

Make Your Publications Visible.

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Cappelen, Alexander W.; Enke, Benjamin; Tungodden, Bertil

Working Paper

Universalism: Global Evidence

CESifo Working Paper, No. 9794

Provided in Cooperation with:

Ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Cappelen, Alexander W.; Enke, Benjamin; Tungodden, Bertil (2022): Universalism: Global Evidence, CESifo Working Paper, No. 9794, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at: https://hdl.handle.net/10419/263724

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

CESIFO WORKING PAPERS

9794 2022

June 2022

Universalism: Global Evidence

Alexander W. Cappelen, Benjamin Enke, Bertil Tungodden

Impressum:

CESifo Working Papers

ISSN 2364-1428 (electronic version)

Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo

GmbH

The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute

Poschingerstr. 5, 81679 Munich, Germany

Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de

Editor: Clemens Fuest

https://www.cesifo.org/en/wp

An electronic version of the paper may be downloaded

from the SSRN website: www.SSRN.comfrom the RePEc website: www.RePEc.org

· from the CESifo website: https://www.cesifo.org/en/wp

Universalism: Global Evidence

Abstract

This paper presents a new set of stylized facts about the global variation in universalism, leveraging hypothetical money allocation tasks deployed in representative samples of 64,000 people from 60 countries. Our data reveal large variation in universalism within and across countries, which almost entirely reflects heterogeneity in people's moral views regarding how to treat different types of relationships. These moral views vary systematically with age, gender and religiosity. Universalism is strongly predictive of relevant outcomes such as civic engagement and left-wing economic and social policy views, in particular in the rich West. Across countries, universalism varies with the economic, political and religious organization of societies. We provide tentative evidence that experience with democracy makes people more universalist. Overall, our results show that moral universalism shapes and is shaped by politico-economic outcomes across the globe.

Keywords: universalism, morality, culture.

Alexander W. Cappelen
NHH Norwegian School of Economics
Bergen / Norway
alexander.cappelen@nhh.no

Benjamin Enke Harvard University Cambridge / MA / USA enke@fas.harvard.edu Bertil Tungodden
NHH Norwegian School of Economics
Bergen / Norway
bertil.tungodden@nhh.no

June 8, 2022

This project was financed by support from the Research Council of Norway through its Centres of Excellence Scheme, FAIR project No 262675 and Research Grant 236995 and 250415, and administered by FAIR—The Choice Lab. We thank Akshay Moorthy for outstanding research assistance.

1 Introduction

People's *universalism* captures to what degree they give the same weight to the interests of strangers as to those of in-group members in their decision-making. Universalists are not necessarily more or less prosocial; instead, they allocate a given prosocial "budget" more uniformly. Universalism has attracted considerable interest across economics and the social sciences, partly because a broad body of theoretical and empirical work – referenced below – has linked universalism to variables such as social cooperation and trust, development, attitudes towards redistribution, immigration or climate change, voting, friendship networks and donations, among others.

Despite this rich body of work, our understanding of heterogeneity in universalism and its potential economic implications is still incomplete. This is for at least three reasons. First, existing efforts to collect controlled data on universalism only involve a handful of (mostly rich, Western) countries or small convenience samples. The scarcity of controlled representative data is problematic both because it prevents large-scale global analyses, and because of the prominent criticism that stylized facts about preferences and values, as well as their linkages with behaviors, political views or demographics, may not generalize beyond convenience participant pools (e.g., Henrich et al., 2010b).

Second, we know relatively little about the motives that underlie heterogeneity in observed universalism. One possibility is that people have heterogeneous moral views: some people may consider it morally right to give more weight to the interests of their in-groups, while others consider it morally right to act in universalist ways. Indeed, for decades, philosophers have debated whether we have relationship-specific moral obligations, and, if so, whether these primarily apply to the family, or also extend to coreligionists, community members, or compatriots (Rawls, 1993; Sandel, 1998, 2005). However, another possibility is that some people deviate from universalism despite viewing universalism as morally right, simply because their in-group members are more important to them. The available empirical evidence does not allow us to assess which of these two mechanisms is more important.

Third, presumably partly due to a previous lack of controlled data, we know relatively little about how universalism and people's underlying moral views are shaped by their environments and experiences. Cultural psychologists have hypothesized that democracy increases universalism (Henrich et al., 2010b). Similarly, philosophers have long argued that the existence of a fair basic structure in society (such as a democratic system) could make people more supportive of universalist moral views, at least within their own society (Rawls, 1993). Yet, rigorous evidence on this idea is scarce.

To further our understanding of the role of universalism in society, this paper introduces the *Global Universalism Survey (GUS)*, the first large-scale globally-representative

dataset on the extent to which people make universalistic distributive decisions in monetary tradeoffs between in-group members and strangers. By introducing these data, we document a new set of stylized facts that (i) exposit the main sources of variation in universalism within and across countries; (ii) shed light on the importance of moral views for universalism, and how these views vary systematically across demographic groups and countries; (iii) report what we believe are first-order correlations with individuallevel political views and civic engagement; (iv) document country-level correlations with variables that capture the economic, political and religious organization of society; and (v) tentatively identify experience with democracy as a partial driver of heterogeneity in universalism across individuals and cultures.

Our survey was implemented through the infrastructure of the 2020 Gallup World Poll. The data cover nationally representative samples in each of 60 countries, with a total sample size of about 64,000 respondents. The countries were selected to be broadly representative of the world population, to move beyond the overrepresentation of Western populations that is endemic to most multinational studies.

The dataset consists of a series of disinterested distributive decisions in which the respondent is tasked with distributing the local currency equivalent of hypothetical \$1,000 between two individuals. We measure both domestic universalism, capturing how people differentiate between different groups in their own country, and foreign universalism, capturing how people differentiate between compatriots and non-compatriots. To measure domestic universalism, the distributive decision is between a stranger from the respondent's country of residence and an in-group member, which varies across distributive situations. For example, in one question, respondents in the U.S. were asked how they would allocate \$1,000 between a friend and a stranger from the U.S. We measure foreign universalism by asking respondents to allocate \$1,000 between a stranger from their own country and a stranger from anywhere in the world.

These distributive decisions are hypothetical in nature but were previously experimentally validated, and have been shown to be predictive of whether people predominantly donate to local or more global causes (Enke et al., forthcoming). The survey questions further (i) underwent extensive pre-tests in countries of different cultural heritage, (ii) were translated using professional back-and-forth techniques and (iii) involved comparable monetary amounts that were scaled by national income. We discuss in detail potential data quality issues, and find no indication that these differ between economically developed and developing nations.

Another novel feature of the present study is that we use a between-subjects treatment design to investigate to which extent universalistic behavior is driven by moral considerations. Do people view it as morally right to deviate from universalism, or do they deviate despite viewing universalism as morally right? In a *Baseline* treatment, we

simply asked respondents how they would allocate the money between the two individuals. Here, responses could be driven by both moral considerations and group-specific altruism. In treatment *Moral*, we instead asked people how they would allocate the money if they were to do what they consider morally right. A comparison between *Baseline* and *Moral* thus allows us to quantify the importance of moral considerations for the decisions of the respondents. We structure this analysis through a simple model that allows us both to interpret treatment differences and to decompose heterogeneity in universalistic behavior across demographic or cultural groups.

Our data show quantitatively large variation in distributive behavior in the global sample. Around 26% of respondents always act in line with universalism and divide the money equally in all decisions, while 17% of respondents strongly deviate from universalism by sharing at most 20% of the money with the stranger across the different situations. There is also large cross-country heterogeneity in universalism: money shared with the strangers ranges from around 26% in China, India and Israel to 46% in Ethiopia.

We further find large heterogeneity in universalism across the different relationships that we study. For instance, globally, respondents are substantially more universalistic when the in-group member is a co-religionist rather than a family member, and national identity likewise appears to induce relatively pronounced deviations from universalism.

The large variation in universalistic behavior across individuals, countries and types of relationships raises the question about whether these differences reflect variation in group-specific altruism or heterogeneity in what people deem morally right. Strikingly, we find that respondents make almost the same decisions when we ask them to do what they consider morally right (treatment *Moral*) as when we just ask them to allocate the money (*Baseline*). This suggests that the vast majority of heterogeneity in universalistic behavior across the world reflects disagreement about what is the morally right thing to do, perhaps because some people believe in the existence of relationship-specific moral obligations, while others do not.

Given these results, a question is which parts of the population are more or less universalist, and how these patterns vary across cultures. In almost all countries, we find that younger people and women are more universalist, and the magnitude of these relationships is very similar in high- and low-income countries. Guided by our model, we perform a formal decomposition exercise to document that about 70% of these age and gender differences reflect heterogeneity in moral views: by and large, men and the elderly are considerably more likely to believe that it is morally right to assign a higher weight to the interests of their in-group members.

For the more endogenous individual characteristics, we often find large cross-cultural variation in how demographics are associated with universalistic behavior. For example, based on prior evidence in Western samples, we pre-registered the prediction that ur-

banicity and a college degree would be positively correlated with universalism. Yet, in our global data, we see that while well-educated city dwellers are more universalist in Western Europe, the U.S. and Australia, they are actually significantly less universalist outside of this narrow set of countries. Similarly, the correlation between atheism and universalism is considerably more pronounced in the West than in other parts of the world. These results provide a first demonstration that credibly studying heterogeneity in universalism necessitates broad and culturally heterogeneous samples, since otherwise intuitions that are largely based on Western data can lead researchers astray.

Next, we study potential links between universalism and individual behaviors and outcomes. Here, we first consider the hypothesis that universalism may be important for civic engagement and community attachment. If people's moral circle only includes those that are socially close to them, they may be unwilling to engage in civic prosocial acts that benefit strangers, and may even desire to avoid interacting with strangers on a regular basis. In line with this, we find that universalists are both more likely to have recently helped a stranger in need, and to plan to move away (an indication of low community attachment). These correlations hold conditional on a large set of covariates and are very similar in high- and low-income nations.

We also investigate the relationship between universalism and economic and social policy views. Prior work has argued that many canonical left-wing policies have a universalist focus, so that universalism should be predictive of support for these policies (Enke et al., 2020). For instance, redistribution by the federal government is a very universalist concept compared to the small-scale group-based redistributive mechanisms that have prevailed for the most part of human history (and still do in many places). A fortiori, policies that aim at supporting immigrants, needy people abroad, or preventing global climate change are highly universalist in nature. In contrast, a strong military is in some ways an antidote to universalism because it serves to defend boundaries between 'us' and 'them'. In line with these ideas, we find that universalists more strongly support (i) federal programs to reduce economic inequality; (ii) a higher focus on helping the global rather than the local poor; (iii) focusing on protecting the global rather than the local environment; (iv) higher immigration and (v) a weaker military. While these relationships are almost always quantitatively meaningful and statistically significant in our global sample as a whole, we identify large heterogeneity across cultures. In lowand middle-income countries, universalism explains very little, if any, of the variation in political views. Moreover, the correlations between universalism and political views are twice as large in rich Western societies than in rich countries outside the West, such as South Korea, Israel or Japan. Further analyses suggest that these patterns are unlikely to be driven by differential measurement error across countries. Rather, we interpret them as genuine cultural specificity that again highlights the value of moving beyond

Western countries in collecting controlled data on universalism.

To bring the global scope of our data further into the spotlight, we analyze cross-country variation. Perhaps surprisingly, we find that per capita income is negatively correlated with universalistic behavior, in particular in tradeoffs between domestic in-group members and domestic strangers. This result is partly but not entirely driven by many Sub-Saharan populations making relatively universalist decisions. The negative cross-country relationship goes against a common wisdom in cultural psychology that views developed nations as particularly universalist (Henrich et al., 2010b; Henrich, 2020).

Per capita income only "explains" a small part of the cross-country variation in universalism in our data set, which raises the question whether there are potentially "deeper" historical or ecological variables that might explain cultural heterogeneity. A prominent idea in the literature is that people's views on the moral appropriateness of universalism are economically functional: they partly evolved to support and incentivize cooperation in economic production because different economic systems require either a universalist or a relationship-specific morality. This broad idea has been put forward in at least two ways. First, historically tight extended kinship systems - and the associated kinbased economic production networks - are said to have fostered a morality in which relationship-specific obligations play a prominent role (Enke, 2019; Henrich, 2020). Relatedly, Christianity is theorized to contribute to a universalist morality because it dissolved extended kinship networks (Schulz et al., 2019). A second psychological theory that highlights the functional economic incentives behind universalism is that historical reliance on irrigation practices produced an in-group-oriented morality. The argument is that large-scale irrigation systems require intensive neighborhood-based cooperation, which could foster moral views related to obligations towards in-group members (e.g., Talhelm et al., 2014; Buggle, 2020). However, previous contributions had to rely on relatively indirect data on universalism to test such theories. We contribute to this discussion by documenting that – in line with the aforementioned theories – country-level universalism is strongly negatively correlated with tight historical kinship ties, positively with Christianity, and negatively with historical irrigation practices. While only correlational in nature, these results are consistent with the view that historical economic incentives shaped the prevalance of universalism across the globe today.

At the country level, we also find a significant link between universalism and democracy, in line with a body of theories in psychology and philosophy. We more rigorously investigate a potential causal effect of democracy by leveraging two empirical strategies from the political economy and cultural economics literatures. First, we link country-cohort-specific variation in democracy over an individual's lifetime to universalism. These differences-in-differences analyses always hold the respondent's country and age fixed, and leverage that different age groups were exposed to democracy for

different amounts of time across countries. Second, we conduct cross-migrant analyses that hold the respondent's current country of residence fixed and leverage variation in democracy in the respondent's home country. In both types of analyses, we find that experience with democracy is significantly predictive of both universalistic behavior and universalistic moral views.

Taken together, the contribution of this paper is fourfold. First, we present a new set of stylized facts about the global variation in universalism and its correlates, at both the individual and the country level. Second, we provide evidence that heterogeneity in universalistic behavior across individuals, demographic groups and countries largely reflects heterogeneity in what people consider morally right. Third, we contribute large-scale evidence on the links between universalism and civic engagement as well as political views. Fourth, we provide the first rigorous evidence from within-country analyses that experience with democracy may cause universalism.

As an additional contribution, we constructed the *GUS* with a focus on making available to the research community a rich dataset that can potentially be used for a broad set of analyses in behavioral, cultural, political and development economics. All interested researchers can merge the *GUS* with the core module of the World Poll, which includes detailed information on demographics, economic and social views, emotions and behaviors. In the data section, we discuss how the *GUS* data facilitates within-country analyses across ethnolinguistic groups, subnational regions, and migrants.

The present study ties into various literatures. First, building on a theoretical literature on universalism (Greif, 2006; Tabellini, 2008b; Persson and Tabellini, 2021), recent empirical work has linked universalism to economic or political behaviors and outcomes (e.g., Goette et al., 2006; Bernhard et al., 2006; Chen and Li, 2009; Haidt, 2012; Fehr et al., 2013, 2019; Enke, 2020; Enke et al., 2020, forthcoming; Andre et al., 2021). This work is restricted to a small set of typically Western countries, and the present study thus provides novel insights on the extent to which these findings generalize to the global scale. Second, we link to cross-cultural work on universalism, which has so far relied on small specialized samples (e.g., Bernhard et al., 2006; Henrich et al., 2010a) or more indirect measures of universalism (Tabellini, 2008a; Enke, 2019; Schulz et al., 2019; Henrich, 2020). Most closely related in this literature is the study by Romano et al. (2021), who use online convenience samples to study cultural variation in prisoner's dilemma play with in- and out-group members. Third, our work links to the literature on distributive preferences, which differs from our focus in that it is mainly interested in fairness views rather than in-group-vs.-stranger tradeoffs (e.g., Konow, 2000; Cappelen et al., 2007; Almås et al., 2020). Finally, methodologically, we are related to prior work that uses the Gallup World Poll to study the global distribution of economic preferences through structured large-scale economics surveys and experiments (Falk et al., 2018; Becker et al., 2020; Sunde et al., forthcoming; Almås et al., 2022a,b).

The paper proceeds as follows. Section 2 provides an overview of the *GUS* dataset. Section 3 exposits variation across individuals and countries, while Section 4 sheds light on the role of moral views. Sections 5 and 6 study links with demographics and individual-level outcomes. Section 7 describes cross-country correlations, and Section 8 the role of experience with democracy. Section 9 concludes.

2 Data: The Global Universalism Survey

2.1 Sampling and Procedures

We sketch the survey procedures here; Appendix A contains a detailed exposition. As part of the Gallup World Poll 2020, we administered survey items to representative population samples in 60 countries, for a total effective sample size of 63,788 respondents. The sample includes countries from all regions of the world, which allows us to avoid the overrepresentation of Western populations that is endemic to most multinational studies. Our sample includes 10 countries from Western Europe, 8 from Eastern Europe and Central Asia, 7 from the Middle East and North Africa, 11 from Sub-Saharan Africa, 11 from the Americas, 4 from South Asia and 9 from Southeast Asia and the Pacific. In total, our data represent 85% of the world population and 90% of global GDP.

The surveys were conducted by local professional enumerators via telephone between September 2020 and February 2021 (face-to-face interviews were only used in India and Pakistan). Sampling was conducted using random dialing techniques. In addition to the randomness introduced by this technique, Gallup supplies sampling weights that render the sample ex-post representative along the dimensions of age, gender and, where reliable data are available, education or socioeconomic status.

The survey questions were supplied to Gallup in English and then translated by professionals into 70 languages (108 country-language combinations) using standard backand-forth translation techniques. All monetary values used in the study were expressed in local currency, scaled by the ratio of the PPP adjusted GDP of each country relative to the United States.

2.2 Survey Questions and Treatments

Each respondent is randomized into one of two treatments, *Baseline* or *Moral*. The two treatments only differ in that in *Moral* the respondents are being told to do what they think is morally right, while there is no mentioning of morality in the *Baseline* treatment. Otherwise, the two treatments are identical.

Treatment *Baseline*. The design of treatment *Baseline* closely follows the hypothetical disinterested dictator games that were deployed and validated in Enke et al. (forthcoming, 2020). In these decisions, respondents allocate hypothetical money between a specific in-group member and a random stranger. The decisions are disinterested in the sense that respondents' own payoff is not at stake.

The enumerator first introduced the following scenario:

"Suppose you have earned \$1,000, but you have to give away the money to two other people. You can't keep any of the money for yourself. Assume that these two people have the same standard of living."

Then, the enumerator randomly selected two out of five questions that only differed in the identity of the in-group member. These five questions measure universalism in the domestic domain. Across the five potential questions, the identities of the in-group members were: "a person in your family," "a friend of yours," "a person who lives in your neighborhood," "a person who shares your religious beliefs" and "a person who shares your ethnic background." Specifically, the respondents were asked:

"How much of your \$1,000 would you give to [IN-GROUP MEMBER], if the rest goes to a random stranger from [COUNTRY NAME]?"

Subsequently, each respondent answered a question that measures foreign universalism:

"Suppose now that the two people are someone from [COUNTRY NAME] and someone from anywhere in the world. Again, assume that these two people have the same living standard. How much of your \$1,000 would you give to a random stranger from [COUNTRY NAME], if the rest goes to a random stranger from anywhere in the world?"

The aim of the *Baseline* treatment is to measure how people behave in distributive situations where they have to trade off the interests of in-group and strangers (and do not have anything personally at stake). These decisions thus reveal what we refer to as "behavioral universalism", without saying anything about the motivations underlying this behavior. In what follows, we use "universalism" as a stand-in for "behavioral universalism," unless we unless we wish to explicitly analyze the underlying motivations.

Treatment *Moral*. This treatment aims to elucidate the motivations underlying the allocation decisions in *Baseline*. One could imagine two broad motivations for why people differ in their degree of universalism: (i) moral views and (ii) group-specific altruism weights that lead one to deviate from a moral view. For example, according to (i), some people may believe that it is morally right to favor their in-group, for example because

of the (perceived) existence of relationship-specific moral obligations. According to (ii), some people may allocate less than 50% to the stranger because they care more about their in-group (higher altruism weight), *even though they deem an equal split morally right*. To assess the relative importance of these two mechanisms, treatment *Moral* had the same structure as *Baseline*, except that we explicitly asked them to choose what they consider morally right:

If you were to do what you think is morally right, then how much of your \$1,000 would you give to [IN-GROUP MEMBER], if the rest goes to a random stranger from [COUNTRY NAME]?

The idea behind this treatment is that the precursor "If you were to do what's morally right" makes people choose what they consider morally right, which allows us to identify the respondent's *moral view*. Section 4.1 below provides a simple formal framework for how to interpret the treatment difference, and how to use it to decompose cross-group differences in universalism.

We implemented two different versions of treatment *Moral*, randomized across respondents. One version used the wording above. A second version used the same wording but additionally instructed respondents to "Assume that these two people are equally good people." We introduced this variation to study whether in-group focused moral principles are partly driven by respondents believing that their in-group consists of "better" or "more deserving" people. In our pre-analysis plan (see below), we specified that differences in behavior in these two sub-treatments might be negligible – which turns out be correct – and that we would pool the data if that were the case.

2.3 Data Cleaning and Construct Validity

Data cleaning. The Gallup World Poll maintains one of the (probably "the") leading and most sophisticated global polling infrastructures in the world, with professional enumerators, sampling schemes, translation processes, quality checks, cognitive interviews in the field, and decades of experience. Still, any multinational survey of this scale is subject to some amount of respondent confusion or misrecordings by enumerators. To be as transparent as possible, Appendix A details all data issues that we discovered and corresponding remedies taken.

The most severe issue is an apparent occasional confusion. In our data, 20,338 out of 184,950 allocation decisions (11%) give strictly less to the in-group member. In principle, it is of course perfectly plausible that a respondent wishes to allocate more money to a socially more distant individual. However, various pieces of evidence detailed in Appendix A.6 – such as correlations with low cognitive skills, pronounced "flipping"

patterns of correlations with demographics right around allocations of 50:50, and systematic clustering in certain survey strata – strongly suggest that some of these cases reflect respondent mistakes or misrecordings by the enumerator.

To balance the obvious tradeoff between potential concerns over data mining and the need for us to propose the most productive path for the broader research community in using this rich dataset going forward, we opt for a conservative strategy. We recode allocations to the in-group of x < 50% as 100% - x if and only if the respondent allocates (i) weakly more than 50% to the more socially distant stranger in *all* questions and (ii) strictly more than 50% to the socially more distant stranger in at least half of all decisions (which in practice usually means at least two out of three). To see how conservative this strategy is, note that the modal respondent that gets recoded allocates 100% of the endowment to the socially more distant recipient in all decisions. This procedure affects 4, 328 respondents (6.8%) and 10, 318 allocation decisions (5.6%). The occurrence of this pattern is very similar across high and low / middle income countries (6.4% and 7%, respectively). For transparency, Appendix D replicates all analyses in this paper using the original coding, with very similar results. The main exception is the democracy exposure analysis in Section 8, where large outliers render the OLS estimates insignificant.

Ex-ante validation and pre-testing of survey questions. Our money allocation tasks are hypothetical in nature. This is in line with a growing line of work that documents that unincentivized measures of preferences are highly predictive of economic behaviors. An attractive approach in this literature – which we also follow here – is to formulate survey questions in close analogy to an incentivized choice context, just without implementing the choice (e.g., Falk et al., 2015, 2018; Stango and Zinman, 2019). This has the advantage that decisions are objectively defined and quantitative in nature.

In addition, the specific money allocation tasks described above have been extensively tested and validated in three different ways. First, Enke et al. (forthcoming) experimentally validate the survey questions in the U.S. by showing that responses to the hypothetical money allocation games are strongly correlated with analogous incentivized choices. Second, as a lab-to-field validation, Enke et al. (forthcoming) document that behavior in our hypothetical money allocation games is strongly correlated with donation behavior: universalists donate less to local community organizations but more to national or international organizations. Third, as part of this project, Gallup and our research team pre-tested our survey items in so-called "cognitive interviews," in which a small set of respondents in Brazil, Spain, Tanzania, and Turkey provided detailed feedback on their understanding and interpretation of the survey items before they went into the field.

2.4 Construction of Universalism Summary Measures

In the analysis, we sometimes consider each distributive situation (survey question) separately, but often aggregate across survey questions for simplicity and transparency. In our data, all 15 correlations among the six distributive decisions are positive and range between r=0.21 and r=0.52, see Appendix Tables C.1 and C.2. This suggests that computing individual-level summary measures of universalism is meaningful.

We compute three pre-registered summary measures: *Composite Universalism*, *Domestic Universalism* and *Foreign Universalism*. Each of these measures is in the range of [0, 100], where 0 means that all money is given to the in-group and 100 that everything is given to the more distant individual. *Domestic Universalism* corresponds to the average fraction of money shared with the domestic stranger in tradeoffs with ingroup members. *Foreign Universalism* corresponds to the fraction of money shared with a global stranger in a tradeoff with a domestic stranger. *Composite Universalism* is the unweighted average of domestic and foreign universalism.²

The individual-level correlation between domestic and foreign universalism is r = 0.32. The fact that this correlation is very similar (on average) in high and low / middle income countries provides an indication that the quality of the data is comparable across income levels (if, for example, respondents in poorer countries answered more randomly, the correlation would be more attenuated relative to that in rich countries). We compute country averages of universalism using the sample weights provided by Gallup.

2.5 Additional Variables and Data Linkages

Questions on political views. Our survey module also included six questions about political views, out of which each respondent answered two (randomly selected):

"We are now going to read a number of statements. In each case, we want you to say whether you Strongly Agree, Somewhat Agree, Somewhat Disagree, Strongly Disagree.

 $^{^{1}}$ Our measure of domestic universalism is naïve in the sense that it does not account for which two questions a respondent answered. In the dataset, we also provide a more sophisticated measure that incorporates question fixed effects. The raw correlation between the naïve and sophisticated measure is r=0.99. Thus, we work with the naïve and simpler measure in the main analysis. All of our findings are robust to using the more sophisticated measure.

² Gallup surveyed a total of 66,233 respondents. However, as discussed in Appendix A, for 11% of respondents at least one allocation decision is missing, usually because the respondent indicated "Don't know" or refused to answer. For 2,445 respondents, all money allocation decisions are missing, resulting in a final sample size of 63,788. In this sample, 7.5% of respondents have at least one allocation question missing. In those cases, we compute the summary statistics based on fewer questions. When either only domestic or only foreign universalism is available, we use that measure also for composite universalism.

- 1. The national government should aim to reduce the economic differences between the rich and the poor in [COUNTRY]."
- 2. The national government should focus on helping the poor in [COUNTRY], rather than the poor elsewhere in the world.
- 3. The national government should focus on protecting the environment in [COUNTRY], rather than protecting the global environment.
- 4. There are too many immigrants in the area you live in.
- 5. There are too many immigrants in [COUNTRY].
- 6. The national government should focus on having a strong military.

Linkages to core module of World Poll and other datasets. Our dataset will be made publicly available upon publication of this paper. Because the data contain individual identifiers, interested researchers with a Gallup license can merge our data with the core World Poll data, which contains rich information about respondents' demographics, backgrounds, and economic and social views.

Three background variables deserve being mentioned due to their popularity in the literature and the possibility of using them to create linkages between the *GUS* data and other commonly-used datasets at different levels of aggregation. (i) The data contain information on the respondent's country of birth. Following the "epidemiological approach" in cultural economics, this enables cross-migrant analyses that leverage variation in characteristics of the respondent's home country while holding the current country of residence fixed (Giuliano, 2007). (ii) A respondent's interview language is recorded and can plausibly be used as a proxy for ethnolinguistic background and cultural ancestry (especially given that it varies within each of 20 countries). With the *GUS* data, we make available a matching of the vast majority of the country-language pairs in the World Poll to the corresponding country-language pair in the *Ethnologue*. (iii) The data contain information on the respondent's subnational region of residence, usually at the state or province level (1,341 distinct subnational regions). We make available a matching of the regions in the World Poll with equivalent level 1 regions in the *Database of Global Administrative Areas*.

2.6 Pre-Analysis Plan

We pre-registered almost all of the analyses in this paper in the AEA RCT registry at https://www.socialscienceregistry.org/trials/7525. The pre-registration included: (i) how we aggregate individual allocation decisions into a universalism summary statistic; (ii) an analysis of treatment effects; (iii) predictions about the link be-

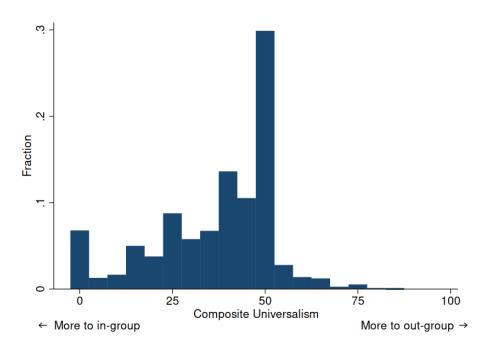


Figure 1: Distribution of composite universalism across individuals, pooled across treatments (N = 63,788). 0 means that all money is shared with the in-group, 50 captures equal splits (on average), and 100 that all money is shared with the socially more distant stranger.

tween universalism and demographics; (iv) predictions about correlations between universalism and political views; and (v) predicted cross-country correlations. The main analysis that was not pre-registered is the exposure to democracy analysis in Section 8.

3 Variation Across Individuals and Countries

A natural first question is whether the data exhibit quantitatively meaningful heterogeneity at the individual and the country level. To analyze this, we first pool the data across treatments and focus on the composite measure of universalism.

Figure 1 shows the distribution of the composite universalism score in our sample of 63,788 respondents.³ 93% of the sample split the money equally or give more to the ingroup; the remaining 7% of respondents give slightly more to the stranger, on average. 26% of respondents consistently make universalistic decisions by always splitting equally between in-group and stranger, while 6% always give everything to the in-group.

Heterogeneity at the country level is also substantial, as shown in Figures 2 and 3. Figure 2 shows a global map of composite universalism. Figure 3 lists all countries and shows their levels of domestic, foreign and composite universalism. We see that average composite universalism varies between roughly 25 and 45, with China, Israel and India

³Appendix Figure B.4 shows the distributions for domestic and foreign universalism separately. The figure also reports the distribution of the difference between domestic and foreign universalism.

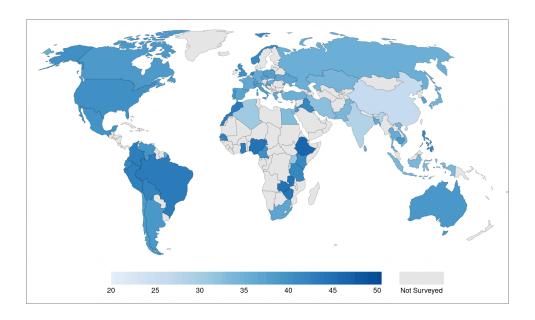


Figure 2: Global variation in composite universalism. The map shows the country level average of composite universalism, pooled across treatments. 0 means that all money is shared with the in-group, 50 captures equal splits, and 100 that all money is shared with the socially more distant stranger.

exhibiting particularly low universalism, and Ethiopia being the most universalist country in our sample. On average, an Ethiopian respondent shares 20 percentage points more of the monetary endowment with the more socially distant person than a Chinese respondent. Overall, universalism is relatively high in Sub-Saharan Africa, Latin America and to some extent Western Europe and its offshoots. In contrast, universalism is lower in East Asia, South Asia, Eastern Europe and to some extent in the Middle East.

Given the large heterogeneity at both the individual and the country level, a question is which source of variation is dominant in the dataset. The variance explained in a regression of composite universalism on country fixed effects is 8.4%. This suggests that while cross-country variation is quantitatively large (see Figure 3), individual-level heterogeneity is even more pronounced.⁴

Figure 3 shows notable variation in domestic vs. foreign universalism both across regions and across countries within regions. Appendix Figures B.5 and B.6 provide corresponding world maps. For example, populations in East Asia, North Africa and the Middle East are more universalist in situations involving tradeoffs between domestic ingroups, whereas Western Europe is particularly universalist in domestic-foreign tradeoffs. We see slightly more variation in foreign universalism (cross-country mean 36.7 and

⁴An intermediate source of variation between countries and individuals are subnational regions. While our samples are not designed to be representative at the regional level, the sample size is still often sufficiently large for meaningful analyses. Appendix Figure B.8 illustrates this by showing variation across sub-national regions in the U.S., India and China.

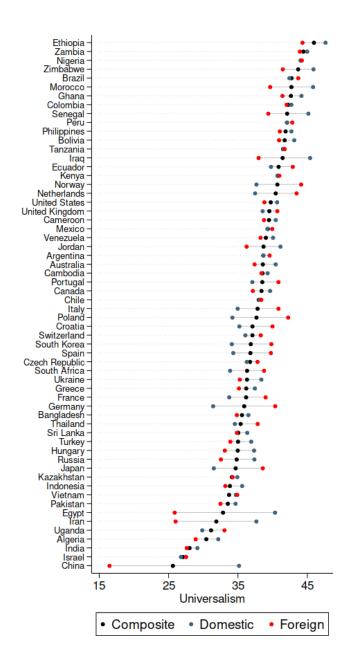


Figure 3: Average composite, domestic and foreign universalism by country. 0 means that all money is shared with the in-group, 50 equal splits, and 100 that all money is shared with the socially more distant stranger. Composite universalism occasionally doesn't equal the average of domestic and foreign universalism because of missing domestic or foreign universalism data (see footnote 2 and Appendix A.6 for details).

s.d. 5.1) than in domestic universalism (cross-country mean 37.7 and s.d. 4.2). Overall, the country-level correlation between domestic and foreign universalism is r = 0.48.5

⁵Appendix Figure B.7 shows a global map of the difference between domestic and foreign universalism.

4 Decomposing Universalism

4.1 Theoretical Framework

The extant literature on universalism vs. in-group favoritism focuses on people's *behavior*. Yet, as is well-known in the literature on distributive preferences, variation in observed behavior can often be decomposed into what people deem the morally right thing to do (their *moral views*) and what they personally prefer. To take a simple example, it is conceivable that in our money allocation tasks in treatment *Baseline*, people believe that the morally right thing to do would be to split the money equally, but that they actually share more with their in-group members because they care more about them.

We here present a simple model that allows us to illustrate how we can identify the relative importance of heterogeneity in moral views, and how it helps us to shed light on cross-group differences in universalism. This model was pre-specified prior to data-collection.

Setup. Consider a decision-maker (DM) j who is tasked with allocating a normalized endowment of \$1 between an in-group member and a stranger. Denote by x_j the amount that DM j allocates to the in-group. The DM has preferences that are represented by group-specific altruism weights $\alpha_{i,j}$ (for in-group) and $\alpha_{s,j}$ (for socially more distant strangers). We denote their difference by $\alpha_j := \alpha_{i,j} - \alpha_{s,j}$. This preference parameter captures that the DM may care more (or less) about the welfare of their in-group than of a stranger.

Aside from altruism preferences, the DM also has a subjective "moral view" $M_j \in [0,1]$ that determines which allocation to the in-group he considers morally right. The DM suffers disutility from behaving in ways that deviate from his moral view. We assume that total utility is given by

$$U_{j} = \alpha_{i,j} x_{j} + \alpha_{s,j} (1 - x_{j}) - \frac{\gamma_{j}}{2} (x_{j} - M_{j})^{2}, \tag{1}$$

where $\gamma_j > 0$ scales the importance of behaving in line with the moral view relative to the DM's altruism weights. The optimal allocation decision is

$$x_j^{Baseline} = M_j + \alpha_j / \gamma_j. \tag{2}$$

This has a simple interpretation, according to which the DM's allocations deviate from their moral views to the extent that they have group-specific altruism, weighted by how much importance they place on it relative to their moral views. We will refer to this second summand as "scaled altruism weight." Equation (2) shows that a deviation from

behavioral universalism may have two different sources. It may reflect that the DM has a moral view that justifies giving more to the in-group (for example, relationship-specific moral obligations) or that the DM assigns greater altruism weight to the in-group.

Identifying moral views and (scaled) relative altruism weights. We assume that in treatment *Baseline* the DM's allocation is given by (2). In treatment *Moral*, we ask respondents to make an allocation based purely on what they consider morally right. Therefore, we assume that the decisions in the *Moral* treatment identify the moral view of the DM, $x_j^{Moral} = M_j$. As a result, the treatment difference between *Baseline* and *Moral* identifies the magnitude of group-specific altruism weights, scaled by how important these are relative to the DM's moral view:

$$x_j^{Baseline} - x_j^{Moral} = \alpha_j / \gamma_j \tag{3}$$

Decomposing cross-group differences. Now consider two DMs, j = A and j = B. These could either represent groups of individuals that differ in their demographics, or the average individual in two different countries. The difference in allocation decisions in *Baseline* between these two individuals (or groups) is:

$$\underbrace{x_A^{Baseline} - x_B^{Baseline}}_{\text{Difference in behavior in } Baseline} = \underbrace{(M_A - M_B)}_{\text{Difference in moral views}} + \underbrace{(\alpha_A/\gamma_A - \alpha_B/\gamma_B)}_{\text{Difference in scaled relative altruism weights}} = \underbrace{(M_A - M_B)}_{\text{Difference in behavior in } Moral} + \underbrace{(\alpha_A/\gamma_A - \alpha_B/\gamma_B)}_{\text{Difference in treatment effect}}$$
(4)

This expression is helpful because it decomposes cross-group differences in behavior into observables that capture differences in moral views and (scaled) altruism weights. Furthermore, the expression clarifies that the same behavior might reflect very different underlying preferences.

To sum up, our framework suggests the following empirical analyses regarding the role of moral views:

- 1. The importance of moral views for behavioral universalism is given by the inverse of the treatment difference between *Baseline* and *Moral* (see eqs. (2) and (3)).
- 2. Systematic heterogeneity in universalism in the population (e.g., gender differences or differences across countries) reflects (i) differences in moral views to the degree that behavior in *Moral* differs and (ii) differences in (scaled) relative altruism weights to the degree that there are heterogeneous treatment effects (see eq. (4)).

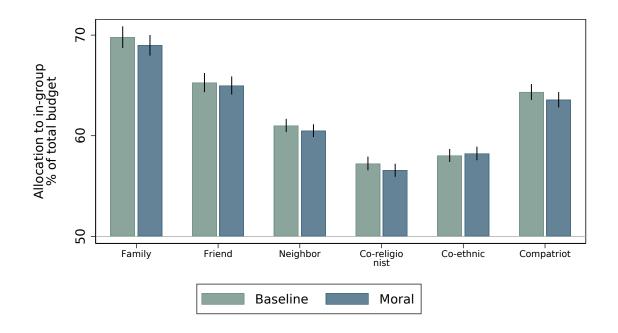


Figure 4: Mean money allocations to the in-group by treatment. Each bar indicates how much of the budget was given to the in-group. Whiskers show 95% confidence intervals, computed based on clustering at the sampling unit level.

4.2 Moral Views and Behavior

Figure 4 shows average allocations to the in-group (in terms of percentage of the total budget) in each of our six distributive decisions, separately by treatment condition.⁶ The first five groups of bars summarize allocations in the trade-off between in-group members and a domestic stranger. The rightmost bars summarize allocations in the tradeoff between a domestic stranger and a global stranger. Throughout most of the paper, we compute standard errors and confidence intervals based on clustering at the level of 530 Gallup sampling units, see Appendix A.3.3.

We make three main observations. First, our global data robustly show that people deviate from fully universalistic *behavior*: in treatment *Baseline*, people on average consistently allocate more to their in-groups across distributive decisions.

Second, the extent to which people deviate from universalistic behavior depends on which in-group is involved in the decision, with people being less universalist when family, friends and neighbors are involved, compared to co-ethnics or co-religionists. For example, respondents on average allocate 22% more of their budget to the family compared to a co-religionist. These patterns are intuitive in that the first three groups usually capture personal relationships, while the latter two groups are best thought of as social

⁶Appendix Figure B.1 shows histograms for each of the allocation decisions. Across all questions, there are large spikes at allocations of 50:50 (full universalism) and 100:0 (full in-group favoritism). In total, 50% of all decisions reflect equal splits and 15% full favoritism.

identities without strong personal connections to most other in-group members. At the same time, we see that respondents do exhibit relatively large in-group favoritism when making a decision involving a compatriot and a global stranger, even though compatriots are also an impersonal in-group.⁷

Third, Figure 4 provides global evidence that deviations from universalistic behavior largely (but not entirely) reflect moral views. This can be inferred from the pattern that allocation decisions are similar across treatments *Baseline* and *Moral*, for all in-groups. Overall, average allocations to the in-group are 0.6% percentage points higher in *Baseline* than in *Moral* (from a baseline of 36.6%). While this difference is statistically significant (see Appendix Table C.3), it is quantitatively relatively small.⁸ Viewed through the lens of the theoretical framework, this means means that deviations from universalistic behavior are largely driven by people's moral views; only a small part reflects group-specific altruism weights.

Given that moral views are the primary aspect that shape people's degree of universalism, the vast majority of the individual-level heterogeneity in universalism illustrated in Figure 1 reflects heterogeneity in moral views. Appendix Figure B.3 directly shows the heterogeneity in moral views in treatment *Moral*. This heterogeneity jives with a long qualitative literature in moral and political philosophy that discusses whether universalism is morally "right" or whether people have certain relationship-specific moral obligations (e.g., Rawls, 1993; Sandel, 1998).

Finally, recall from Section 2.2 that we implemented two sub-treatments of *Moral*, one of which asked people to "Assume that these two people [the recipients] are equally good people." We find that people are slightly more universalistic when they assume that the two individuals are equally deserving, but, as anticipated in the pre-analysis plan, the treatment difference is quantitatively very small (0.3%) and statistically barely significant despite the large sample size (p = 0.10). The lack of a meaningful difference between these two sub-treatments suggests that beliefs about differential deservingness of in-groups and strangers are of little importance for heterogeneity in universalism.

Given that allocation decisions are quite similar across all treatments, we pool the data for all analyses that follow, but return to the treatment difference between *Baseline* and *Moral* when we discuss the sources of differences in universalism across demo-

⁷Given our global sample, an immediate question is whether countries differ in their implied "ranking" of different types of in-groups. For instance, it is conceivable that some populations predominantly value neighbors, while others value shared ethnicity. Appendix Figure B.2 instead shows that countries are very similar in which types of in-groups they value more. For example, 55 out of 60 countries exhibit the highest degree of favoritism towards family, and 42 countries exhibit their second-highest degree of favoritism towards friends.

⁸Indeed, not only average allocations are similar across treatments. As Appendix Figures B.3 and B.4 illustrate, the *distribution* of decisions in *Baseline* and *Moral* is visually almost indistinguishable from each other as well.

5 Demographic Correlates

Economists and other social scientists are often interested in the demographic correlates of individual preferences, beliefs and moral values. A main motivation for this line of research is to shed light on the behavioral motivations that underlie across-group differences in economic behaviors and outcomes. The link between demographics and universalism is less well-explored than is the case for preferences like risk aversion, time preference, or altruism. We pre-registered an analysis of six demographics to study these differences. The signs indicate the ex-ante hypothesized relationships with universalism: age (-), male (-), income (-), education (+), urban residence (+) and religiosity (-). Our predictions were made based on the available data from rich, Western populations (Enke et al., forthcoming, 2020).

Figure 5 shows the results of OLS estimations, in which we separately regress composite universalism on each of the aforementioned variables, controlling for country and treatment fixed effects. For ease of comparison, demographic variables are recoded to be binary. To investigate a potential cultural specificity of demographic correlations, we show the results in the full sample and additionally for three sub-samples: 13 "Western" high income countries (labeled WEIRD by cultural psychologists), 8 non-Western high income countries such as Israel, Japan and South Korea, and 39 low / middle income countries. Appendix A.3 clarifies the assignment of countries to these three groups.

In the first panel, we observe that respondents who are above median age in their country are less universalist and allocate 1.9 percentage points less of the monetary budget to the stranger. This magnitude is very similar across the different groups of countries. Moving beyond the simple median split shown in Figure 5, the OLS coefficient in a regression of composite universalism on age suggests that moving from age 20 to age 80 is associated with a decrease in the amount shared with the stranger of 4.1 percentage points. For example, in the U.S., where the budget to be split was \$1,000, this corresponds to a decrease of \$41. To put this magnitude in perspective, the sample mean of composite universalism is 37% (\$370 in U.S. terms).

The second panel documents that men are less universalist than women, on average, by 2.1% of the budget. This gender difference also resonates with the results reported in Enke et al. (forthcoming, 2020), and is similar across rich WEIRD, rich non-WEIRD and poorer countries.

The third through fifth panel show analogous results for more endogenous demographics: whether the respondent falls into the top two out of five income buckets in

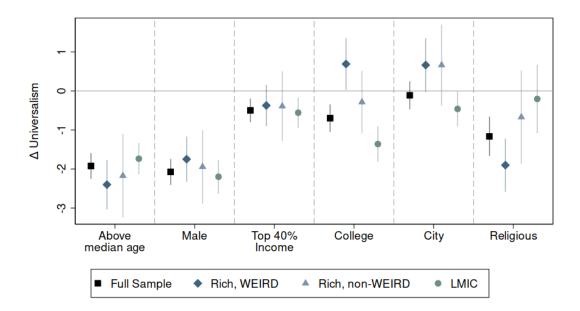


Figure 5: Universalism and demographics. OLS coefficients from regressions of composite universalism on demographics, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression and can be interpreted as the percentage point change in universalism. Median age and income percentiles are computed separately for each country based on the sample. All demographics are coded to be binary. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level. The estimates used in creating this figure are displayed in Appendix Tables C.4, C.5, C.6, and C.7.

Gallup's data, whether they have completed a college degree, and whether they reside in a city. Regarding income, we see that richer people tend to be less universalist in all groups of countries, though this relationship is considerably smaller in magnitude than is the case for age and gender differences.

In the fourth panel, we see that, in the full sample, college-educated respondents are *less* universalist, on average. Yet, the patterns differ across the different groups of countries. As we hypothesized, the correlation is positive and statistically significant in rich, Western countries. In contrast, in low / middle income countries, college-educated respondents tend to be less universalist, on average. Indeed, even in rich-but-not-WEIRD countries (such as South Korea, Japan or Israel), the college coefficient is statistically indistinguishable from zero.

Similar patterns hold for residing in a big city. While in the full sample there is no discernible link, for the high income countries we see that living in a big city is significantly positively correlated with universalism. However, opposite results hold in poorer countries. In all, these results on education and urbanicity suggest that either self-selection into cities and educated environments operates fundamentally differently in rich and poor countries (as far as universalism is concerned), or that potential causal effects of education or cities on universalism are culturally specific.

The sixth panel documents that religious people allocate 1.2% less of the budget to the socially more distant recipient, on average. This pattern is more pronounced in the rich cultural West (WEIRD countries) than in other parts of the world. The analysis reported in the figure compares self-reported atheists / seculars with people who report belonging to a specific denomination. In Appendix Figure B.13, we provide an additional perspective, by studying variation in the strength of religiosity (conditional on belonging to a denomication). We find that religious Christians are more universalist than non-religious Christians. In contrast, religious Muslism, Jews, Hinduists and Buddhists are less universalist than their non-religious counterparts. Overall, these correlational patterns are broadly consistent with the argument that religious groups – while often large and impersonal in nature – are still to some extent group- and community-focused, and may therefore inculcate corresponding moral priorities.

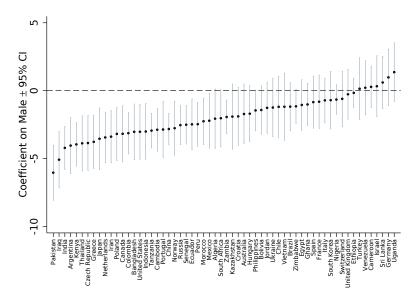
Decomposing demographic differences. The most pronounced and consistent cross-group differences (in terms of demographics) are that older people and men are less universalist. As highlighted by the theoretical framework in Section 4.1, this could be due to either cross-group differences in moral views or cross-group differences in (scaled) altruism weights. To identify their relative importance, we resort to the decomposition strategy summarized in eq. (4). Intuitively, if demographic differences in treatment *Moral* are exactly as large as those in *Baseline*, then the entirety of cross-group differences is attributable to moral views. If, on the other hand, differences in *Moral* are smaller, then a part of demographic differences reflects variation in relative altruism weights, scaled by how much these matter relative to the moral view. Given the strong and consistent correlations with universalism across countries, we report the decomposition for age and gender here and report those for the other demographics in Appendix Table C.8.

Table 1 summarizes the results of regressions that link composite universalism to (i) demographics; (ii) a treatment indicator and (iii) their interaction. Columns (1) and (2) show the age and gender difference in behavioral universalism in treatment Baseline. Columns (3) and (4) show that these differences are also statistically highly significant and quantitatively large in treatment *Moral*, which provides evidence for an important role of moral views in explaining these cross-group differences. In columns (5) and (6), we report the regressions for the pooled sample allowing for an interaction effect for the treatment. The estimated interaction effect identifies the difference in the treatment effect for the respective comparison. To relate this back to equation (4), we observe in column (1) that the difference in the behavior of people below and above median age is -2.3, and from (3) that the difference in moral views between these groups is -1.55. This implies that the difference in treatment effect is -0.75, as shown in column (5). Hence, the regression estimates suggest that about 70% of the age difference in universalistic

Table 1: Decomposition of demographic differences in universalism

	Dependent variable: Composite Universalism								
	Baseline		Moral		Full sample				
	(1)	(2)	(3)	(4)	(5)	(6)			
Above median age	-2.30*** (0.21)	-2.31*** (0.22)	-1.55*** (0.22)	-1.58*** (0.22)	-1.55*** (0.22)	-1.59*** (0.22)			
Male	-2.44*** (0.22)	-2.46*** (0.23)	-1.72*** (0.21)	-1.62*** (0.21)	-1.77*** (0.21)	-1.68*** (0.21)			
Baseline					0.14 (0.22)	0.18 (0.22)			
Above median age × Baseline					-0.75*** (0.26)	-0.72*** (0.27)			
Male × Baseline					-0.62** (0.26)	-0.71*** (0.27)			
Country FE	Yes	Yes	Yes	Yes	Yes	Yes			
Demographic controls	No	Yes	No	Yes	No	Yes			
Adjusted <i>R</i> ² Observations	0.09 31670	0.09 30863	0.09 32118	0.10 31317	0.09 63788	0.09 62180			

Notes. OLS estimations of composite universalism on demographic variables and their interactions with an indicator for the *Baseline* treatment. Standard errors (in parentheses) are clustered at the sampling unit level. Controls include college degree, urban residence, and income quintile fixed effects. * p < 0.10, *** p < 0.05, **** p < 0.01.


behavior reflects that older people have less universalistic ideals, and that about 30% of the difference reflects that older people have less universalistic altruism weights. This decomposition is quantitatively almost identical for the gender difference.

Cultural specificity vs. generalizability. To illustrate the cultural specificity vs. generalizability of demographic correlations, Figure 6 shows the link between gender and universalism, as well as between urbanicity and universalism, separately by country. We see that men are less universalist than women in almost all countries in our sample. In contrast, the correlation between universalism and living in a city varies widely across nations. Appendix Figures B.11 and B.12 show analogous plots for age, income, education and religiosity.

In all, we view this set of results as illustrating the value of a global representative dataset like ours. Arguably, age and gender are "more exogenous" than the other four demographics in our analysis. For these variables, we indeed see very similar patterns across rich and poor countries. This suggests to us that age and gender differences in universalism are not just shaped by specific cultures.

For the more endogenous demographics, on the other hand, the empirical results in the low and middle income countries often go against our pre-registered predictions,

(a) Universalism and gender by country

(b) Universalism and urban residence by country

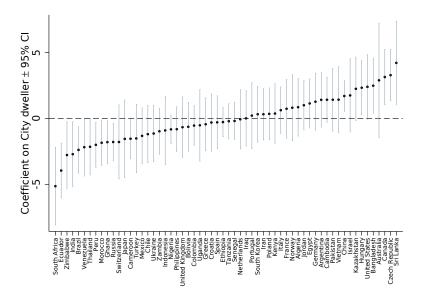


Figure 6: Composite universalism and gender / urban residence by country. The figures show the country-specific OLS coefficients of regressions of composite universalism on a male dummy (top panel) / a city dummy (bottom panel), controlling for treatment fixed effects. The coefficients can be interpreted as the percentage point change in universalism. Whiskers show 95% confidence intervals, computed based on robust standard errors.

which were based on previous data from rich countries. In line with a large body of work on the cultural specificity of psychological findings (Henrich et al., 2010b), this highlights that researcher expectations and intuitions need to be disciplined by representative data from various cultures. For example, based on correlations between universalism and education, researchers commonly express the intuition that education causes

universalism and therefore produces certain political views (e.g., Gethin et al., 2022). Yet, if these correlations are entirely absent outside of the rich West, then either such causal claims are misguided, or more nuance is required in teasing out what makes Western education "special."

6 Linking Universalism to Behaviors and Political Views

6.1 Civic Engagement and Community Attachment

A broad social science literature argues that a universalistic, impersonal morality is essential for civicness in society because if people's moral circle only includes those that are very close to them, they will not be willing to engage in prosocial acts (such as helping and cooperating with strangers) more broadly. On the other hand, as argued by philosophers such as Sandel (2005), universalism may also have a "dark side" in that it may reduce community attachment.

To test these ideas, we make use of two questions that Gallup uses to gauge respondents' civic engagement and community attachment: (1) "Have you done any of the following in the past month? How about helped a stranger or someone you didn't know who needed help?" (2) "In the next 12 months, are you likely or unlikely to move away from the city or area where you live?" Because the first question specifically asks about a prosocial act toward a stranger, we hypothesized that it should be positively correlated with universalism. Similarly, we view the decision to move away as a (noisy) indicator of lack of community attachment and openness to interact with strangers, which is why we hypothesized that it is also positively linked to universalism.

Figure 7 reports the results. Each panel shows a binned scatter plot, in which each dot corresponds to the same number of underlying observations. The plots are constructed controlling for country and treatment fixed effects. Universalism is positively correlated with having helped a stranger in need and planning to move away. Regarding quantitative magnitudes, for example, the coefficient estimate suggests that moving from composite universalism of 0 to 50 is associated with an increase in the probability of having helped a stranger of about eight percentage points. Both of the correlations reported in Figure 7 are statistically significant (p < 0.01).

Appendix Table C.9 provides corresponding regression analyses. The results remain statistically highly significant and in the same quantitative ballpark also when control-

⁹The result on universalism being correlated with prosocial acts towards strangers raises the question about the link between universalism and prosocial behavior more generally. Appendix Figure B.14 shows that universalists are likewise more likely to have donated to charity and to have volunteered time.

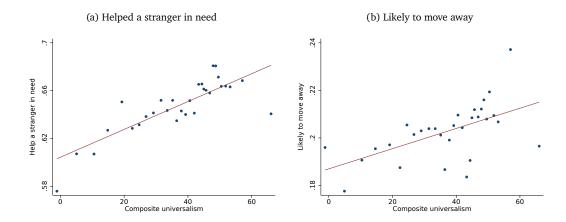


Figure 7: Universalism and civic engagement / community attachment. Each panel shows a binned scatter plot that, for a given level of universalism, computes the average probability of (a) having helped a stranger and (b) saying it is likely that one will move away in next year. The left panel is is constructed based on 63,450 and the right panel based on 61,199 respondents. Both panels are constructed controlling for country and treatment FE.

ling for age, gender, income, education, religiosity and urban residence. 10

In this civic engagement analysis, a potentially relevant distinction is that between domestic and foreign universalism. After all, most acts of helping strangers or moving away involve interactions with domestic people rather than foreigners. Therefore, one would expect that the relationships documented in Figure 7 are stronger for the domestic than for the foreign universalism measure. Appendix Figure B.15 documents that this is indeed the case. For both outcome variables, the OLS coefficient of domestic universalism is roughly twice as large compared to that of foreign universalism.

6.2 Political Views

To study the link between universalism and economic and social policy views at a global scale, we make use of the second part of our survey module, described in Section 2.5. We elicited people's views on different types of redistribution, environmental protection, immigration and the military. In our pre-analysis plan, and building on prior literature (Enke et al., 2020), we hypothesized that universalism would be predictive of policy views that are often considered "left-wing": (i) support for reducing inequality; (ii) support for helping the global vs. domestic poor; (iii) support for protecting the global vs. domestic environment; (iv) support for immigrants in the respondent's area and country; and (v) lower support for a strong military. The broad idea behind all of these hypotheses is that policies such as federal, impersonal redistribution, global redistribution, climate

¹⁰All of the links with universalism are quantitatively similar in high and low / middle income countries, and also hold when we consider each treatment separately.

change prevention and supporting immigrants are all very universalistic in nature because they typically benefit people one doesn't know. For example, we hypothesize that, relative to a benchmark of no redistribution, universalists desire *more* domestic redistribution because they care about all members of society. Yet, we also hypothesize that, relative to a benchmark of global redistribution, universalists desire *less* redistribution to the domestic poor. Similarly, supporting immigrants, the global environment and a weak military arguably all reflect weaker "us vs. them" thinking and should therefore be positively linked to universalism.

Figure 8 summarizes the results by providing binned scatter plots of political views against composite universalism. These figures control for country and treatment fixed effects. We see that all relationships go in the predicted direction. Universalism is positively correlated with support for reducing economic inequality; focusing on helping the global vs. domestic poor; focusing on protecting the global vs. local environment; being open to immigrants in one's area and country; and being opposed to a strong military. The patterns are weak and usually not statistically significant regarding support for immigrants in one's own area, but visually clear and significant (p < 0.01) otherwise. Appendix Table C.10 shows that these results remain statistically significant and in the same quantitative ballpark also when controlling for income, education, age, gender, urban residence and religiosity.

Many of the policy views that we consider largely concern either domestic people (such as reducing domestic inequality) or a combination of domestic and international people (such as a strong military). If our measures of domestic and foreign universalism pick up meaningful independent variation (their correlation is $\rho=0.32$), then they should be differentially predictive of policy views across the different questions. To assess this and to rigorously study quantitative magnitudes, Table 2 reports multivariate regressions. Here, we link policy views to both domestic and foreign universalism, controlling for income and education as well as age, gender an urban residence (suppressed for expositional ease).

Consistent with the view that reducing inequality largely concerns questions related to domestic universalism, we find in column (1) of Table 2 that support for reducing economic inequality is significantly correlated with domestic universalism, but uncorrelated with foreign universalism. Similarly, as shown in column (4), support for immigrants in one's local area is only significantly associated with domestic universalism, perhaps because respondents interpreted this question as asking about within-country migrants. Conversely, the foreign universalism component turns out to be more impor-

 $^{^{11}}$ Responses to our political survey questions are coded as 1–4 with 1 being "Strongly Agree" and 4 "Strongly Disagree". In our main analyses, we implement OLS regressions and, hence, treat the data as cardinal. Ordered probit regressions show very similar results.

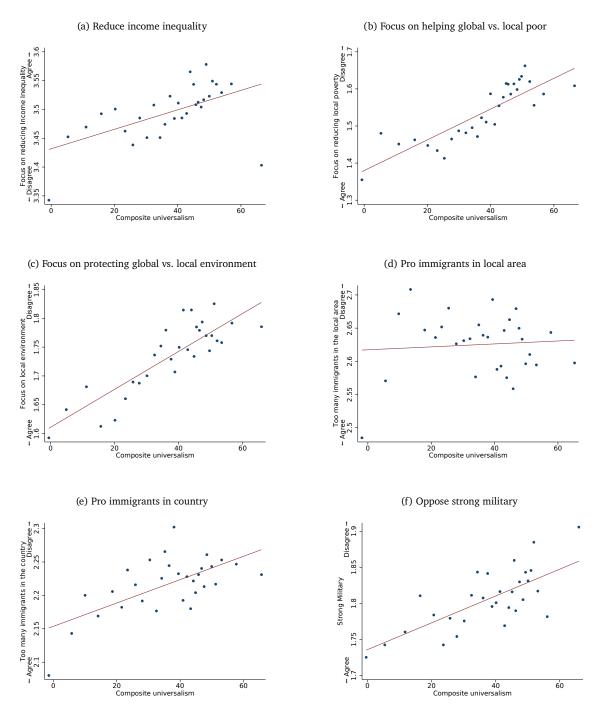


Figure 8: Composite universalism and political views. The figures show binned scatter plots that average support for a given policy for a given level of universalism. The figures are constructed controlling for country and treatment FE. The sample size varies between N = 18,735 and N = 21,724 across panels.

tant for those policy views that involve tradeoffs between compatriots and foreigners, such as for whether the global or domestic poor should be prioritized (column (2)), for whether environment protection efforts should focus on the global or local environment (column (3)), and for views on the military (column (6)). Of course, given that foreign and domestic universalism are positively correlated, it is unsurprising to see that often

Table 2: Universalism and political views

	Dependent variable:								
	Reduce	Prioritize	global vs. domestic	Pro immigrants		Weak			
	Inequality	poor	environment	in area	in country	military			
	(1)	(2)	(3)	(4)	(5)	(6)			
Domestic universalism / 100	0.18*** (0.04)	0.07* (0.04)	0.09** (0.04)	0.17*** (0.04)	0.09** (0.04)	-0.05 (0.04)			
Foreign universalism / 100	-0.01 (0.03)	0.34*** (0.03)	0.23*** (0.03)	-0.06 (0.04)	0.13*** (0.05)	0.22*** (0.04)			
College education	0.00 (0.02)	0.08*** (0.02)	0.12*** (0.02)	0.15*** (0.02)	0.15*** (0.02)	0.16*** (0.02)			
Income quintile	-0.01 (0.00)	0.01** (0.00)	0.01** (0.01)	0.01* (0.01)	0.01* (0.01)	0.02*** (0.01)			
Country FE	Yes	Yes	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes			
Demographic controls	Yes	Yes	Yes	Yes	Yes	Yes			
Adjusted R^2 Observations	0.066 18528	0.155 18676	0.163 18478	0.149 21248	0.205 20951	0.257 18430			

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. Universalism is divided by 100 for expositional ease. Appendix Table C.11 presents estimates controlling for religiosity (not included in the main analysis because it wasn't elicited in five countries). * p < 0.10, ** p < 0.05, *** p < 0.01.

both measures are statistically significant – but the relative magnitudes are always consistent with domain-specific universalism considerations.

Overall, the quantitative magnitude of the universalism coefficients suggests that an increase in universalism from zero to 50 (equal splits) is associated with an increase in support for the left-wing policies of between 0.06 and 0.17 points on a four-point scale. For comparison, consider explanatory variables that have attracted interest in traditional political economy analyses, such as income or education. The universalism coefficient is considerably larger (sometimes by a factor of 10) than the effect implied by moving a respondent from the lowest to the highest income quintile. Likewise, interpreted causally, the implied effect size of moving a respondent's universalism from zero to 50 is often as large as the effect associated with a college degree.

Heterogeneity across countries. To investigate a potential cultural specificity of these patterns, we again partition the set of countries into rich WEIRD, rich non-WEIRD and low / middle income countries. Figure 9 summarizes the results. There are two main takeaways. First, the relationships between universalism and policy views are almost entirely driven by relatively rich countries. In the low and middle income countries, only two out of seven coefficients are significantly different from zero in the predicted direc-

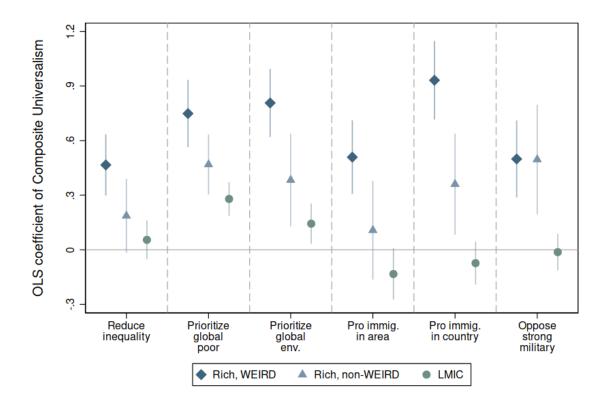


Figure 9: Composite universalism and political views in different sub-samples. OLS coefficients from regressions of political attitudes on composite universalism, controlling for country and treatment fixed effects. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level. The estimates used in creating this figure are displayed in Appendix Tables C.12–C.17

tion. Second, even within the set of high income countries, the regression coefficients tend to be roughly twice as large in the WEIRD compared to the non-WEIRD countries.¹²

These results highlight the cultural specificity of the link between universalism and left-wing policies. One potential reason is that people outside the rich West form their political opinions based on considerations other than universalism. Another possibility is that political elites in rich Western nations emphasize themes related to universalism vs. favoring in-groups to a greater degree than politicians outside the West. Our study was not designed to tease these potential mechanisms apart. ¹³ Further research is needed

¹²Enke et al. (2020) study the link between universalism and policy views in a smaller, seven-countries study. They also find that universalism is less predictive of policy views in the two non-WEIRD countries in their sample (Brazil and South Korea).

¹³A potential mechanical reason for the cultural specificity of the link between universalism and leftwing policy views could be differential measurement error in universalism and resulting attenuation bias. There are various pieces of evidence that speak against such an account. First, as discussed in Section 5, the correlations between universalism, age and gender (the "most exogenous" individual characteristics in our data) are very similar across countries. If universalism was measured with more error in the countries that are not rich and WEIRD, we should see smaller correlations with age and gender in these countries. Second, in Section 6.1 we saw that the link between universalism and civic engagement / community attachment is very similar across the different groups of countries, which is inconsistent with higher measurement error in less developed nations. Third, as discussed in Section A.6, various other indicators

to disentangle the role of political parties and voters in driving heterogeneity in the importance of universalism across countries.

7 Cross-Country Patterns: Deep Determinants

As a first step to analyze whether cross-country heterogeneity in universalism is systematic, Figure 10 shows the raw correlation of composite universalism with log per capita income. We see that richer countries tend to be less universalist, on average (r=-0.24, p=0.07). As shown in Appendix Figure B.17, this relationship is entirely driven by domestic (r=-0.43) rather than by foreign (r=-0.01) universalism. While the correlation with per capita income is statistically marginally significant, it explains less than 6% of the cross-country variation in universalism. This raises the question about whether there are potentially "deeper" variables that might explain cultural heterogeneity.

In recent years, various contributions have studied potential historical, cultural or ecological determinants of a group-based psychology and morality. A prominent idea in the literature is that people's views on the moral appropriateness of universalism are economically functional: they partly evolved to support and incentivize cooperation in economic production, such that different economic systems incentivized either a universalist or a relationship-specific morality (see Tabellini, 2008b, for a theoretical exposition of this idea). Below, we first summarize these arguments and then investigate whether the cross-country variation in our universalism data can descriptively be explained by some of these accounts.

A first argument is that a relationship-specific morality has been fostered by tight historical kinship ties (Enke, 2019; Henrich, 2020). The argument is that societies with tight kinship (extended family) systems inculcate preferences and moral views of low universalism into their members because such a psychology is economically functional when economic production and exchange networks largely involve kith and kin. Relatedly, Schulz et al. (2019) and Henrich (2020) argue that Christianity induced higher universalism, partly because the Western European Church was actively involved in dissolving the tight extended kinship systems that may have created and supported relationship-specific moral obligations. Thus, kinship tightness and Christianity should be related to universalism in opposite directions.

of data quality, such as the number of "Don't know" answers, or the fraction of allocation decisions that we recoded because they appeared to reflect confusion, are very similar across countries with different income levels.

¹⁴Indeed, when we look at the different in-groups that make up the domestic universalism index, we see that the negative link between universalism and per capita income is most pronounced for what we think of as close, personal relationships: family (r = -0.66), friends (r = -0.62) and neighbors (r = -0.34).

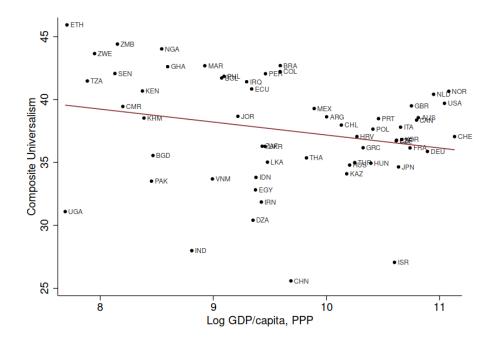


Figure 10: Composite universalism and log GDP per capita.

A second prominent argument is that the historical subsistence mode had an effect on people's moral views. Specifically, compared to rainfed agriculture, irrigation-intensive crops such as wetland rice are theorized to produce more interdependent and less universalist societies because building and maintaining large-scale irrigation systems requires extensive cooperation and collaboration with neighbors. Because irrigation could not be efficiently practiced by individual farmers, people relied on the group for economic production and survival, hence potentially fostering a morality in which relationship-specific obligations and in-group favoritism play a salient role. In contrast, rainfed agriculture does not require extensive local cooperation, which may induce a more universalist morality. Accordingly, the literature has studied the effects of irrigation practices (or the historical soil suitability for irrigation) on a group-based psychology (e.g., Talhelm et al., 2014; Buggle, 2020).

To test whether these accounts can shed light on cross-country variation in the *GUS* data, we study correlations with the tightness of historical kinship networks (from Enke, 2019), the share of Christians in society (from Barro, 2003) and the intensity of ancestral irrigation practices (taken from Buggle, 2020). Figure 11 shows added variable (partial correlation) plots for each of these variables. Each panel is constructed controlling for log per capita income. All of the variables are conditionally correlated with universalism in ways hypothesized by prior literature: societies with tight ancestral kinship ties, a smaller share of Christians, ¹⁵ and those with more intensive irrigation practices are

¹⁵One reason for the strong correlation between Christianity and universalism is that many sub-

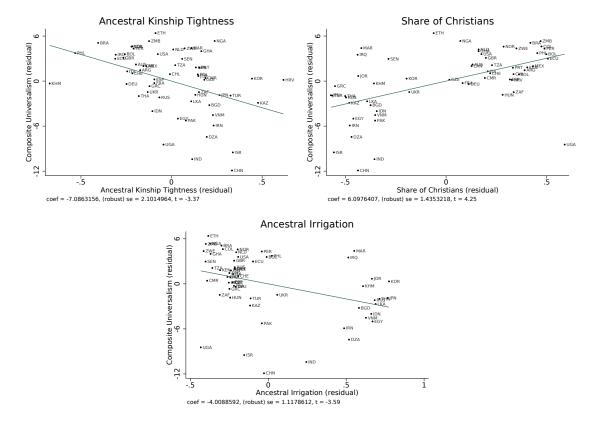


Figure 11: Added variable plots of the cross-country relationships between composite universalism and ancestral kinship tightness (to left panel), Christian share (top right panel) and ancestral irrigation (bottom panel). Each panel is constructed controlling for log per capita income.

less universalist. The raw (partial) correlations with universalism are -0.18 (-0.42) for kinship tightness, 0.45 (0.55) for share of Christians, and -0.33 (-0.38) for ancestral irrigation. All of the partial correlations are statistically significant at the 1% level.

Jointly, ancestral kinship tightness, the share of Christians, ancestral irrigation and contemporary per capita income "explain" 40% of the variation in universalism. However, naturally, the partial correlations reported above do not shed light on which (if any) of these variables *cause* universalism, both because the variables are all intra-correlated and because of the potential for reverse causation or other omitted variables.

Other correlates. In our pre-analysis plan, we specified that we would additionally study the correlations between universalism and other country-level outcomes, including property rights, education, federal redistribution, income inequality, foreign aid and

Saharan African populations that exhibit relatively high foreign universalism (Ethiopia, Kenya, Ghana, Tanzania, Kenya, Zimbabwe) are partly Christian today. (The correlation between foreign universalism and Christianity is r=0.60.) The same is true of South American countries such as Ecuador, Colombia or Brazil. On the other hand, many countries in North Africa, the Middle East and South Asia exhibit low universalism and have small Christian populations (e.g., Iran, Israel, Egypt, India, Algeria, Turkey, Pakistan, Bangladesh).

environmental protection. ¹⁶ The correlations are reported in Appendix Figure B.18. Conditional on per capita income, the strongest relationships with universalism are found with an environmental protection index, property rights and the Gini index (more universalist populations tend to be more unequal). All other partial correlations are very small in magnitude.

Decomposing cross-country variation. As discussed in Section 4.1, our theoretical framework and treatment variations allow us to decompose differences in universalism across countries into the role of moral views and group-specific altruism. To illustrate, consider the most (Ethiopia) and the least (China) universalist country in our sample. Using eq. (4), we compute that of the difference in universalism in treatment *Baseline* of 20.7 percentage points, 95% are driven by the treatment difference in *Moral* (moral views) and 5% by heterogeneous treatment effects. More generally, at the country level, the correlation between composite universalism as separately computed from subjects in *Baseline* and *Moral* is r = 0.96, which again suggests that differences in universalistic behavior across countries largely reflect heterogeneous moral views.

8 Experience with Democracy and Universalism

What shapes universalistic behavior? A compelling narrative prominent among social scientists is that exposure to democracy fosters universalist moral views: if all people in society engage in collective decision-making to elect a joint set of leaders, then this may weaken group-based divisions and induce people to treat all others alike – the quintessential definition of universalism. Indeed, philosophers such as Rawls (1993) have argued that a fair basic structure in society (including democracy) creates moral obligations towards compatriots. Similarly, democracy is frequently highlighted in discussions of potential drivers of morality by psychologists and cultural evolution researchers (the "D" in the widely-used WEIRD acronym).

The GUS dataset facilitates an investigation of this hypothesis. As a first step, Figure 12 shows the partial cross-country correlation between the Polity V democracy index and composite universalism, controlling for log per capita income. The raw correlation is 0.22 and the partial correlation 0.42, p < 0.01. To move beyond this purely descriptive evidence, we make use of the fact that, unlike variables that are fixed or very slow-moving, the degree of democracy varies widely not just across countries but also across age cohorts.

¹⁶We also intended to look at the prevalence of family firms. However, we were unable to locate a dataset on family firms that had sufficient coverage for a meaningful analysis.

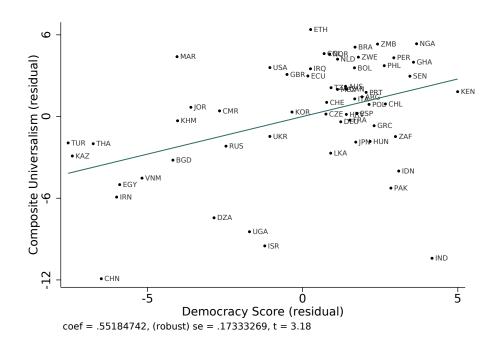


Figure 12: Added variable plot of composite universalism against democracy, controlling for log per capita GDP.

8.1 Variation Across Country-Age-Cohorts

Recent research has leveraged country-cohort-specific variation in lifetime experience with democracy to study the determinants of support for democracy (Fuchs-Schündeln and Schündeln, 2015; Acemoglu et al., 2021). Here, we use the same difference-in-differences strategy to provide initial evidence on whether experience with democracy shapes universalism.

As a starting point, we use the democracy score in the Polity V dataset, which is a summary index ranging from zero to ten that captures different institutional aspects such as the degree of constraints on the executive and the competitiveness of political recruitment and participation. For most countries in our sample, this variable is available for each year. For each individual in our data, we compute the average democracy score over a respondent's lifetime in their current country of residence to construct an index of lifetime experience with democracy. In Appendix Figure B.19, we show that there is significant variation in experience with democracy in most countries in our data set.

Two remarks on the sample are in order. First, because the Polity V democracy score is missing for some countries and years, we restrict attention to respondents for whom the democracy score is available for at least 75% of their lifetime, since otherwise we cannot credibly proxy an individual's experience with democracy. Second, given that we separately look at migrants below, and given that we don't know when exactly an individual migrated to their current country of residence (based on which we compute

experience with democracy), we exclude migrants from this first analysis, though we have verified that the results are quantitatively identical when we include them.

The regression analysis follows a difference-in-differences strategy that relates differential changes in universalism across cohorts in different countries to changes in cohort-level experience with democracy. ¹⁷ Intuitively, the hypothesis is that if in a given country the young were exposed to democracy for a longer fraction of their lifetime than the old, then universalism should be higher among the young. However, if in another country the young were exposed to democracy for a shorter fraction of their lifetime than the old, then universalism should be higher among the old. Importantly, there is sizable variation across countries in which cohorts lived in a democratic regime for a longer share of their lifetime because different countries transition into and out of democracy at different points in time.

Table 3 summarizes the results. The regression reported in column (1) shows that, holding fixed an individual's age and their country of residence, longer experience with more democratic institutions is associated with higher universalism. The standardized beta in this regression (not reported in the regression table) is 8%, suggesting that a one standard deviation increase in experience with democracy is associated with an increase in 8% of a standard deviation in universalism. Column (2) shows that these patterns are specific to democracy and do not hold similarly for average lifetime (log) GDP per capita. Column (3) controls for demographics. The results are very similar.

Columns (4)–(7) break these patterns down into domestic and foreign universalism. While the point estimate of lifetime exposure to democracy is positive in both cases, it is 30–70% larger for domestic universalism (though the difference between the regression coefficients is not statistically significant).

8.2 Variation Across Migrants

Because the Gallup World Poll contains information about respondents' country of birth, we further study a potential impact of democracy on universalism through cross-migrant analyses that hold the current country of residence fixed. The idea is that if two migrants currently reside in the same country, they may still have had differential experience with democracy in the past if they descend from different home countries. This is the so-called epidemiological approach in cultural economics (Giuliano, 2007). To facilitate this, we

$$univ_{i,a,c} = \alpha + \beta d_{a,c} + \sum_{c} \gamma_c \mathbb{1}_c + \sum_{a} \gamma_a \mathbb{1}_a + \epsilon_{i,a,c}$$
 (5)

Here, $univ_{i,a,c}$ is universalism of individual i of age a from country c, $d_{a,c}$ is experience to democracy in a country-age cell, and the two summands capture fixed effects for age and country, respectively.

¹⁷Formally, the estimating equation is given by:

Table 3: Exposure to democracy and universalism: Variation across country-age-cohorts

	Dependent variable:							
	Universalism							
	Composite Domestic Foreig					eign		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Lifetime average democracy score	0.38*** (0.10)	0.39*** (0.10)	0.34*** (0.10)	0.42*** (0.11)	0.41*** (0.11)	0.30** (0.13)	0.21 (0.13)	
Lifetime average log GDP p/c		1.46 (0.90)	1.11 (0.94)	-0.07 (0.93)	-0.37 (0.97)	2.57** (1.21)	2.08* (1.26)	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Age FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Demographic controls	No	No	Yes	No	Yes	No	Yes	
Adjusted R^2 Observations	0.09 55323	0.09 55323	0.09 53826	0.06 54867	0.06 53391	0.09 53765	0.10 52332	

Notes. OLS estimates of universalism on democracy exposure with robust standard errors, clustered at the level of 3,468 country-age cells. Exposure to democracy is constructed by taking the mean of the Democracy score time series in the Polity V database over the respondent's lifetime. Demographic controls include gender, income quintile fixed effects, college degree and an indicator for whether an individual lives in a big city. * p < 0.10, ** p < 0.05, *** p < 0.01.

assign each migrant in the *GUS* data the democracy score in their country of origin, and link it to universalism, controlling for country of residence fixed effects. All non-migrants in the data are excluded from the analysis. We note that this migrant analysis has less power than the cohort analysis above because of a lower number of observations (2,741 migrants vs. 53,639 respondents).

Table 4 summarizes the results, which are broadly similar to those from the analysis across age cohorts above: exposure to democracy is positively linked to universalism. We find a strong positive relationship between domestic universalism and democracy, while there is no significant effect for foreign universalism. Overall, we view these combined results from the cross-country, cross-cohort and cross-migrant analyses as suggestive evidence that experience with democracy leads to higher universalism.¹⁸

¹⁸One interpretation of the stronger results in the domestic domain is that democracy may shape more strongly how people think about domestic group divisions because living in a democracy vs. autocracy arguably primarily matters for interactions with fellow citizens rather than foreigners. Indeed, Rawls (1993) argued that a fair basic structure in society creates moral obligations towards compatriots but not towards foreigners.

Table 4: Exposure to democracy and universalism: Variation across migrants

	Dependent variable:							
	Universalism							
	(Composite Domestic					oreign	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Democracy score in home country	0.20* (0.10)	0.28** (0.13)	0.26* (0.14)	0.45*** (0.14)	0.44*** (0.14)	0.10 (0.18)	0.05 (0.18)	
Log GDP p/c in home country		-0.20 (0.54)	-0.30 (0.55)	-0.40 (0.51)	-0.59 (0.52)	-0.38 (0.73)	-0.37 (0.75)	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Age FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Demographic controls	No	No	Yes	No	Yes	No	Yes	
Adjusted <i>R</i> ² Observations	0.07 2741	0.07 2451	0.07 2412	0.05 2424	0.06 2387	0.06 2398	0.06 2363	

Notes. OLS estimates of universalism on democracy in a migrant's country of origin. Standard errors are clustered at the level of 151 countries of origin. Demographic controls include gender, income quintile fixed effects, college degree and an indicator for whether an individual lives in a big city. p < 0.10, ** p < 0.05, *** p < 0.01.

9 Discussion and Outlook

This paper provides a first comprehensive analysis of the global variation in universalism: the extent to which people assign the same weight to the interests of strangers as to those of in-group members. By introducing a new large-scale dataset, the Global Universalism Survey, we document how universalism varies across societies and individuals, whether moral considerations underlie observed behavior, how universalism helps understand heterogeneity in civic engagement and political views, and how experience with democracy may shape universalist attitudes. A primary takeaway from our analysis is that a global dataset like ours often qualifies and refines prior expectations – both our own and those articulated by others. For example, we have seen how the link between universalism and demographics such as education and urbanicity is highly culturally specific. Similarly, we find that universalism is considerably less predictive of political views outside the West, even in highly developed nations such as Japan or South Korea. Finally, we provide evidence showing that common intuitions about cross-cultural heterogeneity in universalism – expressed by anthropologists, psychologists and economists alike – require some qualification. We view these various pieces of evidence as proof-of-concept that large-scale data collection exercises like ours are needed to understand moral preferences beyond the participant pools that are typically studied.

Another main takeaway of our global analysis is that moral views related to univer-

salism and polito-economic outcomes appear to be intertwined. On the one hand, we provide evidence across countries, across age cohorts and across migrants that experience with democracy may shape universalism. On the other hand, we also show that universalism is strongly predictive of people's social and economic policy views as well as their civic engagement, hence suggesting that democracy may produce certain social outcomes partly because it shapes people's moral views.

While this paper has made some first attempts to illuminate demographic and cultural differences in universalism, we speculate that the existence of the *GUS* dataset opens up the possibility for an entire research agenda on the correlates, determinants and consequences of variation in universalism. Many research questions that were previously out of reach due to data limitations can now be tackled, including a broader investigation of how the prevalence of universalism interacts and co-evolves with political and economic institutions, and is shaped by ecological and climatic conditions.

References

- Acemoglu, Daron, Nicolás Ajzenman, Cevat Giray Aksoy, Martin Fiszbein, and Carlos A Molina, "(Successful) Democracies Breed Their Own Support," Technical Report, National Bureau of Economic Research 2021.
- **Alesina, Alberto and Paola Giuliano**, "Family Ties," *Handbook of Economic Growth*, 2013, 2, 177.
- Almås, Ingvild, Alexander Cappelen, Erik Sorensen, and Bertil Tungodden, "Fairness across the world," *Working Paper*, 2022.
- __ , Alexander W Cappelen, and Bertil Tungodden, "Cutthroat capitalism versus cuddly socialism: Are Americans more meritocratic and efficiency-seeking than Scandinavians?," *Journal of Political Economy*, 2020, 128 (5), 1753–1788.
- __, __, Erik Ø Sørensen, and Bertil Tungodden, "Global evidence on the selfish rich inequality hypothesis," *Proceedings of the National Academy of Sciences*, 2022, 119 (3).
- Andre, Peter, Teodora Boneva, Felix Chopra, and Armin Falk, "Fighting climate change: The role of norms, preferences, and moral values," 2021.
- **Barro**, **Robert**, "Religion Adherence Data," http://scholar.harvard.edu/barro/publications/religion-adherence-data 2003.
- **Barro, Robert J. and Jong-Wha Lee**, "A New Data Set of Educational Attainment in the World, 1950–2010," *Journal of Development Economics*, 2012.
- **Becker, Anke, Benjamin Enke, and Armin Falk**, "Ancient origins of the global variation in economic preferences," in "AEA Papers and Proceedings," Vol. 110 2020, pp. 319–23.
- Bernhard, Helen, Urs Fischbacher, and Ernst Fehr, "Parochial Altruism in Humans," *Nature*, 2006, 442 (7105), 912–915.
- **Buggle, Johannes C**, "Growing collectivism: Irrigation, group conformity and technological divergence," *Journal of Economic Growth*, 2020, 25 (2), 147–193.
- Cappelen, Alexander W, Astri Drange Hole, Erik Ø Sørensen, and Bertil Tungodden, "The pluralism of fairness ideals: An experimental approach," *American Economic Review*, 2007, 97 (3), 818–827.
- **Chen, Yan and Sherry Xin Li**, "Group Identity and Social Preferences," *American Economic Review*, 2009, 99 (1), 431–457.

- **Enke, Benjamin**, "Kinship, cooperation, and the evolution of moral systems," *The Quarterly Journal of Economics*, 2019, *134* (2), 953–1019.
- _, "Moral values and voting," Journal of Political Economy, 2020, 128 (10), 3679–3729.
- __, Ricardo Rodríguez-Padilla, and Florian Zimmermann, "Moral Universalism and the Structure of Ideology," *Working Paper*, 2020.
- __, __, and __, "Moral Universalism: Measurement and Economic Relevance," *Management Science*, forthcoming.
- Falk, Armin, Anke Becker, Thomas Dohmen, Benjamin Enke, David Huffman, and Uwe Sunde, "Global evidence on economic preferences," *The Quarterly Journal of Economics*, 2018, *133* (4), 1645–1692.
- **Fehr, Dietmar, Johanna Mollerstrom, and Ricardo Perez-Truglia**, "Your place in the world: The demand for national and global redistribution," *NBER working paper*, 2019, (w26555).
- **Fehr, Ernst, Daniela Glätzle-Rützler, and Matthias Sutter**, "The development of egalitarianism, altruism, spite and parochialism in childhood and adolescence," *European Economic Review*, 2013, 64, 369–383.
- **Fuchs-Schündeln, Nicola and Matthias Schündeln**, "On the endogeneity of political preferences: Evidence from individual experience with democracy," *Science*, 2015, *347* (6226), 1145–1148.
- **Gethin, Amory, Clara Martínez-Toledano, and Thomas Piketty**, "Brahmin left versus merchant right: Changing political cleavages in 21 Western Democracies, 1948–2020," *The Quarterly Journal of Economics*, 2022, *137* (1), 1–48.
- **Giuliano, Paola**, "Living Arrangements in Western Europe: Does Cultural Origin Matter?," *Journal of the European Economic Association*, 2007, *5* (5), 927–952.
- **Goette, Lorenz, David Huffman, and Stephan Meier**, "The impact of group membership on cooperation and norm enforcement: Evidence using random assignment to real social groups," *American Economic Review*, 2006, 96 (2), 212–216.

- **Greif, Avner**, "Family Structure, Institutions, and Growth: The Origins and Implications of Western Corporations," *American Economic Review: Papers & Proceedings*, 2006, *96* (2), 308–312.
- **Haidt, Jonathan**, *The Righteous Mind: Why Good People are Divided by Politics and Religion*, Vintage, 2012.
- **Henrich, Joseph**, *The WEIRDest People in the World: How the West Became Psychologically Peculiar and Particularly Propserous*, New York: Farrar, Strauss, and Giroux, 2020.
- _ , Jean Ensminger, Richard McElreath, Abigail Barr, Clark Barrett, Alexander Bolyanatz, Juan Camilo Cardenas, Michael Gurven, Edwins Gwako, Natalie Henrich et al., "Markets, religion, community size, and the evolution of fairness and punishment," science, 2010, 327 (5972), 1480–1484.
- __, **Steven J Heine, and Ara Norenzayan**, "The weirdest people in the world?," *Behavioral and brain sciences*, 2010, *33* (2-3), 61–83.
- **Konow, James**, "Fair shares: Accountability and cognitive dissonance in allocation decisions," *American economic review*, 2000, *90* (4), 1072–1091.
- **Persson, Torsten and Guido Tabellini**, "Culture, institutions, and policy," in "The Handbook of Historical Economics," Elsevier, 2021, pp. 463–489.
- Rawls, John, "The law of peoples," Critical inquiry, 1993, 20 (1), 36–68.
- Romano, Angelo, Matthias Sutter, James H Liu, Toshio Yamagishi, and Daniel Balliet, "National parochialism is ubiquitous across 42 nations around the world," *Nature Communications*, 2021, *12* (1), 1–8.
- **Sandel, Michael J**, *Liberalism and the Limits of Justice*, Cambridge University Press, 1998.
- _ , Public philosophy: Essays on morality in politics, Harvard University Press, 2005.
- Schulz, Jonathan F, Duman Bahrami-Rad, Jonathan P Beauchamp, and Joseph Henrich, "The Church, intensive kinship, and global psychological variation," *Science*, 2019, *366* (6466).
- **Stango, Victor and Jonathan Zinman**, "We are all behavioral, more or less: Measuring and using consumer-level behavioral sufficient statistics," Technical Report, National Bureau of Economic Research 2019.

- Sunde, Uwe, Thomas Dohmen, Benjamin Enke, Armin Falk, David Huffman, and Gerrit Meyerheim, "Patience, Accumulation, and Comparative Development," *Review of Economic Studies*, forthcoming.
- **Tabellini, Guido**, "Institutions and Culture," *Journal of the European Economic Association*, 2008, 6 (2-3), 255–294.
- __, "The Scope of Cooperation: Values and Incentives," *Quarterly Journal of Economics*, 2008, 123 (3), 905–950.
- Talhelm, Thomas, Xiao Zhang, Shige Oishi, Chen Shimin, D. Duan, X. Lan, and S. Kitayama, "Large-Scale Psychological Differences Within China Explained by Rice Versus Wheat Agriculture," *Science*, 2014, *344* (6184), 603–608.

ONLINE APPENDIX

A Details on Global Universalism Survey

A.1 Background on Gallup World Poll and Sampling Procedures

A.1.1 Data collection – Infrastructure and Selection of Countries

We implemented the "Global Universalism Survey" module as part of the 2020 wave of the Gallup World Poll. The Gallup World Poll is a probability based and nationally representative sample of the resident adult (aged 15 and older) population. The World Poll has been conducted nearly every year since 2005 through a global survey infrastructure that consists of a network of vendors.

Our survey module was implemented in 60 countries, with a median of 1,000 respondents in each country and a total of 66,233 respondents in all (63,788 of which answered at least one of our universalism questions). The countries were chosen to maximize the global representativeness of our sample. Interviews were mostly conducted over the phone, except in India and Pakistan where the interviews were face-to-face. The surveys were conducted between October 2020 and February 2021. Appendix Table A.1 contains the details of how and when the survey was conducted in each country.

A.1.2 Sampling

In countries where interviews are conducted by telephone, Gallup uses random-digit-dialing (RDD) or a nationally representative list of phone numbers. Gallup typically uses a dual sampling frame based on landline and mobile telephone numbers. In some countries, the sampling frame is mobile telephone only (for example, Libya and Finland). The split between landline and mobile is based on country-specific information from past surveys or other secondary data. One person, drawn at random, was interviewed in each sampled household through Gallup's network of survey providers. For respondents contacted by landline telephone, the interviewee was selected (among eligible respondents aged 15 and older) either by identifying the household member with the next upcoming birthday, or by using the interviewing program to randomly select an eligible household member. Mobile phone users were directly interviewed. According to the protocol, interviewers make several attempts to contact someone from a randomly identified household before moving on to another household.

Sampling in face-to-face interview countries occurs in three stages. First, depending on the granularity of the available population data, sampling units are constructed by either stratifying along population weights (if population information is available), or by

random sampling at the ward/village level. Next, the local survey vendors use a "random route procedure" to select a candidate household. Finally, an interviewee is selected from a list of household members by the computer program used to conduct and record the interviews. Similar to the telephone protocols, interviewers make several attempts to contact a selected household member before moving on to another household.

A.1.3 Sample Weights

Gallup provides probabilistic weights to make the survey data ex-post nationally representative. The weights are constructed to account for multiple sources of bias such as different household sizes, selection of primary sampling units, individuals owning both a landline and a mobile phone, and selection of telephone numbers from the respective frames. We use these weights to calculate the country-level averages of the universalism statistic and use this weighted mean in our country-level analyses.

A.1.4 Translation and Piloting

After the final survey instrument for the Universalism module was finalized in English, translations were made and tested in the field in four countries - Turkey, Brazil, Spain, and Kenya. These cognitive interviews tested the survey on a small sample of 10-20 persons with different income and education levels. The results from the field testing were used to refine the English version to improve comprehension for respondents. The final survey instrument was then translated into all the languages needed, and each translation was reviewed by native speakers of each language to ensure that the translations was comprehensible and that it matched the English version. Each translation was modified based on the research team's feedback. Interviewers were instructed to follow the interview script without deviations. For some languages that are in use in more than one country, multiple translations into localized versions were made (such as Arabic, French, and Spanish).

Table A.1: Survey Details

Country	Dates	Number	Mode	Languages	Exceptions
Algeria	Nov 20 - Dec 9, 2020	1062	Landline and Mobile	Arabic	
Argentina	Dec 2, 2020 - Feb 23, 2021	1003	Landline and Mobile	Spanish	
Australia	Sep 21 - Nov 1, 2019	1000	Landline and Mobile	English	
Bangladesh	Dec 8 - Dec 20, 2020	1054	Mobile	Bengali	
Bolivia	Nov 24 - Dec 24, 2020	1000	Mobile	Spanish	
Brazil	Dec 2, 2020 - Jan 27, 2021	1003	Landline and Mobile	Portuguese	
Cambodia	Dec 25, 2020 - Jan 15, 2021	1000	Mobile	Khmer	
Cameroon	Nov 23 - Dec 19, 2020	1024	Mobile	French, English,	
				Fulfulde	
Canada	Oct 13 - Nov 24, 2020	1010	Landline and Mobile	English, French	Yukon, Northwest Territories
					and Nunavut were excluded
					from the sample.
Chile	Dec 9, 2020 - Feb 24, 2021	1000	Landline and Mobile	Spanish	
China	Oct 28 - Dec 13, 2020	3502	Mobile	Chinese	Tibet was excluded from the
					sample. The excluded areas
					represent less than 1% of the
					population of China
Colombia	Nov 30, 2020 - Jan 27, 2021	1002	Landline and Mobile	Spanish	
Croatia	Nov 6 - Dec 2, 2020	1000	Landline and Mobile	Croatian	
Czech Republic	Dec 22, 2020 - Jan 25, 2021	1004	Landline and Mobile	Czech	
Ecuador	Dec 7, 2020 - Feb 11, 2021	1002	Landline and Mobile	Spanish	
Egypt	Dec 19 - Dec 30, 2020	1002	Landline and Mobile	Arabic	
Ethiopia	Dec 7 - Dec 31, 2020	1022	Mobile	Amharic, English,	
				Oromo, Tigrinya	
France	Oct 19 - Nov 14, 2020	1000	Landline and Mobile	French	
Germany	Oct 19 - Nov 14, 2020	1000	Landline and Mobile	German	

Table A.1: Survey Details

Country	Dates	Number	Mode	Languages	Exceptions
Ghana	Dec 11 - Dec 31, 2020	1000	Mobile	English, Ewe, Twi,	
				Hausa	
Greece	Dec 2 - Dec 30, 2020	1003	Landline and Mobile	Greek	
Hungary	Nov 25 - Dec 21, 2020	1002	Landline and Mobile	Hungarian	
India	Dec 26, 2020 - Feb 24, 2021	3300	Face-to-Face (HH)*	Assamese, Bengali,	Excluded population living in
				Gujarati, Hindi,	Northeast states and remote
				Kannada,	islands, and Jammu and
				Malayalam, Marathi,	Kashmir. The excluded areas
				Odia, Punjabi, Tamil,	represent less than 10% of the
				Telugu	population.
Indonesia	Dec 4, 2020 - Jan 10, 2021	1011	Mobile	Bahasa Indonesia	
Iran	Nov 2 - Nov 8, 2020	1007	Landline and Mobile	Farsi	
Iraq	Jan 3 - Feb 28, 2021	1006	Mobile	Arabic, Kurdish	
Israel	Dec 19, 2020 - Jan 7, 2021	1059	Landline and Mobile	Hebrew, Arabic	
Italy	Nov 2 - Nov 25, 2020	1000	Landline and Mobile	Italian	
Japan	Oct 2 - Dec 3, 2020	1012	Landline and Mobile	Japanese	For landline RDD, excluded 12 municipalities near the nuclear power plant in Fukushima.
					These areas were designated a
					not-to-call districts due to the
					devastation from the 2011
					disasters. The exclusion
					represents less than 1% of the
					population of Japan.
Jordan	Dec 21 - Dec 31, 2020	1005	Mobile	Arabic	
Kazakhstan	Dec 11 - Dec 25, 2020	1000	Mobile	Russian, Kazakh	

Table A.1: Survey Details

Country	Dates	Number	Mode	Languages	Exceptions
Kenya	Nov 13 - Nov 22, 2020	1000	Mobile	English,	
				Swahili/Kishwahili	
Mexico	Nov 10 - Dec 20, 2020	1006	Landline and Mobile	Spanish	
Morocco	Dec 17, 2020 - Jan 6, 2021	1010	Landline and Mobile	Moroccan Arabic	
Netherlands	Oct 27 - Dec 19, 2020	1000	Landline and Mobile	Dutch	
Nigeria	Dec 9 - Dec 21, 2020	1019	Mobile	English, Hausa, Igbo,	
				Pidgin English,	
				Yoruba	
Norway	Oct 9 - Nov 9, 2020	1018	Landline and Mobile	Norwegian	
Pakistan	Jan 9 - Feb 5, 2021	1001	Face-to-Face (HH)*	Urdu	Did not include AJK,
					Gilgit-Baltistan. The excluded
					area represents approximately
					5% of the population.
					Gender-matched sampling was
					used during the final stage of
					selection.
Peru	Nov 27, 2020 - Feb 4, 2021	1003	Landline and Mobile	Spanish	
Philippines	Nov 16 - Dec 19, 2020	1000	Landline and Mobile	Filipino, Iluko,	
				Cebuano, Waray,	
				Bicol	
Poland	Nov 20 - Dec 17, 2020	1002	Landline and Mobile	Polish	
Portugal	Nov 9 - Dec 10, 2020	1000	Landline and Mobile	Portuguese	
Russia	Dec 2, - Dec 28, 2020	2002	Mobile	Russian	
Senegal	Nov 4 - Nov 26, 2020	1017	Mobile	French, Wolof	
South Africa	Dec 14 - Dec 23, 2020	1001	Mobile	Afrikaans, English,	
				Sotho, Xhosa, Zulu	

Table A.1: Survey Details

Country	Dates	Number	Mode	Languages	Exceptions
South Korea	Dec 12, 2020 - Jan 11, 2021	1005	Landline and Mobile	Korean	
Spain	Oct 19 - Nov 12, 2020	1000	Landline and Mobile	Spanish	
Sri Lanka	Dec 7, 2020 - Jan 31, 2021	1013	Mobile	Sinhala, Tamil	
Switzerland	Oct 19 - Nov 17, 2020	1000	Landline and Mobile	French, German,	
				Italian	
Tanzania	Dec 15 - Dec 24, 2020	1000	Mobile	Swahili, Kishwahili	
Thailand	Dec 13, 2020 - Jan 25, 2021	1000	Mobile	Thai	
Turkey	Dec 18 - Dec 29, 2020	1000	Landline and Mobile	Turkish	
Uganda	Dec 18 - Dec 28, 2020	1000	Mobile	Ateso, English,	
				Luganda,	
				Runyankole	
Ukraine	Nov 26 - Dec 6, 2020	1006	Landline and Mobile	Russian, Ukrainian	
United Kingdom	Nov 2 - Nov 27, 2020	1000	Landline and Mobile	English	
United States	Oct 14 - Dec 8, 2020	1008	Landline and Mobile	English, Spanish	
Venezuela	Dec 10, 2020 - Jan 24, 2021	1020	Landline and Mobile	Spanish	
Vietnam	Dec 6 - Dec 20, 2020	1000	Mobile	Vietnamese	
Zambia	Dec 14, 2020 - Jan 20, 2021	1005	Mobile	Bemba, English,	
				Lozi, Nyanja, Tonga	
Zimbabwe	Dec 14 - Dec 26, 2020	1002	Mobile	English, Shona,	
				Ndebele	

A.2 Survey Questions

Each respondent is randomized into treatment *Baseline* or *Moral*, where the latter treatment was split evenly between two different sub-treatments. Each respondent in *Baseline* answers two randomly selected questions out of A-1 through A-5. Each respondent in *Moral* answers two randomly selected questions out of B-1 through B-5. Each respondent in a subtreatment of *Moral*, which we will here call *Deserving*, answers two randomly selected questions out of C-1 through C-5. In addition, each respondent answers A-6 / B-6 / C-6. Responses to these questions are either A. a currency value, B. "Do not know", or C. "Refused to answer". After each question, the interviewer repeats the response and asks for confirmation from the respondent.

Finally, all respondents answer two randomly selected questions out of D-1 through D-6. Responses to these questions are coded as either A. a value from 1 to 4 (with 1 indicating "Strongly agree" and 4 "Strongly disagree"), B. "Do not Know", or C. "Refused".

Treatment *Baseline*. Suppose you have earned \$1,000, but you have to give away the money to two other people. You can't keep any of the money for yourself. Assume that these two people have the same standard of living.

A-1. How much of your \$1,000 would you give to a person in your family, if the rest goes to a random stranger from (COUNTRY NAME)?

This means that you would give [VALUE FROM A-1] to a person in your family and [1,000 MINUS VALUE FROM A-1] to a random stranger from (COUNTRY NAME). Is this correct? \rightarrow if No, repeat A-1.

All subsequent questions follow this same logic, whereby the interviewer verifies participant responses through a follow-up question.

- A-2. How much of your \$1,000 would you give to a friend of yours, if the rest goes to a random stranger from (COUNTRY NAME)?
- A-3. How much of your \$1,000 would you give to a person who lives in your neighborhood, if the rest goes to a random stranger from (COUNTRY NAME)?
- A-4. How much of your \$1,000 would you give to a person who shares your religious beliefs, if the rest goes to a random stranger from (COUNTRY NAME)?
- A-5. How much of your \$1,000 would you give to a person who shares your ethnic background, if the rest goes to a random stranger from (COUNTRY NAME)?
- A-6. Suppose now that the two people are someone from (COUNTRY NAME) and someone from anywhere in the world. Again, assume that these two people have the same living standard. How much of your \$1,000 would you give to a random stranger from (COUNTRY NAME), if the rest goes to a random stranger from anywhere in the world?

Treatment *Moral*. Suppose you have earned \$1,000, but you have to give away the money to two other people. You can't keep any of the money for yourself. Assume that these two people have the same living standard.

- B-1. If you were to do what you think is morally right, then how much of your \$1,000 would you give to a person in your family, if the rest goes to a random stranger from (COUNTRY NAME)?
- B-2. If you were to do what you think is morally right, then how much of your \$1,000 would you give to a friend of yours, if the rest goes to a random stranger from (COUNTRY NAME)?
- B-3. If you were to do what you think is morally right, then how much of your \$1,000 would you give to a person who lives in your neighborhood, if the rest goes to a random stranger from (COUNTRY NAME)?
- B-4. If you were to do what you think is morally right, then how much of your \$1,000 would you give to a person who shares your religious beliefs, if the rest goes to a random stranger from (COUNTRY NAME)?
- B-5. If you were to do what you think is morally right, then how much of your \$1,000 would you give to a person who shares your ethnic background, if the rest goes to a random stranger from (COUNTRY NAME)?
- B-6. Suppose now that the two people are someone from (COUNTRY NAME) and someone from anywhere in the world. Again, assume that these two people have the same living standard. If you were to do what you think is morally right, then how much of your \$1,000 would you give to a random stranger from (COUNTRY NAME), if the rest goes to a random stranger from anywhere in the world?

Treatment *Deserving* (sub-treatment of *Moral* and pooled wih *Moral* in all analyses). Suppose you have earned \$1,000, but you have to give away the money to two other people. You can't keep any of the money for yourself. Assume that these two people are equally good people and have the same living standard.

C-1 through C-6: Same questions as B-1 through B-6.

Political Questions. We are now going to read a number of statements. In each case, we want you to say whether you Strongly Agree, Somewhat Agree, Somewhat Disagree, Strongly Disagree.

- D-1. There are too many immigrants in the area you live in.
- D-2. There are too many immigrants in (country).
- D-3. The national government should focus on helping the poor in (country), rather than the poor elsewhere in the world.

- D-4. The national government should focus on protecting the environment in (country), rather than protecting the global environment.
- D-5. The national government should focus on having a strong military.
- D-6. The national government should aim to reduce the economic differences between the rich and the poor in (country).

A.3 Main Covariates, Country Classifications and SE Clustering

A.3.1 Demographic Variables

Many of the analyses in the paper use demographic information to study heterogeneity or simply to control for variation driven by demographic characteristics. Below, we document how these variables are constructed.

Age (and age-squared): Continuous variables, recorded at the individual level in the survey.

Above Median Age: An indicator which is 1 if an individual is older than the country median age.

Religiosity: An indicator which is 1 if the respondent answers the question "What is your religion" with anything other than "Secular/Atheist/Non-religious/Agnostic".

Income: The income quintile relative to other respondents from the same country. In some of our analyses, we use an indicator that is 1 if the individual is in the top 2 income quintiles (i.e. top 40%).

Urban: An indicator that is 1 if the respondent indicates that they live in a large city. Other levels in the base variable are: rural area, small town/village, and suburbs.

Education: An indicator that is 1 if the respondent indicates that they have "Completed 4 years of education beyond high school and/or received a 4-year college degree".

Gender: Gallup codes all respondents as either male or female. We use an indicator = 1 if the respondent is male in our analyses.

A.3.2 Country Classification

Income levels. We use the World Bank's income classification schemes as one way of dividing countries into economically meaningful groups. The World Bank classifies countries as "High Income", "Middle Income" and "Low Income". We code an indicator *highincome* = 1 if a country is highincome, and 0 otherwise. The countries are: Australia, Canada, Switzerland, Spain, Germany, France, United Kingdom, Greece, USA, Netherlands, Norway, Portugal, Italy, Czech Republic, Croatia, Hungary, Israel, Japan, South Korea and Poland.

WEIRD countries. In many of our analyses we study differences between "Western, Educated, Industrialized, Rich, and Democratic", i.e. WEIRD and non-WEIRD countries. We use the Maddison Project Database (MPD) to create an indicator weird = 1 if a country is in the "Western Europe" or "Western Offshoots" country groups in the MPD. The countries are: Australia, Canada, Switzerland, Spain, Germany, France, United Kingdom, Greece, USA, Netherlands, Norway, Portugal, and Italy.

Non-WEIRD and High Income countries. These are: Chile, Czech Republic, Croatia, Hungary, Israel, Japan, South Korea, Poland.

Low and Middle Income countries. These are: Argentina, Bangladesh, Bolivia, Brazil, China, Cameroon, Colombia, Algeria, Ecuador, Egypt, Ethiopia, Ghana, Indonesia, India, Iran, Iraq, Jordan, Kazakhstan, Kenya, Cambodia, SriLanka, Morocco, Mexico, Nigeria, Pakistan, Peru, Philippines, Russia, Senegal, Thailand, Turkey, Tanzania, Uganda, Ukraine, Venezuela, Vietnam, South Africa, Zambia, Zimbabwe.

A.3.3 Standard Errors

The individual level analyses presented in this paper are clustered by 530 "primary sampling units". These are essentially survey strata. In countries where telephonic interviews are conducted, these represent mobile providers (countries where landlines are a part of the sampling frame may have an additional regional component to the phone provider). In countries where face-to-face interviews are conducted, these represent administrative regions, split by urbanicity.

A.4 Sample Overview

Table A.2 provides an overview of the samples in each country. We provide the number of observations, fraction female, fraction religious, fraction living in a city, fraction having a college degree, median age and number of interview languages used.

A.5 Monetary Amounts Used in the Survey

We calculate the ratio of the PPP-adjusted GDP per capita of each country to the GDP of the United States using the latest available data from the World Bank WDI Database. We use the latest available exchange rate before the cutoff dates for the finalisation of the survey instruments. In the interest of simplicity consistency, we round down the amount from this conversion process to the first digit. Table A.3 lists the local currency amounts used in each country.

Table A.2: Sample overview

	Obs.	Female %	Religious %	City %	College %	Median age	Languages
Algeria	1048	.43	1	.51	.26	36	1
Argentina	978	.46	.83	.45	.22	43	1
Australia	965	.52	.68	.069	.42	63	1
Bangladesh	920	.39	1	.4	.15	26	1
Bolivia	922	.49	.98	.36	.25	31	1
Brazil	972	.5	.88	.5	.28	38	1
Cambodia	969	.43	1	.26	.28	32	1
Cameroon	1013	.51	.99	.48	.18	27	3
Canada	992	.54	.67	.34	.42	55	2
Chile	984	.59	.91	.52	.37	43	1
China	3410	.34		.34	.3	31	1
Colombia	997	.56	.88	.42	.19	34	1
Croatia	935	.62	.88	.38	.44	46	1
Czech Republic	982	.59	.32	.38	.29	46	1
Ecuador	921	.55	.94	.33	.19	32	1
Egypt	991	.45	1	.52	.31	33	1
Ethiopia	1021	.43	1	.61	.34	30	4
France	995	.51	.68	.24	.29	49	1
Germany	991	.48	.67	.35	.26	55	1
Ghana	989	.38	.99	.36	.26	27	3
Greece	1001	.36 .45	.99 .87	.30 .45	.57	45	3 1
					.57 .45		1
Hungary	968	.53	.82	.39		48	
India	2801	.47	1	.12	.089	32	11
Indonesia	904	.43	1	.21	.23	31	1
Iran	995	.49	.99	.53	.28	38	1
Iraq	988	.38	1	.53	.18	30	2
Israel	1055	.47	.99	.77	.36	45	2
italy	997	.49	.84	.29	.27	53	1
Japan	983	.41	.34	.2	.35	59	1
Jordan	1001	.46	1	.48	.25	33	1
Kazakhstan	848	.52	.98	.57	.4	35	2
Kenya	996	.47	1	.14	.23	27	2
Mexico	941	.47	.89	.38	.35	38	1
Morocco	986	.43		.55	.13	32	1
Netherlands	980	.44	.48	.22	.54	57	1
Nigeria	1014	.43	1	.48	.05	30	5
Norway	1004	.48	.71	.21	.59	57	1
Pakistan	983	.5	.99	.26	.053	32	1
Peru	982	.48	.92	.46	.27	34	1
Philippines	1000	.57	1	.25	.19	31	5
Poland	972	.51	.85	.46	.6	46	1
Portugal	947	.55	.79	.23	.36	43	1
Russia	1980	.53	.81	.23 .44	.5	40	1
Senegal	1011	.53 .52	.01	.42	.5 .058	28	2
Senegai South Africa	1011	.52 .58	.98	.42 .2		28 29	5
					.067		
South Korea	999	.39	.47	.45	.4	53	1
Spain	996	.54	.75	.32	.13	48	1
Sri Lanka	930	.44	1	.084	.024	37	2
Switzerland	994	.53	.8	.15	.56	51	3
Гаnzania	996	.45	1	.38	.15	29	1
Thailand	925	.55	.97	.36	.6	38	1
Turkey	952	.54	.99	.74	.29	28	1
Uganda	958	.42	1	.16	.039	26	3
Ukraine	955	.53	.89	.45	.57	38	2
United Kingdom	988	.46	.71	.21	.59	51	1
United States	1002	.47	.82	.2	.48	56	2
Venezuela	993	.55	.94	.32	.32	36	1
Vietnam	764	.41	.49	.58	.58	31	1
vietnam Zambia				.2			5
zambia Zimbabwe	1005 999	.48 .52	1 .98	.2 .094	.3 .14	26 31	3

 $\it Notes.$ Descriptive statistics for the respondent pool in each country.

Table A.3: Local currency amounts

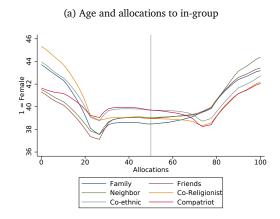
Countries	Country code	Currency code	Local Currency Amount
Algeria	DZA	DZD	30,000
Argentina	ARG	ARS	20,000
Australia	AUS	AUD	1,000
Bangladesh	BGD	BDT	6,000
Bolivia	BOL	BOB	900
Brazil	BRA	BRL	1,000
Cambodia	KHM	KHR	300,000
Cameroon	CMR	XAF	40,000
Canada	CAN	CAD	1,000
Chile	CHL	CLP	300,000
China	CHN	CNY	2,000
Colombia	COL	COP	800,000
Croatia	HRV	HRK	3,000
Czech Republic	CZE	CZK	10,000
Ecuador	ECU	USD	200
Egypt	EGY	EGP	3,000
Ethiopia	ETH	ETB	900
France	FRA	EUR	700
Germany	DEU	EUR	800
Ghana	GHA	GHS	400
Greece	GRC	EUR	400
Hungary	HUN	HUF	100,000
India	IND	INR	9,000
Indonesia	IDN	IDR	3,000,000
Iran	IRN	IRR (toman)	1,000,000
Iraq	IRQ	IRD	300000
Israel	ISR	ILS	2,000
Italy	ITA	EUR	600
Japan	JPN	JPY	70,000
Jordan	JOR	JOD	100
Kazakhstan	KAZ	KZT	200,000
Kenya	KEN	KES	6,000
Mexico	MEX	MXN	6,000
Morocco	MAR	MAD	1,000
Netherlands	NLD	EUR	800
Nigeria	NGA	NGN	30,000
Norway	NOR	NOK	
Pakistan	PAK	PKR	10,000
Pakistan Peru			10,000 800
	PER	PEN	
Philippines	PHL	PHP	7,000
Poland	POL	PLN	2000
Portugal	PRT	EUR	500
Russia	RUS	RUB	30,000
Senegal	SEN	XOF	40000
South Africa	ZAF	ZAR	3,000
South Korea	KOR	KRW	700,000
Spain	ESP	EUR	600
Sri Lanka	LKA	LKR	40,000
Switzerland	CHE	CHF	1,000
Tanzania	TZA	TZS	100,000
Thailand	THA	THB	9,000
Turkey	TUR	TRY	3,000
Uganda	UGA	UGX	100,000
Ukraine	UKR	UAH	4,000
United Kingdom	GBR	GBP	600
USA	USA	USD	1,000
Venezuela	VEN	VES	50,000,000
Vietnam	VNM	VND	3,000,000
Zambia	ZMB	ZMW	900
Zimbabwe	ZWE	USD	50

Notes. Local currency amounts used in each country. The amounts are generated by scaling 1000 USD in the ratio of each country's GDP (PPP per capita) to US GDP, multiplying by the exchange rate and then rounding down to the first digit.

A.6 Data Considerations

Number of observations and questions. The data from Gallup contains 66, 233 respondents from which we are able to use 63, 788 respondents.

The biggest cause of lost observations are cases where responses to allocation questions are coded as "Don't Know" or "Refused to answer" (2,427 observations). These instances are not randomly distributed and are more frequent in some country-language combinations than in others. For example, nearly 50% of the respondents in Vietnam do not answer one or more allocation question.


Next, the survey protocol has a confirmation step in each allocation decision question. 647 allocations are "unconfirmed", of which more than half are from India. We have chosen to ignore this step of the protocol and include the "unconfirmed" allocations in the interest of maximizing the number of observations. Finally, we drop 18 respondents from Pakistan because none of the questions in our module were recorded.

In our final sample of 63,788, 7.5% of respondents have at least one allocation question missing. In those cases, we compute the summary statistics based on fewer questions. When either only domestic or only foreign universalism is available, we use this measure also for composite universalism.

Recording Errors. The raw data set contains 1,828 allocation decisions which we suspect have been incorrectly recorded and have attempted to correct. These fall into two categories. First, some allocation decisions recorded in Bangladesh, Uganda, Cambodia and Iraq clearly have allocation amounts with an incorrect number of zeroes – for example, an allocation decision of 6000:4000 was recorded as 6:4 in many Bangladeshi records. In these cases, we preserve the base information and adjust our universalism calculations to account for this problem.

Second, some observations in France, Germany, Italy, Spain, Switzerland and the United Kingdom were incorrect in that the sum of the recorded allocations for the in- and out-groups did not add up to the allocation budget. For example, if the total amount to be allocated was 1000, then in some cases the sum of the in- and out-group allocations was less than 1000. We attributed this to a recording error as enumerators make a manual calculation when they record the amount allocated to the stranger (after soliciting the in-group allocation from respondents). We apply a correction to these allocations by preserving the in-group allocation as-is, and scaling the out-group allocation to match the total amount.

Missing questions. The survey questions on allocation to co-ethnics and attitudes on government policies were not asked in China due to local restrictions on data collection

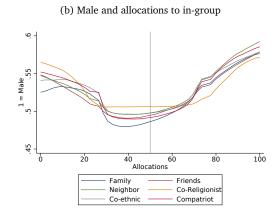


Figure A.1: Local polynomial regression plots of demographics (age, gender) on allocation decisions. The figures reveal a "flipping" pattern where, for example, age is positively correlated with in-group allocations for in-group allocations ≥ 50 but negatively for in-group allocations ≤ 50 .

or other issues beyond the control of the survey collection agency. These questions were replaced with other equivalent allocation decision or political view question.

A.7 Recoding of Some Allocation Decisions

20,338 out of 184,950 (11%) of all allocations in our data give strictly more to the stranger than the in-group member. In principle, it is of course perfectly plausible that a respondent wishes to allocate more money to a stranger than to e.g. someone from their neighborhood. Yet, 4.5% of respondents allocated more money to the stranger than to the in-group member in *all* questions, and various pieces of evidence strongly suggest that these cases reflect mistakes, confusion or systematic misrecordings by the enumerator. There are three such pieces of evidence:

- 1. A first piece of evidence is that the correlation between allocation decisions and demographics like age and gender *exactly flips* around 50%. For example, within the set of allocation decisions that allocate at least 50% to the in-group member, the correlation between in-group allocations and age is $\rho=0.071$, suggesting that younger people are more universalist. Yet, within the set of allocation decisions that allocate at least 50% to the out-group member, the correlation between ingroup allocations and age is $\rho=-0.045$, suggesting that older people are more universalist. An almost identical "flipping" pattern holds for gender, see Figure A.1. We interpret this as suggesting that an allocation of e.g. 80% to the stranger often reflects an intended allocation of 80% to the in-group.
- 2. A second piece of evidence is that the occurrence of the pattern that a respondent allocates more money to the stranger in *all* questions is predictably correlated with

Table A.4: Relationship between low in-group allocations and demographic variables.

	1 if a	Dependent variable: 1 if all in-group allocations < 50%						
	(1)	(2)	(3)	(4)				
Above med. age	0.011*** (0.002)			0.011*** (0.002)				
College education		-0.008*** (0.002)		-0.005*** (0.002)				
Top 40 income			-0.009*** (0.002)	-0.008*** (0.002)				
Country FE	Yes	Yes	Yes	Yes				
Treatment FE	Yes	Yes	Yes	Yes				
Adjusted <i>R</i> ² Observations	0.081 63788	0.081 63423	0.081 63788	0.082 63423				

Notes. OLS results from regressing an indicator of whether an allocation to the out-group is more than 50 on indicators for whether an individual is above median age (1), college educated (2), is in the top 40% of income in the country, controlling for country and treatment fixed effects. Standard errors are heteroscedasticity robust

individual demographics that plausibly proxy for lower cognitive skills, such as low education, low income and high age, see Table A.4.

3. A third piece of evidence is that the occurrence of in-group allocations of less than 50% is concentrated in certain survey strata. Figure A.2 shows a histogram of the fraction of decisions in a given survey stratum that allocate strictly less than 50% to the in-group. The figure shows that for the vast majority of survey strata this fraction is relatively small, but for some it is very large. This suggests either systematic misrecordings by the enumerators, language barriers or other structural problems.

These patterns suggest a tradeoff. On the one hand, we do not desire to leave the reader with the impression that we arbitrarily recode individual observations to "manufacture" certain results, in particular because our pre-analysis plan did not foreshadow such a procedure. On the other hand, we anticipate that this rich dataset may be used more widely by the research community going forward, and we feel it is incumbent upon us to suggest the most productive way to interpret and code the data. As a result, we opt for a balanced strategy. We recode allocations to the in-group of x < 50% as 100%-x if and only if two arguably conservative criteria were satisfied: the respondent in question allocates (i) weakly more than 50% to the stranger in *all* questions and (ii) strictly more than 50% to the stranger in at least half of all decisions (which in practice usually means at least two out of three).

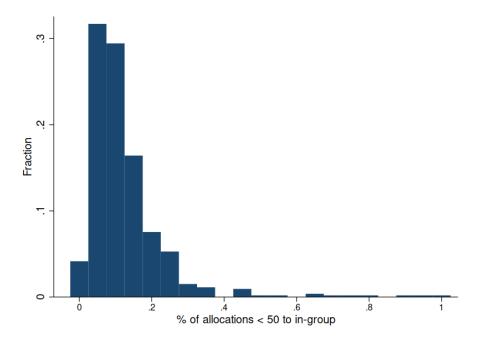


Figure A.2: Histogram showing the distribution of the fraction of allocations that are less than 50 to the in-group within each survey strata. The figure shows that a few survey strata seem to have a large number of these allocations.

This procedure affects 4,328 respondents and 10,318 allocation decisions. To illustrate how conservative this recoding procedure is, consider the distribution of universalism (before recoding) for the observations that we recode (Appendix Figure A.3). For example, the top right panel shows the distribution of the unadjusted composite universalism measure in the subset of respondents for which at least one of the respondent's allocation decisions get recoded. The main takeaway is that the universalism scores that we recode are often *very* extreme. In fact, the modal individual has an unadjusted composite universalism score of 100, meaning that the modal individual for whom we recode at least one decision allocates the entire budget to the socially more distant individual in all decisions.

For transparency, Appendix A.7 replicates all results in this paper using the original coding, with similar results. Also for transparency, our published dataset will include both the recoded and the original allocation decisions.

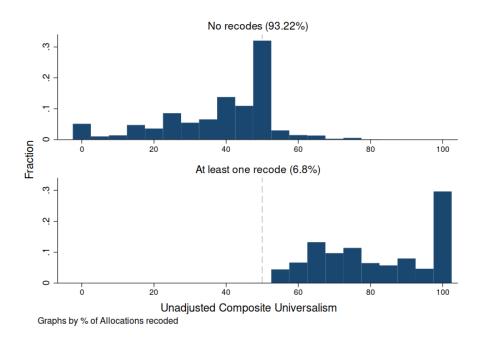


Figure A.3: Universalism patterns in recoded observations. Each panel shows the distribution of the *unadjusted* composite universalism statistic, as a function of whether or not we eventually recode at least one of the respondent's allocation decisions.

B Additional Figures

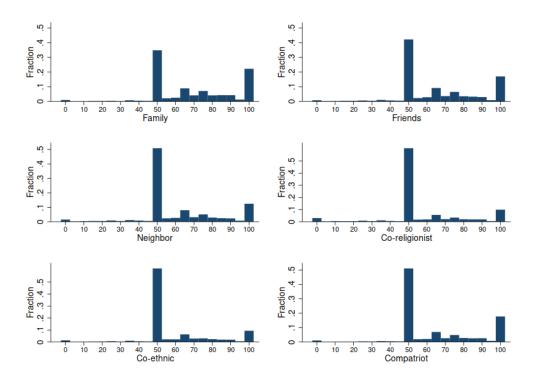


Figure B.1: Histograms of allocations to the in-group across the six survey questions, The number of allocations ranges from 23,073 to 25,360 in the first 5 panels. The last panel shows the histogram of 61,753 allocations.

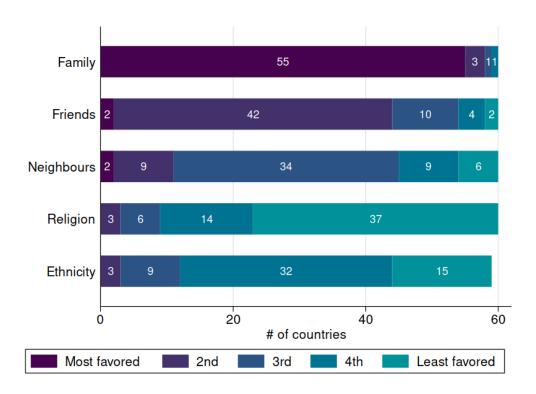


Figure B.2: "Ranking" of in-groups across countries implied by the allocation decisions, pooled across treatments, excluding the Compatriot-Foreigner allocation question. Each section of a bar represents a rank (1 to 5, 1 being the most favored) for that in-group. The size of each section is proportional to the number of countries that assign that rank to the in-group.

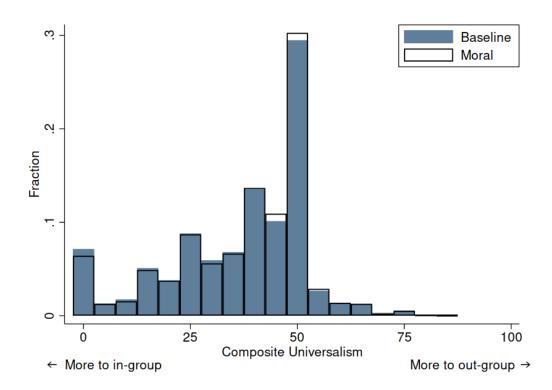


Figure B.3: Distribution of composite universalism across individuals, split by treatment (*Baseline* and *Moral*), N = 31,670 and 32,118 respectively.

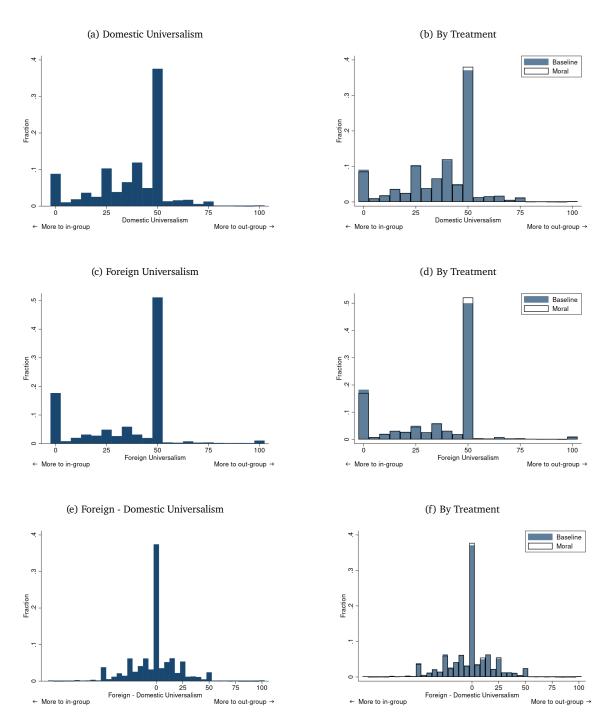


Figure B.4: Distribution of domestic, foreign and foreign - domestic universalism across individuals, separately by treatment (Baseline and Moral).

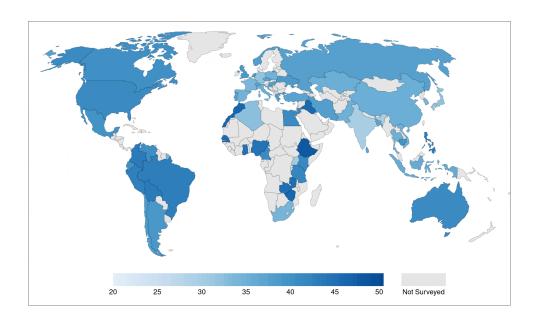


Figure B.5: Global variation in domestic universalism

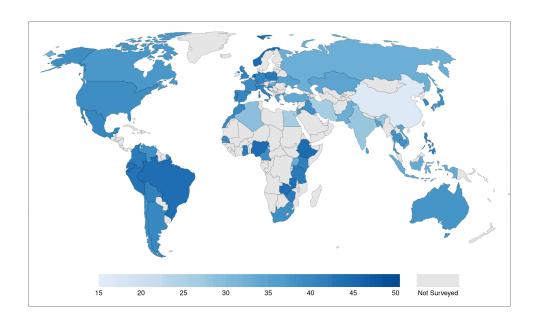


Figure B.6: Global variation in foreign universalism

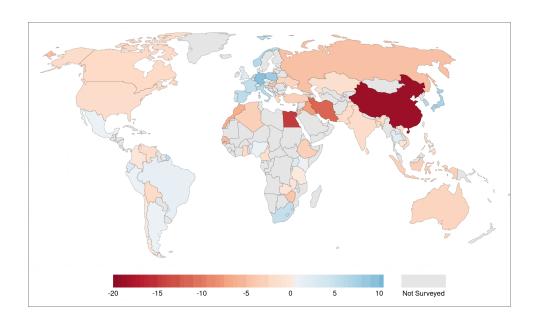


Figure B.7: Global variation in difference between domestic and foreign universalism

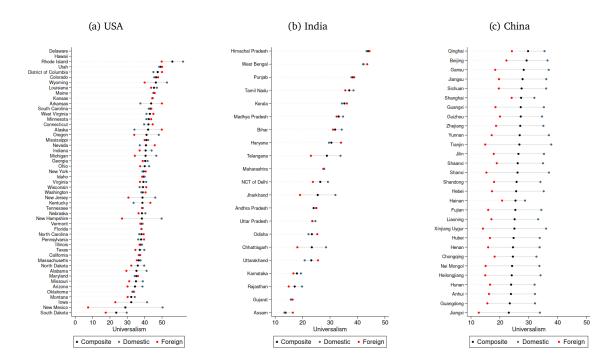


Figure B.8: Average composite, domestic and foreign universalism by state/sub-national region in USA / India / China. 0 means that all money is shared with the in-group, 50 equal splits, and 100 that all money is shared with the socially more distant stranger. Composite universalism occasionally doesn't equal the average of domestic and foreign universalism because of missing domestic or foreign universalism data (see footnote 2 and Appendix A.6 for details).

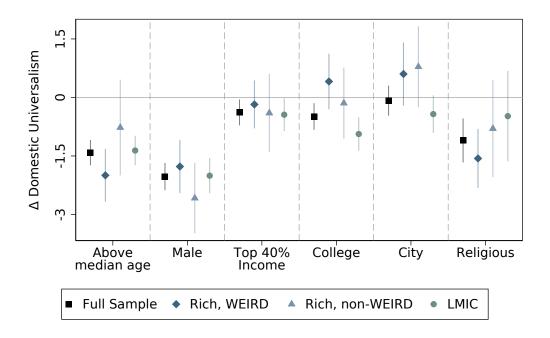


Figure B.9: Domestic universalism and demographics. OLS coefficients from regressions of domestic universalism on demographics, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression and can be interpreted as the percentage point change in universalism. The demographic variables here are indicators; Median age and income quintiles are computed for each country separately. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

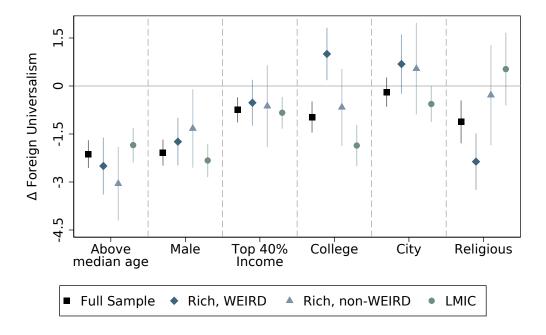
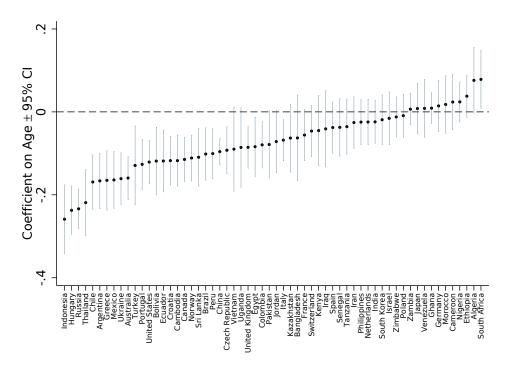



Figure B.10: Foreign universalism and demographics. OLS coefficients from regressions of foreign universalism on demographics, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression and can be interpreted as the percentage point change in universalism. The demographic variables here are indicators; Median age and income quintiles are computed for each country separately. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

(a) Age and universalism by country

(b) Universalism and college education by country

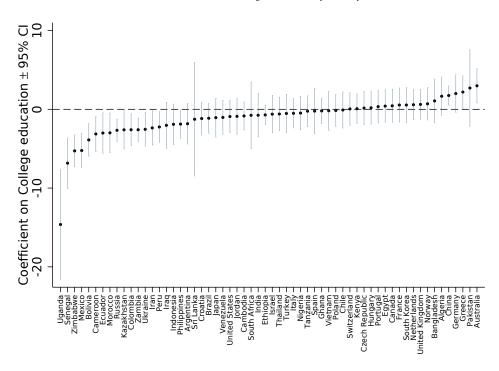
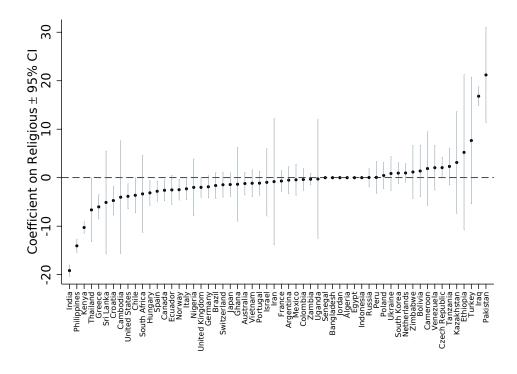



Figure B.11: Composite universalism and age / education by country. The figures show the country-specific OLS coefficients of regressions of composite universalism age (top panel) / a college education dummy (bottom panel), controlling for treatment fixed effects. Whiskers show 95% confidence intervals, computed based on robust standard errors.

(a) Universalism and religiosity by country

(b) Universalism and income (top 40%) by country

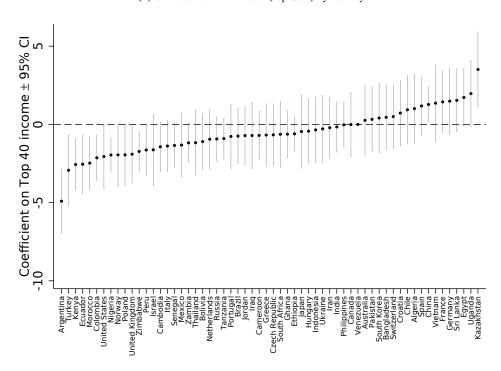


Figure B.12: Composite universalism and religiosity / high income by country. The figures show the country-specific OLS coefficients of regressions of composite universalism a religiosity dummy (top panel) / a dummy $\bar{1}$ if the individual's household income is above the 60th percentile (bottom panel), controlling for treatment fixed effects. Whiskers show 95% confidence intervals, computed based on robust standard errors.

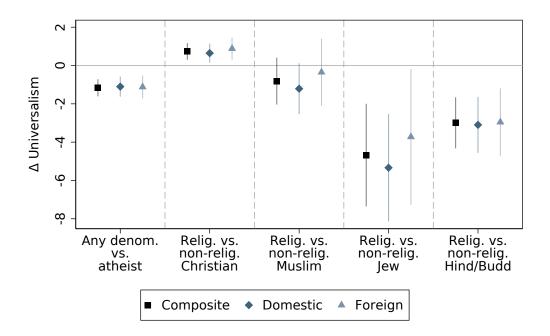


Figure B.13: OLS coefficients from individual-level regressions of universalism on different indicator variables, controlling for country and treatment fixed effects In the first panel, the indicator equals one if the respondents reports any religious denomination and zero if they report being an atheist. In the second through fifth panel, the sample is restricted to respondents who report a specific religious denomination. The indicator variable equals one if the respondent reports that religion plays an important part in their life and zero otherwise. For example, in the first panel, the sample is restricted to people who report belonging to a Christian denomination, and the regression coefficient shows how much more (or less) universalist those Christians are who report that religion plays an important role in their life. Whiskers show 95% confidence intervals, computed based on robust standard errors.

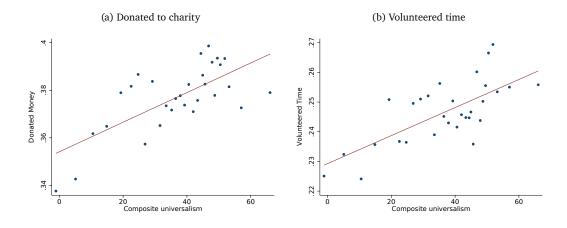


Figure B.14: Universalism and prosocial behaviors. Each panel shows a binned scatter plot that, for a given level of universalism, computes the average probability of (a) having donated to charity and (b) volunteered time. Both panels are constructed controlling for country and treatment FE.

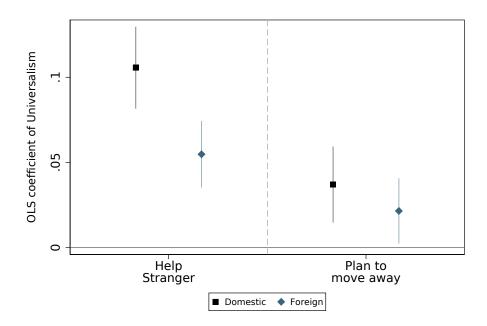


Figure B.15: Domestic / foreign universalism and indicators for Civic engagement / community attachment. OLS coefficients from regressions of indicators of civic engagement / community attachment on domestic and foreign universalism, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

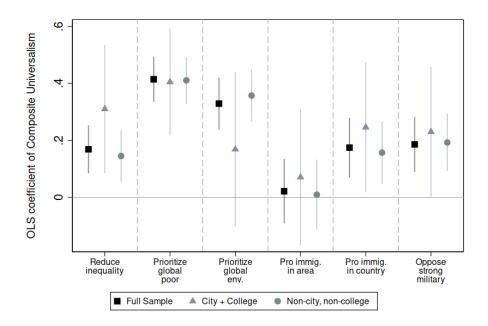


Figure B.16: Composite universalism and political views in the entire sample, city dwellers and college-educated individuals, and the sample of individuals who neither live in a city nor are college educated. OLS coefficients are from regressions of political attitudes on composite universalism, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

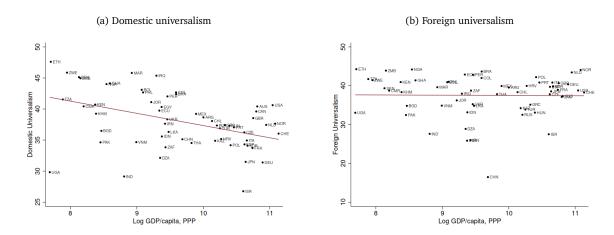


Figure B.17: Domestic / foreign universalism and log GDP per capita. 0 means that all money is shared with the in-group, 50 equal splits, and 100 that all money is shared with the socially more distant stranger.

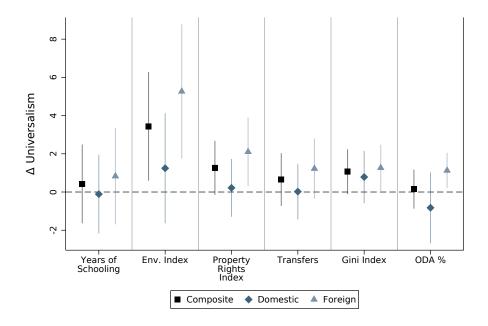


Figure B.18: Economic, Social and Political correlations: Results from OLS regressions of composite universalism on each of various country level variables, controlling for GDP. All country characteristics other than universalism are standardized into z-scores. As a result, the coefficients show by how much universalism changes (descriptively) when a country characteristic increases by one standard deviation conditional on the other variables.

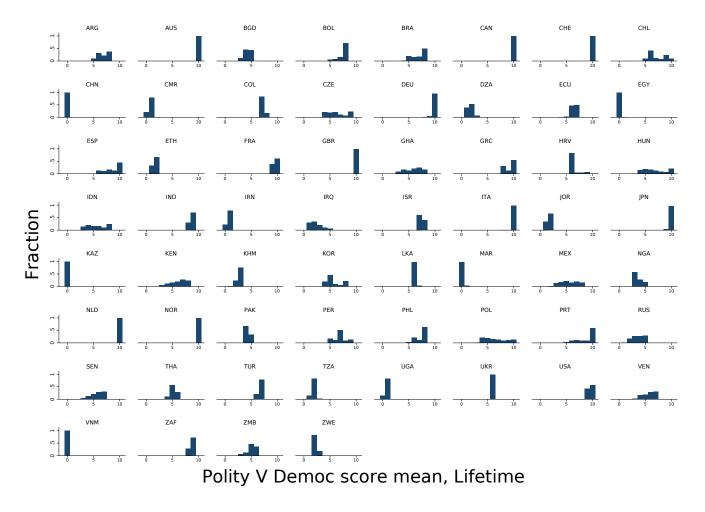


Figure B.19: Country-wise variation in exposure to democracy. Each plot shows the distribution of the average democracy (score from 0 to 10) experienced by an individual in our sample from that country.

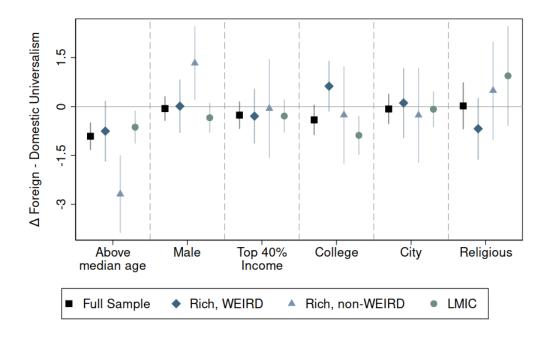


Figure B.20: Foreign minus domestic universalism and demographics. OLS coefficients from regressions of domestic universalism on demographics, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression and can be interpreted as the percentage point change in universalism. The demographic variables here are indicators; Median age and income quintiles are computed for each country separately. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

C Additional Tables

Table C.1: Pearson correlations among allocation decisions

	Family	Friend	Neighbor	Co-religionist	Co-ethnic	Compatriot
Family	1.00	0.52	0.33	0.21	0.28	0.25
Friend	0.52	1.00	0.45	0.30	0.35	0.28
Neighbor	0.33	0.45	1.00	0.35	0.41	0.27
Co-religionist	0.21	0.30	0.35	1.00	0.45	0.26
Co-ethnic	0.28	0.35	0.41	0.45	1.00	0.30
Compatriot	0.25	0.28	0.27	0.26	0.30	1.00

Notes. Pairwise correlations, pooled across treatments.

Table C.2: Spearman rank correlations among allocation decisions

	Family	Friend	Neighbor	Co-religionist	Co-ethnic	Compatriot
Family	1.00	0.55	0.37	0.23	0.28	0.26
Friend	0.55	1.00	0.46	0.31	0.34	0.28
Neighbor	0.37	0.46	1.00	0.36	0.41	0.27
Co-religionist	0.23	0.31	0.36	1.00	0.44	0.25
Co-ethnic	0.28	0.34	0.41	0.44	1.00	0.30
Compatriot	0.26	0.28	0.27	0.25	0.30	1.00

Notes. Spearman rank order pairwise correlations, pooled across treatments.

Table C.3: Treatment effects on universalism

	Composite Universalism		Dom	estic	Foreign	
	(1)	(2)	(3)	(4)	(5)	(6)
Moral	0.604*** (0.135)	0.518*** (0.134)	0.394*** (0.147)	0.374** (0.148)	0.773*** (0.185)	0.617*** (0.183)
Constant	36.280*** (0.338)	36.742*** (0.541)	37.369*** (0.343)	37.166*** (0.558)	35.650*** (0.403)	36.205*** (0.739)
Country FE	No	Yes	No	Yes	No	Yes
Demog. controls	No	Yes	No	Yes	No	Yes
Adjusted <i>R</i> ² Observations	0.000 63788	0.073 57769	0.000 63230	0.066 57353	0.000 61753	0.056 56016

Notes. OLS results from regressing recoded universalism on an indicator for the *Moral* treatment, controlling for demographic and country characteristics. Controls are a person's age, square of the age and indicators for the country of residence and whether the person is male, college educated, religious, lives in a city, is in the top 40% of the income distribution in the country sample. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.4: Composite universalism and Demographics: Full Sample

			Dependent	variable: Un	iversalism		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Above med. age	-1.922*** (0.168)						-1.779*** (0.177)
Male		-2.075*** (0.169)					-2.000*** (0.185)
Top 40 income			-0.499*** (0.154)				-0.276* (0.160)
College education				-0.696*** (0.179)			-0.687*** (0.183)
City dweller					-0.111 (0.183)		-0.135 (0.191)
Religious						-1.162*** (0.256)	-1.155*** (0.255)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R ² Observations	0.087 63788	0.087 63788	0.084 63788	0.083 63423	0.083 63516	0.063 58302	0.071 57769

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. The coefficients and standard errors here are used in plotting the values in figure 5. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.5: Composite universalism and Demographics: WEIRD countries

		Dependent variable: Universalism						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Above med. age	-2.399*** (0.320)						-2.209*** (0.312)	
Male		-1.748*** (0.295)					-1.873*** (0.301)	
Top 40 income			-0.371 (0.267)				-0.292 (0.259)	
College education				0.692** (0.336)			0.644* (0.341)	
City dweller					0.664* (0.348)		0.437 (0.352)	
Religious						-1.901*** (0.346)	-1.631*** (0.346)	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Adjusted <i>R</i> ² Observations	0.013 12852	0.010 12852	0.008 12852	0.008 12784	0.008 12803	0.010 12668	0.019 12564	

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. The coefficients and standard errors here are used in plotting the values in figure 5. The sample is restricted to individuals from WEIRD countries. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.6: Composite universalism and Demographics: High income, non-WEIRD countries

		D	ependent v	ariable: U	niversalisn	ı	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Above med. age	-2.172*** (0.534)						-2.214*** (0.530)
Male		-1.943*** (0.469)					-2.021*** (0.493)
Top 40 income			-0.390 (0.446)				-0.412 (0.504)
College education				-0.284 (0.400)			-0.483 (0.414)
City dweller					0.664 (0.517)		0.567 (0.499)
Religious						-0.671 (0.596)	-0.488 (0.576)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R ² Observations	0.041 7878	0.040 7878	0.038 7878	0.038 7847	0.038 7863	0.038 7694	0.045 7653

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. The coefficients and standard errors here are used in plotting the values in figure 5. The sample is restricted to individuals from high income countries that are not classified as WEIRD. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.7: Composite universalism and Demographics: LMICs

		Dependent variable: Universalism							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Above med. age	-1.735*** (0.205)						-1.501*** (0.222)		
Male		-2.198*** (0.219)					-2.051*** (0.248)		
Top 40 income			-0.557*** (0.198)				-0.183 (0.206)		
College education				-1.360*** (0.232)			-1.404*** (0.245)		
City dweller					-0.460** (0.229)		-0.443* (0.245)		
Religious						-0.204 (0.446)	-0.419 (0.447)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Adjusted <i>R</i> ² Observations	0.114 43058	0.116 43058	0.112 43058	0.112 42792	0.112 42850	0.083 37940	0.092 37552		

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. The coefficients and standard errors here are used in plotting the values in figure 5. The sample is restricted to individuals from Low- and Middle-income countries. * p < 0.10, *** p < 0.05, *** p < 0.01.

Table C.8: Decomposition of demographic differences in universalism

	Dependent variable: Composite Universalism						
	Base	eline	Mo	oral	Full s	ample	
	(1)	(2)	(3)	(4)	(5)	(6)	
Above median age	-2.30*** (0.21)	-2.37*** (0.22)	-1.55*** (0.22)	-1.61*** (0.23)	-1.55*** (0.22)	-1.60*** (0.23)	
Male	-2.44*** (0.22)	-2.42*** (0.24)	-1.72*** (0.21)	-1.80*** (0.22)	-1.77*** (0.21)	-1.84*** (0.22)	
College education		-0.82*** (0.26)		-0.51** (0.23)		-0.40* (0.23)	
City dweller		-0.00 (0.24)		-0.21 (0.22)		-0.14 (0.21)	
Religious		-0.30 (0.29)		0.11 (0.29)		-0.09 (0.27)	
Top 40% income						-0.30 (0.19)	
Above median age × Baseline					-0.75*** (0.26)	-0.78*** (0.27)	
Male × Baseline					-0.62** (0.26)	-0.50* (0.27)	
College × Baseline						-0.41 (0.31)	
City × Baseline						0.11 (0.26)	
Religious × Baseline						-0.05 (0.26)	
Top 40% income × Baseline						0.08 (0.25)	
Baseline					0.14 (0.22)	0.19 (0.33)	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	
Adjusted <i>R</i> ² Observations	0.09 31670	0.09 28726	0.09 32118	0.10 29241	0.09 63788	0.09 57967	

Notes. OLS estimations of composite universalism on demographic variables and their interactions with an indicator for the *Moral* treatment. Standard errors (in parentheses) are clustered at the sampling unit level. The demographic variables are indicators with a value of 1 indicating whether an individual has the attribute. * p < 0.10, *** p < 0.05, **** p < 0.01.

Table C.9: Composite universalism and civic engagement / community attachment

	Help a	Stranger	Move	away
	(1)	(2)	(3)	(4)
Universalism / 100	0.116*** (0.014)	0.120*** (0.015)	0.042*** (0.014)	0.033** (0.015)
Above med. age		-0.033*** (0.005)		-0.084*** (0.005)
Male		0.038*** (0.005)		0.024*** (0.004)
College education		0.023*** (0.005)		0.004 (0.004)
City dweller		0.023*** (0.005)		-0.003 (0.005)
Top 40 income		0.014*** (0.005)		-0.006 (0.004)
Secular/Atheist		-0.001 (0.007)		0.021*** (0.005)
Country FE	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes
Adjusted R ² Observations	0.105 63450	0.115 57490	0.091 61199	0.111 55452

Notes. OLS estimates of various indicators of civic engagement on composite universalism and demographic indicators. Standard errors (in parentheses) are clustered at the sampling unit level. Universalism is divided by 100 for expositional ease. (1)-(4): Indicators for social engagement are coded such that 0 indicates "No" to each question. All regressions control for country and treatment fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.10: Composite universalism and political views

		Dependent variable:							
	Reduce	Prioritize g	global vs. domestic	Pro im	migrants	Weak			
	Inequality	poor	environment	in area	in country	military			
	(1)	(2)	(3)	(4)	(5)	(6)			
Universalism / 100	0.171***	0.409***	0.316***	0.047	0.203***	0.204***			
	(0.042)	(0.041)	(0.047)	(0.058)	(0.053)	(0.048)			
Age	0.001*	-0.000	-0.004***	0.001**	-0.000	-0.003***			
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)			
Male	-0.049***	-0.003	-0.020	-0.004	0.054***	-0.006			
	(0.013)	(0.012)	(0.014)	(0.014)	(0.014)	(0.015)			
College education	0.004	0.069***	0.120***	0.148***	0.142***	0.163***			
	(0.015)	(0.015)	(0.017)	(0.019)	(0.020)	(0.017)			
City dweller	0.035**	-0.000	0.016	-0.158***	-0.010	0.053***			
	(0.014)	(0.013)	(0.015)	(0.018)	(0.017)	(0.017)			
Income quintile	-0.004	0.012***	0.011**	0.009	0.008	0.013**			
	(0.005)	(0.005)	(0.005)	(0.006)	(0.005)	(0.005)			
Country FE	Yes	Yes	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes			
Adjusted <i>R</i> ² Observations	0.065	0.151	0.158	0.146	0.200	0.253			
	19225	19424	19167	22124	21745	19100			

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. Universalism is divided by 100 for expositional ease. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.11: Composite universalism and political views: Controlling for Religiosity

			Dependent vari	able:		
	Reduce	Prioritize	global vs. domestic	Pro in	nmigrants	Weak
	Inequality	poor	environment	in area	in country	military
	(1)	(2)	(3)	(4)	(5)	(6)
Domestic universalism / 100	0.18*** (0.04)	0.08** (0.04)	0.09** (0.04)	0.23*** (0.05)	0.07 (0.05)	-0.06 (0.04)
Foreign universalism / 100	-0.00 (0.03)	0.34*** (0.03)	0.23*** (0.03)	-0.01 (0.05)	0.23*** (0.05)	0.22*** (0.04)
College education	0.00 (0.02)	0.07*** (0.02)	0.12*** (0.02)	0.14*** (0.02)	0.15*** (0.02)	0.15*** (0.02)
Income quintile	-0.01 (0.00)	0.01** (0.01)	0.01* (0.01)	0.01* (0.01)	0.01** (0.01)	0.01** (0.01)
Religious	-0.04* (0.02)	-0.04 (0.02)	-0.12*** (0.03)	-0.12*** (0.03)	-0.18*** (0.03)	-0.28*** (0.03)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes
Demographic controls	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R^2 Observations	0.066 17985	0.156 18074	0.166 17875	0.163 17682	0.220 17471	0.267 17897

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. Universalism is divided by 100 for expositional ease. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.12: Political Views and Composite Universalism in sub-samples

	Dependent vo	ıriable: Foc	us on reducing inequa	lity (inverted)
	Full sample (1)	WEIRD (2)	HIC, Non-WEIRD (3)	LMIC (4)
Universalism / 100	0.169*** (0.043)	0.466*** (0.085)	0.186* (0.101)	0.055 (0.054)
Country FE	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes
Adjusted <i>R</i> ² Observations	0.063 19753	0.046 4335	0.102 2621	0.060 12797

Table C.13: Political Views and Composite Universalism in sub-samples

	Dependent variable: Focus global vs local poor						
	Full sample (1)	WEIRD (2)	HIC, Non-WEIRD (3)	LMIC (4)			
Universalism / 100	0.414*** (0.040)	0.749*** (0.094)	0.469*** (0.082)	0.279*** (0.047)			
Country FE	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes			
Adjusted R ² Observations	0.146 19942	0.071 4364	0.110 2570	0.041 13008			

Notes. Estimates from OLS of responses to survey questions on political views (coded from 1 to 4, coded such that 4 is the predicted correlation with universalism) on universalism, controlling for treatment and country effects with robust standard errors, clustered at the sampling unit level. The coefficients and standard errors here are used in plotting the values in figure 9. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.14: Political Views and Composite Universalism in sub-samples

	Dependent variable: Focus global vs local environment						
	Full sample (1)	WEIRD (2)	HIC, Non-WEIRD (3)	LMIC (4)			
Universalism / 100	0.329*** (0.047)	0.807*** (0.095)	0.383*** (0.127)	0.143** (0.056)			
Country FE	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes			
Adjusted R ² Observations	0.150 19700	0.036 4229	0.117 2529	0.052 12942			

Table C.15: Political Views and Composite Universalism in sub-samples

	Dependent variable: Too many immigrants in are						
	Full sample (1)	WEIRD (2)	HIC, Non-WEIRD (3)	LMIC (4)			
Universalism / 100	0.022 (0.057)	0.509*** (0.102)	0.107 (0.135)	-0.133* (0.072)			
Country FE	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes			
Adjusted R ² Observations	0.137 22619	0.103 4144	0.220 2586	0.075 15889			

Notes. Estimates from OLS of responses to survey questions on political views (coded from 1 to 4, coded such that 4 is the predicted correlation with universalism) on universalism, controlling for treatment and country effects with robust standard errors, clustered at the sampling unit level. The coefficients and standard errors here are used in plotting the values in figure 9. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.16: Political Views and Composite Universalism in sub-samples

	Dependent variable: Too many immigrants in country						
	Full sample (1)	WEIRD HIC, Non-WEI		D LMIC (4)			
Universalism / 100	0.175*** (0.053)	0.932*** (0.109)	0.361** (0.138)	-0.073 (0.060)			
Country FE	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes			
Adjusted R ² Observations	0.192 22225	0.137 4215	0.270 2482	0.121 15528			

Table C.17: Political Views and Composite Universalism in sub-samples

	Dependent variable: Focus on strong military						
	Full sample (1)	WEIRD (2)	HIC, Non-WEIRD (3)	LMIC (4)			
Universalism / 100	0.186*** (0.049)	0.499*** (0.107)	0.496*** (0.150)	-0.013 (0.051)			
Country FE	Yes	Yes	Yes	Yes			
Treatment FE	Yes	Yes	Yes	Yes			
Adjusted <i>R</i> ² Observations	0.240 19628	0.157 4205	0.165 2593	0.131 12830			

D Results Without Recoding of Allocation Decisions

D.1 Figures

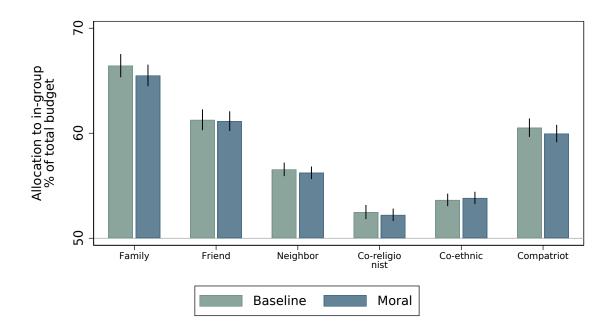


Figure D.1: Mean money allocations to the in-group by treatment. Each bar indicates how much of the budget was given to the in-group. Whiskers show 95% confidence intervals, computed based on clustering at the sampling unit level.

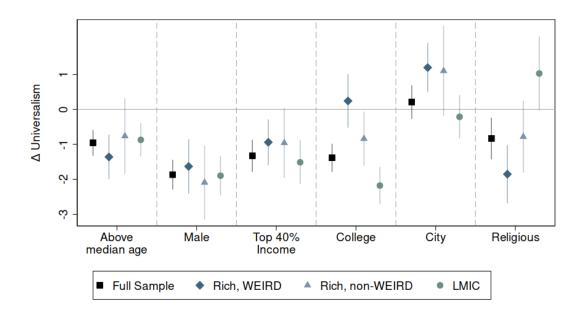
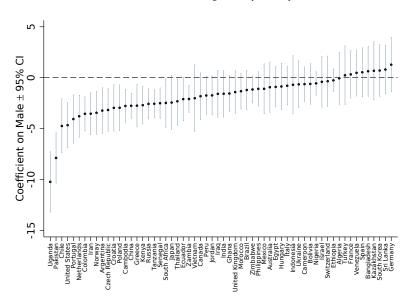



Figure D.2: Universalism and demographics. OLS coefficients from regressions of composite universalism on demographics, controlling for country and treatment fixed effects. Each coefficient reflects the results of a separate regression and can be interpreted as the percentage point change in universalism. Median age and income percentiles are computed separately for each country based on the sample. All demographics are coded to be binary. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

(a) Universalism and gender by country

(b) Universalism and urban residence by country

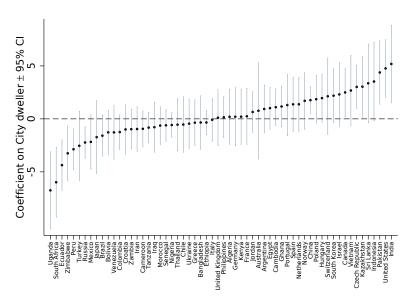


Figure D.3: Composite universalism and gender / urban residence by country. The figures show the country-specific OLS coefficients of regressions of composite universalism on a male dummy (top panel) / a city dummy (bottom panel), controlling for treatment fixed effects. The coefficients can be interpreted as the percentage point change in universalism. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

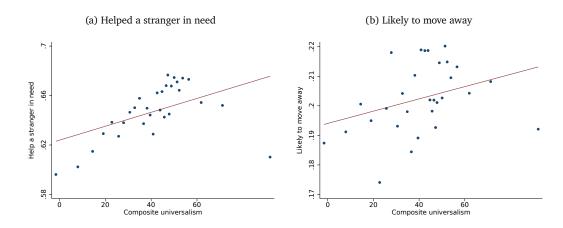


Figure D.4: Universalism and civic engagement / community attachment. Each panel is constructed based on 63450 to 61199 respondents and shows a binned scatter plot that, for a given level of universalism, computes the average probability of (a) having helped a stranger and (b) saying it is likely that one will move away in next year. Both panels are constructed controlling for country and treatment FE.

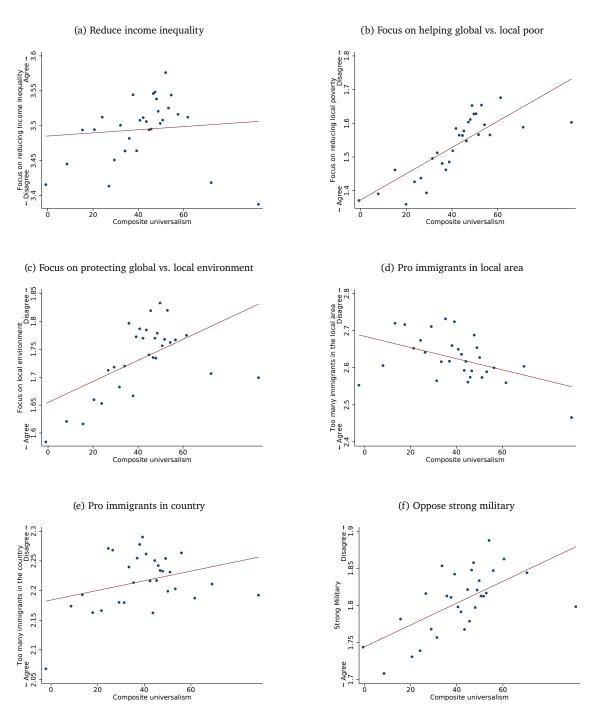


Figure D.5: Composite universalism and political views. The figures show binned scatter plots that average support for a given policy for a given level of universalism. The figures are constructed controlling for country and treatment FE. All variables are (re-)coded such that our pre-analysis plan predicts a positive relationship, and the panel captions indicate the meaning of the correlation. The sample size varies between N = 18,735 and N = 21,724 across panels.

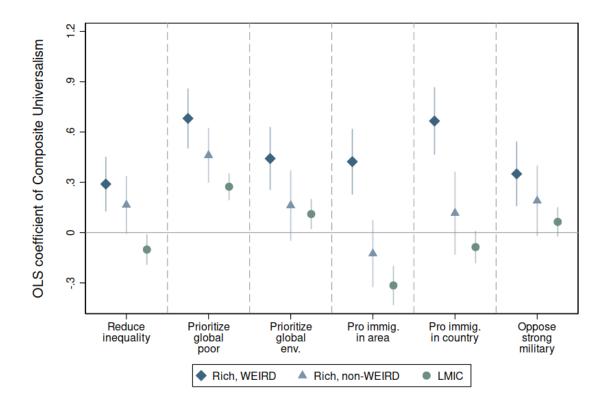


Figure D.6: Composite universalism and political views in different sub-samples. OLS coefficients from regressions of political attitudes on composite universalism, controlling for country and treatment fixed effects. Whiskers show 95% confidence intervals, computed based on robust standard errors, clustered at the sampling unit level.

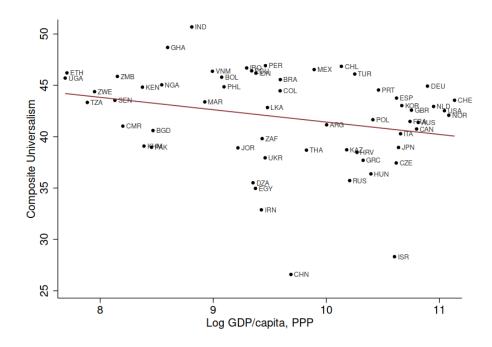


Figure D.7: Composite universalism and log GDP per capita. 0 Universalism means full in-group favoritism, 50 equal splits between the in- and out-groups, and 100 full out-group favoritism.

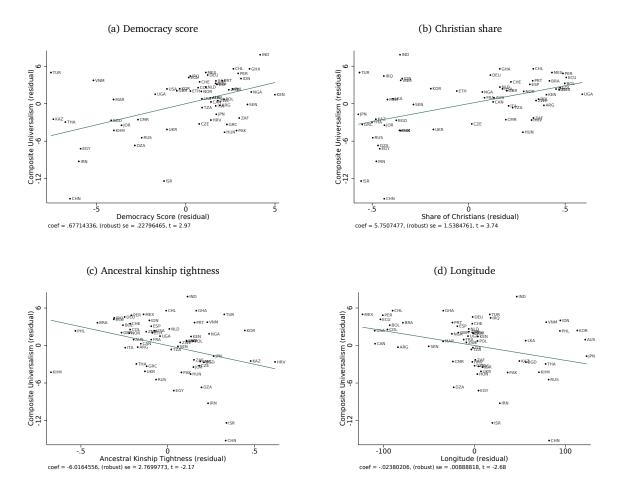


Figure D.8: Added variable plots of the cross-country relationships between composite universalism and democracy (Panel a), Christian share (Panel b), ancestral kinship tightness (Panel c) and longitude (Panel d). Each panel is constructed controlling for log per capita income. 0 Universalism means full in-group favoritism, 50 means equal splits between the in- and out-groups, and 100 means full out-group favoritism.

D.2 Tables

Table D.1: Decomposition of demographic differences in universalism

	Dependent variable: Composite Universalism						
	Baseline		Moral		Full s	ample	
	(1)	(2)	(3)	(4)	(5)	(6)	
Above median age	-0.91*** (0.24)	-0.90*** (0.24)	-1.01*** (0.25)	-1.05*** (0.25)	-0.78 (0.48)	-0.74 (0.49)	
Male	-2.33*** (0.28)	-2.21*** (0.28)	-1.40*** (0.26)	-1.25*** (0.26)	-3.13*** (0.55)	-3.05*** (0.55)	
Above median age \times <i>Moral</i>					-0.12 (0.31)	-0.16 (0.31)	
Male × Moral					0.84*** (0.32)	0.88*** (0.32)	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	
Demographic controls	No	Yes	No	Yes	No	Yes	
Treatment FE	No	No	No	No	Yes	Yes	
Adjusted R ² Observations	0.08 31670	0.09 30863	0.08 32118	0.09 31317	0.08 63788	0.09 62180	

Notes. OLS estimations of composite universalism on demographic variables and their interactions with an indicator for the *Moral* treatment. Standard errors (in parentheses) are clustered at the sampling unit level. Controls include college degree, urban residence, and income quintile fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table D.2: Universalism and political views

			Dependent vari	able:		
	Reduce	Prioritize	global vs. domestic	Pro in	Weak	
	Inequality	poor	environment	in area	in country	military
	(1)	(2)	(3)	(4)	(5)	(6)
Domestic universalism / 100	0.13*** (0.04)	0.07** (0.03)	0.03 (0.04)	0.06 (0.04)	0.03 (0.04)	-0.06 (0.04)
Foreign universalism / 100	-0.05 (0.03)	0.33*** (0.03)	0.16*** (0.03)	-0.18*** (0.04)	0.08* (0.04)	0.22*** (0.04)
College education	-0.00 (0.02)	0.08*** (0.02)	0.12*** (0.02)	0.15*** (0.02)	0.15*** (0.02)	0.16*** (0.02)
Income quintile	-0.01 (0.00)	0.01*** (0.00)	0.01** (0.01)	0.01 (0.01)	0.01* (0.01)	0.02*** (0.01)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes
Demographic controls	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R^2 Observations	0.065 18528	0.156 18676	0.162 18478	0.149 21248	0.204 20951	0.258 18430

Notes. Estimates from OLS with robust standard errors, clustered at the sampling unit level. Universalism is divided by 100 for expositional ease. * p < 0.10, *** p < 0.05, **** p < 0.01.

Table D.3: Exposure to democracy and universalism: Variation across country-age-cohorts

	Dependent variable: Universalism						
	(Composite Domestic Forei					eign
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Lifetime average democracy score	0.11 (0.11)	0.12 (0.11)	0.05 (0.12)	0.16 (0.12)	0.13 (0.12)	0.10 (0.14)	-0.04 (0.14)
Lifetime average log GDP p/c		1.64 (1.09)	1.24 (1.14)	-0.14 (1.08)	-0.42 (1.12)	2.94** (1.34)	2.41* (1.41)
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Age FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Treatment FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Demographic controls	No	No	Yes	No	Yes	No	Yes
Adjusted R^2 Observations	0.08 55323	0.08 55323	0.09 53826	0.04 54867	0.05 53391	0.10 53765	0.11 52332

Notes. OLS estimates of universalism on democracy exposure with robust standard errors, clustered at the level of 3,468 country-age cells. Exposure to democracy is constructed by taking the mean of the Democracy score time series in the Polity V database over the respondent's lifetime. Demographic controls include gender, income quintile fixed effects, college degree and an indicator for whether an individual lives in a big city. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table D.4: Exposure to democracy and universalism: Variation across migrants

Dependent variable: Universalism Composite Domestic Foreign (2)(1) (3)(4)(5) (6) (7) 0.49*** 0.23^{*} 0.33** 0.30** 0.48*** Democracy score in home country 0.15 0.09 (0.12)(0.14)(0.14)(0.14)(0.14)(0.19)(0.19)Log GDP p/c in home country -0.20 -0.06 0.00 -0.07 -0.40 -0.15 (0.46)(0.49)(0.50)(0.51)(0.63)(0.67)Country FE Yes Yes Yes Yes Yes Yes Yes Age FE Yes Yes Yes Yes Yes Yes Yes Treatment FE Yes Yes Yes Yes Yes Yes Yes Demographic controls No No Yes No Yes No Yes Adjusted R² 0.08 0.08 0.06 0.06 0.08 0.08 0.08 Observations 2741 2424 2387 2398 2451 2412 2363

Notes. OLS estimates of universalism on democracy in a migrant's country of origin. Standard errors are clustered at the level of 151 countries of origin. Demographic controls include gender, income quintile fixed effects, college degree and an indicator for whether an individual lives in a big city. $^*p < 0.10, ^{**}p < 0.05, ^{***}p < 0.01.$

E Variable Descriptions for Country-Level Variables

Kinship score: The Kinship tightness variable from Enke (2019) which captures the strength of ancestral kinship ties at the country level.

Family ties: Constructed using the methodology described in Alesina and Giuliano (2013). Using data from the 3rd and 4th waves of the World Values Survey, we focus on the three questions represented by the variables V4, V13, V14. The final variable is the first principal component of these three variables, averaged at the country level.

Democracy: This is a score from 0 to 10 with 10 being the most democratic (insofar as that can be defined and indexed). The elements of this index are: Competitiveness of Executive Recruitment, Openness of Executive Recruitment, Constraint on Chief Executive and Competitiveness of Political Participation. Taken from Polity V dataset.

Gini index: This is the Gini index, using the most recent value that is available for each country in the World Bank WDI database.

Share Christians This is the share of Christians in a country. Data taken from Barro (2003).

Development Aid: Official Development Assistance as a percent of Gross National Income. Data from OECD/WDI. This variable is only available for a few countries in the sample.

Environmental Indices: Environmental health, Ecological Vitality and the Environmental Performance Index are drawn from the 2020 release of the Environmental Performance Index.

Property Rights: We use measures of property rights and other governance indicators from the Quality of Governance data set (2021 release).

Years of Schooling: We use the data collected by Barro and Lee (2012).

Family Ties: We construct a measure of family ties by collating various waves of the World Values Survey. Following the procedure in Alesina and Giuliano (2013), our measure is the first principal component of V4 (Importance of family), V13 (Respect and love for parents) and V14 (Parents responsibilities to their children).

Government transfers: We use the transfers series from the World Development Indicators.

Religion: We use the country shares of each religion from the Barro (2003) data set.