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ABSTRACT

Abadie’s Kappa and Weighting Estimators
of the Local Average Treatment Effect’

In this paper we study the finite sample and asymptotic properties of various weighting
estimators of the local average treatment effect (LATE), several of which are based
on Abadie (2003)s kappa theorem. Our framework presumes a binary endogenous
explanatory variable (“treatment”) and a binary instrumental variable, which may only
be valid after conditioning on additional covariates. We argue that one of the Abadie
estimators, which we show is weight normalized, is likely to dominate the others in many
contexts. A notable exception is in settings with one-sided noncompliance, where certain
unnormalized estimators have the advantage of being based on a denominator that is
bounded away from zero. We use a simulation study and three empirical applications
to illustrate our findings. In applications to causal effects of college education using the
college proximity instrument (Card, 1995) and causal effects of childbearing using the
sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates
are clearly unreasonable, with “incorrect” signs, magnitudes, or both. Overall, our results
suggest that (i) the relative performance of different kappa weighting estimators varies
with features of the data-generating process; and that (i) the normalized version of Tan
(2006)'s estimator may be an attractive alternative in many contexts. Applied researchers
with access to a binary instrumental variable should also consider covariate balancing or
doubly robust estimators of the LATE.
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1 Introduction

A large literature following Imbens and Angrist (1994) focuses on identification and estimation of
the local average treatment effect (LATE), that is, the average effect of treatment for “compliers,”
whose treatment status is affected by a binary instrument. In an important contribution to this
literature, Abadie (2003) demonstrates how to identify any parameter that is defined in terms of
moments of the joint distribution of the data for compliers. The result is based on “kappa weight-
ing,” with weights that depend on the instrument propensity score. Abadie (2003)’s theorem has
been highly influential in applied work, and it is now routinely used to estimate mean covariate
values for compliers (e.g., Angrist et al., 2013; Dahl et al., 2014; Bisbee et al., 2017) and to ap-
proximate the conditional mean of an outcome of interest in this subpopulation (e.g., Cruces and
Galiani, 2007; Angrist et al., 2013; Goda et al., 2017). At the same time, it is surprisingly un-
common among practitioners to use methods based on kappa weighting to estimate the LATE,
even though Abadie (2003)’s result has also spurred a growing literature in econometrics, which
indeed focuses on the LATE and its quantile counterparts (e.g., Frolich and Melly, 2013; Abadie
and Cattaneo, 2018; Sant’ Anna et al., 2020; Singh and Sun, 2021).

There is also an alternative way to construct weighting estimators of the LATE, which follows
from the identification result in Frolich (2007). This result implies that the ratio of any consistent
estimator of the average treatment effect (ATE) of the instrument on the outcome and any consistent
estimator of its ATE on the treatment is consistent for the LATE. A simple approach is to estimate
the LATE as the ratio of two particular weighting estimators. Although the recent literature in
econometrics and statistics has adopted this approach, it focuses primarily on the ratio of two
unnormalized estimators (Tan, 2006; Frolich, 2007; MaCurdy et al., 2011; Donald et al., 2014a,b;
Abdulkadiroglu et al., 2017), despite the fact that weighting estimators of the ATE are known to
exhibit poor properties in finite samples when they are not normalized, i.e. when their weights do
not sum to unity (Imbens, 2004; Millimet and Tchernis, 2009; Busso et al., 2014).!

In this paper we provide a comprehensive treatment of both approaches to constructing weight-
ing estimators of the LATE. We also stress the importance of normalization. We begin with an
observation that Abadie (2003)’s theorem lends itself to constructing a number of consistent es-
timators of the LATE, only one of which is normalized. We argue that this estimator, which is
different from the normalized version of Tan (2006)’s estimator, is likely to dominate the other
kappa weighting estimators in most cases, with an important exception of settings with one-sided
noncompliance. Indeed, we demonstrate that a particular unnormalized estimator is based on a

denominator that is bounded away from zero whenever there are no always-takers, that is, individ-

'An important recent exception is Heiler (2021), who considers both unnormalized and normalized weighting
while generally focusing on covariate balancing estimators of the LATE.



uals who participate in the treatment regardless of the value of the instrument. Such boundedness
is an important property for a ratio estimator (cf. Andrews et al., 2019). Interestingly, we also show
that this particular unnormalized estimator is, in fact, identical to Tan (2006)’s original weighting
estimator. There is also another unnormalized estimator, which has not been studied before and
whose denominator is bounded away from zero whenever there are no never-takers, that is, indi-
viduals who never participate in the treatment. Finally, we study the asymptotic properties of all
the estimators under consideration. To do this, we assume that the researcher adopts a parametric
model for the instrument propensity score and estimates the unknown parameters by maximum
likelihood (cf. Sant’Anna et al., 2020). In a unified framework of M-estimation, our weighting
estimators are asymptotically normal, and we derive their asymptotic variances.

To illustrate our findings, we use a simulation study and three empirical applications. The
simulations confirm the stability of the appropriate unnormalized estimators in settings with one-
sided noncompliance. In general, however, the normalized version of Tan (2006)’s estimator is
more stable than the normalized and unnormalized kappa weighting estimators. As we show, the
instabilities are driven by near-zero denominators in a handful of replications. Thus, it is an open
question whether this issue will play a central role in applications. It turns out that, in the three
empirical applications that we consider, it does not.

Our empirical applications focus on causal effects of military service (Angrist, 1990), college
education (Card, 1995), and childbearing (Angrist and Evans, 1998). In each of these applications,
we document what we consider to be superiority of normalized over unnormalized weighting. In
our replication of Angrist (1990), the unnormalized estimates are highly variable across different
specifications, which is not the case for the instrumental variables (IV) estimates or normalized
weighting. In our replication of Card (1995), the IV estimates are unreasonably large, which is not
the case for the normalized weighting estimates; the unnormalized estimates, on the other hand, are
either even larger than the IV estimates or, in fact, negative, which is unreasonable for estimates of
causal effects of college education. Finally, in our replication of Angrist and Evans (1998), some
of the unnormalized estimates of the effect of childbearing on log wages of mothers are positive,
which is again not believable.

We recommend that applied researchers with access to a binary instrumental variable either
restrict their attention to normalized weighting estimators or consider other flexible approaches
to estimation. These could include covariate balancing estimators of the LATE, as studied by
Sant’Anna et al. (2020) and Heiler (2021), and doubly robust estimators of this parameter, as
recommended by Tan (2006), Uysal (2011), Ogburn et al. (2015), Belloni et al. (2017), Singh and
Sun (2021), and Stoczynski et al. (2022).

The remainder of the paper is organized as follows. Section 2 introduces our framework and

provides our theoretical results. Section 3 illustrates our results with a simulation study. Section 4



discusses our empirical applications. Section 5 concludes.

2 Theory

2.1 Setup and Notation

The framework of this paper is standard and broadly follows Abadie (2003). Let Y denote the
outcome variable of interest, D the binary treatment, and Z the binary instrument for D. We also
introduce a vector of observed covariates, X, that predict Z. Thus, the instrument propensity score
can be written as p(X) = P(Z = 1| X).

There are two potential outcomes, Y| and Y;, only one of which is observed for a given indi-
vidual, Y = D - Y, + (1 — D) - Yy. Similarly, there are two potential treatments, D, and D, and it
is instrument assignment that determines which of them is observed, D = Z - Dy + (1 — Z) - D,.
Individuals with Z = 1 are sometimes referred to as those with the instrument “switched on” or,
without loss of generality, those who are encouraged to get treatment. It is also useful to include
Z in the definition of potential outcomes, letting Y., denote the potential outcome that a given
individual would obtain if Z = zand D = d.

Angrist et al. (1996) divide the population into four mutually exclusive subgroups based on the
latent values of D; and Dy. Individuals with D, = Dy = 1 are referred to as always-takers, as they
get treatment regardless of whether they are encouraged to do so or not; similarly, individuals with
D, = Dy = 0 are referred to as never-takers. Individuals with D; = 1 and Dy, = 0 are referred
to as compliers, as they comply with their instrument assignment; they get treatment if they are
encouraged to do so but not otherwise. Analogously, individuals with D; = 0 and Dy = 1 are
referred to as defiers, as they defy their instrument assignment.

As usual, we define the treatment effect as the difference in the outcomes with and without
treatment, Y; — Y. Following Imbens and Angrist (1994), a large literature has been concerned

with identification and estimation of the local average treatment effect (LATE), defined as
TLate = E(Y1 = Yo | Dy > Dy),

i.e. as the average treatment effect for compliers or, in other words, for those individuals who would

be induced to get treatment by the change in Z from zero to one.

2.2 Identification

In this section we review a general identification result due to Abadie (2003), which we will use to

discuss identification and estimation of 7 xtg. We begin by restating Abadie (2003)’s assumptions.



Assumption 1. (i) Independence of the instrument: (Yoo, Yo1, Y10, Y11, Do, D1) L Z | X.
(i1) Exclusion of the instrument: P(Y,; = Yo, | X) = 1 for d € {0, 1} a.s.
(ii1) Firststage: 0 <P(Z=1|X)<1landP(D; =1|X)>P(Dy=1]|X) a.s.
(iv) Monotonicity: P(D; > Dy | X) = 1 a.s.

These assumptions are standard in the recent IV literature. Assumption 1(i) states that, conditional
on covariates, the instrument is “as good as randomly assigned.” Assumption 1(ii) implies that
the instrument only affects the outcome through its effect on treatment status; it follows that ¥, =
Y10 = Yoo and Y| = Yy = Yp;. Assumption 1(ii1) combines an overlap condition with a requirement
that the instrument affects the conditional probability of treatment. Finally, Assumption 1(iv) rules
out the existence of defiers, and implies that the population consists of always-takers, never-takers,
and compliers. Under Assumption 1, as demonstrated by Abadie (2003), any feature of the joint
distribution of (¥, D, X), (Yy, X), or (Y1, X) is identified for compliers.

Lemma 1 (Abadie 2003, pp. 236-237). Let g(-) be any measurable real function of (Y, D, X) such
that Elg(Y, D, X)| < co. Define

(1-2) - (1= p(X)
= (1-D

o = U a— o)
Z - pX)

PO (1~ p(x))’

_D(I—Z)_(I—D)Z
—pX)  p®)

K1

k = ko (1 = p(X)) + k1 p(X)

Under Assumption 1,

(@) E[g(Y.D,X) | D1 > Do] = 55555E [k 9(Y. D, X)]. Also,
(b) E[g(Yo,X) | D1 > Do] = 55555 [%0 9(¥, X)), and
(©) E[g(Y1,X) | Di > Do = 5555 [k1 9(Y, X)].

Moreover, (a—c) also hold conditional on X.

Both Abadie (2003) and the subsequent applied literature have focused on the implications of
Lemma 1(a). In particular, numerous papers have used this result to estimate mean covariate values
for compliers (e.g., Angrist et al., 2013; Dahl et al., 2014; Bisbee et al., 2017) and to approximate
the conditional mean of Y given D and X for this subpopulation (e.g., Cruces and Galiani, 2007,
Angrist et al., 2013; Goda et al., 2017). On the other hand, the implications of Lemma 1(b) and (c)

have been considered almost exclusively in the econometrics literature, where several papers have
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used these results to identify and estimate 71 o1 and quantile treatment effects (e.g., Frolich and
Melly, 2013; Abadie and Cattaneo, 2018; Sant’ Anna et al., 2020; Singh and Sun, 2021).
To see how Lemma 1(b) and (c) identifies 7 atg, take g(Yy, X) = Y, and g(Y;,X) = Yy, and

write:
1

1
TLATE = ME (k1Y) - mE (koY). (D

We can also rewrite equation (1) to obtain the following expression for Ty arg:

1 1 E[Y Z - p(X) ] o

TS By by T O 5 S | oo (- o) |
As we will see later, it is useful to treat equations (1) and (2) as distinct. In any case, it is clear that
TraTe 1S identified as long as P(D; > D) is identified. As noted by Abadie (2003), Lemma 1(a)
implies that P(D; > D) = E(k), which follows from taking g(¥, D, X) = 1. Similarly, however, we
can use Lemma 1(b) and (c) to obtain P(D; > Dy) = E(x;) and P(D; > D) = E(xp). This is not a
novel observation but we will provide a more comprehensive discussion of its consequences than
has been done in previous work. We begin with the following remarks.

Remark 1. E(x) = E(k;) - E [%g‘)] = E(k)).

Remark 2. E(x) = E(x)) - E| 552505 | = B(x).

The proofs of Remarks 1 and 2 follow from simple algebra and are omitted. The facts that

E[Z;fg)] = 0and E [%] = 0 hold by iterated expectations. It turns out that E(k) =

E(x1) = E(xp). Additionally, Lemma 1 implies that each of these objects identifies P(D; > D), the

population proportion of compliers.

2.3 Estimation

Given a random sample {(D;,Z;, X;,Y;) : i = 1,..., N}, equation (2) suggests that we can consis-

tently estimate 7 atg as follows:

N
A Z; — p(X;)

— N~ ! Yl ’
TLATE = P(D1 > Do) Z p(X;) (1 — p(X)))

i=

where IS(DI > Dy) KN P(D; > Dy) > 0. Our discussion so far also implies that there are at

least three candidate estimators for P(D; > Dy), namely N™' 3 «;, N™' 3V x;, and N7' 3V | «,

=Dz (Doz oy Zimp) ) (=2)-01-p(xy)
1

where k; = —pX)  pX) ipe-pxy and kio = (1 = D) <554=00505

. Consequently,



we have the following consistent estimators of 7y arg:

- N -1 N
A Z; — p(X;)
a = i Y,‘ , 3
i Zl K] [ZJ P (1= p(X) 3)
- N 1l N .
A Z; — p(X;)
al = i Y; , 4
Tal _;K1_ ; p(X,-)(l _P(Xi))_ “4)
N -1 - N .
A Z; — p(Xy)
ad = i Y; . 5
o ; KO, ; pX) (1 = p(X))) | ®)

One might (mistakenly, as it turns out) expect that the choice of the estimator for P(D; > Dy) is
inconsequential. We discuss this issue extensively in what follows. For now, it should suffice to
note that N~' 3V, Z"’%g") and N°' 3N #jﬁ(i{» are not generally equal to zero or to each other,
and hence N~! Zﬁ] ki, N7! Zfil ki1, and N~! Zﬁl ko will also generally be different, unlike their
population counterparts.

Lemma 1 is not the only identification result that allows us to construct consistent estimators
of the LATE. An alternative result is provided by Frolich (2007). An implication of this result
is that the ratio of any consistent estimator of the average treatment effect (ATE) of Z on Y and
any consistent estimator of the ATE of Z on D is consistent for the LATE. Given our interest in

weighting estimators, a natural candidate estimator is

N -1

|y DZ ~~Di(1-2)
A pX) & 1-pX)

N

3 YiZ, = Yi(1-2)
—ip(X) S 1-pX) |

(6)

which was first suggested by Tan (2006). This estimator is equal to the ratio of two weighting esti-
mators of the ATE of Z (on Y and D) under unconfoundedness (see, e.g., Hirano et al., 2003). The
following remark, which has not been precisely stated in previous work, clarifies the relationship

between 7, and the Abadie estimators introduced above.
Remark 3. 7, = 7.

Remark 3 states that 7, and 7,; are numerically identical, which can be seen by plugging in the

expression for k;; into equation (4):

N

R Z; — p(X;) Z; — p(X;)
al — Di Yl . 7
= | P - p(&-))] [Z %) (1= p(X) @

i=1 i=1

It is easy to see that expressions (6) and (7) are equivalent. It is also important to note that 7, (= 7,)

is by far the most popular weighting estimator of the LATE in the econometrics literature. It has



been considered by Tan (2006), Frolich (2007), MaCurdy et al. (2011), Donald et al. (2014a,b),
and Abdulkadiroglu et al. (2017), among others. As we will see in the next section, however, this

estimator has a major drawback in finite samples.

2.4 Unnormalized and Normalized Weights

Following Imbens (2004), Millimet and Tchernis (2009), and Busso et al. (2014), it is widely
understood that weighting estimators of the ATE under unconfoundedness should be normalized,
i.e. their weights should sum to unity.> It is natural to expect that normalization will also be
important when using weighting estimators of the LATE (cf. Heiler, 2021).

It follows immediately that 7, is likely inferior to the ratio of two normalized estimators of the

ATE of Z under unconfoundedness:

-1 -1
N Z N YZ _[wN _1-Z N Y(1-Z)
_ [Zi:l P(Xi)] i1 p(X;) [Zi:l I_P(Xi)] Li-1 1-p(X;)

% - s
Lorm [ZN Z ]“ N Dz _ [ZN 1-7; ]‘1 YN Dil-z)
=1 p(x;) =1 p(Xi) =1 1-p(X;) =1 1-p(X;)

which was first suggested by Uysal (2011) and subsequently applied by Bodory and Huber (2018)
and Heiler (2021). It might not be immediately obvious how the importance of normalization
affects our understanding of the Abadie estimators. To see this, note that 7,, 7,;, and 7, can
equivalently be represented as sample analogues of equation (1):

“Ir Ir oy
Ki:| [Zkilyz‘ Ki] [ZKiOYi

M=

b

i1 =1 =1 =1
vy 1w 1 178 71lirw 1
Tl = § Kil § KinYi| - E Kil E KioYi|,
=1 1 U= I = =1 ]
N Tirw 7 N “Iry 7
Tao = g Kio g KitYi| — E Kio E KioYi|.
= 1 U= I = = ]

. . . . n . -1
It turns out that none of these estimators is normalized. First, 7, uses weights of [Zf\i ] K,-] k;; and
-1 . . . . A . .
[Zﬁil K,-] Ko, which do not necessarily sum to unity across i. Second, 7, is based on weights

-1 -1
of [Zfil Kil] ki1, which are properly normalized, and [Zfil Kil] kio, which are not. Finally, 7,

. -1 . . . . -1
uses weights of [Zf\il K,-O] ki1, which do not necessarily sum to unity across i, and [Zfil Kio] Ki0»

which are properly normalized.

More recently, the importance of normalization has been stressed by Sant’ Anna and Zhao (2020) and Callaway
and Sant’Anna (2021), who focus on difference-in-differences methods and attribute the idea of normalized weighting
estimation to Hajek (1971). See also Skinner and Wakefield (2017) for further discussion.



It is straightforward to construct a normalized Abadie estimator of the LATE. It turns out that
the two denominators in equation (1) need to be estimated separately, using different estimators of
P(D, > D), N™! Zf\il kj and N~! Zﬁil k0. The resulting estimator becomes

-1

N N
Tat0 = [Z Kil] [Z KirY;

i=1 i=1

N

N -
Z KiO] [Z KioY;
P

i=1

b

-1 -1
where both sets of weights, [Zﬁl K,-l] k;; and [Zf\il K,-o] Kip, sum to unity across i. The nor-

malized estimator is also considered by Abadie and Cattaneo (2018) and Sant’ Anna et al. (2020).
While the literature on quantile treatment effects studies normalized Abadie estimators somewhat
more often (see, e.g., Frolich and Melly, 2013), the importance of normalization is also not explic-

itly recognized.

2.5 Near-Zero Denominators

Weighting estimators of the LATE, like two-stage least squares and many other IV methods, are
an example of ratio estimators. A common problem with such estimators is that they behave badly
if their denominator is close to zero. In the context of IV estimation, such behavior is usually
associated with the presence of weak instruments (see, e.g., Andrews et al., 2019).

In this section we identify two situations under which certain unnormalized estimators have the
advantage of being based on a denominator that is nonnegative by construction and bounded away
from zero in all practically relevant situations. To see this, note that Table 1 provides simplified
formulas for «, «;, and kj in each of the four subpopulations defined by their values of Z and D.
For example, k = 1if Z=1and D = 1 or Z = 0 and D = 0; moreover, « = ~ 1™ it 7 = 1 and

pX)

D=0,and x = - lf’ggo if Z=0and D = 1. It follows that N' 37 | «; is the mean of a collection

of positive and negative values, and hence it can be positive, negative, or zero. This is despite

Table 1: Simplified Formulas for «, «;, and &, in Subpopulations Defined by Z and D

K sgn(k) K1 sgn(ky) Ko sgn(kp)
Z=1,D=1 1 + 5 + 0 0
Z=1,D=0 - - 0 0 -5 -
Z=0,D=1 -5 - Ry - 0 0
Z=0,D=0 1 + 0 0 =m +




the fact that N~' Y% k; is also a consistent estimator of the proportion of compliers, which is
obviously nonnegative (and, in fact, strictly positive under Assumption 1). Similarly, N~' ¥V «;
and N™' 3 k; are also not guaranteed to be positive or bounded away from zero.

The situation turns out to be different in settings with one-sided noncompliance, i.e. when
individuals with Z = 1 or individuals with Z = 0 fully comply with their instrument assignment. If
all individuals with Z = 1 get treatment or, equivalently, there are no never-takers, then the second
row of Table 1 is empty and P(ky, > 0) = 1. This is the case, for example, in studies that use
twin births as an instrument for fertility (e.g., Angrist and Evans, 1998; Farbmacher et al., 2018).
Similarly, if there are no always-takers or, equivalently, no individuals with Z = 0 get treatment,
then P(k; > 0) = 1. This is the case, for example, in randomized trials with noncompliance that
make it impossible to access treatment if not offered. An implication of these observations is that
in settings with one-sided noncompliance there exist estimators of P(D; > D), and perhaps also

the LATE, that have some desirable properties in finite samples.
Remark 4. If there are no always-takers, N-' YN ki > P(D = 1) > 0.
Remark 5. If there are no never-takers, N~ Zf\il Kip > f’(D =0)>0.

Proof. To prove Remark 4, note that zﬁ > 1 by Assumption 1(iii). If there are no always-takers,

then P(Z = 0,D = 1) = 0. It follows that N"' YN .y > N1+ 1+---+1+0+0+---+0| =
N-P(D=1) N-P(D=0)
P(D = 1). The proof of Remark 5 is analogous. O

Remarks 4 and 5 demonstrate that settings with one-sided noncompliance offer a choice of estima-
tors of P(D; > D) that are bounded from below by the sample proportion of treated or untreated
units. Note that this property preserves a particular logical consistency of these estimators. If there
are no always-takers and no defiers, every treated individual must be a complier. Similarly, every
untreated individual must be a complier if there are no never-takers and no defiers.

An implication of Remarks 4 and 5 is that certain unnormalized estimators have the advan-
tage of avoiding near-zero denominators in settings with one-sided noncompliance. If there are no
always-takers or never-takers, we expect 7,; and 7,0, respectively, to perform relatively well in
finite samples. Whether or not this dominates the disadvantage that these estimators are unnormal-
ized is an empirical issue. Note, however, that if N™' YV k;; is away from zero but N™! 37 ko
is not, then this will negatively affect the performance of not only 7, but also 7, ;9. Likewise, if

N~ Zﬁ\i | ki1 1s close to zero, then both 7, and 7,9 will be affected.
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2.6 Asymptotic Theory

So far, we have focused on the finite sample properties of several weighting estimators of the LATE.
In this section we move on to the asymptotic properties of these estimators, which we study in a
unified framework of M-estimation. The M-estimator, @, of §, a k X 1 unknown parameter vector,

can be derived as the solution to the sample moment equation
N
N w00 =0,
i=1

where O, is the observed data. Thus, 8 is the estimator of 6 that satisfies the population relation
E[¥(0,0)] = 0. (See, e.g., Huber, 1964; Stefanski and Boos, 2002; and Wooldridge, 2010 for
more on M-estimation.) Under standard regularity conditions, the asymptotic distribution of an
M-estimator is given by

VN@-6) -5 N(0,47'vA™") ®)

with

06
E[y(0,04(0,0)].

. E[agz/(o,e)],

Vv

Since all the weighting estimators considered in this paper can be represented as an M-estimator,
we can apply these general results to obtain the asymptotic distribution of each estimator.
Weighting estimators are all functions of the instrument propensity score. So far, we have
implicitly treated the instrument propensity score as known. Yet, the instrument propensity score
is generally not known and has to be estimated. From now on, we assume a parametric model,
F(X, @), for the instrument propensity score, p(X). Thus, the LATE can be estimated by a two-step
M-estimation procedure where the parameters of the instrument propensity score are estimated
in the first step. Alternatively, one could jointly estimate @ and 7pxrg Within an M-estimation
framework using both moment functions related to @ and 1 arg. The moment function related to
the estimation of the parameter vector « is the score of the maximum likelihood estimation. Other
moment functions are derived from identification results of the LATE. All moment functions are

summarized in Table 2. For different weighting estimators, different combinations of moment

11



Table 2: Parameters and Moment Functions

Parameter Population Relation Related Moment Condition
— — _ _ Z—FXi) OFXie)
@ PZ=1|X) =FX a) Yo = T FXa) oo
— Z—p(X) /) (R ¢ 7)) (R
A A=E [Y p(xxl—p(xn] Ya = Fow ~ ToFoea ~ A

_ _ DpU1-Z) _ (-D)Z _1_ (-Z)D; _ Z(1-D) _
r I'= E[l 1-p(X) p(X) ] yr=1 1-F(Xj@)  F(X.0) I

T T = E[D %] Yr = F%)if?;) B fi}@% -

o Gooe[0-D R o= R - SRR T
Ay Ay = E(KY) Un = Disasicr iy Yi = M

Ao Ao = E(koY) Un, = (1 = D) St Yi = Ao
m p=EY|Z=1) Vi = S

o po =E(Y | Z=0) Vo = Tora

m m =E(D|Z=1) Yy = L)

m my=E(D|Z=0) Um = S

=A_A_A_A_ B M =4 _
TLATE TLATE -r I - To - I I'o - mp—my wT“ - T Ta
_ A
l//TaJ - F_l - Ta,l
=4 _
wT‘,YO T, Ta,O

— A _ Ao _
w‘rmo I T 7-a,IO

R
Ttnorm — my—my t,norm

functions will be necessary. For example, if 7y arg is estimated by 7,, then

Ya
Yr
Y
e,

is used as the moment function. Under standard regularity conditions for M-estimation, all of

the LATE estimators discussed above will be asymptotically normally distributed with different
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asymptotic variances.
Note that we introduce some additional notation in order to simplify the representation of the
asymptotic variances. Let us denote the population counterpart of the numerator of the estimators

Tas Ta,l (: Tt)’ Ta,O’ and Tt,norm by A, 1.e.,

A = E[Y Z-prX ] (9)

p(X) (1 = p(X))

Recall that the expectation on the right hand side is equal to E [(k; — k() Y]; see equation (2). Next,
denote E(x;Y) and E(xoY) by A; and Ay, respectively. Alternatively, we can write the expectation

in equation (9) as follows:

E[Y Z - p(X) ] B E[YZ]—E[Y(I_Z)}
pPX)(1-pX)| | pX) 1-pX) |

We denote E [[% ] by p; and E[ﬁ;—(g] by uo. Symmetrically, we denote E [%] and B [?_(;2]

by m; and my. Additionally, the population proportion of compliers is denoted by I', I'y, or I,

depending on which sample mean is used to estimate the population parameter, i.e.,

I' = E®x),
I' = Ek),
I'h = E(xop).

Note that 7y ot = % = rAl = I,AO = ?—1‘ - ?—(‘)’ = ﬁ When the population parameters are replaced
by their sample counterparts, we obtain the estimators 7, 7,1, T40, T410, and 7,, respectively. If
the normalized weights are used to estimate u, and m, for z = 0, 1, the resulting ratio estimator
corresponds to 7 -

For the estimator 7,, we use moment functions related to the estimation of @, A, and I". Based

on the result given in equation (8), the asymptotic distribution of 7, can be derived as follows:
d
\/N(%a — TLATE) — N(O, V‘ra) >

where

r- r I r

1 T 2
+ E[(f%— L?TE%)}

1 1 ’
V., = —(—EM— TLATEEF,Q) (—Ep)”! (—EA,Q— A g

13



with

ZY; (1-2)Y;
Ya = - —A,
F(Xi9 a) 1 - F(Xia a)
(1-Z)D; Z(1-Dy

- 1= - T,
vr [—FX,a)  FXna)

A YZ Y(1 - 2)
EA,a/ - [ ] [ (F(X, a)z + (1 _ F(X, a,))Z)VQF(X’ a’):|’

awr ((1 -D)Z  D(1-2)
FX,0? (1-FX, a))?

)VaF(X,O/)],
Ep = [H(X a)],

and H(X, @) denotes the Hessian of the log-likelihood of a.

The estimators 7, (= 7,) and 7, use the same moment functions as 7, for @ and A. However,
they estimate the population proportion of compliers using the moment functions derived from
population relation I'; and I'y, respectively. The variances of 7,; and 7, have the same form as
74, where I' is replaced with I'; and I'y. Thus, the asymptotic distributions of 7,; and 7, can be

summarized as follows:

VN (T4 — TLATE) i’ N (0’ VTaJ)’

where
v _ —iE _TLATEE (—Ep)”! lE _TLATEE ,
Tal F A r I, H r] A r] T,
2
+ {( Wa — TLATEwFI) ]
I
with
LY (1 -2)Y; v
T R 1-Faa) "
DZ D( -2)
Er, = E|- + V. F(X, ,
fi [ (F(X, o T U-FX, a))Z) ( “)]
and

VN (fa0 — Trate) — N (0, V)
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where

s (Lp, _mamp e Llp _Tamp
VTK,’() - (FOEA,Q FO Ero,a)( EH) (FOEA,Q FO Efo,a)
1 TLATE ’
+ E{(ITOWA_—FO 'ﬁro)l
with
Zhi-) (A-Z)Di-1 .
vro FX,a)  1-FX,a)
_ el ¥Wn|_ | (P-DZ (D-1){1-2)
B = E[ da l_ E[ (F(X, ap T -FX, a))2)V“F(X’ “)]'

The estimator 7,9 is essentially the difference of two ratio estimators whose covariance is zero.
Thus, the variance of the difference is the sum of variances of the two ratio estimators. It follows
that

R d
\/N(Ta,lo — TLATE) — N(O, Vra,m)

where
V. _ EAl,a EAo,a AlEl"l,a AOEF(),(Y E_1 EAl,a EAo,a AlEvl"l,a AOEFO,a '
L O S e L O T P R
+ E lw Alw 2+E 11,// AO;& :

r, " 2 h L, ™ I3 o

with
Zi - F(X;,a)
I,ZIA] = D Y A],

"FX,a)(1 - F(X,a) '

) B .(I_Zi)—(l—F(Xi’a)) L
l,//Ao = (1 Dz) F(Xi,a’)(l_F(Xi’a)) Yl AO’

_ o[dva]_ o[ ( DYZ DY(1 - Z)
Eava = E[W]_E[ (F(X,a)2+(1—F(X,a))2)V”F(X’“)]’
da|_ | (@-DYZ (D-DHY(1-2)
Baoa = E[W]_E[ (F(X,a)2 O FX o)y )V"F(X’“)}'

Finally, the estimator 7,,,,, is another ratio estimator with differences in the numerator and de-

nominator. Thus, the asymptotic distribution can be obtained with appropriate moment functions
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that take into account the normalization. It follows that

\/N(%t,norm - TLATE) i> N (O’ VT r,norm)

where
1 A A ’
VT,,,W,,, = _(IT(Eyl,a_E,uo,a/)_E(Eml,oz— moar))( E )( (yla_Eyo,a)_E(Eml,a_Emo,a))
1 ALYV (1 A Y
+ E(fwﬂl_l—_glr//ml +Ef¢#0_l—?w’”0)
with
g = Ao (=2 )
e FXne) T T 1-FXa)
= Z(D; —my) " _ 1 =Z)Di = mo)
" FX,a) ™ 1-FX,) °
(0] L[ 20—
Eyo = Eh ]_E[ X )ZVF(X )]
@] [ 0= -
Epa = B|5 ]_E[ T F o F(X,oz)],
] [ Z@—m)
Ema = E,@a]_E[ F(X,) VF(X’Q)]’
[0 ] (1—Z)<D )

As we have seen, all the weighting estimators considered in this paper are asymptotically normal.
In the next section, among other things, we will evaluate the coverage rates for nominal 95%

confidence intervals based on the resulting estimators for the variances.

3 Simulation Study

In this section we use a simulation study to illustrate our findings on the properties of various
weighting estimators of the LATE. To reduce the number of researcher degrees of freedom, we fo-
cus on data-generating processes (DGPs) from Heiler (2021), a recent study of covariate balancing

estimators of the same parameter. Consequently, we have the following system of equations:

Z = 1u<aX)],
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m7(X) = 1/(1+exp(-u(X) - 60)),
DZ = l[lld(X, Z) > U],
Yl = My (X) + &1,

Yo = &,
& 0 1 0 05
where u and X are i.i.d. standard uniform, | gy [~ N|| O |,] O 1 0O [],6y=In((1-9)/9),
v 0 05 0 1

and ¢ € {0.01,0.02,0.05}. What remains to be specified is three functions, namely u,(x, z), p,, (x),
and u,(x). Our choices for these functions are listed in Table 3. It is useful to note that, given these
choices and the fact that X has a standard uniform distribution, ¢ is equal to the lowest possible
value of the instrument propensity score and (symmetrically) one minus the instrument propensity
score, thatis, 0 < P(Z=1| X) <1 - 4. Thus, ¢ controls the degree of overlap in the data.

Importantly, Designs A.1, B, C, and D in Table 3 are identical to Designs A, B, C, and D,
respectively, in Heiler (2021). It is easy to see that Design A.l corresponds to a setting with
(near) one-sided noncompliance, as P(D = 1 | Z = 1) = ®4) = 0.99997, where ®(-) is the
standard normal cdf. It follows that there are essentially no never-takers in Design A.1. To illustrate
our findings from Section 2.5 on near-zero denominators, we are also interested in a design with
(nearly) no always-takers. This is accomplished by Design A.2, which is identical to Design A.1
except for a small change to u,(x,z) that reverses the direction of noncompliance. Indeed, in
Design A2, P(D = 1| Z = 0) = ®(-4) = 0.00003, which means that there are essentially no
always-takers.

It is also useful to note that Designs A.1 and A.2 correspond to the case of a fully independent
instrument while in the remaining designs the instrument is conditionally independent. Addi-
tionally, in Designs A.1, A.2, and B, treatment effect heterogeneity is only due to the correlation
between g, and v; in Designs C and D, on the other hand, the dependence of 1, (X) on X constitutes

another source of heterogeneity. In the end, the linear IV estimator that controls for X is expected

Table 3: Simulation Designs

Design A.1 Design A.2 Design B Design C Design D

Ha(x, 2) 4z 4(z-1) —1+2x+2.1227 —-1+2x+2.1227 -1+4+2x+2.1227
Py () 0.3989 0.3989 0.3989 9(x+3)° 9(x+3)°
Uo(x) 2x -1 2x—1 2x—1 2x—1 x+x> -1
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to perform very well in Designs A.1, A.2, and B but not necessarily elsewhere (cf. Heiler, 2021).

In our simulations, similar to Heiler (2021), we thus use the linear IV estimator as a benchmark
that the weighting estimators will not be able to outperform in Designs A.1, A.2, and B while
almost certainly being able to do so in Designs C and D. We also consider 7;,,5,m» Ta.10, Ta» Tal
(= 1,), and 7, with instrument propensity scores estimated using a logit, also controlling for X.
This leads to a misspecification in Design D, where 1,(X) is quadratic in X but we mistakenly omit
the quadratic term. Like Heiler (2021), we consider two sample sizes, n = 500 and n = 1,000, and
10,000 replications for each combination of a design, a value of ¢, and a sample size.

Our main results are reported in Tables A.1 to A.5 in the Appendix. For each estimator, we
report the mean squared error (MSE), normalized by the MSE of the linear IV estimator, the
absolute bias, and the coverage rate for a nominal 95% confidence interval.

In Design A.1, as expected, the linear IV estimator outperforms all weighting estimators of
the LATE, with MSEs of these estimators always at least 31% larger, and sometimes orders of
magnitude larger, than that of linear IV. With better overlap and larger sample sizes, all estimators
have small biases. When overlap is poor and samples small, linear IV is better than the weighting
estimators in terms of bias, too. Coverage rates are close to the nominal coverage rate for all
estimators in all cases. At the same time, in a comparison of different weighting estimators, it
turns out that three of them, 7, 7,, and 7,0, are very unstable when overlap is sufficiently poor,
0 € {0.01,0.02}, and samples are small, n = 500. This is documented by very large MSEs in these
cases. As predicted by Section 2.5, however, 7, does not suffer from instability, even in the most
challenging case with 6 = 0.01 and n = 500. This is because there are (nearly) no never-takers in
Design A.1. This stability is also shared by 7, ,,,,.,, Which overall performs slightly better than 7.

Our results for Design A.2 are generally similar, except for the relative performance of linear [V
in terms of bias and, especially, the exact list of weighting estimators that suffer from instability.
Unlike in Design A.1, when overlap is poor and/or samples small, the bias of linear IV is 