ECONSTOR

A Service of

Working Paper

Quota vs Quality? Long-Term Gains from an Unusual Gender Quota

CESifo Working Paper, No. 9811

Provided in Cooperation with:

Ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Abstract

Suggested Citation: Schaede, Ursina; Mankki, Ville (2022) : Quota vs Quality? Long-Term Gains from an Unusual Gender Quota, CESifo Working Paper, No. 9811, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at: https://hdl.handle.net/10419/263741

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]
CEsifo WORKING PAPERS

Quota vs Quality? Long-Term Gains from an Unusual Gender Quota
 Ursina Schaede, Ville Mankki

Impressum:

CESifo Working Papers
ISSN 2364-1428 (electronic version)
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo GmbH
The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute
Poschingerstr. 5, 81679 Munich, Germany
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de Editor: Clemens Fuest
https://www.cesifo.org/en/wp
An electronic version of the paper may be downloaded

- from the SSRN website: www.SSRN.com
- from the RePEc website: www.RePEc.org
- from the CESifo website: https://www.cesifo.org/en/wp

Quota vs Quality?
 Long-Term Gains from an Unusual Gender Quota

Abstract

We evaluate equity-efficiency trade-offs from admissions quotas by examining effects on output once beneficiaries start producing in the relevant industry. In particular, we document the impact of abolishing a 40% quota for male primary school teachers in Finland on their pupils’ long-run outcomes. The quota had advantaged academically lower-scoring male university applicants, and its removal cut the share of men among new teachers by half. We combine this reform with the timing of union-mandated teacher retirements to isolate quasi-random variation in the local share of male quota teachers. Using comprehensive register data, we find that pupils exposed to a higher share of male quota teachers during primary school transition more smoothly to post-compulsory education, have higher educational attainment, and labor force attachment at age 25. Pupils of both genders benefit similarly from exposure to male quota teachers. Our findings are consistent with the quota improving the allocation of talent over the unconstrained selection process.

JEL-Codes: J700, I200, M500.
Keywords: quota, education, affirmative action, gender, productivity.

Ursina Schaede
Department of Economics
University of Zurich / Switzerland
ursina.schaede@gmail.com

Ville Mankki
Department of Teacher Education
University of Turku / Finland ville.mankki@utu.fi

Click here for the most recent version: https://ursinaschaede.github.io/files/JMP_Schaede.pdf
June 2022
We are grateful to David Yanagizawa-Drott, Joachim Voth, Claudia Goldin, Ulf Zölitz, and Pekka Räihä for their guidance throughout this project. We thank David Autor, Sara Bagagli, Anne Sofie Beck Knudsen, Augustin Bergeron, Peter Bergman, Anne Brenøe, Lorenzo Casaburi, Raj Chetty, Ana Costa-Ramón, Alessandro Ferrari, Matteo Greco, David Hémous, Andrea Hofer, Kristiina Huttunnen, Daniel Kopp, Mika Kortelainen, Rafael Lalive, Ross Mattheis, Matt Notowidigdo, Morten Olsen, Claude Raisaro, Heather Sarsons, Helena Skyt-Nielsen and Hanna Virtanen for helpful comments and suggestions. We thank Topias Jalo and his colleagues at Statistics Finland, as well as the administrative staff at the Universities of Tampere and Zurich for their support. We gratefully acknowledge financial support from the Yrjö Jahnsson foundation.

1 Introduction

Are affirmative action policies, such as quotas, inefficient? While many countries around the world are deliberating quotas to increase the representation of women and underrepresented minorities in business and politics, there is also wide-spread push-back against such initiatives (UN, 2019; Long, 2019). Universities in the United States and elsewhere are facing increasing judicial challenges for admissions policies alleged to advantage underrepresented minority candidates (Leman, 2021; Dhume, 2019). While hotly debated, relatively little is known about the equity-efficiency trade-offs of such policies due to a lack of opportunities to observe their impact on explicit measures of output in real-world settings.

From a theoretical perspective, the effects of affirmative action and quota policies on output are ambiguous: On one hand, when quotas in educational institutions and workplaces are binding, they require these organizations to "lower the bar" by admitting less qualified applicants who would have been rejected otherwise (Welch, 1976; Lundberg and Startz, 1983; Arcidiacono and Lovenheim, 2016). Cast in this light, affirmative action policies may achieve a distributional goal only at the cost of lower productivity.

In contrast to this reasoning, affirmative action policies can raise economic efficiency when mending selection imperfections, evening out unequal opportunities that are unrelated to potential ability (Hsieh et al., 2019; Coate and Loury, 1993; Becker, 1957). Imperfect information on candidates' potential abilities can make differential treatment of underrepresented groups desirable even in the absence of explicit discriminatory barriers (Holzer and Neumark, 2000). This is the case when multiple dimensions of skill determine output, but selection criteria are limited to specific subsets of cognitive scores (Heckman et al., 2006; Deming, 2017; Bell et al., 2019; Siniscalchi and Veronesi, 2021). A similar reasoning applies to environments in which complementarities between groups materialize in production, such that diversity itself augments productivity. Taken together, these countervailing forces indicate that it is ultimately a contextdependent question of whether a representation quota is costly or output-enhancing.

In this paper, we study the impact of a unique and previously unexplored quota policy that changed the gender composition of an entire occupation. We document that this gender quota - despite "lowering the bar" for candidates of the underrepresented group - raised efficiency in the relevant industry by correcting a mis-allocation of talent. Specifically, we analyze how the termination of a quota for male primary school teachers influenced pupils' educational pathways and subsequent labor force attachment in Finland. This quota had reserved 40% of slots in admissions for primary school teacher studies at universities for male applicants, advantaging academically lower-scoring male candidates. The removal of the quota is reported to have instantly reduced the share of men among admits to primary school teacher studies from about 40% to 20% (Uusiautti and Määttä, 2013; Räihä, 2010; Izadi, 2021).

Our identification strategy isolates exogenous variation in pupils' exposure to male quota teachers with a differences-in-differences instrumental variables (DiD-IV) framework: To instrument for the local teacher gender composition that pupils experience in primary school, we use the lifting of the quota together with the timing of local demand shocks for new teachers. These demand shocks arise from local teachers reaching the union-mandated teacher retirement age
when turning 60. The first stage employs a DiD specification that estimates the differential impact of teacher retirement between the quota and the post-quota period on the local share of male teachers. Intuitively, municipalities in which teachers turn 60 while the quota is still in place will hire new teachers from a rookie teacher market with quota men, compared to municipalities whose teachers turn 60 just after the quota was abolished. ${ }^{1}$ The exclusion restriction requires that teacher retirements in the post-quota period do not differentially impact pupil outcomes except via changing the teacher gender composition. Our empirical strategy addresses this by comparing pupils who experience similar exposure to new teachers via retirements, but face a different gender composition of those rookie teachers due to the lifting of the quota.

We start by outlining a simple conceptual framework of university admissions that derives conditions under which a representation quota results in lower or higher total ability of admitted candidates. When the selection criterion fully reflects candidate ability, introducing a binding quota comes at the cost of admitting less qualified candidates. In contrast, there may be efficiency gains from a quota when the selection criterion is negatively correlated with minority group status and insufficiently captures the potential ability of candidates: This can be the case both when the mapping between the selection criterion and ability differs across groups, and when there are complementarities in production between groups. Embedding same-identity role model effects within this framework, we derive additional testable predictions for our specific setting.

We then turn to examine the efficiency effects of the quota empirically. First, we document how the lifting of the quota affected the local gender composition of teachers at the municipal level: Once the primary teacher cohorts that studied without the quota graduate and enter the market for rookie teachers in 1994, each retiring teacher is 20 percentage points less likely to be replaced with a male teacher relative to the quota period. These changes in the local teacher gender composition are accompanied by small, albeit noisily measured, increases in local teachers' average academic scores - consistent with the notion that lower scoring men are less likely to be admitted to primary teacher studies once the quota is abolished.

We proceed to study how these changes affect pupils, using comprehensive register data from 1988 to 2018 to trace out pupils' education and labor market pathways until age 25 . We start by analyzing pupils' application and enrollment behavior when leaving compulsory education three years after finishing primary school. We track pupils' educational trajectory with records from the nationally-organized allocation of education slots, for which pupils can put in up to five preferred institution choices. Using the timing of teacher age-based retirements as an instrument for the local teacher gender composition, we show that pupils exposed to a higher share of male teachers via the quota are more likely to directly apply to continued education. As pupils' applications are more aligned with attainable options, they are more likely to obtain one of their top two choices. These patterns translate into higher enrollment rates in post-compulsory education at age 16.

Turning to long-term impacts up to early adulthood, we examine pupils' educational attainment and labor market attachment by age 25 . For pupils who were exposed to a higher share

[^1]of male quota teachers, we observe a shift towards higher qualifications throughout the educational attainment distribution: For practically-oriented vocational degrees, pupils are more likely to have additional advanced qualifications instead of a basic three-year degree. For academic tracks, pupils are more likely to have obtained a university level BA degree. Consistent with acquiring more education, these pupils have higher attachment to the labor market. At age 25, they are .09 standard deviations (SD) more likely to be a student or employed for a 1 SD increase in the share of male quota teachers. ${ }^{2}$

A central question that arises from our results is through which channels quota men - relative to marginal female teachers pushed out by the quota - make a difference. First, via a same-gender role model mechanism, male quota teachers could raise specifically boys' academic aspirations and achievement. However, adding more male role models for boys implies that girls lose female examples to aspire to, potentially making them worse off. Examining results by pupil gender, we can rule out that girls are negatively impacted by the quota policy. Further, we do not find evidence for a role model channel that would purely operate through male teachers setting an example for boys via same-gender identity: Boys' educational outcomes are not more affected from exposure to male quota teachers relative to girls', and none of the other main effects differ systematically by pupil gender.

Second, quota men could inspire pupils to pursue different educational fields. Our estimates indicate that pupils move away from more gender-neutral education choices and become more likely to choose a STEM (Science, Technology, Engineering, and Mathematics) field. We also examine whether exposure to more male quota teachers inspires boys to take up education-related fields themselves, but do not find that pupils of either gender would be more likely to pick such fields by age 25 .

Third, complementarities between male and female teachers (i.e. by specializing according to comparative advantage) could result in better outcomes for all pupils. The Finnish primary school system is characterized by extensive collaboration between teacher colleagues, both in school-wide curricula design and preparation of classes, as well as in actual teaching (Sahlberg, 2021). We probe for complementarities between male and female teachers by estimating separate effects depending on the initial gender composition of the local teacher team. We find the benefits of adding an additional male teacher are similar in magnitude (albeit noisily estimated) between places with few male teachers and places where the share of men among colleagues is already high - suggesting limited scope of complementarities in production.

We posit that the selection criteria in the absence of the quota do not sufficiently account for male quota teachers' positive impacts on pupils. As such, male quota teachers in our setting exhibit talents - non-cognitive skills, for example - that are not reflected in the selection of teacher candidates, but matter for pupils' outcomes. The first order effects of the misalignment between these selection criteria and male quota teachers' performance on the job dwarf any same-gender role model effects in our setting. While the quota thus neither closed educational attainment gaps between boy and girl pupils, nor mitigated the gender-segregation of teaching

[^2]fields in the long term, it succeeded in selecting male teachers that produced better outcomes for pupils.

This study makes two main contributions. First, by examining the output effects of an admissions quota, we expand on recent work that has documented similarly-sized benefits from access to selective colleges for marginal admits under affirmative action relative to marginal candidates pushed out (Bleemer, 2021a; Black et al., 2020; Otero et al., 2021). Empirical evidence on how quotas impact output-related measures has almost exclusively focused on mandated representation of women in board rooms, documenting negative or neutral effects on firm performance in the short-run (Ahern and Dittmar, 2012; Matsa and Miller, 2013; Eckbo et al., 2021; Ferrari et al., 2021). ${ }^{3}$ We contribute to this body of work by cleanly documenting that a quota - applied at university entry - can have positive effects that extend beyond its direct beneficiaries, such that the policy improved output in the relevant sector in the long run. Our results also highlight a broader point: Selection of candidates based on academic scores and interviews, among the most widely used methods to assess applicants, can miss out on important dimensions of talent. Such imperfections in assessing talent during selection processes make the impacts of affirmative action policies ambiguous ex ante.

Second, by shedding light on the channels through which male quota teachers matter, we contribute to the literature on role model effects in education. Several studies have provided evidence that being matched with a same-identity teacher can affect academic performance (Gershenson et al., 2022; Dee, 2007; Antecol et al., 2015; Lim and Meer, 2017, 2020; Carrell et al., 2010). Work on targeted role model interventions has documented positive effects for female minority students in male-dominated fields (Porter and Serra, 2019; Breda et al., 2018; Kofoed et al., 2019). In contrast to reallocating a fixed set of teachers across pupils, we examine whether same-identity role model channels are at play when changing the composition of primary school teachers via a quota. This allows us to better understand whether policies that aim to recruit more men to become teachers are an effective tool to mitigate gendered academic achievement gaps. Further, we evaluate a quota's general potential to change the gender-segregation of occupations for future generations, as we can track whether exposure to male teachers makes boys more likely to pick an education-related occupation themselves.

Documenting how trade-offs related to equitable representation targets materialize by assessing their effects on productivity is important - especially so at a time at which affirmative action policies are under scrutiny. Our results suggest that carefully considering the correlates of ability and minority group status in selection processes provides a promising avenue to increase both equitable representation and economic efficiency.

The paper is structured as follows: The next section details the Finnish education and teacher training system. We outline a brief conceptual framework in Section 3. Section 4 explains our

[^3]data sources and sample, followed by the empirical design in Section 5. In Section 6, we first examine the effects of the quota on teacher gender composition the municipal level, before turning to a pupil panel. We document mechanisms in Section 7 and robustness checks in Section 8; the final section concludes.

2 Context

2.1 Primary School Teachers in Finland

Finland has been among the top scoring countries for multiple rounds of international student assessments, leading to considerable international attention paired with efforts to adopt best practices from the Finnish education and teacher training system (Malinen et al., 2012; Niemi et al., 2016). Finland prides itself in having a school system that aims at equalizing opportunities (Sahlberg, 2021).

Due to being one of the most competitive degrees in university admissions, primary school teachers enjoy high social status (Finnish National Agency for Education, 2018). While salaries are on par with OECD average, active teaching hours are comparatively low (Sahlberg, 2021). Primary school teachers are municipal employees who are hired by local schools, and are part of a powerful teachers' union that fixes both salary schedules, and - for the relevant period in this study - a retirement age of 60 in collective bargaining agreements (Kivinen and Rinne, 1994; Valtiokonttori, 1988). A national curriculum outlines broad learning goals. Under the supervision of municipal education authorities, teachers within and across schools collaborate in designing detailed learning plans (Sahlberg, 2021; Sahlberg et al., 2019).

In contrast to the United States, primary school teachers are assigned to a cohort as their main classroom teacher covering all subjects in the respective grade, and may spend several years with that class. However, primary school teachers are also actively embedded in their work environment through extensive collaboration with their colleagues, both in curriculum design, preparing lessons and school wide activities, as well as in active teaching (Sahlberg, 2021). Pupils in our setting are thus exposed to and interact regularly with the teacher body of their entire school. Conducting the analysis at the municipal level takes into account any spill-overs that arise from teachers collaborating within and across schools. ${ }^{4}$

2.2 Primary School Teacher Training and the Quota Reform

2.2.1 Historical Context

The first teacher training institutes in Finland were founded in the mid-1800s, and offered training separately by gender. In 1881, new education decrees allowed for co-education for children attending municipal primary schools as long as sufficient instruction in handicrafts could be guaranteed, de facto leading to "differentiation between male and female elementary school teachers and a quota system in teacher training" (Sysiharju, 1987). While the number of primary school

[^4]teachers in the first half of the twentieth century ballooned from 6,800 to 25,000 , the share of male primary teachers remained stable at 41% (Sysiharju, 1987).

In the context of educational reforms in the 1970s, primary teacher education was transferred to universities and elevated to a master's level degree (Niemi et al., 2016). With an acceptance rate fluctuating around 10%, primary school teaching has been and still is among the most competitive degrees in the country and applicants often apply multiple years in a row until they are successfully admitted (Tirri, 2014; Uusiautti and Määttä, 2013).

Admissions throughout our study period closely followed the main principles established in those reforms, including that "the Ministry of Education maintained the sex quota system for the training of classroom teachers" (Sysiharju, 1987): In a first step, applicants were ranked in a centralized system according to a score that mainly considered candidates' grades in the matriculation exam (the nationally graded high school exit exam) with a few additional points given for candidates' extra-curricular activities. The highest ranked candidates were invited to an in-person second round (Uusiautti, Määttä, et al., 2013). In this second step of the selection process, candidates' teaching qualities were evaluated independently by a faculty board through an extensive host of exercises and in-depth interviews (Räihä, 2010; Uusiautti, Määttä, et al., 2013). The highest ranked candidates in the second step were admitted to study primary teacher education according to the number of available study slots. Within this process, the Ministry of Education jointly with the education departments ensured that around 40% of candidates invited to the second round were men (Liimatainen, 2002). Documentary evidence on how strongly the universities were constrained in their final admission decisions for the decentralized second round is somewhat inconclusive (Räihä, 2010; Liimatainen, 2002). However, aggregate statistics imply that the general gender guidelines issued by the Ministry resulted in the desired gender mix of primary teachers: About 40% of active primary school teachers in the country were male through the mid-1980s (Sysiharju, 1987). ${ }^{5}$

The quota was abolished for the cohort applying to university in the fall of 1989 (thus graduating from primary school teacher studies in 1994), as it was not in compliance with a broad anti-discrimination law passed by parliament in 1987 (Tasa-Arvovaltuutetu, 1987). Since its lifting, politicians and the general public have repeatedly argued for the quota's reinstatement, motivated by the fact that boys are increasingly lagging behind academically and that a growing number of children raised by single mothers may lack a father figure (Etelä Suomen Sanomat, 1988; Liiten, 2012).

2.2.2 Summary Statistics: Admissions and Teachers' Characteristics

Using aggregate statistics issued by the Ministry of Education, Figure 1 displays the share of men among those applying to primary teacher studies, and among those being invited to the

[^5]second round of the selection process. While there is a sharp drop from 40% to 20% for second round invitees in 1989, the share of men who apply evolves smoothly around the time of the reform. ${ }^{6}$ Final admits to primary teacher studies were not recorded, but using proxy measures in the register data, we observe an approximately 15 percentage point drop in the share of men among primary school teacher graduates in Figure A3. ${ }^{7}$

As the quota did not only change the gender composition of incoming teachers but also advantaged academically lower scoring men, Figure 2 plots future teachers' national percentile rank in the matriculation exam for the first attempt of the exam, against the last year in which they ever took this exam. ${ }^{8}$ While the quota was in place, men on average scored about 10 percentile points lower. Once the quota was lifted, the average score among male teachers increased a bit, consistent with universities no longer admitting relatively lower scoring male applicants. We will return both to the changes in primary teacher gender composition and academic scores more formally in Section 6.1.

Teacher gender in our setting is correlated with a bundle of other characteristics that may matter for teaching. Table 1 presents summary statistics on male and female teachers who are active in the profession before the lifting of the quota (i.e. before 1994 as the year in which the first non-quota cohort graduates from teacher studies), and thereafter. In Panel A, we can observe that male teachers are somewhat more likely to come from rural areas and to live in their region and municipality of birth when compared to female teachers, but differences are small. Regarding educational trajectories in Panel B, there is no difference in having obtained a high school degree and being a certified teacher. ${ }^{9}$ In Panel C, statistics on the matriculation exam show no difference in having passed the exam, but again illustrate that male teachers have significantly lower scores, even when considering the best exam taken in repeated attempts. High school students had some flexibility to choose either mathematics or a combination of other natural and social sciences ("Reaali") in the matriculation exam. Male teachers are about 9 percentage points more likely to have taken the mathematics exam compared to female teachers, and 10 percentage points more likely to have chosen advanced level mathematics rather than the basic level exam. ${ }^{10}$

[^6]
3 Conceptual Framework

This section develops a conceptual framework assessing the trade-offs between teacher quality and gender representation. In our setting, the admissions office is the decision maker who would like to maximize future teacher ability. However, true teacher ability is unobserved by the admissions office so that it selects candidates based on scores. ${ }^{11}$ We outline how a quota's effect on total candidate quality depends on the interplay between scores as the selection criterion and teacher ability: We first examine a benchmark case in which scores fully reflect teaching ability, such that a quota is costly. We then proceed to examine two cases in which the mapping of scores into ability is imperfect, such that a quota has the potential to be efficiency enhancing: We discuss a case where the mapping of scores is group-specific, and a case in which there exist complementarities in production between teachers of different genders. Finally, we embed sameidentity role-model effects and show how a quota has differential impacts by pupil gender. We summarize these theoretical points by deriving testable predictions for the empirical part.

3.1 Set-Up

Consider an admissions office that seeks to select a fixed mass of candidates C from a pool of applicants by considering their scores, s. Candidates belong to one of two groups j, with $j \in\{M, F\}$ for Male and Female, and are heterogeneous with respect to their score. Scores are defined on $[\underline{s}, \bar{s}]$, the density of scores $h_{j}(s)$ is twice continuously differentiable, and we assume full support, $h_{j}(s)>0$ on the relevant interval. We assume that the distribution of scores of the M group is first order stochastically dominated by the distribution of F scores to reflect the empirical fact that male applicants tend to have lower scores in our setting:

$$
H_{F}(s) \leq H_{M}(s)
$$

for all s, with strict inequality whenever $H_{M}>0$ and $H_{F}<1$. The mass of candidates of each group that is admitted above a cutoff score s^{*} is given by $M=\int_{s^{*}}^{\bar{s}} h_{M}(s) d s=1-H_{M}\left(s^{*}\right)$ and $F=\int_{s^{*}}^{\bar{s}} h_{F}(s) d s=1-H_{F}\left(s^{*}\right)$.

We further introduce a measure of candidates' teaching ability, a, that we will return to in more detail in iterations below. We define a welfare function W as the total teaching ability of admitted candidates for a given ability threshold, a^{*} :

$$
\begin{equation*}
W\left(a^{*}\right)=\int_{a^{*}}^{\bar{a}} a h_{M}(a) d a+\int_{a^{*}}^{\bar{a}} a h_{F}(a) d a \tag{1}
\end{equation*}
$$

In our setting, the admissions office's aim is to pick the highest ability teachers, but since it can not observe a or is perhaps restricted to only consider s, it has to rely on candidates' scores as a proxy for ability.

[^7]Admissions without quota: The admissions office picks a threshold score s_{j}^{*} above which all candidates are admitted subject to a capacity constraint: ${ }^{12}$

$$
\begin{equation*}
\max _{s_{M}, s_{F}} \int_{s_{M}}^{\bar{s}} s h_{M}(s) d s+\int_{s_{F}}^{\bar{s}} s h_{F}(s) d s \tag{2}
\end{equation*}
$$

$$
\text { s.t. } M+F=C
$$

When maximizing total scores of admits, the optimal cutoff s_{j}^{*} is the same for both groups: $s_{M}^{*}=s_{F}^{*}=s^{*}$, resulting in the mass of admitted women outnumbering admitted men due to first order stochastic dominance.
Admissions with quota: Suppose we now introduce a quota rule that adds an additional constraint to the admissions office's optimization by requiring that at least mass q of students from group M be admitted. The admissions office then solves the problem in equation 2 with the additional constraint:

$$
\begin{equation*}
\text { s.t. } M \geq q \tag{3}
\end{equation*}
$$

When the quota constraint is binding, the admission cut-offs between groups diverge and the admissions office chooses optimal cutoffs that are group-specific:

$$
\begin{equation*}
s_{M}^{*}(q)=s_{F}^{*}(q)-\delta \tag{4}
\end{equation*}
$$

where δ is the Lagrange multiplier of the quota constraint and indicates the shadow price of admitting a male candidate at the margin. The following iterations of the model briefly discuss how total teaching ability evaluated by W changes for different mappings of scores s into teaching ability a, by comparing picks based on scores to admissions under full information.

3.2 Candidate Choice when Scores Fully Reflect Ability

We start by evaluating a benchmark case: Scores fully reflect teaching ability, so that

$$
a=s
$$

In this case, requiring the admissions office via a quota to admit more men relative to the unconstrained optimization in equation 2 will result in total teaching ability of admits being lower under a quota: $W\left(s^{*}(q)\right)<W\left(s^{*}\right)$. This illustrates one of the main concerns frequently brought forward against quota rules: Requiring the admissions office to forgo its preferred allocation of slots will lower total candidate quality, as the ability of additional men admitted due to the

[^8]quota is less than the ability of women who must be rejected to satisfy the quota. ${ }^{13}$

3.3 Group-Specific Mapping of Scores into Ability

Consider now a case in which the association between scores and teaching ability is group-specific:

$$
a=s+\alpha \mathbb{1}_{M}
$$

with $\alpha>0, \mathbb{1}_{M}$ an indicator function that denotes membership in group M, and density ρ such that $\rho\left(s+\alpha \mathbb{1}_{M}\right)=h(s)$. For any given teaching ability level a, the score of members of the M group is reduced by a penalty parameter $\alpha .^{14}$ In such a world, switching out a marginal female with a marginal male teacher who has the same score increases total teacher ability.
Full information: When evaluating total teaching ability of admits under full information, W takes into account men's true ability. Substituting for a with the above relation, the optimization problem when fully observing teacher ability becomes:

$$
\begin{gather*}
\max _{s_{M}, s_{F}} \int_{s_{M}}^{\bar{s}}(s+\alpha) \rho_{M}(s+\alpha) d s+\int_{s_{F}}^{\bar{s}} s \rho_{F}(s) d s \tag{6}\\
\text { s.t. } M+F=C
\end{gather*}
$$

The first order conditions under full information ($F I$) imply that the optimal cutoff scores in this case are such that:

$$
s_{M}^{F I}=s_{F}^{F I}-\alpha
$$

The marginal male admit here has a strictly lower score than the marginal female admit and the optimal allocation of slots fully takes into account that M group members' scores suffer a test score penalty α for any given ability level a.
Admissions Office: In contrast, the admissions office continues to select candidates based on scores alone (equation 2): $s_{M}^{*}=s_{F}^{*}=s^{*}$. In this case, it is the lack of differential score thresholds that is costly as the admissions office does not take into account men's score penalty, and $W\left(s^{*}\right)<W\left(s^{F I}\right)$.

With a quota rule, the admissions office chooses $s_{M}^{*}(q)=s_{F}^{*}(q)-\delta$. The wedge between marginal male and female admission scores grows with the mass of male candidates required by the quota, and achieves the optimum under full information when the quota is set such that $\delta=\alpha$. This illustrates that the admissions office deviates further from the optimum under full information both when a quota under- as well as when it over-corrects for differences in scores: Total teaching ability will steadily decline with the mass of men required by the quota rule once

$$
{ }^{13} \text { I.e. } \int_{s_{M}^{*}(q)}^{s^{*}} s h_{M}(s) d s<\int_{s^{*}}^{s_{F}^{*}(q)} s h_{F}(s) d s
$$

[^9]$\delta>\alpha$, and will eventually yield an outcome worse than $W\left(s^{*}\right)$.

3.4 Candidate Choice with Complementarities

Even when scores fully reflect individual teacher ability, the existence of complementarities between M and F teachers can motivate differential treatment by group status. If the gains in total teacher ability from complementarities outweigh the costs in terms of individual scores, switching out marginal female with marginal male teachers will increase overall teacher quality, but with decreasing marginal returns. This could be the case if, for example, pupils are more motivated when exposed to same-gender teachers, or when diverse teams of male and female teachers perform better when designing school curricula.

We return to the assumption in the benchmark case that scores perfectly map into ability, $s=a$. We introduce complementarity in teaching ability with a production function V that exhibits positive cross-derivatives, and treats M and F candidates symmetrically: ${ }^{15}$

$$
V=\sqrt{L_{M} L_{F}}
$$

with $L_{M}=\int_{s_{M}}^{\bar{s}} s h_{M}(s) d s$ and $L_{F}=\int_{s_{F}}^{\bar{s}} s h_{F}(s) d s$ as total teacher ability for group M and F respectively. Under full information of V, the optimum equates the relative test score thresholds to the relative total ability of admitted candidates:

$$
\frac{s_{M}^{F I}}{s_{F}^{F I}}=\frac{L_{M}}{L_{F}}
$$

For a common threshold score $s_{M}^{F I}=s_{F}^{F I}$, it has to be that $L_{M}=L_{F}$, which is inconsistent with the assumption that $H_{F}(s)$ first order stochastically dominates $H_{M}(s)$ with strict inequality. The threshold for M must be lower, so that in the optimal allocation, $s_{M}^{F I}<s_{F}^{F I}$.

3.5 Same-Gender Role Model Effects

An interesting point to consider within this framework is how a quota would affect welfare separately by pupil gender due to the presence of same-gender role-model effects. To do so, we define total welfare as the sum of welfare for boy and girl pupils, and by adding a same-gender role-model constant r to teaching ability. Consider two groups of pupils with $p \in[b, g]$ where b stands for boy and g for girl pupils. We define teaching ability separately by pupil gender p :

$$
a_{p}=s+r_{p} \mathbb{1}_{p=j}
$$

with r_{p} a constant role model effect that depends on pupil gender and switches on whenever pupil and teacher gender coincide. In addition, we define W as consisting of total teaching ability for boys and girls. Substituting with the above equation for teaching ability and assuming equal

[^10]shares of boy and girl pupils, we get:
\[

$$
\begin{equation*}
W=\frac{1}{2} W_{b}+\frac{1}{2} W_{g}=\int_{s_{M}}^{\bar{s}} s h_{M}(s) d s+\int_{s_{F}}^{\bar{s}} s h_{F}(s) d s+\frac{1}{2} r M+\frac{1}{2} r F \tag{7}
\end{equation*}
$$

\]

Full information: Under full information, optimal cut-off scores at university admissions are:

$$
s_{M}^{F I}=s_{F}^{F I}+\frac{1}{2}\left(r_{g}-r_{b}\right)
$$

The relative magnitudes of r_{g} and r_{b} will determine the overall effect of a binding quota for male applicants. Irrespective of the overall effect, the impact of a quota will differ between boy and girl pupils: For girls, W_{g} declines both because of a decrease in teacher scores s and from loosing r_{g} for every female teacher being switched out with a male teacher. W_{b} instead experiences some gains from r_{b}. The impact of a quota that increases the number of male teachers at the expense of female teachers will thus always be less positive (or more negative) for girl pupils relative to boy pupils.
i) $\mathbf{r}_{\mathbf{g}}=\mathbf{r}_{\mathbf{b}}$: This reduces to the case discussed in Section 3.2, such that a binding quota for male teachers will be costly in the aggregate.
ii) $\mathbf{r}_{\mathbf{g}}<\mathbf{r}_{\mathbf{b}}$: This reduces to the case in Section 3.3, such that a binding quota for male teachers can be efficiency enhancing in the aggregate, and achieves the optimal allocation under full information whenever $\delta=\frac{1}{2}\left(r_{g}-r_{b}\right)$.
iii) $\mathbf{r}_{\mathbf{g}}>\mathbf{r}_{\mathbf{b}}$: In such a case, a binding quota will be costly both in terms of s and r.

The same reasoning applies as above when r is only beneficial up to a certain threshold (e.g. 50% of teachers of either gender). However, the relatively more negative effect for girls will be less pronounced compared to the cases discussed above.

3.6 Empirical Predictions from Conceptual Framework

We therefore have several potential descriptions of the relationship between scores, output, and the effect of quotas.

Negative output effect of a quota: If scores perfectly reflect future teacher ability, quotas will reduce output in the absence of complementarities. Our empirical set-up directly serves as a test of whether the quota was efficiency-enhancing by examining output in terms of pupils' outcomes.

Positive output effect of a quota: If scores imperfectly reflect teacher ability, so that for a given score men have higher ability than women, a quota may improve output so long as it is not too stringent. Complementarities may cause greater output from male teachers with lower test scores even if all components of ability are reflected in scores, but will do so with decreasing marginal returns.

Presence of same-gender role model effects: Irrespective of the impact of a quota in the aggregate, girl pupils will be more negatively/less positively affected from a male teacher quota relative to boys in the presence of same-gender role model effects. This is driven by boys gaining additional same-gender role-models when increasing the number of male teachers.

4 Data and Sample

Our main data source is register data maintained by Statistics Finland which span the years 1988-2018, and contain detailed yearly information on all residents in Finland. We compile two main data sets that correspond to the respective parts of the analysis.
Teachers: We construct a panel of active primary school teachers from 1990-2000 for all individuals whose occupation at any point in time between 1990-2005 is classified as a primary school teacher by Statistics Finland's occupation classification system in the employment register. Since occupation categories are first available in 1990 and are not reported in every year, we use a combination of workplace, industry, salary, degree and career information to infer active teacher status in any given year [data sets referenced in brackets: FOLK employment, basic, and degree]. We can match teachers' matriculation exams scores and dates for all cohorts born after 1952 [YTL moduuli], but we do not observe university enrollment or study progress for teachers as these registers were not maintained at the time.
Pupils: We observe the universe of children living in Finland who turn seven years old (and therefore start school in that calendar year) between 1988-2000, reaching age 25 until 2018 as the last year of our data. We assign children to a municipality (and teacher gender composition during grades 1-6) based on their place of residence in the year in which they start school. We further match pupils to their parents which allows us to observe a rich host of variables related to families' socio-demographic characteristics at age seven [FOLK family]. We use a variety of registers, available on a yearly basis after age 16 , to measure pupils' outcomes:
Intermediate outcomes: We merge pupils to registers on post-compulsory education applications that occur in the last year of middle school, i.e. the year in which pupils turn 16 [EDU-THYR]. This allows us to observe when pupils apply, their preference ranking of up to five degree and institution choices, as well as which option they are allocated in the centralized admissions process. For the school starting cohorts from 1990 on-wards, we can additionally observe enrollment in post-compulsory education [EDU-OPISK].
Early adulthood: We measure pupils' labor force status as recorded in the last week of the calendar year in which they turn 25 years old [FOLK employment]. Regarding educational outcomes, we observe pupils' highest degree achieved, and we construct their field of education using information on their latest degree [FOLK degree]. We also examine fertility patterns up to early adulthood with yearly data from the population register [FOLK basic].

We measure all of the treatment variables at the municipal level since data to link pupils and teachers to classrooms or schools do not exist. As our main goal is to estimate the impact of a quota per se, and not the impact of having a teacher of a particular gender, aggregating the data to a level higher than the classroom is consistent with both the research question and a setting in which collegial collaboration is widely practiced. The median population size among the 461 municipalities in 1990 is 5061 inhabitants. Appendix Figure A18 shows the CDF of the number of primary and middle schools combined across municipalities in the year 2005, as earlier or more detailed data was unobtainable. About 20% of municipalities have fewer than 5 primary and middle schools combined.

To comply with data disclosure regulations by Statistics Finland, we exclude municipalities
that contain fewer than three teacher observations in a given year from our analysis. Once we move to a pupil level panel, we restrict the sample to municipality*year cells for which we are able to observe at least six teacher observations (i.e. the teaching staff for grades 1-6). ${ }^{16}$

5 Empirical Strategy

We want to study whether and how output is affected when the gender composition of teachers changes via a quota. Lifting the quota at the point of university admissions will impact the gender composition among active primary school teachers only gradually over time, but the changes in the flow of incoming teachers are sharp and immediate. In the estimation strategy, we therefore use shocks to the demand for new teachers that arise from idiosynchratic local teacher retirement. Since teacher retirement could respond endogenously to the policy reform itself, we only use variation from teachers reaching the union mandated retirement age of 60 . We use the term "retirement" exclusively to refer to teachers turning 60 throughout the paper.

Ideally, we would like to observe yearly pupil level outcomes and classroom specific links of pupils and teachers in order to differentiate between direct and indirect exposure effects, but such data do not exist. An ideal experiment, taking the aggregation level of our data as given, would consist in randomly removing some teachers from municipalities, and deciding with a coin flip whether replacement teachers are drawn either from a pool of male quota teachers, or from a pool of marginal female teachers. ${ }^{17}$

Our DiD-IV estimation strategy closely approximates this experiment, taking into account that changes in quota teachers materialize via the inflow of rookie teachers and that we cannot observe quota male and marginal female teachers in the data. Municipalities in our setting are randomly assigned quota men - and thus more male teachers in general - via the timing of their open positions arising from teacher retirement. We thus estimate a local average treatment effect for complier municipalities: Variation stems from those municipalities that via the timing of retirements are induced to hire more vs less quota men among their teachers. While this notion matters for assessing the external validity of results, we think that our estimates get us close to the policy-relevant parameter of interest: What happens when we change the composition of an occupation via a quota that operates through the inflow of incoming candidates?

Figure A1 outlines the timeline of our reform: The primary school teacher students who enter university before 1989 are selected via the quota rule. As the official time to complete the degree is five years, the quota and non-quota cohorts of new teachers will leave university around the year 1994 and will be hired by municipalities for their local schools. If municipalities have open positions during the time when quota cohorts enter the teacher market, they will be more likely to hire candidates from a pool with relatively more male rookie teachers compared to municipalities that have to fill open positions once new teacher cohorts selected without the

[^11]quota are entering the teacher market.

5.1 Municipal Level: Changes in Teacher Composition

We first document that local retirement interacted with the timing of abolishing the quota changes the local gender composition of teachers. Consider the following specification:

$$
\begin{equation*}
\text { share male } e_{m t}=\pi_{0}+\pi_{1} \text { total share } 60_{m t}+\pi_{2} \mathbb{1}_{t=\text { post }} \text { total share } 60_{m t}+X_{m t} \delta+\eta_{r t}+\gamma_{m p}+\zeta_{m t} \tag{8}
\end{equation*}
$$

with share male $e_{m t}$ the share of male teachers in municipality m in a given year t, and total share $60_{m t}$ the cumulative teacher retirements in a municipality up to that point in time in the sample. ${ }^{18}$ The indicator function $\mathbb{1}_{t=\text { post }}$ switches on once non-quota teacher cohorts graduate and start entering the teacher market in 1994. The coefficient of interest, π_{2}, measures how additional retirements in the post-quota period affect the share of local male teachers relative to when the quota was still in place. We add region-by-year fixed effects $\eta_{r t}$ to control for time-varying shocks whose impacts may vary regionally, with a total of 19 regions comprising on average 24 municipalities. We can also include controls for time-varying municipal characteristics $X_{m t}$. The municipality-by-period fixed effects, $\gamma_{m p}$, 'reset' the measure of total retirements once the post period starts to separately estimate how retirements affect the local share of male teachers in the post period. ${ }^{19}$

5.2 Pupil Level: Does the Quota Shift in Teacher Gender Affect Outcomes?

Structural equation: Our main equation of interest is the following structural equation:

$$
\begin{equation*}
y_{i m, t+x}=\beta_{0}+\beta_{1} \overline{\text { share male }}_{m t}+\beta_{2} \overline{\text { total share } 60}_{m t}+X_{i} \delta+\gamma_{m}+\eta_{r t}+u_{i m t} \tag{10}
\end{equation*}
$$

with $y_{i m, t+x}$ the outcome of interest at time $t+x$ for pupil i who at age seven lived in municipality m, and X_{i} individual level controls for socio-economic status, also measured at age seven. ${ }^{20}$ We add municipal fixed effects γ_{m}, as well as region-by-cohort fixed effects, $\eta_{r t}$. We are interested in how increasing the average share of male teachers via the quota affects pupils' outcomes, with $\overline{\text { share male }}_{m t}$ the average of the share of male teachers across the years we observe pupils in
${ }^{18}$ The fixed effects specification of equation 8 uses the stock of the dependent variable (the share of male teachers) and the independent variable (the cumulative share retiring teachers over time). The corresponding first difference equation uses flows on both sides of the equation by regressing the year-on-year changes in the share of male teachers within a municipality on the share retiring teachers in each year, dropping the municipal fixed effects:

$$
\begin{equation*}
\Delta \text { share male } m t=\pi_{0}+\pi_{1} \text { share } 60_{m t}+\pi_{2} \mathbb{1}_{t=\text { post }} \text { share } 60_{m t}+X_{m t} \delta+\eta_{r t}+\zeta_{m t} \tag{9}
\end{equation*}
$$

We report first stage results for both equations, and use equation 9 when thinking in flows is more intuitive for some robustness checks on hiring patterns.
${ }^{19}$ The reset is necessary so as to properly net out any effect of the quota-period retirements from the post-quota estimate. I.e. the effect of retirements on the gender composition in the post-quota period is independent of how much retirement the municipality faced in the quota period.
${ }^{20}$ The controls we include are pupil gender, language (Swedish, Finnish, other), foreign origin, single parent household, and highest level of education in the household (Compulsory, Secondary, Tertiary, n/a).
primary school. ${ }^{21}$
Our empirical strategy isolates variation in the share of male quota teachers from gender changes in the inflow of recently graduated teachers that is caused by retirements. Rookie teachers may differ from older teachers along various dimensions: they have less experience, but they might also be differentially motivated to teach. We account for pupils' exposure to rookie teachers via retirement by controlling for the average aggregate share of teacher retirements during a pupils' time in primary school, $\overline{\text { total share } 60}_{m t}$, and we discuss its construction in more detail below. Note that schools' hiring decisions, and thus the impact of being exposed to retirements, may change due to the quota. As such, our estimates measure the total effect of the policy which includes differential responses to retirement shocks. We elaborate on this in more detail in the robustness Section 8, and do not find evidence that schools changed their practices over time.

First stage: We instrument for share male \bar{m}^{2} with the following first stage equation on the pupil level that closely mimics the municipal level first stage in equation 8 . Since every time period t corresponds to the start of school for a particular cohort, we refer to t as a cohort identifier in the following:

$$
\begin{equation*}
\overline{\text { share male }}_{\text {mt }}=\pi_{0}+\pi_{1} \overline{\text { total share } 60}_{m t}+\pi_{2} \mathbb{1}_{t=\text { post }} \overline{\text { total share } 60}_{m t}+X_{i} \delta+\gamma_{m}+\eta_{r t}+\epsilon_{i m t} \tag{11}
\end{equation*}
$$

Variation in treatment intensity arises from how much teacher retirement different cohorts of pupils across different municipalities experience in the post-quota relative to the quota period. The coefficient of interest, π_{2}, measures how the share of male teachers a pupil experiences is affected by retirements in the post-quota relative to the quota period. By measuring the differential impact of retirements, we compare the causal effect of being exposed to new teachers against the causal effect of being exposed to new teachers with a changed gender composition due to the lifting of the quota. In the structural equation, β_{1} then measures the causal effect of being exposed to relatively more male teachers via incoming quota men. This relative comparison addresses exclusion restriction concerns that retirement-triggered increases in rookie teachers matter for pupil outcomes.
 by taking the average of cumulative retirements a pupil is exposed to during their six grade levels g in primary school:

$$
\begin{equation*}
\overline{\text { total share } 60}_{m t}=\frac{1}{6} \sum_{g=1}^{6} R_{m t g} \tag{12}
\end{equation*}
$$

with $R_{g}=$ share $60_{g}+R_{g-1}$ and $R_{1}=$ share $60_{-2}+$ share $60_{-1}+$ share 60_{1}
For example, the retirement measure for grade $6\left(R_{6}\right)$ adds retirements that occur just before a pupil enters grade 6 (share 60_{6}) to all retirements the pupil has experienced up to this point:

[^12]$R_{6}=$ share $60_{6}+R_{5} . R_{1}$ considers all retirements up to two years before a pupil starts school. We construct $\overline{\text { total share }} 60_{m t}$ in this way to reflect the fact that retirements that happen later in the pupils' school career will have an impact on the teacher composition for relatively fewer years compared to retirements when pupils start school: Retirements that occur before a pupil enters grade 1 have the potential to change the gender composition, and thus the average share of male teachers, for all grades a pupil spends in primary school. In contrast, any retirements occurring just before a pupil enters grade 6 will affect the teacher composition only in their last year in school. In the empirical analysis, we report grade level results for the first stage that directly motivate the construction of this measure.

5.3 Discussion of Identifying Assumptions

We revisit explicit and implicit identifying assumptions of our setting in more depth. To start with, our identification strategy needs to satisfy the two main IV assumptions. Relevance requires that teacher retirements in the post-quota period decisively impact the local share of male teachers, which we can assess directly in the first stage regressions. The exclusion restriction, briefly touched on above, warrants more discussion: We require that teacher retirements affect pupils' outcomes only via changes in the share of male teachers, and thus changes in male quota teachers. However, retirements themselves, by triggering teacher turnover, may have a direct effect on pupils. We tackle this by measuring relative changes in outcomes between cohorts that experience similar exposure to retirements, but with different timing. The underlying assumptions here are twofold: First, we need to assume that there are no other policy changes that happen simultaneously with the quota that have effects on students via the channel of retirements. To the best of our knowledge, there are no such policies. Secondly, we assume that exiting patterns and hiring practices to replace retiring teachers do not differentially change as a response to the quota. ${ }^{22}$ We test for such patterns in Section 8 and do not find evidence for differential changes in the post-quota period.

Implicit in our empirical design is the further assumption that the local timing of retirements is idiosyncratic, and therefore uncorrelated with any other shocks that could affect pupil outcomes. We address such concerns by only using variation arising from teachers turning 60 (instead of actual exits), by controlling for a rich host of pupils' socio-economic characteristics at age 7, and by including region-by-cohort fixed effects. As such, we are only comparing cohorts in municipalities within the same region and year, with the notion that relevant economic shocks (in the past and currently) will similarly affect neighboring places.

Finally, while our regressions are measuring the effect of having more male quota teachers, we see teacher gender not just as a biological distinction, but as something that proxies for a bundle of characteristics that may differentiate quota male and marginal female teachers.

[^13]
6 Main results

6.1 Municipal Level: Effects on Teacher Composition

Teacher gender: We start by documenting the effects on teacher gender composition at the municipal level after the quota was lifted. We first examine teacher exit patterns. Figure 3 plots the exit probability by age for all primary school teachers in our sample. We report the probability of a primary teacher not teaching at a given age, conditional on having been an active teacher in the previous year. There is a large spike in exits exactly at the union mandated retirement age of 60 . In our estimation, we are only using variation from teacher exits that is due to teachers turning 60 years old. ${ }^{23}$

To illustrate the intuition of the first stage using the raw data, Figure 4 displays the relationship between teacher retirement in a municipality (on the horizontal axis) and changes in the share of male teachers by separately plotting the period in which quota cohorts enter the teacher market (1991-93) and a period of similar length in the post-quota period (1994-96). Teacher retirement has a small, positive effect on the local share of male teachers in the quota years. In the post-quota period, higher shares of teachers retiring are associated with substantial local drops in the share of male teachers. ${ }^{24}$

Figure 5 formalizes this intuition by running the first stage Equation 8 as an event study, estimating separate coefficients year-by-year, relative to 1993 as the last quota-period year. Teacher retirements in the years in which the quota was still in place do not differentially affect the local share of male teachers relative to the year 1993, while retirements in the post-quota period lead to a sizeable drop of about 20 percentage points. Table 2 summarizes this result for both the first difference and fixed effects specifications, estimating separate coefficients for the quota and postquota period. Results are quantitatively similar across specifications: While retirements in the pre-period have a small positive effect on the local share of male teachers, the coefficients of interest on retirements in the post-quota period are consistently negative. We document robustness to negative weights arising in two-way fixed effects estimation in the presence of heterogeneous treatment effects in Section 8 following De Chaisemartin and d'Haultfoeuille (2020).

The magnitude of reported coefficients corresponds to measuring what would happen if all teachers in a municipality were to retire in the post-quota period: In this scenario, the local share of male teachers would drop by about 16-19 percentage points. These magnitudes match the drop in incoming male teachers reported by the literature and observed in teacher admissions and graduates (Figure 1). We can re-scale this coefficient to reflect a more realistic retirement pattern: If 10% of local teachers reach age 60 in the post-quota period, this translates into a 2 percentage point drop in the share of male teachers, which corresponds to a 5.5% decrease over the mean in the baseline period.

[^14]Teacher academic ability: While the quota targeted the gender composition of incoming primary school teachers, it simultaneously affected overall academic ability among teachers by giving preferential access to men with lower academic scores on average. In Table A2, we report the first stage with the municipal average of teachers' scores across different fields of the matriculation exam as the outcome. While coefficients are noisily estimated due to test scores only being available for teacher cohorts born after 1952, retirements in the post period lead to an increase of about 1.25 percentile scores in the local teacher body, relative to the quota period (column 1). This magnitude is consistent with replacing approximately 20% of teachers with an on average 7-8 percentile point higher test score in the post-quota period (see Figure 2). ${ }^{25} \mathrm{We}$ next turn to examine how these changes affect pupils.

6.2 Pupil Level: First Stage

Our pupil-level panel spans the cohorts that enter primary school between the years 1988 to 2000. We start by documenting the first stage relationship: Are children who experience more teacher retirement post-quota exposed to fewer male quota teachers? As we observe pupils at fixed points in time after having completed primary education, we would like to relate pupils' overall exposure measure to male teachers, i.e. the average share of male teachers across the six years a pupil spends in primary school, to their overall exposure to teacher retirements.

We begin by documenting grade-level patterns to trace the dose-response function between exposure to male (quota) teachers and retirements. Figure 6a shows the first stage results if we regress the average share of male teachers on the share of retirements pupils experience just before they start each grade level, starting up to two years before they enter school and until grade six. ${ }^{26}$ Figure 6a depicts coefficients separately for the quota period (grey) and the postquota period (green), while Figure 6b shows the effect of retirements in the post-quota period relative to the quota period. Teacher retirements in the early years of students' primary school time have a large and significant impact on the average share of male teachers pupils experience during their time in primary school. At higher grade levels, this effect gradually peters out. This pattern clearly shows that retirements in early grades, which affect the teacher composition during the entire six years a pupil spends in primary school, contribute more to explaining the average share of male teachers a pupil faces across their entire time in primary school. Similarly, retirements that happen just before a pupil enters grade six will only impact the share of male teachers for one year, and therefore contribute less to moving the average share of male teachers over all six years. This pattern, as described in Section 5.2, informs our construction of the instrument when measuring a pupil's exposure across all grades. We define a pupils' exposure to retirements as the average cumulative share of teachers retiring in each grade level, which weighs retirements proportional to the number of grades they impact the teacher composition that a pupil experiences.

[^15]In Table 3, columns 1-3 show results for the pupil level first stage. Due to the cumulative nature of the explanatory variable, we can interpret this coefficient as 'how much does the average share of male teachers change if all teachers were to retire just before a pupil starts school'. The magnitudes closely match the municipal level regressions: Pupils facing 10% of teachers retiring just before they start school are exposed to about a 1.8 percentage points lower share of male teachers.

6.3 Intermediate Outcomes: Applications and Enrollment for Post-Compulsory Education

Turning to outcomes, we start by tracking pupils' application choices to higher education options that take place after compulsory schooling at age 16. ${ }^{27}$ After primary school (grades 1-6) and middle school (grades 7-9), pupils in Finland have the option to apply to upper secondary education, which typically takes three years to complete, is provided free of charge, and is divided into vocational and academic tracks. In grade 9, the final year of middle school, pupils apply for their desired institution, and in the case of the vocational track also their desired field. While further education is not mandatory after age 16 , raising completion rates of upper secondary education is a policy priority as a post-compulsory degree is deemed crucial for labor force attachment: Finns with only compulsory education have significantly lower employment rates in adulthood and are four times more likely to be out of the labor force altogether (Virtanen, 2016; Niemi et al., 2016). ${ }^{28}$

In the centrally-organized application process, each pupil can submit up to five choices for institution (and field), and a student proposed ranked choice algorithm allocates available study slots. ${ }^{29}$ Institutions rank applicants based on grades and other qualifications such as extracurriculars. As applications take place before pupils obtain their final grades that are used to allocate slots, and with the popularity of institutions and fields varying over the years, students face uncertainty over whether they are able to obtain a study slot. The number of available slots per degree is centrally regulated and about 4% of a cohort end up without a study slot in the fall after finishing middle school.

We start by examining the dose-response function of the reduced form: How do retirements affect application decisions? Rather than establishing results for impacts at particular grade levels, the goal of this exercise lies in examining the similarity of dose-response patterns between the first stage and the reduced form. Figure 7 shows the grade-level reduced form for whether pupils apply to post-compulsory education directly in their last year of middle school, with the upper panel reporting separate coefficients for the quota and post-quota period and the lower panel showing the relative difference. As documented in the upper panel, exposure to new teachers

[^16]via teacher retirements during the quota period has slightly positive, but insignificant impacts on pupil's likelihood of applying, petering out towards later grades. Post-quota retirements in the earlier grades of pupils' primary school attendance have larger and negative impacts on applications, similar to the patterns observed in the first stage (Figure 6). As factors other than male quota teachers may impact application decisions, the grade-level coefficients in the reduced form are more noisily estimated than the more mechanical relationship in the first stage, with idiosyncrasies present in particular grade levels. Overall, however, the patterns between first stage and reduced form are reassuringly synchronous when considering grade-level reduced form estimates across the main affected outcomes at age 16 in Appendix Figure A10.

Measuring pupils' exposure to male teachers and retirements over their entire time in primary school, Table 3 reports the first stage, reduced form and IV for the main outcome for this section, gradually adding controls. Our preferred specification includes region-by-cohort fixed effects, thus comparing pupil cohorts in close-by municipalities, and we subsequently report results for this specification choice. While teacher retirements that pupils experience during the quota period have a small positive, but insignificant impacts on the share of male (quota) teachers (Column 3) and their application likelihood (Column 6), there is a significant negative impact of retirements in the post-quota period on their exposure to male (quota) teachers and application to post-compulsory education.

Column 9 reports the corresponding IV estimates. Being exposed to more male teachers via the quota during primary school results in higher likelihood of pupils applying. The coefficients report the effect size associated with an increase of male quota teachers from zero to all of the teaching staff being male quota teachers. To scale effect sizes to match a more realistic pattern, we consider the impact of a 1 SD increase in the share of male (quota) teachers, which is around 0.065 . For a 1 SD increase in the share of male (quota) teachers, pupils have a 0.027 percentage points higher likelihood of applying, which corresponds to a 3% increase over the mean. Translated into standardized effect sizes, exposure to 1 SD higher share of male (quota) teachers during primary school leads to an about . 1 SD increased likelihood of applying directly. ${ }^{30}$

Table 4 reports IV results on the full set of outcomes regarding pupils' application timing and choices after compulsory schooling, with standardized effect sizes in the bottom row (Appendix Table A10 reports the full set of reduced form results). Having more male quota teachers makes pupils more likely to apply directly in their final year of middle school, and less likely to either postpone applying to up to five years later or to never apply to upper secondary education, although the latter impact is noisily estimated. When considering the allocation of slots, we further observe that pupils are more likely to get one of their top two choices, while the effect of not getting any slot at all is noisy. ${ }^{31}$ These patterns translate into higher enrollment rates in upper secondary education in general, and significantly so in the year in which students turn 16. Figure 8 and Appendix Table A13 report heterogeneity by pupil gender. We run our main

[^17]specification (Equation 10) with separate treatment effects for boys and girls while estimating controls and fixed effects jointly. ${ }^{32}$ We discuss results by pupil gender in more detail in Section 7.1.

Why are pupils who are exposed to more male quota teachers more successful in obtaining their preferred choice? We can check whether pupils are more sophisticated in their applications, with their main choice between aiming for an academic high school degree, which qualifies for university studies, or vocational training options. We report effects in this part directly by pupil gender, as for these outcomes results differ significantly and overall effects mask more intricate patterns. Appendix Table A14 in Appendix F. 1 shows that male pupils are more likely to include any vocational training option among their choices (column 2), while refraining from applying exclusively to academic high schools (column 3). For girls, while not statistically significant, the effect goes in the opposite direction. Overall, boys seem to become somewhat more cautious in their applications, and girls more confident. When examining for which track options pupils obtain a slot in columns 4-6, we see that the margin for boys shifts from not obtaining a slot at all (column 4) towards getting a vocational spot (column 5), while girls become more likely to obtain an academic spot (column 6) rather than a vocational one. Taken together, these results imply that having more male quota teachers makes pupils apply more in line with attainable options: Boys adjust their aspirations downwards, which prevents them from ending up without a slot at all, and girls correctly have high aspirations as they are more likely to get into academic high schools.

6.4 Long-Term Outcomes: Labor Force Attachment and Educational Attainment

Higher exposure to male quota teachers has positive impacts on pupils' continuation of education beyond compulsory schooling at age 16, but do these patterns translate into longer-term gains? This section explores the impacts of male quota teachers for outcomes in young adulthood. We examine whether positive impacts on applications and enrollments translate into higher human capital and labor market attachment. As obtaining post-compulsory education in Finland is considered a pre-requisite to prevent social exclusion and to successfully transition into the labor market (Virtanen, 2016; Niemi et al., 2016), these are particular relevant outcomes from a policy perspective.

Educational attainment: As pupils show a higher attachment to education after middle school, we first trace whether pupils have obtained more human capital as young adults. After compulsory education, the Finnish education system has two tracks: vocational and academic. Standard three-year vocational degrees offer training in occupation-specific skills. In addition to working towards the completion of a basic vocational degree, pupils may take academic high school coursework that qualifies them to study a broader range of subjects at higher education institutions

[^18]and adds an extra year to their study time. Pupils can also take further specialization training that expands and deepens occupation-specific skills. ${ }^{33}$ While students from the vocational track may qualify for specific fields of tertiary education at university, the typical study path for the tertiary level is at polytechnics. The academic path, on the other hand, leads from a three-year high school degree to a Bachelor's degree (3 years) and a Master's degree (2 years) at university. Appendix Figure A15 shows the organization of the Finnish education system in detail.

Table 5 presents IV results for educational attainment by examining the highest degree achieved at age 25 using mutually exclusive education categories, while overall and dose-response reduced form estimates are reported in Appendix E.2. ${ }^{34}$ We can see a shift towards higher attainment both in vocationally-oriented as well as in academic education paths. As such, we observe a shift away from remaining with compulsory education or a standard three year vocational degree only, towards a "vocational plus degree," defined as vocational degree holders with additional specialist or high school qualifications. A 1 SD increase in the share of male (quota) teachers makes pupils .09 SD more likely to shift towards such a higher skilled degree. Turning to academically oriented degrees, we similarly observe a shift away from high school degrees towards having completed a university bachelor level degree. Results by pupil gender are displayed in Figure 9a and Appendix Table A15.
Labor market attachment: We next examine pupils' labor market attachment at age 25. As many youths are still studying at this age, but are classified as employed due to part time work, we combine the categories of being a student and being employed into one measure that reflects not sitting idle. ${ }^{35}$ For this age group, this metric is considered relevant to measure the propensity to successfully integrate into the labor market (Eurostat, 2021; OECD, 2021).

Table 7 reports effects for mutually exclusive labor market status categories. Being exposed to more male quota teachers during primary school results in higher likelihood of being either employed or a student at age 25 . For a 1 SD increase in the share of male (quota) teachers, pupils have a 0.03 percentage point higher likelihood of working or studying, which corresponds to a 4% increase over the mean. Translated into standardized effect sizes (see the bottom row of Table 7), exposure to 1 SD higher share of male (quota) teachers during primary school leads to a . 09 SD increased attachment to the labor/education market. While we observe no effect on unemployment, pupils are somewhat less likely to be on a disability pension, and significantly less likely to be out of the labor force for reasons other than disability. ${ }^{36}$ We report reduced form estimates in Appendix E.1, and Appendix Table 6 shows the first stage, reduced form and IV results for gradually adding in controls for the main outcome of this section. Figure 9b and Appendix Table A16 show results by gender.

[^19]We further can examine realized fertility up to age 26 . Consistent with our finding that pupils invest more in education and have a higher attachment to the labor force when exposed to more male quota teachers, we document in Appendix D that female pupils are less likely to have given birth by age 26 , which is indicative of delaying fertility. ${ }^{37}$

7 Mechanisms

How do male quota teachers make a difference in our setting? This part explores how our empirical results tie back into the predictions of the conceptual framework: First, we discuss whether any of the main effects are driven by boy pupils benefiting more from male quota teachers due to the presence of same-identity role model effects. We then turn to examine if effects derive from male teachers inspiring pupils to pursue different educational fields. Lastly, we try to differentiate between a mechanism where either male quota teachers make teacher teams more productive via complementarities, or where male quota teachers are of overall higher teaching ability than the marginal female teachers they replace.

7.1 Role Model Effects

While the main effects clearly demonstrate that the overall impact of the quota was positive, boys should benefit more from having more male teachers relative to girls in the presence of same-gender role model effects (see Section 3.5). This further raises the question whether the overall impact of the policy could mask that boys benefited while girls were made worse off.

As displayed in the figures and tables of our main results at age 16 and 25 by pupil gender, girls' outcomes are not negatively impacted from exposure to male quota teachers. We then test whether boys benefited more from male quota teachers: For educational outcomes at age 16 (Figure 8), we cannot reject the null hypothesis of the coefficients being the same for boys and girls for any outcome at the 5% level, with the exception of remaining without a study slot (p-value of 0.017). While some coefficients differ significantly by pupil gender for highest degree achieved at age 25 (Figure 9a), these are the ones where boys are not benefiting as much as girls. ${ }^{38}$ There are significant differences by pupil gender for our main labor market outcomes at age 25 , with boys having better outcomes than girls. However, this pattern is quite sensitive to the choice of whether to estimate fixed effects jointly or separately by pupil gender. As shown in Appendix F.2, this gendered pattern reverses when estimating results in a split sample, and we cannot reject that coefficients are the same for boys and girls for those specifications.

Rather than providing a same-gender role model for boys, male teachers could also substitute for male role models at home for children growing up in single parent households (about 13% of the sample), of which most are headed by single mothers. With the caveat that heterogeneity along this dimension is not randomly assigned and may be correlated with other characteristics,

[^20]in Appendix D. 3 we display that pupils living in a single parent household when starting primary school have somewhat stronger benefits from exposure to male quota teachers in the longer run outcomes at age 25 .

Taken together, we do not detect main effects that differ systematically by pupil gender. A same-gender role model channel that would make boys better off is thus not driving the positive impacts of the quota in the aggregate.

7.2 Educational Fields

We next turn to study whether exposure to more male quota teachers inspires pupils to pursue different fields of education. While the main effects do not differ by pupil gender, a samegender role model channel could also consist in male teachers setting an important example of men working in an occupation that is female-dominated. As such, they may inspire primarily boy pupils to pursue a teaching-related field. On the other hand - and separate from a classical same-gender role model effect - male teachers could motivate pupils to pursue different education fields. This could be either via improving pupils' achievements overall or via male teachers' skills in particular subjects. As documented in Section 2.2, male teachers are on average more likely to have chosen math as one of their matriculation exam fields, and may thus be more skilled or motivated to teach mathematically oriented topics.

In order to investigate these hypotheses, we measure pupils' choice of educational field at age 25 . We classify their career choices via their field of education rather than their occupation because many youths at this age are still studying. For each pupil in our sample, we pick the field of the highest degree acquired if they are no longer a student and the field of their current degree if they are still studying. We define fields as primarily female- or male-dominated based on the generation prior to our sample, i.e. the 13 cohorts who are seven years old during the years 1975-87. If either gender constitutes more than 40% within a field and degree level cell, we define the field as male or female leaning, and gender neutral otherwise. ${ }^{39}$ This results in 30% of pupils being in "Male" fields, 43% in gender-neutral, and 27% in "Female" fields. We also report results on STEM and STEM-M (STEM plus Medical) fields as well as teaching-related fields in general and primary school teacher in particular. ${ }^{40}$

Appendix Table A6 reports results on the choice of education field. The first three coefficients report results for primarily male, gender neutral and primarily female fields. We observe a somewhat noisy shift away from gender neutral towards both more male- and female-dominated fields. Turning to STEM and STEM-M, pupils are significantly more likely to take up such fields when exposed to more male quota teachers, with effect sizes corresponding to a 0.08 and 0.09 SD increase for a 1 SD increase in the share of male quota teachers, respectively. Figure 10 and

[^21]Appendix Tables A17 and A18 report results separately by pupil gender. ${ }^{41}$ The STEM shift is similarly pronounced for both pupil genders. Regarding teaching fields overall and primary teacher education specifically, we fail to reject a null effect.

We can do a back-of-the-envelope calculation to gauge the extent to which labor market outcomes could be explained from field choices. The shift towards STEM fields can only account for about 5.8% of the total increase in labor force attachment measured in Section 6.4, as pupils with a STEM field have a five percentage point higher attachment to the labor force (0.88 vs 0.83 for non-STEM pupils). ${ }^{42}$ In a similar spirit, in Appendix G we probe whether the math background of teachers may be mediating the main effects. The coefficient on average math background of teachers in the main reduced form and IV specifications is small and the inclusion of this variable leaves the estimated impact of exposure to male quota teachers unchanged. This suggests that neither field choice nor teacher math background are a driving force of the main effects.

7.3 Complementarities between Male and Female Teachers

Based on the predictions outlined in the conceptual framework in Section 3, we also attempt to distinguish whether our results are driven by complementarities between male and female teachers. We do this by assessing marginal returns to male quota teachers along the distribution of the share of male teachers at baseline (i.e. in 1990): If male and female teachers are complements, adding an additional male teacher at a place with mostly female teachers should have larger marginal returns compared to adding an additional male teacher in an environment that is close to gender parity. We split the sample by the median share of male teachers in a municipality. The first group has initially a lower share of male teachers (average: 29\%), and the second group a relatively higher share of male teachers (average: 43%). ${ }^{43}$ Appendix D. 4 shows that the magnitude of coefficients in both groups is similar, but noisily estimated. While only suggestive evidence, these patterns point towards quota men exhibiting higher teaching skills than the marginal women they replace within the scope of the policy, rather than complementarities.

8 Robustness

8.1 Do Schools Change Hiring Practices due to the Reform?

Our treatment coefficients measure the effect of the quota policy, and thus include any impacts that may be due to schools responding endogenously to the policy, for example by changing their hiring patterns and recruiting more experienced teachers in lieu of rookies. While this is

[^22]not a direct threat to identification, assessing these aspects helps to understand the underlying drivers of our effects. Table 8 reports municipal level regressions, with all specifications assessing changes in flows for consistency (see Equation 9). Our goal is to understand whether teacher retirements in the post-quota period differentially affect teacher exit or entry margins.

We start by assessing the effect of teachers turning 60 on the share of teachers leaving their current job in columns 1 and 2. Teachers turning 60 has almost a 1:1 impact on the share of teachers leaving, but not differentially so in the quota period. This effect is not driven by turnover of relatively younger teachers (column 2), and rather reinforces the observation that teachers reaching age 60 corresponds to actual exits from the teaching profession. In column 3 and 4, we examine how retirements affect proxies of experience of the local teacher body and do not detect a sizeable or significant change in the post-quota period. Column 5 shows (noisily estimated) that retirements in general result in a higher share of new entrants among newly arriving teachers at a municipality, but this does not change differentially in the postquota period. Taken together, we fail to find corroborating evidence for changed teacher exit or re-hiring strategies as a response to the quota reform.

8.2 Teachers on Parental Leave

Apart from hiring patterns, the lifting the quota coincides with bringing more young female teachers to schools, who may have a higher propensity to go on leave when giving birth. The positive effects we detect from having more male quota teachers could then simply arise from pupils having less teacher turnover. During the 1990s, Finland provided 6.5 months of entirely shareable parental leave taking effect after three months of birth-related maternity leave (Kamerman and Moss, 2009). To check whether any changes related to leave taking of teachers becoming mothers (or fathers) could affect pupils, we repeat the municipal first stage regressions. Table A24 (in Appendix H.1) shows that teachers turning 60 in the post period do not have a differential impact on either female or male teachers having a birth in their household. The share of a female teachers leaving the teacher force subsequent to becoming a mother is also not differentially affected by retirements in the post-quota period (column 4). In these specifications, the variation used stems from such patterns arising immediately as a response to teacher retirements. We therefore also document that, conditional on municipal and region-by-cohort fixed effects, higher exposure to female teachers having a newborn child does not impact pupil outcomes (Appendix Table A25). We conclude that differential leave taking patterns due to maternity from more female teachers post-quota are unlikely to drive our results.

8.3 Heterogeneous Treatment Effects in Two-Way Fixed Effects Designs

An active literature has documented that in the presence of heterogeneous treatment effects, the coefficient of a two-way fixed effects (TWFE) regression, $\hat{\beta}_{f e}$, may be a biased estimate of the treatment effect and in severe cases exhibit the opposite sign. ${ }^{44}$ If treatment effects are heterogeneous, such bias arises when already treated units are used as a control group in later

[^23]periods. In a two stage least squares (2SLS) set-up, potential issues would arise from residualized treatment assignment in the first stage (which is then used to generate predicted values of the endogenous variable for the second stage), if treatment effects are heterogeneous. In our setting, however, the first stage portrays a relationship between local retirements and teacher gender composition that should be purely mechanical, and for which - given our knowledge about the quota reform - we have a clear ex ante prior on sign and magnitude. While the TWFE literature to date has not tackled settings with continuous treatment variables, we follow the reasoning outlined in De Chaisemartin and d'Haultfoeuille (2020) to discuss negative weights and potential heterogeneity in treatment effects in Appendix H.4. We further probe whether first stage coefficients are driven by particular years, regions, or levels of treatment assignment in Appendix H. 5 and Appendix Figure A13. We conclude that treatment effect heterogeneity leading to sign reversal in $\hat{\beta}_{f e}$ is not a major concern in our setting.

8.4 Further Robustness

Appendix H. 2 documents further sensitivity checks, showing that results are not driven by selective attrition in the pupil sample, the capital or large cities in general, and discusses the main macro-economic shocks in Finland during our study period.

9 Conclusion

In this paper, we document that a quota that advantaged academically lower scoring men to obtain a study slot for primary teacher education has positive effects on output as measured by their pupils' intermediate and long-run educational and labor market outcomes. We find that pupils who were exposed to a higher share of male quota teachers during their time in primary school are more likely to be either employed or studying at age 25 , and have higher educational attainment as measured by their highest degree achieved.

Using comprehensive register data, we show that male quota teachers impact consequential application patterns to post-compulsory education: Pupils are more likely to apply to continue education directly after middle school, to obtain their preferred study slots and to enroll. We show that pupils of either gender apply more in line with attainable options, albeit along different margins. We do not find evidence that our main effects are more pronounced for male pupils, ruling out a same-gender role model channel as the main mechanism. We show that pupils of either gender are more likely to choose a STEM field, but boys in particular are not more likely to choose education or teaching related fields.

The male teacher quota thus did not have an impact along two essential dimensions frequently emphasized in policy debates: It did not contribute to reduce occupational segregation for the future generation - one of the main drivers of raw gender wage gaps - as boys were not inspired to pick an education-related occupation when exposed to more male teachers via the quota. Neither did the quota contribute to closing educational attainment gaps between girls and boys, as both pupil genders benefited equally from exposure to male quota teachers.

Instead, the quota in our setting fixed an inefficiency present in the selection process of
teachers. Our results show that the quota succeeded in recruiting male teachers that contributed valuable qualities to the school environment within the parameters of the policy. A promising avenue for future research lies in more thoroughly disentangling whether increased representation affects efficiency via a channel of complementarities in team work, via channels of inherent candidate ability, or via a mix of both. A further limitation of our setting is that it explores a partial equilibrium, and we refer to prior (Hsieh et al., 2019; Bleemer, 2021b) and future research to gauge the general equilibrium consequences of such policies for the allocation of talent in the wider economy.

Our study directly speaks to concurrent policy issues on affirmative action and optimal selection of candidates and illustrates the importance of carefully considering the relationship between selection criteria and minority status. In settings where a main criterion for choosing candidates is more negatively correlated with a particular group status than that group's effectiveness on the job, representation targets can help to overcome such misalignment if the selection criteria themselves cannot be easily changed. Both in academia, with current experimentation on SAT requirements for US college applications, and in the private sector, where companies are starting to use balanced candidate lists, such avenues are increasingly being explored. Our results suggest that this may pay off not only in terms of achieving more equitable representation, but also in terms of economic efficiency.

References

Ahern, K. R., \& Dittmar, A. K. (2012). The changing of the boards: The impact on firm valuation of mandated female board representation. The Quarterly Journal of Economics, 127(1), 137-197.

Aigner, D. J., \& Cain, G. G. (1977). Statistical theories of discrimination in labor markets. Ilr Review, 30(2), 175-187.
Antecol, H., Eren, O., \& Ozbeklik, S. (2015). The effect of teacher gender on student achievement in primary school. Journal of Labor Economics, 33(1), 63-89.
Arcidiacono, P., \& Lovenheim, M. (2016). Affirmative action and the quality-fit trade-off. Journal of Economic Literature, 54 (1), 3-51.
Arkhangelsky, D., Imbens, G. W., Lei, L., \& Luo, X. (2021). Double-robust two-way-fixed-effects regression for panel data. arXiv preprint arXiv:2107.13737.
Athey, S., \& Imbens, G. W. (2021). Design-based analysis in difference-in-differences settings with staggered adoption. Journal of Econometrics.
Bagues, M., \& Campa, P. (2021). Can gender quotas in candidate lists empower women? evidence from a regression discontinuity design. Journal of Public Economics, 194, 104315.

Baltrunaite, A., Bello, P., Casarico, A., \& Profeta, P. (2014). Gender quotas and the quality of politicians. Journal of Public Economics, 118, 62-74.
Beaman, L., Chattopadhyay, R., Duflo, E., Pande, R., \& Topalova, P. (2009). Powerful women: Does exposure reduce bias? The Quarterly Journal of Economics, 124(4), 1497-1540.
Becker, G. S. (1957). The economics of discrimination. University of Chicago Press.
Bell, A., Chetty, R., Jaravel, X., Petkova, N., \& Van Reenen, J. (2019). Who becomes an inventor in America? The importance of exposure to innovation. The Quarterly Journal of Economics, 134 (2), 647-713.
Besley, T., Folke, O., Persson, T., \& Rickne, J. (2017). Gender quotas and the crisis of the mediocre man: Theory and evidence from Sweden. American Economic Review, 107(8), 2204-42.
Black, S. E., Denning, J. T., \& Rothstein, J. (2020). Winners and losers? The effect of gaining and losing access to selective colleges on education and labor market outcomes (Working Paper). National Bureau of Economic Research.

Bleemer, Z. (2021a). Affirmative Action, Mismatch, and Economic Mobility after California's Proposition 209* [qjab027]. The Quarterly Journal of Economics.
Bleemer, Z. (2021b). Top percent policies and the return to postsecondary selectivity (Research \& Occasional Paper Series: CSHE. 1.2021). Center for Studies in Higher Education.
Breda, T., Grenet, J., Monnet, M., \& Van Effenterre, C. (2018). Can female role models reduce the gender gap in science? Evidence from classroom interventions in French high schools. HAL Working Paper, halshs-0173068.

Carrell, S. E., Page, M. E., \& West, J. E. (2010). Sex and science: How professor gender perpetuates the gender gap. The Quarterly Journal of Economics, 125(3), 1101-1144.
Chan, J., \& Eyster, E. (2003). Does banning affirmative action lower college student quality? American Economic Review, 93(3), 858-872.

Chattopadhyay, R., \& Duflo, E. (2004). Women as Policy Makers: Evidence from a Randomized Policy Experiment in India. Econometrica, 72(5), 1409-1443.
Coate, S., \& Loury, G. C. (1993). Will affirmative-action policies eliminate negative stereotypes? The American Economic Review, 1220-1240.
Cortés, P., Kasoolu, S., \& Pan, C. (2021). Labor market nationalization policies and exporting firm outcomes: Evidence from Saudi Arabia (Working Paper). National Bureau of Economic Research.
De Chaisemartin, C., \& d'Haultfoeuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. American Economic Review, 110(9), 2964-96.
Dee, T. S. (2007). Teachers and the gender gaps in student achievement. Journal of Human Resources, 42(3), 528-554.
Deming, D. J. (2017). The growing importance of social skills in the labor market. The Quarterly Journal of Economics, 132(4), 1593-1640.
Dhume, S. (2019). India's ethnic quotas are a cautionary tale [2019-01-24]. The Wall Street Journal.
Eckbo, B. E., Nygaard, K., \& Thorburn, K. S. (2021). Valuation effects of Norway's board gender-quota law revisited. Management Science.
Ellison, G., \& Pathak, P. A. (2021). The efficiency of race-neutral alternatives to race-based affirmative action: Evidence from Chicago's exam schools. American Economic Review, 111(3), 943-75.
Etelä Suomen Sanomat. (1988). Koulutuspaikkojen lisäzksellä eroon opettajapulasta [1988-0825]. Etelä Suomen Sanomat.
Eurostat. (2021). Education and training in the EU - facts and figures [Online; accessed 21-Sep2021].
Ferrari, G., Ferraro, V., Profeta, P., \& Pronzato, C. (2021). Do board gender quotas matter? Selection, performance and stock market effects. Management Science.
Finnish National Agency for Education. (2018). Finnish teachers and principals in figures. Finnish National Agency for Education.
Gershenson, S., Hart, C. M., Hyman, J., Lindsay, C., \& Papageorge, N. W. (2022). The long-run impacts of same-race teachers (tech. rep.).
Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics.
Heckman, J. J., Stixrud, J., \& Urzua, S. (2006). The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. Journal of Labor Economics, 24(3), 411482.

Holzer, H., \& Neumark, D. (2000). Assessing affirmative action. Journal of Economic Literature, 38(3), 483-568.
Hsieh, C.-T., Hurst, E., Jones, C. I., \& Klenow, P. J. (2019). The allocation of talent and US economic growth. Econometrica, 87(5), 1439-1474.
Imai, K., \& Kim, I. S. (2021). On the use of two-way fixed effects regression models for causal inference with panel data. Political Analysis, 29(3), 405-415.

Izadi, R. (2021). Teacher selection in Finland (Unpublished manuscript).
Jakiela, P. (2021). Simple diagnostics for two-way fixed effects. arXiv preprint arXiv:2103.13229.
Kamerman, S., \& Moss, P. (2009). The politics of parental leave policies: Children, parenting, gender and the labour market. Policy Press.
Kivinen, O., \& Rinne, R. (1994). The Thirst for Learning, or Protecting One's Niche? The shaping of teacher training in Finland during the 19th and 20th centuries. British Journal of Sociology of Education, $15(4), 515-527$.
Kofoed, M. S. et al. (2019). The effect of same-gender or same-race role models on occupation choice evidence from randomly assigned mentors at West Point. Journal of Human Resources, 54 (2), 430-467.
Leman, N. (2021). Can affirmative action survive? [2021-07-26]. The New Yorker.
Liimatainen, S. (2002). Opettajankoulutuksen valintayhteistyö. In P. Räihä \& J. Kari (Eds.), Opettajaksi soveltuvuuden moni-ilmeisyys. Opiskelijavalintavaltakunnallisesti puntaroituna. (pp. 24-31). Jyväskylän yliopisto.
Liiten, M. (2012). Opetus- ja sosiaalialan koulutukseen harkitaan mieskiintiöitä [2012-10-06]. Helsingin Sanomat.
Lim, J., \& Meer, J. (2017). The impact of teacher-student gender matches random assignment evidence from South Korea. Journal of Human Resources, 52(4), 979-997.
Lim, J., \& Meer, J. (2020). Persistent effects of teacher-student gender matches. Journal of Human Resources, 55(3), 809-835.
Long, H. (2019). 80 nations set quotas for female leaders. Should the U.S. be next? [2019-03-29]. Washington Post.
Lundberg, S. J., \& Startz, R. (1983). Private discrimination and social intervention in competitive labor market. The American Economic Review, 73(3), 340-347.
Malinen, O.-P., Väisänen, P., \& Savolainen, H. (2012). Teacher education in finland: A review of a national effort for preparing teachers for the future. Curriculum Journal, 23(4), 567584.

Mankki, V., Mäkinen, M., \& Räihä, P. (2020). Teacher educators' predictability and student selection paradigms in entrance examinations for the Finnish primary school teacher education programme. European Journal of Teacher Education, 43(2), 151-164.
Matsa, D. A., \& Miller, A. R. (2013). A female style in corporate leadership? evidence from quotas. American Economic Journal: Applied Economics, 5(3), 136-69.
Niemi, H., Toom, A., \& Kallioniemi, A. (2016). Miracle of education: The principles and practices of teaching and learning in Finnish schools. Springer.
OECD. (2019). Society at a glance 2019: Oecd social indicators [Online; accessed 21-Sep-2021].
OECD. (2021). Oecd employment outlook [Online; accessed 21-Sep-2012].
Olea, J. L. M., \& Pflueger, C. (2013). A robust test for weak instruments. Journal of Business \& Economic Statistics, 31 (3), 358-369.
Otero, S., Barahona, N., \& Dobbin, C. (2021). Affirmative action in centralized college admission systems: Evidence from brazil (tech. rep.). Working paper.

Peck, J. (2017). Can hiring quotas work? The effect of the Nitaqat program on the Saudi private sector. American Economic Journal: Economic Policy, 9(2), 316-47.
Phelps, E. S. (1972). The statistical theory of racism and sexism. The American Economic Review, 62(4), 659-661.
Porter, C., \& Serra, D. (2019). Gender differences in the choice of major: The importance of female role models. American Economic Journal: Applied Economics.
Räihä, P. (2010). Koskaan et muuttua saa! Luokanopettajakoulutuksen opiskelijavalintojen uudistamisen vaikeudesta. Tampere University Press.
Ray, D., \& Sethi, R. (2010). A remark on color-blind affirmative action. Journal of Public Economic Theory, 12(3), 399-406.
Sahlberg, P. (2021). Finnish lessons 3. 0: What can the world learn from educational change in Finland? Teachers College Press.
Sahlberg, P., Johnson, P., \& Strauss, V. (2019). What Finland is really doing to improve its acclaimed schools. Washington Post.

Siniscalchi, M., \& Veronesi, P. (2021). Self-image bias and lost talent (Working Paper). National Bureau of Economic Research.
Sun, L., \& Abraham, S. (2020). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. Journal of Econometrics.
Sysiharju, A.-L. (1987). Women school employees in Finland. In P. A. Schmuck (Ed.), Women educators: Employees of schools in Western world countries (pp. 21-41). Suny Press.
Tasa-Arvovaltuutetu. (1987). Tasa-Arvovaltuutetun toimisto 126/1987, lausunto kiintiöiden käytöstä [Office of the High Commissioner of Equality (Paavo Nikula): Opinion on quotas 126/1987, obtained by private correspondence with the Office of the Equality Ombudsman].
Tirri, K. (2014). The last 40 years in Finnish teacher education. Journal of Education for Teaching, 40(5), 600-609.
UN. (2019). Progress on the sustainable development goals: The gender snapshot 2019.
Uusiautti, S., \& Määttä, K. (2013). Significant trends in the development of Finnish teacher education programs (1860-2010). Education Policy Analysis Archives, 21, 59.
Uusiautti, S., Määttä, K. et al. (2013). Who is a suitable teacher? The over-100-year long history of student selection for teacher training in Finland. International Journal of Sciences, 2(03), 109-118.
Valtiokonttori. (1988). Valintaoikeus: Valitsijan opas.
Virtanen, H. (2016). Essays on Post-Compulsory Education Attainment in Finland.
Welch, F. (1976). Employment quotas for minorities. Journal of Political Economy, 84 (4, Part 2), S105-S141.

Tables and Figures

Figure 1: Share Male in Applications to Primary School Teacher Studies

Note: Share male among applicants (dark blue squares) and among invitees (light blue triangles) to the second round of admissions to primary teacher studies by year of admission. Source: Liimatainen (2002). (back)

Figure 2: Matriculation Exam Percentile Rank among Primary School Teachers

Note: National percentile rank across all subjects in the matriculation exam among primary school teachers, by gender and the last year in which they took the matriculation exam (qualifies applicants for university admissions). The last year of taking the exam serves as a proxy for year of admission to university, which is unobserved. Exam takers in 1989 (dashed grey line) and thereafter will have studied after the male quota was abolished. Data on exam points for the year 1990 are missing, so that we cannot calculate the national distribution of scores according to percentiles for that year. Note that if the worst scorers are those that repeat the exam, this will bias the average scores in the years after 1990 upwards (the worst performers will not be counted in these averages as their scores are missing). When examining average grades, for which we have data reported in 1990, the pattern is similar and upward bias in the percentile scores after 1990 should be small. (back)

Figure 3: Probability of Teacher Exit by Age

Note: Share of primary school teachers not working as a primary school teacher at a given age, conditional on having worked as a primary school teacher in the previous year. Data for all active primary school teachers in the years 1990-2000. Multiple exits per teacher possible. (back)

Figure 4: First Stage Intuition: Changes in Share Male Teachers by Local Retirements, Raw Data

Note: Municipality level data, binned: Change in the share of male primary school teachers for a period of similar length in the quota (1991-93) and post-quota (1994-96) period against total share of teachers turning 60 . Linear fit, weighted by the number of municipalities per bin. (back)

Figure 5: First Stage: Municipal Level Event Study

Note: Year-on-year estimates of π_{2} for the first stage Equation 8, showing impact of primary teachers turning 60 on the local share of male teachers (relative to 1993 as last year of the quota period). Standard errors clustered at the municipality level. Population weighted. (back)

Figure 6: First Stage by Grade: Average Share Male Teachers
(a) Separate Estimation of Quota and Post-Quota Coefficients

(b) Post-Quota (Relative to Quota Coefficients)

Note: Grade level estimation of pupil level first stage (c.f. Equation 11). Outcome is the average share of male teachers a pupil is exposed to during their time in primary school (Grades 1-6), regressed on the share of teachers turning 60 just before a pupil enters the respective grade in school (Grades 1-6), starting two years prior to a pupil entering school (Grades -2 and -1). Panel (a) estimates absolute coefficients for effect of retirement pupils experience by grade in the quota and the post-quota period. Panel (b) depicts coefficients for the post-quota period relative to the quota period (i.e. it shows the difference between quota and post-quota estimates depicted in Panel (a)). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH , highest level of education in HH. Standard errors clustered at the municipality level. (back)

Figure 7: Reduced Form by Grade: Applications to Post-Compulsory Education

Note: Grade level estimation of pupil level reduced form (c.f. Equation 11). Outcome is binary indicator for pupils applying to post-compulsory education directly after middle school, regressed on the share of teachers turning 60 just before a pupil enters the respective grade in school (Grades 1-6), starting two years prior to a pupil entering school (Grades -2 and -1). Panel (a) estimates absolute coefficients for effect of retirements pupils experience in the quota and the post-quota period. Panel (b) depicts coefficients for the post-quota period relative to the quota period (i.e. it shows the difference between quota and post-quota estimates depicted in Panel (a)). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. (back)

Figure 8: IV Estimates: Applications and Enrollment for Post-Compulsory Education

Note:
IV estimates of Equation 10 by pupil gender. Outcomes from left to right: "Applications" to upper secondary education (mutually exclusive categories): Pupils apply directly in spring of the year in which they turn 16 (Apply directly), they apply up to four years after they have turned 16 (Apply late), or they apply never or later than five years after having turned 16 (Apply never). "Allocation": Pupils obtain one of their first two preferred choices in the application (Preferred choice), or do not obtain a study slot (No spot). "Enrollment": Pupils are enrolled in upper secondary education in the fall of the year in which they turn 16 (Enrolled at age 16), and ever enrolled in upper secondary education up to age 25 (Ever enrolled). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. (back)

Figure 9: IV Estimates
(a) Highest Degree Achieved at Age 25

(b) Labor Market Attachment at Age 25

Note: IV estimates of Equation 10 by pupil gender. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level.
Panel (a): Outcomes are mutually exclusive categories of pupils' highest degree achieved at age 25 , from left to right: Compulsory education only. Vocational track: Basic three year secondary degree (Secondary), additional qualifications or high school coursework beyond a basic degree (Sec. Plus), tertiary degree from a polytechnic (Tertiary). Academic track: Three year high school degree (Secondary), university BA degree (Tert: BA), university MA degree (Tert: MA) or higher.
Panel (b): Outcomes are mutually exclusive categories of labor market status in last week of the year in which pupils turn 25 years old.(back)

Figure 10: IV Estimates: Field of Education at Age 25

Note:
IV estimates of Equation 10, separate regressions by pupil gender. Outcomes from left to right: Field is 'Male' dominated ($\geq 40 \%$ male), (gender) 'Neutral' or 'Female' dominated ($\geq 40 \%$ female). Field is STEM or STEM + Medicine (STEM-M). Field is Education Science or Teacher. Field is Primary School Teacher. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. (back)

Table 1: Summary Statistics of Teachers by Gender

	Quota			Post-Quota		
Variable	Female	Male	Difference	Female	Male	Difference
A) Background and current place of living						
Urban residence at birth	0.586	0.562	$\begin{gathered} -0.023^{* * *} \\ (0.007) \end{gathered}$	0.612	0.590	$\begin{gathered} -0.022^{* * *} \\ (0.007) \end{gathered}$
Rural residence at birth	0.371	0.392	$\begin{aligned} & 0.021^{* *} \\ & (0.007) \end{aligned}$	0.358	0.376	$\begin{aligned} & 0.018^{* *} \\ & (0.006) \end{aligned}$
Born on Russian territory	0.043	0.046	$\begin{gathered} 0.003 \\ (0.003) \end{gathered}$	0.028	0.033	$\begin{aligned} & 0.005^{*} \\ & (0.002) \end{aligned}$
Finnish mother tongue	0.922	0.947	$\begin{gathered} 0.025^{* * *} \\ (0.004) \end{gathered}$	0.916	0.940	$\begin{gathered} 0.024^{* * *} \\ (0.004) \end{gathered}$
Lives in region of birth	0.457	0.488	$\begin{gathered} 0.031^{* * *} \\ (0.007) \end{gathered}$	0.473	0.496	$\begin{gathered} 0.023^{* * *} \\ (0.007) \end{gathered}$
Lives in municipality of birth	0.229	0.268	$\begin{gathered} 0.039^{* * *} \\ (0.006) \end{gathered}$	0.249	0.277	$\begin{gathered} 0.028^{* * *} \\ (0.006) \end{gathered}$
B) Education path (born after 1952)						
High school degree	0.980	0.979	$\begin{aligned} & -0.002 \\ & (0.003) \end{aligned}$	0.983	0.980	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$
Teaching degree	0.894	0.889	$\begin{aligned} & -0.005 \\ & (0.007) \end{aligned}$	0.920	0.910	$\begin{aligned} & -0.010 \\ & (0.006) \end{aligned}$
Age at high school degree	19.25	19.47	$\begin{gathered} 0.23^{* * *} \\ (0.02) \end{gathered}$	19.23	19.46	$\begin{gathered} 0.23^{* * *} \\ (0.02) \end{gathered}$
Age at teaching degree	25.54	26.50	$\begin{gathered} 0.96^{* * *} \\ (0.09) \end{gathered}$	25.48	26.48	$\begin{gathered} 1.00^{* * *} \\ (0.09) \end{gathered}$
C) Academic performance (born after 1952)						
Matriculation exam	0.986	0.984	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$	0.982	0.976	$\begin{gathered} -0.006^{* *} \\ (0.004) \end{gathered}$
National percentile rank, first take	62.85	50.73	$\begin{gathered} -12.12^{* * *} \\ (0.36) \end{gathered}$	61.01	50.46	$\begin{gathered} -10.54^{* * *} \\ (0.31) \end{gathered}$
National percentile rank, best take	63.86	52.40	$\begin{gathered} -11.45^{* * *} \\ (0.34) \end{gathered}$	62.00	52.05	$\begin{gathered} -9.96^{* * *} \\ (0.30) \end{gathered}$
Mathematics exam	0.741	0.826	$\begin{gathered} 0.086^{* * *} \\ (0.009) \end{gathered}$	0.768	0.842	$\begin{gathered} 0.074^{* * *} \\ (0.007) \end{gathered}$
Advanced mathematics exam	0.281	0.387	$\begin{gathered} 0.106^{* * *} \\ (0.010) \end{gathered}$	0.268	0.390	$\begin{gathered} 0.122^{* * *} \\ (0.008) \end{gathered}$

Note: Characteristics of male and female primary school teachers who are active teachers for at least one year in the quota period (1990-93) or in the post quota period (1994-2000) and who are between 24 and 60 years old.(back)

Table 2: First Stage at the Municipal Level

First Differences Fixed Effects

	Δ Share Male				Share Male		
Share 60	$\begin{array}{r} 0.062 \\ (0.038) \end{array}$	$\begin{array}{r} 0.062 \\ (0.039) \end{array}$	$\begin{gathered} 0.070^{*} \\ (0.041) \end{gathered}$	$\begin{gathered} 0.072^{*} \\ (0.039) \end{gathered}$			
Share 60 * Post-Quota	$\begin{array}{r} -0.165^{* * *} \\ (0.044) \end{array}$	$\begin{array}{r} -0.170^{* * *} \\ (0.044) \end{array}$	$\begin{array}{r} -0.175^{* * *} \\ (0.046) \end{array}$	$\begin{array}{r} -0.161^{* * *} \\ (0.044) \end{array}$			
Total Share 60					$\begin{array}{r} 0.068 \\ (0.043) \end{array}$	$\begin{gathered} 0.099^{* *} \\ (0.045) \end{gathered}$	$\begin{gathered} 0.078^{*} \\ (0.043) \end{gathered}$
Total Share 60 * Post-Quota					$\begin{array}{r} -0.218^{* * *} \\ (0.049) \end{array}$	$\begin{array}{r} -0.243^{* * *} \\ (0.054) \end{array}$	$\begin{array}{r} -0.194^{* * *} \\ (0.049) \end{array}$
Municipal*Post-Quota FE					X	X	X
Year FE		X		X	X		X
Region*Year FE			X			X	
Municipal controls				X			X
Adj. R^{2}	0.017	0.022	0.018	0.025	0.869	0.867	0.869
Obs	4448	4448	4448	4448	4443	4443	4443
Dep mean	. 0007	. 0007	. 0007	. 0007	. 3601	. 3601	. 3601

Note: Estimates for Equation 9 (columns 1-4): Year-on-year changes of the share of male teachers (Δ Share Male) on the share of teachers reaching retirement age (Share 60), and the corresponding fixed effects specification in Equation 8 (columns 5-7) of local share of male teachers on cumulative teacher retirement (Total Share 60). Observation counts between specifications change due to municipal consolidation. Standard errors clustered at the municipality level. Regressions weighted by population, means unweighted. Time-varying municipal controls include log population, log household income, share unemployed, share of families in single parent HH, share of adult population with compulsory, secondary and tertiary education. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table 3: First Stage, Reduced Form and IV: Applications for Post-Compulsory Education

Note: Columns 1-3 show estimates for Equation 11 with the average share male teachers pupils are exposed to during primary school as the outcome. Columns 4-6 show reduced form estimates (corresponding to Equation 11), and Columns 7-9 show IV estimates of Equation 10, with a pupil applying directly in the spring of the year they turn 16 (i.e. the last year of middle school) as the outcome. Individual level controls are measured at age 7 and include gender, language ($\mathrm{SE} / \mathrm{FI} /$ other) , foreign origin, single parent HH , highest level of education in HH. Standard errors clustered at the municipality level. MOP $F^{e f f}$ is Olea and Pflueger (2013) effective F-statistic. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *}$ $\mathrm{p}<0.01$ (back)

Table 4: IV Estimates: Applications and Enrollment for Post-Compulsory Education

	Apply directly	Apply late	Apply never	Pref. choice	No spot	Enrolled at 16	Enrolled ever
Avg Share Male	$\begin{gathered} 0.424^{* *} \\ (0.197) \end{gathered}$	$\begin{array}{r} -0.353^{* *} \\ (0.178) \end{array}$	$\begin{aligned} & -0.071 \\ & (0.073) \end{aligned}$	$\begin{gathered} 0.547^{* *} \\ (0.244) \end{gathered}$	$\begin{aligned} & -0.145 \\ & (0.098) \end{aligned}$	$\begin{gathered} 0.608^{* *} \\ (0.309) \end{gathered}$	$\begin{gathered} 0.124^{*} \\ (0.074) \end{gathered}$
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.28	15.28	15.28	15.28	15.28	13.00	13.00
Obs	825,094	825,094	825,094	825,094	825,094	695,340	695,340
Dep mean	. 911	. 067	. 022	. 862	. 04	. 861	. 98
Std effect	. 095	-. 09	-. 031	. 101	-. 047	. 11	. 055

Note: IV estimates for Equation 10. Outcomes in columns 1-3 are mutually exclusive categories of applications to upper secondary education: Pupils apply directly in spring of the year in which they turn 16 (Apply directly), they apply up to four years after they have turned 16 (Apply late), or they apply never or later than five years after having turned 16 (Apply never). "Allocation" (columns 4-5): Pupils obtain one of their first two preferred choices in the application (Pref. choice), or do not obtain a study slot (No spot). "Enrollment" (columns 6-7): Pupils are enrolled in upper secondary education in the fall of the year in which they turn 16 (Enrolled at age 16), and ever enrolled in upper secondary education up to age 25 (Ever enrolled). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table 5: IV Estimates: Highest Degree Achieved at Age 25

	Compulsory schooling	Vocational			Academic		
		Sec	Sec Plus	Tert	Sec	Tert: BA	Tert: MA
Avg Share Male	$\begin{array}{r} -0.169 \\ (0.154) \end{array}$	$\begin{aligned} & -0.055 \\ & (0.260) \end{aligned}$	$\begin{gathered} 0.426^{* *} \\ (0.208) \end{gathered}$	$\begin{array}{r} -0.079 \\ (0.211) \end{array}$	$\begin{array}{r} -0.438^{*} \\ (0.228) \end{array}$	$\begin{array}{r} 0.386 * * * \\ (0.146) \end{array}$	$\begin{aligned} & -0.070 \\ & (0.093) \end{aligned}$
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.36	15.36	15.36	15.36	15.36	15.36	15.36
Obs	810,065	810,065	810,065	810,065	810,065	810,065	810,065
Dep mean	. 127	. 316	. 108	. 146	. 211	. 054	. 038
Std effect	-. 032	-. 008	. 088	-. 014	-. 068	. 108	-. 023

Note: IV estimates of Equation 10. Outcomes are mutually exclusive categories of pupils' highest degree achieved at age 25, from left to right: Compulsory education only. Vocational track: Basic three year secondary degree (Secondary), additional qualifications or high school coursework beyond a basic degree (Sec. Plus), tertiary degree from a polytechnic (Tertiary). Academic track: Three year high school degree (Secondary), university BA degree (Tert: BA), university MA degree (Tert: MA) or higher. Individual level controls are measured at age 7 and include gender, language ($\mathrm{SE} / \mathrm{FI} /$ other) , foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table 6: First Stage, Reduced Form and IV: Employed/Student at Age 25

Note: Columns 1-3 show estimates for Equation 11 with the average share male teachers pupils are exposed to during primary school as the outcome. Columns 4-6 show reduced form estimates (corresponding to Equation 11), and Columns $7-9$ show IV estimates of Equation 10 with being either employed or a student at age 25 as the outcome. Standard errors clustered at the municipality level. Individual level controls are measured at age 7 and include gender, language ($\mathrm{SE} / \mathrm{FI} /$ other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. * $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table 7: IV Estimates: Labor Market Attachment at Age 25

	Employed/ Student	Un- employed	DI/ Pension	Other out of LF
Avg Share Male	$0.512^{* *}$	-0.038	-0.124	$-0.327^{* *}$
	(0.243)	(0.153)	(0.076)	(0.137)
Municipal FE	X	X	X	X
Region*Cohort FE	X	X	X	X
Ind. controls	X	X	X	X
MOP Feff	15.37	15.37	15.37	15.37
Obs	811,392	811,392	811,392	811,392
Dep mean	.842	.086	.017	.053
Std effect	.089	-.009	-.061	-.093

Note: IV estimates of Equation 10. Outcomes are mutually exclusive categories of pupils' labor market status measured at age 25: Being in employment or a student, unemployed, on disability insurance (DI) or receiving pension payments, or being out of the labor force for other reasons. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. This table and all other labor market attachment results at age 25 do not report estimates for the separate category of "conscripts/community service", which contains a total of 1185 observations. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05$, *** $\mathrm{p}<0.01$ (back)

Table 8: Exit and Hiring Patterns in Municipalities

	Leave	Leave ≤ 55	Δ Age	Δ Time since degree	First entrants
Share 60	$0.873^{* * *}$	-0.049	$-16.088^{* * *}$	$-15.599^{* * *}$	0.335
Share $60 *$	(0.061)	(0.057)	(1.215)	(1.154)	(0.315)
Post-Quota	0.041	-0.000	-1.300	-1.051	-0.043
Year FE	(0.067)	(0.063)	(1.387)	(1.323)	(0.375)
Adj. R^{2}	X	X	X	X	X
Obs	0.176	0.011	0.222	0.211	0.038
Dep mean	4448	4448	4448	4448	3746

Estimates for Equation 9. Outcomes from left to right are: Share of teachers exiting, share of teachers below age 55 exiting, year-on-year changes in average age of all local teachers (Δ Age), average time since obtaining a teaching degree of all local teachers (Δ Time since degree). The share of new teacher arriving that are first entrants defined as not having taught before and being below age 28 (column 5). Standard errors clustered at the municipality level. Regressions weighted by population, means unweighted. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Appendix Tables and Figures

A Reform Context: Timeline, Applications and Graduates

Figure A1: Timeline of the Reform

Note: Future primary school teachers enter university with the quota (pre-1989) and without the quota (1989 and thereafter), and graduate from the five-year primary school teaching degree before 1994 (quota), and thereafter (post-quota). Primary teacher graduates get hired by municipalities to teach in local schools. Pupils will experience differential exposure to quota teachers, described in detail in Section 5 of the paper. (back)

Figure A2: Total Applications by Gender

Note: Total number of male and female applicants to primary teacher studies. Source: Liimatainen (2002). (back)

Figure A3: Share Male among Primary School Teaching Degree Holders by Year of Last Matriculation Exam

Note: Share male among primary school teacher degree holders, by the last year in which they took the matriculation exam, which qualifies applicants for university admissions. Exam takers in 1989 (dashed grey line) and thereafter will have studied after the male quota was abolished. The gradual drop before 1989 is consistent with a setting in which students apply multiple years in a row. (back)

B Teachers' Matriculation Exam Scores

Figure A4: Distribution of Matriculation Exam Percentile Rank by Teacher Gender

Note: Smoothed density of national percentile rank across all subjects in the matriculation exam among primary school teachers, by gender and year in which they took the matriculation exam (qualifies applicants for university admissions). Bundled into six cohorts of exam takers pre-1989, and six cohorts in 1989 and thereafter. Cohorts taking the exam in 1989 and thereafter will have studied after the male primary teacher quota was abolished. (back)

Table A1: Summary Statistics of Teachers by Gender: Matriculation Exam Percentile Scores

Variable	Quota			Post-Quota		
	Female	Male	Difference	Female	Male	Difference
Scores by subject, first take (born after 1952)						
Mother Tongue	68.19	55.59	$\begin{gathered} -12.60^{* * *} \\ (0.53) \end{gathered}$	66.77	54.81	$\begin{gathered} -11.96^{* * *} \\ (0.44) \end{gathered}$
$2^{\text {nd }}$ National Lang.	62.87	47.38	$\begin{gathered} -15.50^{* * *} \\ (0.53) \end{gathered}$	61.17	46.95	$\begin{gathered} -14.22^{* * *} \\ (0.45) \end{gathered}$
Foreign Language	60.94	49.52	$\begin{gathered} -11.42^{* * *} \\ (0.52) \end{gathered}$	57.85	48.82	$\begin{gathered} -9.03^{* * *} \\ (0.45) \end{gathered}$
Standard Math	59.02	51.72	$\begin{gathered} -7.30^{* * *} \\ (0.88) \end{gathered}$	58.38	52.66	$\begin{gathered} -5.73^{* * *} \\ (0.72) \end{gathered}$
Advanced Math	48.69	39.68	$\begin{gathered} -9.01^{* * *} \\ (0.88) \end{gathered}$	46.74	40.50	$\begin{gathered} -6.24^{* * *} \\ (0.74) \end{gathered}$
Sciences	65.30	54.20	$\begin{gathered} -11.09^{* * *} \\ (0.53) \end{gathered}$	63.63	54.35	$\begin{gathered} -9.29^{* * *} \\ (0.44) \end{gathered}$

Note: Characteristics of male and female primary school teachers who are active teachers for at least one year in the quota period (1990-93) or in the post quota period (1994-2000) and who are between 24 and 60 years old. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,^{* * *} \mathrm{p}<0.01$ (back)

Table A2: First Stage: Teachers' Matriculation Exam Scores

	Total	Language	Math	Science
Total Share 60	-1.07	-4.27	-3.51	-1.09
	(4.25)	(5.09)	(7.67)	(5.45)
Total Share 60 * Post-Quota	1.25	3.02	1.28	1.95
	(4.70)	(5.68)	(8.55)	(6.08)
Municipal * Post-Quota FE	X	X	X	X
Year FE	X	X	X	X
Adj. R^{2}	0.85	0.86	0.80	0.82
Obs	4329	4329	4314	4317
Dep mean	58.88	60.92	52.17	61.93

Note: Estimates for Equation 8 with average of local teachers' national percentile rank in first attempt of matriculation exam as the outcome. Language includes scores for mother tongue ($\mathrm{FI} / \mathrm{SE}$) and second national language (SE/FI). Science (Reaali) scores include the combined scores across subjects ranging from history and religion to chemistry and physics. Data available only for teacher cohorts born after 1952. Sample is restricted to municipalities where there is at least one teacher with observed score in 1991. Standard errors clustered at the municipality level. Regressions weighted by population. * $\mathrm{p}<0.1$, ** $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A3: First Stage in Teacher Score Sample

Total Share 60	0.067
	(0.043)
Total Share 60 * Post-Quota	$-0.223^{* * *}$
	(0.050)
Municipal * Post-Quota FE	X
Year FE	X
Region * Year FE	
Municipal controls	0.870
Adj. R^{2}	4351
Obs	.34
Dep mean	

Note: Estimates for Equation 8 for restricted sample of municipalities where at least one teacher test score is observable at baseline. Standard errors clustered at the municipality level. Regressions weighted by population, means unweighted. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

C Teacher Switching and Retirement

Figure A5: Probability of Switching Municipality of Work for Active Teachers by Age

Note: Share of primary school teachers having switched the municipality in which they are working as a primary school teacher at a given age, conditional on having worked as a primary school teacher in the previous year. Data for all active primary school teachers in the years 1990-2000. (back)

Figure A6: Distribution of Share Primary Teachers Turning 60

Note: Smoothed density of yearly municipal share of primary school teachers turning 60, separately by years in the quota period (1991-93) and post-quota period (1994-2000). (back)

Figure A7: Distribution of Share Primary Teachers Turning 60 (yearly)

Note: Histogram of yearly municipal share of primary school teachers turning 60. (back)

Figure A8: Distribution of Total Share Primary Teachers Turning 60, 1991-2000

Note: Histogram of cumulative municipal share of primary school teachers turning 60 (adding up all retirements within municipality from 1991-2000). (back)

D Additional IV Estimates

D. 1 Fertility

Figure A9: Female Pupils: Probability of First Birth Having Occurred by Age

Note: IV estimates of Equation 10. Outcome: First birth having occurred by age. Individual level controls are measured at age 7 and include language ($\mathrm{SE} / \mathrm{FI} /$ other) , foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. (back)

Table A4: Female Pupils: Probability of First Birth Having Occurred by Age

	16	17	18	19	20	21	22	23	24	25	26
Avg Share Male	-0.034	-0.031	-0.004	-0.109	-0.257	-0.217	-0.203	-0.406	-0.579^{*}	-0.642^{*}	$-0.871^{* *}$
	(0.026)	(0.055)	(0.091)	(0.126)	(0.191)	(0.229)	(0.266)	(0.321)	(0.326)	(0.365)	(0.384)
Municipal FE	X	X	X	X	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X	X	X	X	X
MOP $\mathrm{F}^{\text {eff }}$	15.75	15.75	15.75	15.75	15.75	15.75	15.75	15.75	15.75	15.75	15.75
Obs	396,108	396,108	396,108	396,108	396,108	396,108	396,108	396,108	396,108	396,108	396,108
Dep mean	.001	.005	.013	.03	.056	.087	.119	.152	.188	.229	.273
Std effect	-.059	-.028	-.002	-.041	-.071	-.049	-.04	-.072	-.094	-.097	-.124

Note: IV estimates for Equation 10. Outcome is the likelihood of having had the first birth (for male pupils: becoming a father) by age, from 16 to 26 . Individual level controls are measured at age 7 and include language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH.
Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

D. 2 Obtained Choices and Education Fields

Table A5: IV Estimates: Obtained Choices in Post-Compulsory Applications

	First	Second	Third	Fourth	Fifth	Switch	No Spot	Apply Never
Avg Share Male	0.334	0.212	-0.137	-0.103	0.021	-0.112	-0.145	-0.071
	(0.287)	(0.161)	(0.096)	(0.065)	(0.040)	(0.091)	(0.098)	(0.073)
Municipal FE	X	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28
Obs	825,094	825,094	825,094	825,094	825,094	825,094	825,094	825,094
Dep mean	.777	.085	.035	.015	.007	.019	.04	.022
Std effect	.051	.049	-.048	-.054	.016	-.052	-.047	-.031

Note: IV estimates of Equation 10. Outcomes are mutually exclusive categories for allocation of slots in post-compulsory education application, from left to right: Pupils obtain their First, ..., Fifth choice. Pupils switch from assigned slot to other option (Switch), do not obtain any slot at all (No Spot), and do not put in an application within five years after middle school (Never Apply). Individual level controls are measured at age 7 and include language (SE/FI), foreign origin, single parent HH , highest degree attained in HH. Standard errors clustered at the municipality level. * $\mathrm{p}<0.1$, ${ }^{* *} \mathrm{p}<0.05$, ${ }^{* * *}$ $\mathrm{p}<0.01$ (back)

Table A6: IV Estimates at Age 25: Field of Education

	Male	Neutral	Female	STEM	STEM-M	Education Teacher	Primary Teacher
Avg Share Male	$\begin{array}{r} 0.302 \\ (0.229) \end{array}$	$\begin{gathered} -0.500^{*} \\ (0.286) \end{gathered}$	$\begin{array}{r} 0.197 \\ (0.191) \end{array}$	$\begin{gathered} 0.595^{* *} \\ (0.273) \end{gathered}$	$\begin{gathered} 0.707^{* *} \\ (0.323) \end{gathered}$	$\begin{aligned} & -0.013 \\ & (0.073) \end{aligned}$	$\begin{array}{r} 0.063 \\ (0.049) \end{array}$
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.37	15.37	15.37	15.37	15.37	15.37	15.37
Obs	811,392	811,392	811,392	811,392	811,392	811,392	811,392
Dep mean	. 303	. 433	. 264	. 264	. 379	. 023	. 011
Std effect	. 042	-. 064	. 028	. 086	. 093	-. 006	. 039

Note: IV estimates of Equation 10. Outcomes from left to right: Field is 'Male' dominated ($\geq 40 \%$ male), gender 'Neutral' or 'Female' dominated ($\geq 40 \%$ female), based on previous generation. Field is STEM or STEM + Medicine (STEM-M). Field is Education Science or Teacher. Field is Primary School Teacher. Individual level controls are measured at age 7 and include language (SE/FI), foreign origin, single parent HH, highest degree attained in HH. Standard errors clustered at the municipality level. * $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

D. 3 Heterogeneity: Single Parent Status

Table A7: By Single Parent Status: Applications and Labor Market Outcomes

| | Apply
 directly | Apply
 late | Apply
 never | Employed/
 Student | Un-
 employed | DI/
 Pension | Other out
 of LF |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | | |
| Both: Avg | $0.407^{* *}$ | -0.338^{*} | -0.069 | 0.461^{*} | -0.012 | -0.107 | $-0.321^{* *}$ |
| Share Male | (0.195) | (0.175) | (0.073) | (0.239) | (0.153) | (0.074) | (0.138) |
| Single: Avg | 0.409 | -0.277 | -0.132 | $0.986^{* * *}$ | -0.272 | $-0.315^{* * *}$ | -0.354^{*} |
| Share Male | (0.314) | (0.246) | (0.128) | (0.349) | (0.266) | (0.114) | (0.187) |
| Municipal FE | X | X | X | X | X | X | X |
| Region*Cohort FE | X | X | X | X | X | X | X |
| Ind. controls | X | X | X | X | X | X | X |
| MOP F $F^{\text {eff }}$ | 15.23 | 15.23 | 15.23 | 15.32 | 15.32 | 15.32 | 15.32 |
| Obs | 818,112 | 818,112 | 818,112 | 804,799 | 804,799 | 804,799 | 804,799 |
| Both: Dep mean | .922 | .058 | .02 | .854 | .08 | .016 | .049 |
| Single: Dep mean | .849 | .118 | .034 | .776 | .125 | .024 | .075 |
| Both: Std effect | .098 | -.093 | -.032 | .084 | -.003 | -.055 | -.096 |
| Single: Std effect | .067 | -.05 | -.043 | .138 | -.048 | -.121 | -.079 |

Note: IV estimates for Equation 10. Heterogeneity with respect to whether pupils live with two parents (Both) or a single parent (Single) at age 7. Outcomes are pupils' applications to post-compulsory education (see Table 4) and labor market status (see Table 7). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

D. 4 Heterogeneity: Complementarities between Male and Female Teachers

Table A8: Complementarities: Low Share Male

	Apply directly	Apply late	Apply never	Employed Student	Unemployed	DI Pension	Other out of LF
Low: Avg Share	0.775	-0.547	-0.228	0.752	-0.149	-0.199	-0.344
Male	(0.589)	(0.464)	(0.195)	(0.599)	(0.342)	(0.197)	(0.294)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	3.69	3.69	3.69	3.78	3.78	3.78	3.78
Obs	590,156	590,156	590,156	579,101	579,101	579,101	579,101
Dep mean	. 904	. 07	. 026	. 846	. 082	. 017	. 053
Std effect	. 126	-. 102	-. 069	. 099	-. 026	-. 073	-. 073

Table A9: Complementarities: High Share Male

	Apply directly	Apply late	Apply never	Employed Student	Unemployed	DI/ Pension	Other out of LF
High: Avg Share	0.547	-0.495	-0.052	0.663	0.002	-0.208	-0.453
Male	(0.387)	(0.360)	(0.138)	(0.488)	(0.301)	(0.161)	(0.280)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	5.04	5.04	5.04	5.00	5.00	5.00	5.00
Obs	229,342	229,342	229,342	226,794	226,794	226,794	226,794
Dep mean	. 928	. 058	. 014	. 832	. 097	. 018	. 052
Std effect	. 117	-. 118	-. 024	. 098	0	-. 088	-. 113

Note: IV estimates for Equation 10, split sample by initial share male teachers in a municipality in 1990. Outcomes are pupils' application choices and labor market status (c.f. Tables 4 and 7).

Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. * $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05$, *** $\mathrm{p}<0.01$ (back)

E Reduced Form Estimates

E. 1 Reduced Form: Main Outcomes

Table A10: Reduced Form: Applications and Enrollment for Post-Compulsory Education

	Apply directly	Apply late	Apply never	Pref. choice	$\begin{aligned} & \text { No } \\ & \text { spot } \end{aligned}$	Enrolled at 16	Enrolled ever
Total Share 60	0.018	-0.021	0.003	-0.010	0.002	0.026	0.005
	(0.021)	(0.019)	(0.009)	(0.027)	(0.014)	(0.028)	(0.008)
Total Share 60 *	$-0.071^{* * *}$	0.059**	0.012	-0.092***	0.024	-0.089**	-0.018*
Post-Quota	(0.027)	(0.025)	(0.012)	(0.035)	(0.016)	(0.035)	(0.010)
Municipal FE Region*Cohort FE Ind. controls	X	X	X	X	X	X	X
	X	X	X	X	X	X	X
	X	X	X	X	X	X	X
Obs	825,094	825,094	825,094	825,094	825,094	695,340	695,340
Dep mean	. 911	. 067	. 022	. 862	. 04	. 861	. 98

Note: Reduced Form estimates as in Equation 11. Outcomes in columns 1-3 are mutually exclusive categories of applications to upper secondary education: Pupils apply directly in spring of the year in which they turn 16 (Apply directly), they apply up to four years after they have turned 16 (Apply late), or they apply never or later than five years after having turned 16 (Apply never). "Allocation" (columns $4-5)$: Pupils obtain one of their first two preferred choices in the application (Pref. choice), or do not obtain a study slot (No spot). "Enrollment" (columns 6-7): Pupils are enrolled in upper secondary education in the fall of the year in which they turn 16 (Enrolled at age 16), and ever enrolled in upper secondary education up to age 25 (Ever enrolled). Individual level controls are measured at age 7 and include gender, language ($\mathrm{SE} / \mathrm{FI} /$ other), foreign origin, single parent HH , highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A11: Reduced Form: Highest Degree Achieved at Age 25

	Compulsory	Vocational			Academic		
	schooling	Sec	Sec Plus	Tert	Sec	Tert: BA	Tert: MA
Total Share 60	-0.007	-0.005	0.029	-0.005	-0.034	0.027	-0.005
	(0.019)	(0.036)	(0.023)	(0.028)	(0.027)	(0.016)	(0.012)
Total Share 60 *	0.029	0.009	$-0.072^{* *}$	0.013	0.074**	$-0.065^{* * *}$	0.012
Post-Quota	(0.024)	(0.044)	(0.029)	(0.036)	(0.034)	(0.022)	(0.015)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
Obs	810,065	810,065	810,065	810,065	810,065	810,065	810,065
Dep mean	. 127	. 316	. 108	. 146	. 211	. 054	. 038

Note: Reduced Form estimates as in Equation 11. Outcomes are mutually exclusive categories of pupils' highest degree achieved at age 25: Having only Compulsory education. For the Vocational track: Having a basic three year secondary degree (Sec), having additional qualifications or high school coursework beyond a basic degree (Sec Plus), having a tertiary degree from a polytechnic (Tert). For the Academic track: Having a three year high school degree (Sec), having a three year university BA degree (Tert: BA), having a two year university MA degree (Tert: MA) or higher. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *}$ $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A12: Reduced Form: Labor Market Outcomes at Age 25

	Employed/ Student	Un- employed	DI/ Pension	Other out of LF
Total Share 60	0.042	-0.001	-0.005	$-0.034^{* *}$
Total Share $60 *$	(0.029)	(0.022)	(0.009)	(0.015)
Post-Quota	(0.033)	(0.026)	(0.011)	(0.018)
Municipal FE	X	X	X	X
Region*Cohort FE	X	X	X	X
Ind. controls	X	X	X	X
Obs	811,392	811,392	811,392	811,392
Dep mean	.842	.086	.017	.053

Note: Reduced Form estimates as in Equation 11. Outcomes are mutually exclusive categories of pupils' labor market status measured at age 25: Being in employment or a student, unemployed, on disability insurance (DI) or receiving pension payments, or being out of the labor force for other reasons. Individual level controls are measured at age 7 and include gender, language ($\mathrm{SE} / \mathrm{FI} /$ other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

E. 2 Reduced Form: Grade-Level for Selected Outcomes

Figure A10: Intermediate Outcomes: Grade Level Estimation
(a) First Stage

(c) Preferred Choice

(b) Apply Late

(d) Enrolled at Age 16

Note: Grade level estimation of pupil level first stage and reduced form (c.f. Equation 11). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. (back)

Figure A11: Long-Term Outcomes: Grade Level Estimation

Note: Grade level estimation of pupil level reduced form (c.f. Equation 11). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. (back)

F IV Estimates by Pupil Gender

F. 1 Pupil Gender: Joint Estimates

Table A13: By Gender: Applications and Enrollment for Post-Compulsory Education

	Apply directly	Apply late	Apply never	Pref. choice	No spot	Enrolled at 16	Enrolled ever
Boys * Avg	0.478**	$-0.405^{* *}$	-0.073	0.585**	$-0.207^{* *}$	0.720**	0.110
Share Male	(0.205)	(0.184)	(0.076)	(0.254)	(0.104)	(0.323)	(0.079)
Girls * Avg	0.364*	-0.294*	-0.070	0.498**	-0.073	0.474	0.141*
Share Male	(0.193)	(0.176)	(0.072)	(0.247)	(0.099)	(0.301)	(0.074)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.28	15.28	15.28	15.28	15.28	13.00	13.00
Obs	825,094	825,094	825,094	825,094	825,094	695,340	695,340
Boys: Dep mean	. 889	. 086	. 025	. 857	. 041	. 845	. 977
Girls: Dep mean	. 933	. 047	. 02	. 867	. 039	. 876	. 982
Boys: Std effect	. 097	-. 092	-. 03	. 106	-. 067	. 124	. 046
Girls: Std effect	. 093	-. 088	-. 032	. 093	-. 024	. 09	. 066

Note: IV estimates for Equation 10. Outcomes in columns 1-3 are mutually exclusive categories of applications to upper secondary education: Pupils apply directly in spring of the year in which they turn 16 (Apply directly), they apply up to four years after they have turned 16 (Apply late), or they apply never or later than five years after having turned 16 (Apply never). "Allocation" (columns 4-5): Pupils obtain one of their first two preferred choices in the application (Pref. choice), or do not obtain a study slot (No spot). "Enrollment" (columns 6-7): Pupils are enrolled in upper secondary education in the fall of the year in which they turn 16 (Enrolled at age 16), and ever enrolled in upper secondary education up to age 25 (Ever enrolled). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. * $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A14: By Gender: Aspirations for Post-Compulsory Education

	Apply never	Choose:		Get:		
		any Voc	only Acad	no spot	Voc	Acad
Boys * Avg	-0.073	0.811**	$-0.744^{* *}$	$-0.207^{* *}$	0.263	0.017
Share Male	(0.076)	(0.381)	(0.375)	(0.104)	(0.324)	(0.350)
Girls * Avg	-0.070	-0.367	0.431	-0.073	-0.820**	0.962***
Share Male	(0.072)	(0.402)	(0.395)	(0.099)	(0.348)	(0.371)
Municipal FE	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X
MOP $F^{e f f}$	15.28	15.28	15.28	15.28	15.28	15.28
Obs	825,094	825,094	825,094	825,094	825,094	825,094
Boys: Dep mean	. 025	. 629	. 346	. 041	. 501	. 433
Girls: Dep mean	. 02	. 443	. 537	. 039	. 329	. 612
Boys: Std effect	-. 03	. 107	-. 1	-. 067	. 034	. 002
Girls: Std effect	-. 032	-. 047	. 055	-. 024	-. 111	. 126

Note: IV estimates for Equation 10. Outcomes are mutually exclusive categories for columns 1-3: Pupils 'Apply Never', pupils put in a vocational degree in any of five available choices (Choose any Voc), or pupils put in only academic track choices (Choose only Acad) (We don't report an estimate for the separate category of 287 pupils who never put in a choice, but obtain a study slot nevertheless). Columns 1 and 4-6 are also mutually exclusive categories: Pupils 'Apply never', get allocated a spot in a vocational track (Voc), or get allocated a spot in the academic track (Acad). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH , highest level of education in HH. Standard errors clustered at the municipality level. * $\mathrm{p}<0.1,{ }^{* *}$ $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A15: By Gender: Highest Degree Achieved at Age 25

	Compulsory schooling	Vocational			Academic		
		Sec	Sec Plus	Tert	Sec	Tert: BA	Tert: MA
Boys * Avg	0.242	-0.194	0.458**	-0.262	-0.432*	$0.317^{* *}$	-0.128
Share Male	(0.176)	(0.277)	(0.216)	(0.217)	(0.232)	(0.143)	(0.091)
Girls * Avg	$-0.632^{* * *}$	0.092	0.391*	0.133	-0.446^{*}	$0.465 * * *$	-0.003
Share Male	(0.185)	(0.274)	(0.208)	(0.219)	(0.236)	(0.156)	(0.101)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.36	15.36	15.36	15.36	15.36	15.36	15.36
Obs	810,065	810,065	810,065	810,065	810,065	810,065	810,065
Boys: Dep mean	. 152	. 378	. 081	. 094	. 231	. 042	. 022
Girls: Dep mean	. 101	. 251	. 136	. 201	. 19	. 067	. 054
Boys: Std effect	. 043	-. 025	. 107	-. 057	-. 065	. 101	-. 056
Girls: Std effect	-. 133	. 013	. 073	. 021	-. 072	. 118	-. 001

Note: IV estimates for Equation 10. Outcomes are mutually exclusive categories of pupils' highest degree achieved at age 25: Having only Compulsory education. For the Vocational track: Having a basic three year secondary degree (Sec), having additional qualifications or high school coursework beyond a basic degree (Sec Plus), having a tertiary degree from a polytechnic (Tert). For the Academic track: Having a three year high school degree (Sec), having a three year university BA degree (Tert: BA), having a two year university MA degree (Tert: MA) or higher. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. * p $<0.1,{ }^{* *}$ $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A16: By Gender: Labor Market Outcomes at Age 25

	Employed/ Student	Un- employed	DI/ Pension	Other out of LF
Boys * Avg	$0.685^{* * *}$	-0.007	-0.145^{*}	$-0.526^{* * *}$
Share Male	(0.254)	(0.161)	(0.078)	(0.143)
Girls * Avg	0.320	-0.079	-0.102	-0.099
Share Male	(0.243)	(0.156)	(0.077)	(0.139)
Municipal FE	X	X	X	X
Region*Cohort FE	X	X	X	X
Ind. controls	X	X	X	X
MOP F ${ }^{\text {eff }}$	15.37	15.37	15.37	15.37
Obs	811,392	811,392	811,392	811,392
Boys: Dep mean	.84	.102	.019	.037
Girls: Dep mean	.845	.07	.015	.07
Boys: Std effect	.119	-.001	-.067	-.179
Girls: Std effect	.056	-.02	-.053	-.025

Note: IV estimates for Equation 10. Outcomes are mutually exclusive categories of pupils' labor market status measured at age 25: Being in employment or a student, unemployed, on disability insurance (DI) or receiving pension payments, or being out of the labor force for other reasons. Individual level controls are measured at age 7 and include gender, language ($\mathrm{SE} / \mathrm{FI} /$ other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *}$ $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A17: Boys: Field of Education at Age 25

	Male	Neutral	Female	STEM	STEM-M	Education Teacher	Primary Teacher
Boys: Avg Share	0.506	-0.679*	0.172	0.653	0.492	0.032	0.032
Male	(0.388)	(0.408)	(0.188)	(0.439)	(0.425)	(0.060)	(0.046)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	14.91	14.91	14.91	14.91	14.91	14.91	14.91
Obs	415,571	415,571	415,571	415,571	415,571	415,571	415,571
Dep mean	. 526	. 39	. 084	. 412	. 446	. 009	. 005
Std effect	. 065	-. 089	. 04	. 085	. 063	. 022	. 031

Table A18: Girls: Field of Education at Age 25

	Male	Neutral	Female	STEM	STEM-M	Education/ Teacher	Primary Teacher
Girls: Avg Share	0.089	-0.340	0.252	0.550**	$0.977^{* *}$	-0.049	0.101
Male	(0.212)	(0.360)	(0.321)	(0.264)	(0.399)	(0.128)	(0.088)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.75	15.75	15.75	15.75	15.75	15.75	15.75
Obs	395,821	395,821	395,821	395,821	395,821	395,821	395,821
Dep mean	. 069	. 478	. 453	. 108	. 309	. 038	. 017
Std effect	. 022	-. 043	. 032	. 113	. 134	-. 016	. 05

Note: IV estimates for Equation 10, separate regressions by gender. Outcomes from left to right: Field is 'Male' dominated ($\geq 40 \%$ male), (gender) 'Neutral' or 'Female' dominated ($\geq 40 \%$ female), based on previous generation. Field is STEM or STEM + Medicine (STEM-M). Field is Education Science or Teacher. Field is Primary School Teacher. Individual level controls are measured at age 7 and include language (SE/FI), foreign origin, single parent HH, highest degree attained in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

F. 2 Pupil Gender: Split Sample estimates

Table A19: Applications and Labor Market Attachment

	Apply directly	Apply late	Apply never	Employed/ Student	Unemployed	DI/ Pension	Other out of LF
Boys * Avg	0.341	-0.351	0.010	0.271	-0.045	-0.079	-0.123
Share Male	(0.260)	(0.243)	(0.104)	(0.315)	(0.237)	(0.099)	(0.132)
Girls * Avg	0.511**	-0.353^{*}	-0.158*	0.731**	-0.012	-0.171*	-0.528**
Share Male	(0.218)	(0.182)	(0.087)	(0.290)	(0.172)	(0.097)	(0.218)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.28	15.28	15.28	15.37	15.37	15.37	15.37
Obs	825,094	825,094	825,094	811,392	811,392	811,392	811,392
Boys: Dep mean	. 889	. 086	. 025	. 84	. 102	. 019	. 037
Girls: Dep mean	. 933	. 047	. 02	. 845	. 07	. 015	. 07

Table A20: Highest Degree Achieved at Age 25

	Compulsory schooling	Sec	Vocational Sec Plus	Tert	Sec	Academic Tert: BA	Tert: MA
Boys * Avg	0.185	0.052	0.210	-0.088	-0.819**	$0.534^{* * *}$	-0.074
Share Male	(0.234)	(0.385)	(0.223)	(0.231)	(0.344)	(0.193)	(0.092)
Girls * Avg	$-0.511^{* *}$	-0.192	0.639**	-0.083	-0.026	0.241	-0.068
Share Male	(0.233)	(0.329)	(0.300)	(0.304)	(0.238)	(0.173)	(0.154)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
MOP $F^{e f f}$	15.36	15.36	15.36	15.36	15.36	15.36	15.36
Obs	810,065	810,065	810,065	810,065	810,065	810,065	810,065
Boys: Dep mean	. 152	. 378	. 081	. 094	. 231	. 042	. 022
Girls: Dep mean	. 101	. 251	. 136	. 201	. 19	. 067	. 054

Note: IV estimates for Equation 10, split sample estimates by gender. Individual level controls are measured at age 7 and include language (SE/FI), foreign origin, single parent HH, highest degree attained in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

G Teacher Characteristics

Table A21: OLS for Teacher Characteristics

	Apply				Emp/Student			
Avg Share Male	$\begin{array}{r} 0.001 \\ (0.021) \end{array}$				$\begin{aligned} & -0.021 \\ & (0.026) \end{aligned}$			
Teacher		0.000		0.000		0.000		0.000
Testscores		(0.000)		(0.000)		(0.000)		(0.000)
Teacher Math			0.002	0.002			0.022	0.022
Background			(0.015)	(0.016)			(0.016)	(0.016)
Municipal FE	X	X	X	X	X	X	X	X
Cohort FE	X	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X	X
Adj. R^{2}	0.070	0.070	0.070	0.070	0.025	0.025	0.025	0.025
Obs	825,094	825,032	825,032	825,032	811,392	811,331	811,331	811,331
Dep mean	. 911	. 911	. 911	. 911	. 842	. 842	. 842	. 842

Note: OLS estimates for Equation 10. Teacher testscores measures average percentile score of teacher body across a pupil's years in primary school. Teacher math background measures the average share of teachers who have taken mathematics in their matriculation exam across a pupil's years in primary school. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A22: Applications for Post-Compulsory Education

Note: IV estimates for Equation 10. Outcome is a binary indicator if pupil applies to continued education at age 16 (see Table 4). Teacher testscores measures average percentile score of teacher body across a pupil's years in primary school. Teacher math background measures the average share of teachers who have taken mathematics in their matriculation exam across a pupil's years in primary school. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A23: Employed/Student at Age 25

Note: IV estimates for Equation 10. Outcome is a binary indicator if pupil is employed or a student at age 25 (see Table 7). Teacher testscores measures average percentile score of teacher body across years in primary school. Teacher math background measures the average share of teachers who have taken mathematics in their matriculation exam across years in primary school. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH . Standard errors clustered at the municipality level.
${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

H Robustness

H. 1 Maternity/Paternity of teachers

Table A24: Teachers Becoming Parents

	Birth total	Birth fem	Birth male	Maternity leave
Share 60	$-0.127^{* * *}$	$-0.109^{* * *}$	-0.018	-0.003
Share 60 * Post-Quota	(0.040)	(0.029)	(0.025)	(0.030)
	0.075	0.036	0.039	-0.040
Year FE	(0.050)	(0.036)	(0.029)	(0.032)
Adj. R^{2}	X	X	X	X
Obs	0.007	0.006	0.012	0.005
Dep mean	4448	4448	4448	4448

Note: Estimates for Equation 9. Outcomes from left to right: Share of teachers with the birth of a child, share of teachers who are female and have a birth (column 2), and who are male and have a birth (column 3), share of teachers who are female and on leave after birth (defined as not being an active teacher in the year subsequent to having given birth). Standard errors clustered at the municipality level. Regressions weighted by population, means unweighted. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05$, ${ }^{* * *} \mathrm{p}<0.01$ (back)

Table A25: Effect on Main Outcomes of Female Teachers Having a Newborn Child

| | Apply
 directly | Apply
 late | Apply
 never | | Employed/
 Student | Un-
 employed | DI/
 Pension | Other out
 of LF |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | | | |
| Female Teachers | -0.009 | 0.006 | 0.003 | | -0.003 | -0.007 | 0.006^{*} | 0.003 |
| Having a Child | (0.008) | (0.008) | (0.003) | (0.010) | (0.008) | (0.003) | (0.005) | |
| Municipal FE | X | X | X | X | X | X | X | |
| Region*Cohort FE | X | X | X | X | X | X | X | |
| Ind. controls | X | X | X | X | X | X | X | |
| Obs | 825,094 | 825,094 | 825,094 | 811,392 | 811,392 | 811,392 | 811,392 | |
| Dep mean | .911 | .067 | .022 | .842 | .086 | .017 | .053 | |

Note: Specification equivalent to Equation 11, but estimating the effect of total exposure to female teachers having a newborn child while pupils are in primary school. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

Table A26: Effect on Main Outcomes of Male Teachers Having a Newborn Child

	Apply directly	Apply late	Apply never	Employed/ Student	Unemployed	DI Pension	Other out of LF
Male Teachers	-0.008	0.006	0.002	-0.021	0.009	$-0.007 *$	0.018**
Having a Child	(0.010)	(0.009)	(0.005)	(0.013)	(0.010)	(0.004)	(0.007)
Municipal FE	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X
Obs	825,094	825,094	825,094	811,392	811,392	811,392	811,392
Dep mean	. 911	. 067	. 022	. 842	. 086	. 017	. 053

Note: Specification equivalent to Equation 11, but estimating the effect of total exposure to male teachers having a newborn child while pupils are in primary school. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

H. 2 Sample Attrition and Further Robustness

Table A27: Test for Selective Sample Attrition

				RF	
	Left 16	Left 25	Left 16	Left 25	
Avg Share Male			0.026	-0.019	
			(0.029)	(0.051)	
Total Share 60	0.006	0.006	0.005	0.007	
	(0.005)	(0.007)	(0.004)	(0.006)	
Total Share 60 *	-0.004	0.003			
Post-Quota	(0.005)	(0.009)			
Municipal FE	X	X	X	X	
Cohort FE	X	X	X	X	
Region*Cohort FE	X	X	X	X	
Ind. controls	X	X	X	X	
MOP F $F^{\text {eff }}$			15.28	15.28	
Adj. R^{2}	0.042	0.049			
Obs	826,180	826,180	826,180	826,180	
Dep mean	.005	.018	.005	.018	

Note: Reduced form, and IV estimates for Equation 10. Outcomes are a binary indicator for pupils having left the sample at age 16 or age 25 , excluding registered deaths. Pupils are defined as having left the sample if they do not appear in the register data at the respective age. Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *}$ $\mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

	Apply				Employed/Student			
	Main	No capital	No cities	$\begin{aligned} & \text { Parent } \\ & \text { UB } \end{aligned}$	Main	No capital	No cities	Parent UB
Avg Share Male	$\begin{gathered} 0.424^{* *} \\ (0.197) \end{gathered}$	$\begin{gathered} 0.437^{* *} \\ (0.198) \end{gathered}$	$\begin{gathered} 0.458^{* *} \\ (0.214) \end{gathered}$	$\begin{gathered} 0.411^{* *} \\ (0.195) \end{gathered}$	$\begin{gathered} 0.512^{* *} \\ (0.243) \end{gathered}$	$\begin{gathered} 0.491^{* *} \\ (0.237) \end{gathered}$	$\begin{gathered} 0.503^{* *} \\ (0.255) \end{gathered}$	$\begin{gathered} 0.487^{* *} \\ (0.238) \end{gathered}$
Municipal FE	X	X	X	X	X	X	X	X
Region*Cohort FE	X	X	X	X	X	X	X	X
Ind. controls	X	X	X	X	X	X	X	X
MOP $F^{\text {eff }}$	15.28	15.59	13.86	15.28	15.37	15.69	13.96	15.37
Obs	825,094	758,379	648,930	825,094	811,392	746,392	639,043	811,392
Dep mean	. 911	. 911	. 911	. 911	. 842	. 842	. 842	. 842

Note: IV estimates for Equation 10. Outcomes are pupils' labor market status (c.f. Table 7) in columns $1-4$ and applications in the last year of middle school (c.f. Table 4), in turn examining the main specification for comparison (column 1 and 5), dropping Helsinki (column 2 and 6), dropping the five most populous municipalities based on place of living at age 7 (column 3 and 7), and controlling for parental unemployment status at age 7 (column 4 and 8). Individual level controls are measured at age 7 and include gender, language (SE/FI/other), foreign origin, single parent HH, highest level of education in HH. Standard errors clustered at the municipality level. ${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$ (back)

H. 3 Brief Discussion of Macro-Economic Shocks

During the period of our study, two major macro-economic shocks warrant a brief mention: The depression in Finland during the early 1990s, as well as the financial crisis in 2008/09, initiating the global great recession. We study the cohorts born between 1981-1993, starting school between 1988-2000.

Finland experienced a 14% contraction of GDP from 1990-93, accompanied by a more permanent rise in unemployment. Region-by-cohort fixed effects in all of our specification allow for differential impacts of this shock across different parts of the country. In addition, we run our main specification controlling for parental unemployment status at age 7 in columns 4 and 8 of Appendix Table A28, with the main effects quantitatively unchanged.

Regarding the great recession, it is worth noting that our treatment assignment is based on the place where pupils live when they are age 7 . Our study cohorts turn 25 years old in the years 2006-2018. It is thus the earlier and middle cohorts that are both more exposed to male quota teachers and turn 25 during the time of the financial crisis and subsequent recession.

H. 4 TWFE Robustness

This section explores potential bias in $\hat{\beta}_{f e}$ from negative weights in TWFE estimation due to heterogeneous treatment effects in our setting. The main concern - outlined by the relevant literature - is that previously treated units exhibiting dynamic treatment effects over time are used as a control group for newly treated units. When treatment effects are e.g. increasing over time, the fixed effects difference out a change in the control group consisting of previously treated units that is "too large", leading to potential sign reversal in the estimator.

De Chaisemartin and d'Haultfoeuille (2020) decompose $\hat{\beta}_{f e}$ into a weighted sum of average treatment effects (ATE) for treated units, with weights proportional to the residual from a regression of the treatment variable on fixed effects. If treatment effects are heterogeneous, problems with sign reversal arise when treated observations receive a negative weight due to their residualized treatment value in a particular period being negative (intuitively, these negative weights arise because that particular observation serves as a control in that period). Negative weights by themselves are mechanically the product of any TWFE specification - it is in combination with heterogeneous treatment effects that problems with sign reversal may arise. While the literature to date has not offered diagnostic tools for our particular case where treatment is continuous and infinite, we can use the intuition developed in De Chaisemartin and d'Haultfoeuille (2020) (also highlighted by Jakiela, 2021) to probe for such issues in our setting.

First, the highlighted concern arises only when treatment effects are heterogeneous. The way in which treatment effect heterogeneity matters in our IV set-up is through the first stage relationship by using residualized treatment assignment to generate predicted values for the endogenous variable in the second stage. The first stage in our setting estimates a mechanical relationship between local retirements and teacher gender composition, with a clear ex-ante prior on sign and magnitude. While there is no direct test of assessing treatment effect heterogeneity, reporting sensitivity to particular groups or time periods may at least be partly illuminating about whether the first stage coefficients are driven by any particular group of observations. To this extent, leave-one-out estimation in the following section (Appendix H.5) reports coefficients that show no worrisome patterns.

A further probing for treatment effect heterogeneity consists in examining the relationship between the residualized outcome and residualized treatment variable. Under homogeneous treatment effects, this relationship should be linear and not differ by treatment assignment status. In the first stage of our setting, pupil cohorts that experience relatively more retirements in the post-quota period are 'treated' by being exposed to fewer male quota teachers, whereas pupils with relatively more retirements in the quota period serve as the 'control' group. Appendix Figures A12a and A12b plot the residualized share male against the residualized treatment variable both for the municipal and the pupil level first stage. ${ }^{45}$ A test for differences in slopes between treatment and control observations shows that these are small and not significant.

[^24]\[

$$
\begin{equation*}
\text { total share } 60 \text { post }_{m t}=\beta_{0}+\beta_{1} \text { total share } 60_{m t}+\gamma_{m p}+\eta_{t}+\epsilon_{m t} \tag{13}
\end{equation*}
$$

\]

With total share 60 post $_{m t}$ the share of teachers turning 60 interacted with an indicator for the post period.

Second, following De Chaisemartin and d'Haultfoeuille (2020), we can examine the weights that observations receive. The focus here is to understand how treatment assignment based on actual treatment status maps into treatment assignment based on the residualized treatment variable. In our setting, municipality-by-year or municipality-by-cohort observations with more retirements in the quota relative to the post-quota period should serve as a control group based on actual treatment assignment, and thus receive a negative weight (i.e. exhibit a negative residualized treatment assignment). Appendix Figure A13 plots residualized treatment assignment against actual treatment assignment both for the municipal and the pupil panel separately. Reassuringly, the mapping between residualized and actual treatment assignment follows a clear pattern: observations with higher retirement in the quota period are those that exhibit on average a negative residualized treatment value (i.e. receive a negative weight).

Figure A12: Treatment Effect Heterogeneity
(a) Municipality Level: Residuals of First Stage

(b) Pupil Level: Residuals of First Stage

Note: Residualized share male against residualized treatment (see see Equation 13), at the municipal level (upper panel) and pupil level (lower panel). Weighted by number of observations. (back)

Figure A13: Residualized Treatment
(a) Municipality Level: Residualized Treatment ("weights")

Note: Mean residualized treatment (see Equation 13) against actual treatment assignment (binned) at the municipal level (upper panel) and pupil level (lower panel). (back)

H. 5 Leave-One-Out Estimation

Figure A14: First Stage: Leave-One-Out
(a) Municipal Level: Leave-One-Out Years

(c) Pupil Level: Leave-One-Out Cohorts

(b) Municipal Level: Leave-One-Out Region

(d) Pupil Level: Leave-One-Out Region

Note: Leave-one-out estimation of treatment coefficient in municipal level first stage Equation 8 (Panel a and b) and pupil level first stage Equation 11 (Panel c and d), with respect to regions and years/cohorts. Indicated years/cohorts and regions on the y-axis are the respective observations dropped in the estimation of the coefficient. (back)

I Context

Figure A15: Finnish Education System

Note: Source: Ministry of Education, Finland. (back)

Figure A16: Region and Municipality Borders, Finland

Note: Borders for 2019, shapefiles provided by Statistics Finland.

Figure A17: Pupil Cohorts and Exposure to Quota Period

Note: Figure shows cohorts by year in which they turn seven years old, and exposure to the quota by the grades which they spend in primary school. Years in which the quota was still in place colored in blue (with stripes), years in which the quota was abolished in red. (back)

Figure A18: CDF Number of Comprehensive (Primary + Middle) Schools by Municipality, 2005

Number of public comprehensive schools (primary + middle) in 2005

Note: Figure shows CDF of number of total comprehensive schools by municipality. Not possible to differentiate by middle schools and primary schools. Data for 2005. (back)

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^1]: ${ }^{1}$ We label as "quota men" those male teachers who were only able to enter primary teachers studies because the quota was in place and would not have gotten admitted otherwise. Throughout the paper, we refer to teachers turning 60 as "retirement."

[^2]: ${ }^{2} 1 \mathrm{SD}$ in the share of male (quota) teachers corresponds to 6.5 percentage points. The average withinmunicipality change in the share of male teachers over our study period is 5 percentage points.

[^3]: ${ }^{3}$ Peck (2017) and Cortés et al. (2021) document higher exit and lower exports due to a policy that required firms to hire native workers in Saudi Arabia. Several papers have studied quotas for female politicians, but do not take a stance on whether this impacts output (Chattopadhyay and Duflo, 2004; Beaman et al., 2009; Besley et al., 2017; Baltrunaite et al., 2014; Bagues and Campa, 2021). Chattopadhyay and Duflo (2004) specifically highlight that it is through the characteristic of being female herself that a political leader's preferences in India are more closely aligned with female constituents, thus moving the status quo of policies to more closely reflect preferences of the median voter.

[^4]: ${ }^{4}$ The median population size of the 461 municipalities in our sample is 5000 inhabitants. See also Section 4.

[^5]: ${ }^{5}$ It is difficult to find statistics on pass rates and scores for the decentralized second step of the selection process for this time period. Uusiautti and Määttä (2013) cite a statistic from the University of Lapland in 1978, where about three applicants were invited per available study slot. In light of the quota expiring, a working group of the Ministry of Education recommended universities to invite at least four candidates per available study slot to the second round to ensure enough diversity among selected teachers in absence of the quota (Etelä Suomen Sanomat, 1988). Mankki et al. (2020) examine scores received in the second step of the selection process in more recent years (after the quota), and show that male candidates receive higher scores than women.

[^6]: ${ }^{6}$ We can only assess whether the quota was binding in this indirect way. While the lifting of the quota was widely discussed in policy and media reports at the time, we have found no documentary evidence that either application numbers (see Appendix Figure A2) or the composition of applicants would have drastically changed with the lifting of the quota. Figure 2 shows no unexpected discontinuity in the test scores of those admitted post-quota.
 ${ }^{7}$ Figure A3 plots the share of men against the year of their last attempt at the matriculation exam that qualifies students for university studies. The register data does not contain the year of admission to university. Since students can repeat the matriculation exam if they want to increase their score, the year in which they last took the exam serves as the closest proxy for when they start university studies: Anyone taking the exam in and after 1989 will with certainty have studied under the non-quota application regime. Notice that the gradual drop before 1989 is consistent with a setting in which students apply multiple years in a row.
 ${ }^{8}$ We use the average national percentile score across all subjects for the first time that future teachers took the exam in order to get at a measure of inherent ability that is not influenced by repeated test taking. We plot this percentile rank against the date of their last exam to most closely approximate the point of entry to university studies. See also Appendix B (Figure A4) for the distribution of percentile ranks. When considering the full population of first time exam takers in the country, men score about 2 percentile points lower compared to women.
 ${ }^{9}$ Male teachers are on average a year older when being awarded their teaching degree, likely due to mandatory military service for men.
 ${ }^{10}$ Each exam field and level of difficulty is graded on a curve within that group. Appendix B (Table A1) shows

[^7]: additional summary statistics by teacher gender for each matriculation exam field.
 ${ }^{11}$ Without loss of generality, we make a simplification in the model relative to the actual selection process in our setting: We only look at a one-stage selection process based on scores (that can be any combination of academic score and evaluator score) to illustrate the main forces at play.

[^8]: ${ }^{12}$ The admissions office's problem here is similar to Chan and Eyster (2003), who make the theoretical point that forbidding universities whose utility function contains an exogenous preference parameter for diversity from using race as a selection criteria will result in lower quality of admits. This results from the optimal admissions rule under race-blind admissions consisting in randomly selecting applicants above a lower cut-off score, whereas color-sighted admissions select the best scoring candidates within each group (see also Ray and Sethi, 2010). Ellison and Pathak (2021) bring the reasoning of Chan and Eyster (2003) to the data to evaluate the efficiency of a place-based affirmative action rule in two Chicago Public Schools. Instead of assuming a preference parameter for diversity, their model defines students' outcomes as a trade-off between an optimal level of school diversity and academic match. Our set-up does not assume a taste parameter for diversity.

[^9]: ${ }^{14}$ Note that richer models deliver a penalty parameter of this form. For example, when scores are a differentially noisy signal of ability for different groups, the conditional expectation of ability given score may take this form (Phelps, 1972; Aigner and Cain, 1977).

[^10]: ${ }^{15}$ We focus here on homogeneity of degree 1 , which implies that double the amount of teachers can teach double the amount of pupils, but any degree of homogeneity larger than zero yields the same conclusions

[^11]: ${ }^{16}$ Results are qualitatively similar, but more noisily estimated, when keeping the 7,154 pupils for which we have incomplete teacher composition information in the sample.
 ${ }^{17}$ We label as "male quota teachers" those male teachers who were only able to enter primary teachers studies because the quota was in place and would not have gotten admitted otherwise. We refer to "marginal female teachers" as those female teachers who were able to be admitted to primary teacher studies once the quota was abolished and would not have gotten in if the quota were still in place.

[^12]: ${ }^{21}$ Our pupil panel spans 13 cohorts that are starting school in the years 1988-2000, and thus experience teachers who we can observe from 1990-2000. For some cohorts of pupils, we observe the teacher composition for each year that pupils are in school, while for others, we only know it for their starting or ending years. Appendix Figure A17 depicts the cohorts over time observed in our data.

[^13]: ${ }^{22}$ This includes the monotonicity assumption that rules out defiers in a LATE framework. In our case, these would be municipalities that would not want to hire male teachers while the quota is in place when facing retirements, but start hiring differentially more male teachers for retiring teachers in the post period.

[^14]: ${ }^{23}$ Appendix C shows municipal level statistics on teachers turning 60 . In any given year, around 45% of municipalities in the sample have any retirement. We also examine teachers' likelihood of changing jobs across municipalities in Appendix Figure A5. Less than 1% of teachers in the age bracket above 55 are changing the location of where they teach across all years of our panel.
 ${ }^{24}$ Note that since our teacher panel spans 1990-2000, the first year for which we can calculate the share of teachers turning 60 that determines re-hiring for the upcoming academic year is for 1991 (i.e. the 1991/92 academic school year)

[^15]: ${ }^{25}$ We use teachers' score in their first attempt at the exam. We observe scores for 59% of the total teacher sample (as scores are only available for cohorts born after 1952) and restrict the sample to municipalities for which we observe at least one teacher with a score in the baseline period. We repeat the first stage regression with the restricted sample to ensure comparability in Appendix Table A3, with results unchanged.
 ${ }^{26}$ Appendix Figure A17 shows which cohorts are exposed to quota years in which grade levels.

[^16]: ${ }^{27}$ Virtually everyone (99.7% of a cohort) successfully graduates from compulsory education (Virtanen, 2016). See Appendix Figure A15 for more details on the Finnish education system
 ${ }^{28}$ Prior research with Finnish data has shown that slot allocations in upper secondary education matter for degree completion: With an RDD design, Virtanen (2016) shows that failing to obtain a preferred choice or a study slot at all results in a lower probability of graduation. Virtanen (2016) also provides an excellent in-depth description of the allocation process of slots for upper secondary schooling.
 ${ }^{29}$ For an infinite number of choices, the algorithm would be strategy-proof. Since students can only submit five choices, some may choose to enter a 'safe' option to make sure they get a study spot.

[^17]: ${ }^{30}$ We can also ask how many pupils in a school this corresponds to. An increase in the share of male teachers of 0.065 corresponds roughly to switching out 1 in 15 teachers from marginal female to quota male at a local school. As the average class size is 20 pupils, this place would have a total of 300 pupils, and therefore about 9 pupils switch their application status.
 ${ }^{31}$ Results for the full set of mutually exclusive categories for which slot pupils obtain are reported in Appendix Table A5.

[^18]: ${ }^{32}$ Estimating heterogeneity by pupil gender requires taking a stance on how to account for controls and common shocks that are absorbed by municipality and cohort-by-region fixed effects. When estimating these fixed effects jointly, the underlying assumption is that e.g. we expect time-varying region-specific economic shocks to affect the choices of boys and girls to a similar extent. Results are qualitatively similar to splitting the sample, but less noisily estimated. We report split sample results for all main outcomes in Appendix F.2.

[^19]: ${ }^{33}$ An example for a basic vocational degree is training to work in the vehicles sector which covers subjects from car sales to vehicle mechanics, while additional qualifications allow pupils to specialize e.g. in specific areas of vehicle repair.
 ${ }^{34}$ Appendix Table A11 reports the reduced form results for educational attainment. Appendix Figure A11 shows the reduced form for the main long-term outcomes grade by grade. As longer-term outcomes are increasingly impacted by a variety of factors other than male quota teachers, the estimated coefficients are noisier when compared to patterns at age 16 , but patterns generally mirror the first stage dose-response function.
 ${ }^{35}$ At age $25,40 \%$ of pupils in our estimation sample are enrolled in post-compulsory education.
 ${ }^{36}$ With a simple back-of-the-envelope calculation, the increase in the propensity to apply to post-compulsory education can account for close to a quarter of the labor force attachment effects (the raw difference in labor force attachment for pupils who directly apply against those who do not is 25.4 percentage points).

[^20]: ${ }^{37}$ In Finland, there is low prevalence of teenage pregnancies and the average age at first birth increased from 27.2 in 1995 to 29 in 2016 and is close to the OECD average (OECD, 2019). For male pupils there is a small increase in the likelihood of having a first child by age 26, but it is statistically not significant and economically small (results not displayed).
 ${ }^{38}$ The results that are significantly different at the 5% level with girls better off are: compulsory education, and having a tertiary vocational, BA and MA degree.

[^21]: ${ }^{39}$ I.e. we define share female based separately for a vocational degree in business vs. an academic degree in business. For the group that has never finished a degree beyond compulsory education and is currently not a student (9.8% of the sample), we assign the gender share of compulsory education, which is categorized as a gender-neutral field based on the previous generation.
 ${ }^{40}$ We define both academic and vocational degrees as STEM if the three-digit classification of Statistics Finland is one of the following fields: Agricultural Sciences (incl. Forestry and Fishery), Biology, Engineering, Environmental Sciences, ICT, Mathematics and Statistics, Physical Sciences, Veterinary Science, and the 4-digit category related to Materials Sciences (glass, paper, plastic and wood). STEM-M in addition includes the 3-digit field Health.

[^22]: ${ }^{41}$ In all of the regressions on field choices, we do not estimate joint fixed effects for both genders, but report separate regressions by splitting the sample. We do this since for these gendered outcomes, the assumption that shocks would affect boys and girls similarly does not seem justified (i.e. a shock that raises demand for health care workers is likely to have quite different effects on young women vs. young men).
 ${ }^{42}$ Increasing pupils exposure to quota men results in an increase of 0.6 of switching into STEM fields. Multiplied by a 0.05 higher participation rate results in a 0.03 increase in labor force attachment. This corresponds to about 5.8% of the estimated increase in labor force attachment measured in section 6.4.
 ${ }^{43}$ We can split the sample at other points in the distribution, with results qualitatively similar across different splits.

[^23]: ${ }^{44}$ See, among others: De Chaisemartin and d'Haultfoeuille, 2020; Arkhangelsky et al., 2021; Athey and Imbens, 2021; Sun and Abraham, 2020; Imai and Kim, 2021; Goodman-Bacon, 2021.

[^24]: ${ }^{45}$ I.e. for the first stage equation 8 at the municipal level, residualized treatment corresponds to the residuals of the following specification:

