage, (ii) the intensity of drivers’ social preferences, and (iii) 
their reluctance to adopt AVs. A higher AV safety advantage may either increase or decrease the 
second best optimal level of passenger protection. 
JEL-Codes: O310, K230, L510, L620, R410. 
Keywords: autonomous vehicles, ethical dilemma, trolley problem, adoption of new technologies, 
game theory. 
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1 Introduction

Autonomous Vehicles (AVs) are widely believed to become available in the not too distant

future, and this movement towards autonomous mobility will have a huge impact on the

automobile industry, consumers, policymakers and regulators.1 One currently topical

issue concerns the ethical dilemma of whether AVs should protect the passengers or third

parties when accidents are inevitable (e.g., Greene, 2016, Goodall, 2016, Awad et al.,

2018, Bigman and Gray, 2020, Bonnefon et al. 2020).

Surveys show that most people prefer AVs following a utilitarian approach by mini-

mizing total harm, but, at the same time, are more willing to buy an AV if they protect

the passenger(s) under most circumstances (Bonnefon et al. 2016, Gill 2021, Liu and

Liu 2021). A utilitarian regulator therefore needs to compromise between ex post and ex

ante efficiency: Ex post efficiency requires that AVs protect third parties whenever their

(expected) harm exceeds the passengers’ harm. This, however, reduces ex ante efficiency

by discouraging drivers from adopting the safer AV technology, thereby increasing the

accident risk itself.2

We analyze this trade-off in a game-theoretic model where a benevolent regulator (who

sets the level of AV driver protection) interacts with drivers (who decide whether or not

to adopt the AV). Drivers care about the harm to third parties, but to a lower degree

than about their own. This accounts for the robust insight of behavioral economics that

most people are neither fully selfish nor fully altruistic (see e.g. Fehr and Schmidt, 1999,
1See e.g. European Commission (2018) for an outline for the road ahead. Tesla already offers a “Full

Self Driving” package since several years; however, drivers must always be ready to immediately take
over control. According to the classification system of the Society of Automotive Engineers (SAE), this
corresponds to autonomy level 2 (out of 5), see SAE International (2021). In 2021 Mercedes introduced
its “Drive Pilot” system, where the human driver is not obliged to monitor the driving at all times, but
must only be ready to take over after being prompted by the system (level 3). The system is currently
approved for motorways and with a speed of up to 60 km/h. In June 2022, the United Nations Economic
Commission for Europe (UNCE) has extended the maximum speed to 130 km/h (effective as of 2023) for
vehicles which satisfy the respective requirements, see https://unece.org/sustainable-development/
press/un-regulation-extends-automated-driving-130-kmh-certain-conditions.

2Human driving is often impaired by poor sight or slow reaction times due to fatigue, distraction,
alcohol or drug consumption. For example, according to the 2008 National Motor Vehicle Crash Causation
Survey (NHTSA), more than 93 percent of the analyzed crashes were classified as being caused by driver
errors. By contrast, it is widely held that, once matured, AVs will be much safer than human-operated
vehicles. For example, a recent McKinsey report predicts a drop in the crash frequency per vehicle of up
to 90 per cent once there are sufficiently many AVs on the streets (https://perma.cc/V7ZC-VL2T). See
also the discussions in Fagnant and Kockelman (2015), Luetge (2017) and Geistfeld (2017).
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2006, Andreoni and Miller, 2002, Charness and Rabin, 2002). Furthermore, we assume

that drivers differ in their willingness to adopt AVs, which is their private information.

Such heterogeneity is widely documented in surveys (see e.g., Kyriakidis at al., 2015), and

a reluctance to adopt could, for example, be due to the fear of liability or a low level of

trust in AVs (see e.g. Adnan et al., 2018, Cunningham at al., 2019) or a preference to be

involved when deciding in critical situations (Basu et al., 2019).

The aforementioned trade-off between ex ante and ex post efficiency is reflected in

the equilibrium behavior of our model: drivers will not adopt the AV if it protects them

too little, and the regulator takes this into account by choosing a (second-best optimal)

level of AV driver protection that is too high from the perspective of ex post efficiency.

We then analyze how the equilibrium outcome is influenced by (i) the safety of the AV

(measured by the reduction in the accident risk compared to human-driven vehicles), (ii)

the intensity of drivers’ social preferences, and (iii) their reluctance to adopt an AV. As

a higher AV safety advantage ceteris paribus leads to a higher willingness to adopt them,

the regulator can induce the same adoption rate with a lower, and hence more efficient,

level of driver protection (thereby saving third parties more often). However, the optimal

level of driver protection may even increase with the AV safety advantage, in order to

reach an even larger rate of AV adoption. A similar reasoning holds for the impact of

drivers’ social preferences and the willingness to adopt AV: Both factors allow for the

same adoption rate with less driver protection, but it may again be better to target a

higher adoption rate.

The relevance of situations where AV algorithms decide upon life and death, thereby

basically resembling a trolley problem (Foot, 1967, Thomson, 1985), is debatable.3 Some

researchers (e.g., Nyholm and Smids, 2016, Dewitt et al. 2019, De Freitas et al. 2020,

2021, Lundgren, 2021) as well as AV practitioners such as Iagnemma (2018) argue that

trolley-like scenarios are far-fetched. Others show that people care a lot about these

issues, which hence need to be decided upon even when they are unlikely (Greene, 2016,

Bonnefon et al., 2019, Gill 2020, Keeling 2020). In any case, our approach is not confined
3See Greene (2013) for a survey of the different variants of the trolley problem. Krügel and Uhl

(2022) experimentally study trolley problems in stochastic environments.
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to trolley-like dilemmas, but relevant whenever getting closer to the ex post optimal

AV behavior reduces drivers’ ex ante willingness to adopt them. For instance, the AV

algorithm needs to decide about the speed under adverse weather conditions, whether to

stop when traffic lights turn yellow, or how defensively to act when meeting other vehicles

at junctions. In such situations, there is typically a difference between a driver’s preferred

AV behavior and the socially optimal one.

The remainder of the paper is structured as follows: The theoretical framework is laid

out in Section 2. Section 3 derives the main results. Section 4 provides further discussion

and concludes. All proofs are in the Appendix.

2 The model

We study a dynamic game between two players: a regulator and a driver. There are

two types of vehicles, human-driven (HV) and autonomous (AVs), both of which can be

involved in accidents. Without loss of generality, we set the accident probability of the HV

equal to 1, while for the AV it is (1−π), so that π ∈ [0, 1) expresses the safety advantage of

the AV. If the vehicle swerves in case of an accident, the third party remains unharmed, but

the driver suffers harm 1. When the vehicle does not swerve, the driver remains unharmed,

but the third party suffers harm h, a random variable that is continuously distributed on

[0, hmax] with distribution F (h) and strictly positive density F ′(h) everywhere.4 The

realization of h is learned before the swerving decision. An HV swerves when the driver

decides to do so, while an AV swerves if the third party harm exceeds a threshold h̃ set

ex ante by the regulator and programmed into the AVs operating system. Throughout,

we interpret h̃ as the level of driver (or passenger) protection provided by the AV.

The driver has social preferences and puts weight θ ∈ (0, 1) on third-party harm.

Furthermore, we capture the reluctance of (some) individuals to adopt the AV by assuming

that driver type β ∈ {L, H} faces a cost ωβ upon adoption, where ωH > ωL = 0. The

driver’s type is their private information, and the ex ante probabilities for the low and
4We could easily allow the driver to also suffer a harm upon swerving. All we need that is that this

harm is smaller compared to the harm when not swerving.
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the high cost type are α and (1 − α), and common knowledge.

The (utilitarian) regulator aims at minimizing the expected harm from accidents. As

swerving yields harm 1 to the driver and no harm to third parties, it is ex post optimal to

swerve if and only if h ≥ h̃f = 1. Furthermore, as π ≥ 0, ex ante efficiency requires that

both driver types adopt the AV. These two requirements express the tension between ex

post and ex ante efficiency discussed in the introduction, as setting h̃ = h̃f may hamper

the adoption of the AV.

The timing of the game is as follows: At stage 1, the regulator sets the level of driver

protection h̃ that the AV must be programmed to follow. At stage 2, the driver chooses

between the HV and the AV.5 At stage 3, nature decides on the occurrence of an accident

and on the corresponding harm h to the third party. At stage 4, the swerving decision is

taken either by the driver (in the HV) or by the AV according to its pre-specified rule h̃.

3 Analysis

For determining the equilibrium behavior, we proceed backwards, starting with the swerv-

ing decision at stage 4.

3.1 Stage 4: Swerving

The AV swerves if the third party harm exceeds the pre-programmed threshold set by

the regulator, i.e. if h > h̃. The HV driver (who puts weight θ on third party harm)

compares the own harm of 1 upon swerving to the internalized third party harm θh when

not swerving, so swerving occurs if h > ĥ := 1
θ
. Note that the two driver types might

choose different vehicles, but they do not differ in their swerving decision when choosing

the HV. Importantly, due to θ < 1, we have ĥ > h̃f = 1, i.e. an HV driver swerves less

often than would be socially optimal.
5We abstract from vehicle prices and other factors that might influence the driver’s choice between

the AV and the HV.
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3.2 Stage 2: The driver’s vehicle choice

Taking the swerving decision into account, the expected cost of driver type β is

cH =
∫ ĥ

0
θhF ′(h)dh +

(
1 − F (ĥ)

)
, (1)

and

cA(β) = (1 − π) ·
[∫ h̃

0
θhF ′(h)dh + 1 − F (h̃)

]
+ ωβ (2)

when choosing the HV and the AV, respectively. The first (second) term refers to those

realizations of h where swerving does not occur (occurs). Define ∆β(h̃) = cH − cA(β)

as the difference in expected costs between the two vehicles, so driver type β adopts the

AV iff ∆β(h̃) ≥ 0. The following assumption keeps the subsequent analysis analytically

tractable and yet sufficiently rich to derive our main points:

Assumption 1.

(i) ∆β(h̃) is strictly concave over [0, hmax].6

(ii) ∆L(h̃ = 0) < 0 and ∆H(h̃ = ĥ) > 0.

The assumption is illustrated in Figure 1 below. Part (i) ensures a unique interior

solution for the optimal level of AV driver protection from the driver’s viewpoint. Part

(ii) ensures that both driver types strictly prefer the HV if the AV never protects the

driver (h̃ = 0), and that there exists h̃ such that both types strictly prefer the AV. Note

that each of the two conditions in part (ii) is less restrictive for the respective other type.

We can now state our main result concerning the driver’s optimal vehicle choice:

Proposition 1.

(i) For any given level of driver protection, the incentive to adopt the AV is higher for

the low adoption cost type than for the high cost type, i.e., ∆L(h̃) > ∆H(h̃) ∀h̃ ≥ 0.
6This holds if −(1 − π)

[
F ′′(h̃)

(
θh̃ − 1

)
+ F ′(h̃)θ

]
< 0 for all h̃. A sufficient condition would be that

F is uniform.
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(ii) For both driver types, the incentive to adopt the AV is highest when it exhibits the

same level of driver protection as optimally chosen by the driver in the HV, i.e.,

both ∆L(h̃) and ∆H(h̃) are maximized at h̃ = ĥ.

(iii) There exist two thresholds h̃L and h̃H satisfying ∆L(h̃L) = 0 and ∆H(h̃H) = 0, and

h̃L < h̃H < ĥ.

(iv) The driver’s incentive to adopt the AV is the higher, the larger the AV safety advan-

tage and the stronger the driver’s social preferences, i.e., h̃L and h̃H both decrease

with π and θ. Moreover, type H’s incentive to adopt the AV decreases in her adop-

tion costs, i.e., h̃H increases with ωH .

Figure 1: Optimal vehicle choice by driver type

The proposition is also illustrated in Figure 1. Part (i) follows immediately from the

fact that type H has higher costs from adopting the AV, ωH > ωL = 0. Moreover, for both

driver types the incentive to adopt the AV is largest when it mimics their own preferred

swerving behavior (part (ii)). However, due to the AV’s safety advantage, both driver

types would adopt it even when it protects them less often, where h̃H < h̃L follows again

from ωH > ωL = 0 (part (iii)). The comparative statics properties of part (iv) are also

intuitive: The larger the AV safety advantage, the more the driver cares about others,
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and the lower the adoption costs ωH , the lower is the level of driver protection required

to induce adoption of the AV.7

3.3 Stage 1: The regulator’s optimal choice of driver protection

When setting the level of driver protection h̃, the regulator faces a trade-off: The closer h̃

is to the ex post efficient level h̃f , the lower is the expected harm from accidents involving

the AV. However, such AV behavior reduces the demand for AVs because both driver

types prefer a higher degree of driver protection. In our framework with two driver types

who differ in their willingness to adopt the AV, the regulator hence chooses between only

two options: either implementing an (inefficiently) high level of driver protection that

leads to full adoption of the AV along the equilibrium path (i.e. both driver types adopt

it), or a lower level of driver protection that leads to partial adoption by the low cost type

only.8

From Proposition 1(iii), it follows that full adoption requires a level of driver protection

h̃F ∈ [h̃H , ĥ], leading to expected social costs of

SCF (h̃F ) = (1 − π) ·
[∫ h̃F

0
hF ′(h)dh + 1 − F (h̃F )

]
. (3)

For all h̃P ∈ [h̃L, h̃H), we get an equilibrium with partial adoption, where driver type

L chooses the AV, while type H prefers the HV and swerves if h ≥ ĥ. The resulting

expected social costs are

SCP (h̃P ) = α(1−π) ·
[∫ h̃P

0
hF ′(h)dh + 1 − F (h̃P )

]
+(1−α) ·

[∫ ĥ

0
hF ′(h)dh + 1 − F (ĥ)

]
.

(4)

Whether the regulator prefers an equilibrium with full or partial adoption depends on

the model’s parameters. There are three cases that differ by which driver types adopt an
7For notational convenience, the dependence of h̃H and h̃L on π, θ and ω is often suppressed.
8When determining the second-best optimal level of driver protection, we can safely confine attention

to the range h̃ ≤ ĥ. The reason is that, in our framework, providing a higher level of driver protection
than the driver wants can never be optimal.
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AV with the ex post optimal level of driver protection, h̃ = h̃f (see also Table 1 below).

In case I, the safety advantage π of an AV is so large that both driver types adopt it for

h̃ = h̃f ; notwithstanding that the level of driver protection is smaller than the driver’s

preferred level ĥ. For intermediate values of π (case II), only the low adoption cost type

L chooses the AV for h̃ = hf . Finally, for π small (case III), neither driver type adopts

the AV with h̃ = h̃f .

Formally, the three cases are delineated as follows: Define πL and πH such that h̃L = h̃f

at π = πL and h̃H = h̃f at π = πH , where πL < πH holds (this follows from h̃L < h̃H and

the fact that these thresholds are decreasing in π, see parts (iii) and (iv) of Proposition

1). Cases I, II and III are then given by the intervals π ≥ πH , π ∈ (πL, πH ] and π < πL,

respectively. To ensure a non-empty parameter range for each of the three cases, we

assume h̃H(π = 1) < h̃f < h̃L(π = 0). This yields the following results concerning the

regulator’s optimal policy (see Table 1 for an illustration):

Proposition 2.

(i) If the AV safety advantage is large (π ≥ πH , case I), the regulator sets h̃ = h̃f

and both driver types adopt the AV. For π < πH , the regulator either induces full

adoption by setting h̃ = h̃L or partial adoption (by type L only) by setting h̃ = h̃f

in case II and h̃ = h̃H in case III.

(ii) Inducing full adoption is the more attractive for the regulator, the lower the frequency

of the low adoption cost type (α). The effect of the AV safety advantage (π) and the

driver’s social preferences (θ) on the optimal choice between full and partial adoption

are ambiguous.

Part (i) summarizes the regulator’s candidate optimal regulations for the three cases.

Case I is straightforward, as the AV safety advantage is sufficiently large to induce full

AV adoption even for h̃f , which yields both ex ante and ex post efficiency.9 In cases II

and III, ex ante and ex post efficiency cannot be reached at the same time. Then, the
9Note that the optimal level of driver protection inducing partial adoption would be h̃H − ϵ where

ϵ > 0, which is (by definition) dominated by the efficient choice h̃f .
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Table 1: Optimal AV regulation depending on AV safety advantage and type of adoption

Case AV safety Adopt AV Optimal AV regulation:
advantage with h̃ = h̃f? Full adopt. Partial adopt.

I: h̃H ≤ h̃f large both types h̃ = h̃f dominated
π ≥ πH

II: h̃L < h̃f ≤ h̃H
intermediate only type L h̃ = h̃H h̃ = h̃f

π ∈ (πL, πH ]

III: h̃f < h̃H
small neither type h̃ = h̃H h̃ = h̃Lπ < πL

regulator either induces full adoption by setting the lowest level of driver protection that

ensures adoption also by the high cost type (h̃ = h̃H), or partial adoption by cost type L

only. By definition of case II, type L adopts the AV for h̃f , which is hence implemented

by the regulator. However, for lower levels of AV safety advantage, the regulator needs to

adjusts the level of driver protection upwards to h̃H in order to induce adoption by type

L (case III).

Part (ii) considers the impact of the key model parameters on the regulator’s optimal

choice between partial and full adoption.10 The only straightforward effect concerns the

frequency of driver types α: The more prevalent type H (i.e. the lower α), who does not

adopt the AV under partial adoption, the more desirable is full adoption for the regulator.

By contrast, the impact of the AV safety advantage (π) is clear-cut only in case II,

where full adoption becomes more desirable as π increases. The reason is that, in case

II, the optimal level of AV driver protection h̃f (which is independent of π) is chosen

anyway. Under partial adoption, the only positive impact of higher π is hence the lower

accident probability, which matters only for the low cost type (who adopts the AV). By

contrast, under full adoption, the benefit of an increase in π is higher for two reasons:

First, it affects both driver types. Second, it allows for a lower (and hence closer to the

ex post efficient) level of driver protection h̃H (recall from Proposition 1(iv) that h̃H is

decreasing in π). In case III, however, the optimal level of driver protection under partial

adoption, h̃L, also decreases with π, thereby moving closer h̃f and reducing the expected
10Thereby, we can restrict attention to cases II and cases III, as case I yields full adoption with the

ex post optimal driver protection h̃f .
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accident costs under partial adoption. This countervailing force renders the overall effect

of π ambiguous.

The impact of the driver’s social preferences (θ) on the optimal choice between partial

and full adoption is also ambiguous. Intuitively, an increase in θ reduces the expected

social costs under both partial and full adoption: On the one hand, a higher θ makes the

AV more attractive, in particular for driver type H (recall from Proposition 1(iv) that h̃H

decreases in θ). This brings the level of driver protection under full adoption, h̃H , closer

to the ex post efficient level, h̃f . On the other hand, a higher θ also increases the degree

of ex post efficiency of the driver’s swerving decision in the HV (ĥ = 1/θ), which reduces

the social costs under partial adoption.

A straightforward next question is whether improvements in AV safety lead to a higher

or lower level of driver protection under the optimal regulation. Our previous results

suggest that this is ambiguous as well: Consider first a (small) increase in π which does

not affect the regulator’s optimal choice between partial or full adoption. In this case,

the increase in π will lead the regulator to set a (weakly) lower level of driver protection

(recall from Proposition 1(iv) that both h̃H and h̃L are decreasing in π). Then, third

parties benefit from a higher π in two ways: there are fewer accidents and they are more

often protected in case of an accident. However, we know from Proposition 2 (i) that an

increase of π may trigger a regime change from partial to full adoption, which then entails

a higher level of driver protection. For example, in case II, the regime change would lead

to a switch from h̃f under partial to h̃H > h̃f under full adoption. We summarize this

discussion as follows:

Corollary 1. An increase in the AV safety advantage (π) can increase or decrease the

second best optimal level of driver protection.

4 Conclusion

In moral philosophy, the question whether Autonomous Vehicles (AVs) should protect its

passengers or third parties is often characterized as an ethical dilemma in the tradition
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of the trolley problem (Fort, 1967). From a utilitarian perspective, the problem can be

interpreted as the trade-off between ex ante and ex post efficiency: Ex post efficiency

requires that, if an accident is unavoidable, an AV does not protect its passenger(s) when

their (expected) harm is lower than that of third parties. By contrast, ex ante efficiency

increases in the adoption rate of the (safer) AV, which tends to be higher when the AV

prioritizes the owner/passenger(s) even in situations where the third party harm would

be larger. We have developed a simple game-theoretic model to analyze how the second

best optimal level of AV driver protection, taking both ex ante and ex post efficiency into

account, depends on the AV safety advantage, individuals’ social preferences (i.e., their

concern about the harm suffered by third parties), and their willingness to adopt a new

technology such as an AV, which comes along with a loss of control in critical situations.

Our first and most straightforward finding is that the second best optimal level of

driver protection increases with the frequency of drivers who are reluctant to adopt the

AV. The higher this frequency, the more important is it that also these drivers adopt the

AV, and the detrimental impact of the required higher level of driver protection on the

harm actually realized in case of an accident is then likely to be overcompensated by the

overall AV safety advantage (which makes such accidents less likely in the first place).

While we derive this result in a model with two driver types only, it should be robust also

with a continuous framework. The impact of the other model parameters, however, is

ambiguous: On the one hand, if drivers care more about harm to other people, then they

are ceteris paribus more willing to adopt the AV, which allows the regulator to implement a

lower (and hence more efficient) level of AV driver protection without hampering adoption

incentives. On the other hand, it may now be welfare-enhancing to induce adoption also

by individuals with high adoption costs, and achieving this may require to increase the

level of driver protection. A similar result emerges for the impact of a higher AV safety

advantage. Again, this allows ceteris paribus for a efficiency-improving reduction in driver

protection, but even increasing the level of driver protection may now be superior if this

leads to a substantially higher adoption rate.

Our model focusses on (dilemma) situations where accidents are unavoidable, thereby
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taking as given the level of AV safety (i.e. the probability of an accident). This is a

limitation of our model, as the regulatory environment for AVs will also affect producers’

incentives to make (costly) investments in AV safety which, in turn, will also affect con-

sumers’ adoption decisions. In this respect, using a dynamic model framework, Dawid

and Muehlheusser (2022) show that the incentives to invest in AV safety is positively

related to the number of AVs sold. In our model, taking this aspect into account would

presumably reinforce the regulator’s incentive to choose a level of AV driver protection,

thereby enhancing the industry’s innovation incentives via a higher rate of adoption.

The criteria for setting the level of protection for the driver/passenger in an AV in

case of an accident are currently not only discussed by moral philosophers, but also at

the regulatory level. In a recent expert report for the European Commission (see Horizon

2020), it is argued that fundamental principles of fairness require that no subgroup should

be more vulnerable with AVs than with HVs. Subgroups refer both to demographics

such as age and the role in traffic (car drivers, pedestrians and cyclists). However, the

report keeps silent about an issue that seems important in the light of our analysis: Does

the notion of fairness apply solely to the ex post perspective (i.e., when accidents are

unavoidable) or to the overall perspective (i.e. including the ex ante safety advantage of

AVs which makes accident s less likely to occur)? To see why this distinction might matter,

suppose that AVs are only predominantly used if their safety advantage is relatively large.

In this case, even more vulnerable road users will might benefit overall from the presence

of AVs. Hence, from this overall perspective, requiring that AVs do not impose a higher

expected harm on any subgroup seems unproblematic. However, from the perspective of

ex post efficiency (i.e. when accidents are unavoidable and the only the decision to be

taken is who will be harmed), the overall harm may well be lower when it accrues to

someone from a vulnerable subgroup (e.g. a cyclist or pedestrian) rather than the AV

passenger(s). This ex post perspective may hence give rise to a trade-off between the

fairness perspective emphasized in the expert EU report and the utilitarian objective of

minimizing overall expected harm. This trade-off can be analyzed similarly to the one

between ex ante and ex post efficiency discussed in our paper.
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Appendix

A Proof of Proposition 1

Part (i). ∆β(h̃) = cH − cA(β), with cH and cA(β) as given in (1) and (2), is the (driver

type dependent) difference in expected costs with the HV and AV. As only type H faces

a cost ωH > 0 from adopting the AV, we get

∆H(h̃) − ∆L(h̃) = cH − cA(H) − (cH − cA(L)) = ωH > 0 ∀h̃ ≥ 0.

Part (ii). Consider ∆L(h̃), and observe from (1) and (2) that only cA depends on h̃

while cH does not. Moreover, ∂∆β(h̃)
∂h̃

= −(1 − π)F ′(h̃)(θh̃ − 1) is zero at h̃ = 1
θ

= ĥ for all

β = L, H. As ∆L(h̃) is assumed to be strictly concave on [0, hmax] (see Assumption 1(i)),

it attains a unique maximum at h̃ = ĥ. The proof for ∆H(h̃) is analogous, as ∆L(h̃) and

∆H(h̃) differ only by a constant, ωH .

Part (iii). By Assumption 1(ii), ∆L(h̃ = 0) < 0 and ∆H(h̃ = 0) < 0, so both

driver types prefer the HV for sufficiently small h̃. Recall from part (i) that ∆H(h̃)

and ∆L(h̃) attain their unique maximum at h̃ = ĥ, and are hence strictly increasing

in h̃ to the left of ĥ. Moreover, also by Assumption 1(ii), ∆H(h̃ = ĥ) > 0. It then

follows from the intermediate value theorem that there exists a unique h̃H < ĥ where

∆H(h̃ = h̃H) = 0. Hence, in the interval [0, ĥ] the HV is chosen for all h̃ < h̃H and the

AV for all h̃ ∈ [h̃H , ĥ]. An analogous argument applies to ∆L(h̃). In particular, as shown

in part (i), ∆L(h̃) > ∆H(h̃) ∀h̃. Therefore, the value h̃L where the low type is indifferent

between the two vehicles is strictly to the left of h̃H .

Part (iv). We first show that h̃L and h̃H decrease with π. Consider first h̃L. From

the identity ∆L(h̃L) ≡ 0 and the implicit function theorem, we get

dh̃L

dπ
= −

∂∆L

∂π
∂∆L

∂h̃L

= −
∫ h̃L

0 θhF ′(h)dh + 1 − F (h̃L)
(1 − π) ·

[
F ′(h̃L)(1 − θh̃L)

] < 0.
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The numerator is positive. The denominator is also positive since h̃L < ĥ = 1
θ

(see

part (iii)) and, hence, 1 − θh̃L > 0. Thus, if the safety advantage of the AV increases,

the AV is already preferred for smaller levels of AV driver protection h̃. The proof for h̃H

proceeds analogously.

Consider next the impact of θ on h̃L and h̃H , starting again with h̃L. From ∆L(h̃L) ≡ 0

and using ĥ = 1/θ, we get

dh̃L

dθ
= −

∂∆L

∂θ
∂∆L

∂h̃L

= −
∫ 1/θ

0 hF ′(h)dh − (1 − π)
∫ h̃L

0 hF ′(h)dh

(1 − π)
[
F ′(h̃L)(1 − θh̃L)

] < 0.

From 1
θ

= ĥ > h̃L (see part (iii)), we know that the first integral is larger than the second,

which, together with π ≤ 1, ensures that the numerator is positive. The denominator

is also positive since 1
θ

= ĥ > h̃L implies that 1 − θh̃L > 0. The proof for h̃H proceeds

analogously.

Finally, consider the impact of the AV adoption cost ωH > 0 for type H. Using again

the implicit function theorem, we get

dh̃H

dωH

= −
∂∆H

∂ωH

∂∆H

∂h̃H

= 1
(1 − π) ·

[
F ′(h̃H)(1 − θh̃H)

] > 0

which is due to 1
θ

= ĥ > h̃H . ■

B Proof of Proposition 2

Recall first from Proposition 1(iv) that h̃H and h̃L are strictly decreasing in π. This yields

a threshold πβ such that driver type β ∈ {L, H} adopts an AV with h̃ = h̃f = 1 iff π ≤ πβ.

Moreover, it follows from Proposition 1 that πL < πH . This gives rise to the three cases

summarized in Table 1.

Part (i). In case I, setting h̃ = h̃f yields full adoption and hence both ex post and ex

ante efficiency, which minimizes the expected accident costs by definition of optimality.

Part (ii). In cases II and III, to induce full adoption, the regulator optimally chooses
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the smallest feasible (i.e. closest to the ex post optimal) level of driver protection h̃ = h̃H .

The expected social costs are

SCF (h̃H) = (1 − π) ·
[∫ h̃H

0
hF ′(h)dh + 1 − F (h̃H)

]
.

To induce partial adoption, the regulator’s optimal choice is h̃ = h̃f for case II and

h̃ = h̃L for case III. The expected social costs are

SCP (H) = α · (1 − π) ·
[∫ H

0
hF ′(h)dh + 1 − F (H)

]
+ (1 − α) ·

[∫ ĥ

0
hF ′(h)dh + 1 − F (ĥ)

]

where H ∈ {h̃f , h̃L}.

Whether the regulator prefers an equilibrium with full oder partial adoption depends

on the parameter setting and the distribution F (h). Define the difference in expected

social accident costs as Z(H, π, α, θ) := SCF (h̃H) − SCP (H). The higher Z(·), the more

attractive is partial compared to full adoption. We next consider the impact of the AV

safety advantage (π), the share of H-types in the population (α), and the intensity of

drivers’ social preferences (θ).

Effect of probability for H-type (α) In case II, we have H = h̃f and get

∂Z(h̃f , ·)
∂α

= −(1 − π) ·
[∫ h̃f

0
hF ′(h)dh + 1 − F (h̃f )

]
+

∫ ĥ

0
hF ′(h)dh + 1 − F (ĥ) > 0,

where the sign follows from π ≤ 1 and ĥ > h̃f (where expected social harm is minimized)

by definition of the parameter range for case II.

In case III, we have H = h̃H and hence get

∂Z(h̃L, ·)
∂α

= −(1 − π) ·
[∫ h̃L

0
hF ′(h)dh + 1 − F (h̃H)

]
+

∫ ĥ

0
hF ′(h)dh + 1 − F (ĥ) > 0,

since π ≤ 1 and h̃f < h̃H < ĥ by definition of case III, i.e. h̃H is closer to the ex post

efficient level h̃f so that expected social costs there are lower than at h̃ = ĥ.
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Effect of AV safety advantage (π) In case II, we have H = h̃f and ∂Z(h̃f ,·)
∂π

is given

by

−
[∫ h̃H

0
hF ′(h)dh + 1 − F (h̃H)

]
+(1−π)

[
F ′(h̃H)h̃′

H(π)(h̃H − 1)
]
+α

[∫ h̃f

0
hF ′(h)dh + 1 − F (h̃f )

]
< 0

Note first that, in case II, h̃H > h̃f = 1 holds. Together with α < 1, this implies that the

(negative) first term is larger in absolute terms than the (positive) third term. Moreover,

the second term is also negative since h̃′
H(π) < 0 (as shown in Proposition 1(iv)) and,

again, h̃H > h̃f = 1.

In case III, we have H = h̃L and hence get

∂Z(h̃L,·)
∂π

= −
∫ h̃H

0 hF ′(h)dh + 1 − F (h̃H) + (1 − π) ·
[
F ′(h̃H)h̃′

H(π)(h̃H − 1)
]

+α
[∫ h̃L

0 hF ′(h)dh + 1 − F (h̃L)
]

− α(1 − π) ·
[
F ′(h̃L)h̃′

L(π)(h̃L − 1)
]

> 0.

Analogous to case II, the sum of the first three terms is strictly negative. However, the

additional fourth term is positive since h̃′
H(π) < 0 (see Proposition 1(iv)) and h̃H − 1 > 0

(since h̃H > h̃f = 1 by definition of case III). This renders the total expression ambiguous

in case III.

Effect of the intensity of drivers’ social preferences (θ) Taking into account that

h̃L = h̃H(θ) and ĥ = 1
θ
, we get for case II:

∂Z(h̃f , ·)
∂θ

= (1 − π) ·
[
F ′(h̃H(θ))h̃′

H(θ)(h̃H(θ) − 1)
]

− (1 − α)
[
F ′(ĥ)(− 1

θ3 + 1
θ2 )

]
≶ 0,

where the first term is negative due to h̃′
L(θ) < 0 (see Proposition 1(iv)) and h̃H(θ)−1 > 0

(by definition of case II). As the second term is positive due to − 1
θ3 + 1

θ2 > 0, the sign of
∂Z(·)

∂θ
is ambiguous.

For case III, note that h̃L = h̃L(θ) and h̃H = h̃H(θ), and that h̃L(θ) > h̃f = 1 by
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definition of this case. Hence, we get

∂Z(h̃L, ·)
∂θ

= (1 − π) ·
[
F ′(h̃H(θ))h̃′

H(θ)(h̃H(θ) − 1)
]

− α(1 − π) ·
[
F ′(h̃L(θ))h̃′

L(θ)(h̃L(θ) − 1)
]

−(1 − α)
[
F ′(ĥ)(− 1

θ3 + 1
θ2 )

]
≶ 0.

As in case II, the first term is negative, but the (additional) second and the third term are

positive. Moreover, the sign of the difference between the first and second term depends,

among the other parameters, on the value of the density F ′(h̃) at the points h̃ = h̃L(θ)

and h̃ = h̃H(θ), and on the derivatives h̃′
H(θ) and h̃′

L(θ). Again, the sign of ∂Z(·)
∂θ

is

ambiguous.■
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