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Abstract

We consider the problem of allocating multiple units of an indivisible object

among a set of agents and collecting payments. Each agent can receive multiple

units of the object, and has a (possibly) non-quasi-linear preference on the set of

(consumption) bundles. We assume that preferences exhibit both nonincreasing

marginal valuations and nonnegative income effects.

We propose a new property of fairness: no price envy . It extends the standard

no envy test (Foley, 1967) over bundles to prices (per-unit payments), and requires

no agent envy other agents’ prices to his own in the sense that if he has a chance

to receive some units at other agents’ prices, then he gets better off than his own

bundle.

First, we show that a rule satisfies no price envy and no subsidy for losers

if and only if it is an inverse uniform-price rule. Then, we identify the unique

maximal domain for no price envy , strategy-proofness, and no subsidy for losers:

the domain with partly constant marginal valuations. We further establish that on

the domain with partly constant marginal valuations, a rule satisfies no price envy ,

strategy-proofness, and no subsidy for losers if and only if it is a minimum inverse

uniform-price rule.

Our maximal domain result implies that no rule satisfies no price envy , strategy-

proofness, and no subsidy for losers when agents have preferences with nonincreas-

ing marginal valuations. Given this negative observation, we look for a minimally

manipulable rule among the class of rules satisfying both no price envy and no sub-

sidy for losers in the case of preferences with nonincreasing marginal valuations.

We show that a rule is minimally manipulable among the class of rules satisfying no

∗A prelimary version of the paper was presented at the 27th DC conference in virtual. The author
is grateful to the participants for helpful comments. He also acknowledges the research support from
Grant-in-Aid for JSPS fellows (19J29448) from Japan Society for the Promotion of Science.

†Graduate School of Economics, Osaka University. Email: vge017sh@student.econ.osaka-u.ac.jp
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price envy and no subsidy for losers if and only if it is a minimum inverse uniform-

price rule. Our results provide a rationale for the use of the popular minimum

uniform-price rule in terms of fairness and non-manipulability.

JEL Classification Numbers. D44, D47, D63, D71, D82

Keywords. No price envy, No envy, Strategy-proofness, Maximal domain, Mini-

mal manipulability, Nonincreasing marginal valuations, Constant marginal valuations,

Uniform-price rule, Multi-unit auctions

1 Introduction

1.1 Purposes

Auctions have been understood as the price discovery process by the interactions among

the biddes and the seller(s) (Milgrom, 2017; Teytelboym et al., 2021). One of the virtues

of the auctions held by the public sectors, such as spectrum auctions, car liscence auctions,

etc., is to find “fair” prices of objects that are not traded in markets. Indeed, one of the

announced goals in spectrum auctions in several countries is to find fair prices through

the auctions.1 However, the precise meaning of “fair prices” has been yet opaque, or

depended on the authors.2 In this paper, we formulate a notion of fair prices as a property

of fairness , and investigate its implications.

Another important issue in real-life auctions is the existence of bidders whose prefer-

ences are not quasi-linear. The assumption of quasi-linear preferences make the analysis

simple and tractable, but it is applicable only to unrealistic situations where agents have

sufficiently large willingness to pay for the objects (no income effect), face linear borrow-

ing costs in financial markets (no budget constraint), etc. In many real-life situations, the

assumption of quasi-linear preferences does not seem plausible, and agents rather have

non-quasi-linear preferences. Thus, we take agents with non-quasi-linear preferences into

account.

The goals of this paper are two-fold: we attempt to (i) formulate fair prices as a prop-

erty of fairness, and to (ii) identify the class of rules satisfying our property of fair prices

together with the other desirable properties for agents with non-quasi-linear preferences.

1For example, the regulator in India (Department of Telecommunications) announced that one of the
goals of auctions to allocate the lights to use scarce spectrum bands is to “obtain a market determined
price of” spectrum bands “through a transparent process” (Government of India, 2021).

2For example, on the one hand Ausubel et al. (2014) write that “it (uniform priceing) is fair in the
sense that the same price is paid by everyone”, but on the other hand Burkett and Woodward (2020)
write that “the uniform price auction is fair, in the sense that bidders never pay less than other bidders
for the same number of units won”. These two papers use the term “fair” in slightly different ways.
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1.2 Main results

We consider the problem of allocating multiple units of an object to the agents with

payments. Each agent can receive multiple units of the object, and has a (possibly)

non-quasi-linear prefereces over (consumption) bundles, where a bundle specifies the con-

sumption level of the object and the payments.

A preference exhibits nonincreasing (resp. constant) marginal valuations if the

marginal willingness to pay at each bundle is no greater than (resp. equal to) the marginal

willingness to sell at the bundle. A preference exhibits nonnegative income effects if the

demand of the object does not decrease when the payments decrease. In this paper, we

assume that preferences exhibit both nonincreasimg narginal valuations and nonnegative

income effects, both of which are standard assumptions in the literature.

An allocation is a profile of each agent’s bundle, and an (allocation) rule is a function

from the set of preference profiles to the set of allocations.

In this paper, we regard a price as a per-unit payment. Formally, a price faced by an

agent at a preference profile under a rule is defined as the agent’s per-unit payment for

the preference profile under the rule. Note that our definition of a price does not take

agents who receive no object (the losers) into account, and we choose to leave prices of

the losers undefined in this paper.3

Our property of fair prices incorporates prices into the no envy test (Foley, 1967).

Formally, we say that a rule satisfies no price envy if no agent prefers other agents’ prices

in the sense that if he has a chance to buy some units of the object at other agent’s prices,

then he can get better off than his own bundle.

First, we try to identify the class of rules satisfying no price envy together with the

other mild property. A rule satisfies no subsidy for losers if each loser does not receive

money. In many real-life auctions, bidders are often forbidden to receive money, and in

such situations no subsidy for losers is plausible. We can also interpret no subsidy for

losers as a desirable property since it excludes “dummy” agents who are interested only

in the participation subsidy.

A uniform-price rule is a rule defined for quasi-linear preferences such that for each

preference profile, (i) the object is allocated so as to maximize the sum of valuations,

and (ii) each agent pays the same price that is no less than the highest losing marginal

valuation, and is no greater than the lowest winning marginal valuation. In this paper, we

extend the uniform-price rule for quasi-linear preferences to non-quasi-linear preferences,

but there are several ways to extend it. An inverse uniform-price rule is a new variant of

such an extension, and it adopts the inverse-demand function of Shinozaki et al. (2020)

to the uniform-price rule instead of the quasi-linear valuations.4 A minimum inverse

3In Section 5.1.1, we will discuss the difficulty of defining the prices of the losers in detail.
4Baisa (2016) introduces the indirect uniform-price auction mechanism where agents submit not their

preferences but bids in the same model as ours. Since our inverse uniform price rule is an allocation rule
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uniform-price rule is an inverse uniform-price rule that chooses the highest losing marginal

valuation as its price.

Our first result is a characterization of the inverse uniform-price rule by means of no

price envy . We show that a rule satisfies no price envy together with no subsidy for losers

if and only if it is an inverse uniform-price rule (Theorem 1).

As already noted, no subsidy for losers is a fairly mild property, and trivially holds

in a natural model with nonnegative payments.5 In such a model, our first result gives a

redefenition of the inverse uniform-price rule by the single tight property of fairness: no

price envy .

Next, we turn to the non-manipulability of rules. A rule is said to be manipulable by

an agent at a preference profile if he gets better off by misreporting his preference. A rule

is said to be strategy-proof if it is manipulable by no agent at each preference profile.

First, we search for domains that admit the existence of a rule satifying no price envy ,

strategy-proofness , and no subsidy for losers . On the quasi-linear domain with constant

marginal valuations, the minimum (inverse) uniform-price rule satisfies the three desirable

properties. An interesting quastion is: How much can we extend a domain from the

quasi-linear domain with constant marginal valuations while guaranteeing the existence

of a rule satisfying no price envy , strategy-proofness , and no subsidy for losers? Thus, we

investigate a maximal domain for no price envy , strategy-proofness , and no subsidy for

losers that contains the quasi-linear domain with constant marginal valuations.6

A preference exhibits partly constant marginal valuations if the valuation at the status

quo bundle exhibits constant marginal valuations, where the status quo bundle includes

no object and no monetary transfer. Note that the domain with partly constant marginal

valuations contains the quasi-linear domain with constant marginal valuations. Then,

we show that the domain with partly constant marginal valuations is the unique maxi-

mal domain for no price envy , strategy-proofness , and no subsidy for losers containing the

quasi-linear domain with constant marginal valuations (Theorem 2). Moreover, we extab-

lish that the minimum inverse uniform-price rule is the only rule satisfying no price envy ,

strategy-proofness , and no subsidy for losers on any domain that contains the quasi-linear

domain with constant marginal valuations and is contained by the domain with partly

constant marginal valuations (Theorem 3).

Although our maximal domain result highlights the importance of the assumption of

constant marginal valuations for a positive result, in many real-life situations it seems more

natural to assume that agents have preferences with nonincreasing marginal valuations

(or a direct mechanism), there seems no direct relationship between our rule and his mechanism.
5For example, Chew and Serizawa (2007) consider the model with nonnegative payments.
6Several authors have investigated maximal domains that guarantee lists of desirable properties in

many models. See, for example, Ching and Serizawa (1998), Berga and Serizawa (2000), Ehlers (2002),
etc.
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than assuming that they have preferences with constant marginal valuations.7 Moreover,

nonincreasing marginal valuations are a standard assumption in the multi-unit object

allocation problem (Vickrey, 1961; Ausubel et al., 2014; Baisa, 2016, 2020, etc). Thus, it

is worthwhile to investigate the existence of a rule satisfying no price envy together with

the other desirable properties without relaxing the assumption of nonincreasing marginal

valuations.

Our maximal domain result (Theorem 2) implies that no rule satisfies no price envy ,

strategy-proofness , and no subsidy for losers on the domain with nonincreasing marginal

valuations (Corollary 1), and so we have to give up one of the three properties if we keep

the assumption of the nonincreasing marginal valuations. Since no price envy is at the

heart of the paper, and no subsidy for losers is a mild condition that almost all natural

rules satisfy, we give up strategy-proofness instead of the other two properties. Then,

we search for rules satisfying both no price envy and no subsidy for losers that prevent

agents from misreporting their preferences as much as possible.

We adopt the manipulability measure of Pathak and Sönmez (2013) that they call

the “as intensely and strongly as manipulable” relation to the class of rules satisfying no

price envy and no subsidy for losers . We say that a rule is at least as manipulable as

another rule if for each preference profile and each agent, whenever he can manipulate the

latter rule, (i) the former rule is as well by him, and (ii) the gain from manipulation of

the former rule is at least as large as that of the latter rule. Further, a rule is minimally

manipulable among a given class of rules if (i) the rule is in the class, and (ii) each rule

in the class is at least as manipulable as the rule. Clearly, a minimally manipulable rule

is the best among a given class of rules in terms of non-manipulability, but it does not

necesarily exist in general.

We first show that for each pair of rules satisfying no price envy and no subsidy for

losers , a rule is at least as manipulable as another rule if and only if for each preference

profile, each agent weakly prefers the outcome of the latter rule to that of the former

rule (Proposition 3). Using this result, we establish that a rule is minimally manipulable

among the class of rules satisfying both no price envy and no subisidy for losers if and

only if it is a minimum inverse uniform-price rule (Theorem 4). Our results (Theorems 3

and 4) provide a rationale for the use of the minimum inverse unform-price rule in terms

of fairness and non-manipulability.

7For example, in auctions for collectibles such as arts and wine, it seems natural to assume that bidders
have preferences with nonincreasing marginal valuations. Also, if a firm in a procurement auction has
a technology that exhibits nonincreasing returns to scale, then it has a preference with nonincreasing
marginal valuations because nonincreasing returns in a procurement auction model to scale corresponds
to nonincreasing marginal valuations in our model.
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1.3 Related literature

1.3.1 Object allocation problems

The literature on object allocation problems mainly focuses on efficiency (Holmström,

1979; Chew and Serizawa, 2007; Saitoh and Serizawa, 2008; Sakai, 2008; Morimoto and

Serizawa, 2015;. Baisa, 2020; Shinozaki et al., 2020). In contrast, other authors consider

the properties of fairness in the object allocation problems. Ohseto (2004, 2006) consider

the unit-demand identical objects model with quasi-linear preferences, and identify the

classes of Groves rules satisfying egalitarian-equivalence and envy-freeness , respectively.

Papài (2003) and Yengin (2012) identify the classes of Groves rules satisfying no envy and

egalitarian-equivalence, respectively, in the multi-demand heterogeneous objects model

with quasi-linear preferences. Sakai (2013) and Adachi (2014) characterize the generalized

Vickrey rule (Saitoh and Serizawa, 2008; Sakai, 2008) by means of properties of fairness

in the unit-demand identical object(s) model with non-quasi-linear preferences.

Our paper is different from the above papers in that we consider a property of fairess

in the multi-demand identical objects model (with non-quasi-linear preferences). To the

best of our knowledge, ours is the first paper that provides a characterization result by a

property of fairness in such a model (with or without quasi-linear preferences).

1.3.2 Uniform-price auctions

The uniform-price auction occupies a central position both in auction theory and in prc-

tical auction design. The literature on the uniform-price aucion mainly focuses on its

equilibrium properties in models with quasi-linear preferences (Vickrey, 1961, Noussair,

1995; Engelbrecht-Wiggans and Kahn, 1998; Ausubel et al., 2014; Burkett andWoodward,

2020). One of the most important results in this strand of research is the inefficiency the-

orem: any equilibrium in the minimum uniform-price auction does not achieve an efficient

allocation in general (Ausubel et al., 2014; Baisa, 2016). In a uniform-price auction, the

truth-telling does not constitute an equilibrium, but it does an approximate equilibrium

if there are many agents (Swinkers, 2001; Azevedo and Budish, 2019) or many objects

(Tajika and Kazumura, 2019).

This paper is different from the papers in the strand of research in that we do not

focus on the uniform-price auction a priori , but rather obtain it as a consequence of the

properties that we consider in this paper. As far as we know, ours is the first paper

that gives a characterization of the minimum uniform-price rule in terms of fairness and

non-manipulability.
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1.3.3 Minimal manipulability

The method of comparing rules in terms of their manipulability has been adopted to

non-strategy-proof rules in many models such as the voting model (Kelly, 1988; Maus et

al., 2007), the matching with contracts model (Chen et al., 2016), the school choice model

(Pahak and Sönmez, 2013), the heterogeneous objects model with quasi-linear preferences

(Day and Milgrom, 2008; Andersson et al., 2014). Manipulability measures depend on the

authors, and ours extends one in Pathak and Sönmez (2013) for quasi-linear preferences

to non-quasi-linear preferences.

Day and Milgrom (2008) is a closely related paper to ours. They show that in the multi-

demand heterogeneous objects model with quasi-linear preferences, an agent-optimal core-

selecting rule is minimally manipulable according to their manipulability measure among

the class of core-selecting rules.8 Note that an inverse uniform-price rule is core-selecting.

However, our results can not be obtained by their results and proof technique since their

argument crucially relies on a truncation of a preference which is not feasible in our

model.9

Chen et al. (2016) is another related paper. They show that in the (many-to-many)

matching with contracts model, a rule is at least as manipulable as another rule according

to their manipulability measure if and only if for each preference profile, each agent weakly

prefers the outcome of the latter rule to that of the former rule. Note that Proposition 3

in this paper is parallel to their result. However, our results does not follow from their

results and technique since our manipulability measure is different from theirs (Example 3

in Section 5.2), and their argument crucially relies on the finiteness of the model.

1.3.4 Fair allocations

Finally, this paper also contributes to the literature on the theory of fair allocation by

proposing a new property of fairness.10 It is worthwhile to note that no price envy is

closely related to opportunity fairness of Varian (1976) and no envy of opportunities of

Thomson (1994) since the prices naturally defines the opportunity set, but our property

is different from the other properties in that we do not take the losers’ opportunity sets

(the prices) into account. In Section 5.1.2, we will discuss the relationships between no

price envy and the other two properties of fairness of opportunities in detail.

Our no price envy is also closely related to envy-free pricing of Guruswami et al.

8A rule is core-selecting if its outcome is in the core for each preference profile. A rule is agent-optimal
core-selecting rule if it is core-selecting, and there is no other core-selecting rule such that each agent
weakly prefers the outcome of the rule to that of the original rule, and some agent strictly prefers.

9To be precise, they consider a truncation of a preference relative to the payoff under the Vickrey
rule. In our model, an agent can not report such a truncated preference since it may violate our property
of preferences (object monotonicity), and hence their proof technique does not work.

10For the excellent survey of the theory of fair allocation, see Thomson (2011).
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(2005): given a common and linear price of the object, each agent receives a bundle that

is optimal at the given price. Note that in our model, envy-free pricing is equivalent

to opportunity fairness of Varian (1976), and the discussion in Section 5.1.2 about the

relationship between no price envy and opportunity fairness also applies to that between

no price envy and envy-free pricing . In particular, we emphasize that no price envy is

different from envy-free pricing in that we do not consider a common and liner price of

the object a priori , but rather regard a per-unit payment at an agent’s bundle as his

price. This will enable us to apply our model to a wider range of situations than a model

with common and linear price.

1.4 Organization

The remaining part of this paper is organized as follows. Section 2 introduces the model.

Section 3 introduces the inverse uniform-price rule. Section 4 provides the results. Sec-

tion 5 discusses the relationships between no price envy and other related properties of

fairness, and further discuss the relationships between our manipulability measure and

other measures. Section 6 concludes. Almost all proofs are relegated to Appendix, but

the others can be found in the supplementary material.

2 The model

There are n agents and m units of an identical object, where n ≥ 2 and m ≥ 2. Let

N ≡ {1, . . ., n} denote the set of agents. Let M ≡ {0, . . .,m}. Agent i ∈ N receives

xi ∈ M units of the object. Let ti ∈ R denote the amount of money paid by agent i. The

common consumption set is M × R, and a (consumption) bundle of agent i ∈ N is

a pair zi ≡ (xi, ti) ∈ M × R. Let 0 ≡ (0, 0).

2.1 Preferences

Each agent i ∈ N has a preference relation Ri over the consumption set M × R. In what

follows, we assume that a preference Ri is complete and transitive, and satisfies the next

properties.

Object monotonicity. For each pair xi, x
′
i ∈ M with xi > x′

i and each ti ∈ R, it holds
that (xi, ti) Pi (x

′
i, ti).

Money monotonicity. For each xi ∈ M and each pair ti, t
′
i ∈ R with ti < t′i, it holds

that (xi, ti) Pi (xi, t
′
i).
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Possibility of compensation. For each zi ∈ M × R and each xi ∈ M , there is a pair

ti, t
′
i ∈ R such that (xi, ti) Ri zi and zi Ri (xi, t

′
i).

Continuity. For each zi ∈ M × R, the upper contour set at zi, {z′i ∈ M × R : z′i Ri zi},
and the lower contour set at zi, {z′i ∈ M × R : zi Ri z

′
i}, are both closed.

All of the above properties are standard in the literature, and do not need detailed

explanations. A typical class of preferences satisfying the above four properties is denoted

by R.

Given a preference Ri ∈ R, a bundle zi ∈ M × R, and xi ∈ M , by the possibility

of compensation and the continuity, we can choose a payment ti such that (xi, ti) Ii zi.

Moreover, by money monotonicity, such a payment must be unique. Let Vi(xi, zi) denote

the payment such that (xi, Vi(xi, zi)) Ii zi, and we call it the valuation of xi at zi for

Ri. Further, given zi ∈ M × R and xi ∈ M , let vi(xi, zi) ≡ Vi(xi, zi)− Vi(0, zi). We call

vi(xi, zi) the net valuation of xi at zi for Ri. Note that given zi ∈ M × R, vi(xi, zi) ≥ 0

for each xi ∈ M .

The class of preferences that has been extensively studied in the literature is that of

quasi-linear preferences.

Definition 1. A preference Ri is quasi-linear if for each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R

and each δ ∈ R, (xi, ti) Ii (x
′
i, t

′
i) implies (xi, ti − δ) Ii (x

′
i, t

′
i − δ).

Let RQ denote the class of quasi-linear preferences.

The next remark (i) states that under a quasi-linear preference, the net valuation

does not depend on a bundle, and (ii) provides a utility representation of a quasi-linear

preference.

Remark 1. Let Ri ∈ RQ.

(i). Let zi, z
′
i ∈ M × R. Then, for each xi ∈ M , vi(xi, zi) = vi(xi, z

′
i). Thus, we simply

write vi(xi) instead of vi(xi, zi).

(ii). For each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R, (xi, ti) Ri (x

′
i, t

′
i) if and only if vi(xi) −

ti ≥ vi(x
′
i)− t′i.

Given a preferenceRi ∈ R, a bundle zi ∈ M × R, and a consumption level xi ∈ M\{m},
the marginal (net) valuation of xi at zi for Ri is vi(xi+1, zi)− vi(xi, zi). The next prop-

erties of marginal valuations play an important role in this paper. The first property is

a standard one in the literature on the multi-unit auctions, and means that the object

is substitutable for the agent as the margianal valuation of the object does not increase

in the number of units of the object. The second property means that the object is an

independent good for the agent as the marginal valuation of the object is independent of

the consumption level of the object.

9



Definition 2. (i). A preference Ri exhibits the nonincreasing marginal valuations

if for each zi ∈ M × R and each xi ∈ M\{0,m},

vi(xi, zi)− vi(xi − 1, zi) ≥ vi(xi + 1, zi)− vi(xi, zi).

(ii). A preferenceRi exhibits the constant marginal valuations if for each zi ∈ M × R
and each xi ∈ M\{0,m},

vi(xi, zi)− vi(xi − 1, zi) = vi(xi + 1, zi)− vi(xi, zi).

Let RNI and RC denote the classes of preferences that exhibit nonincreasing and

constant marginal valuations, respectively. Note that RC ⊊ RNI .

In this paper, we will study a typical class of non-quasi-linear preferences that exhibit

income effects. Here, we introduce the notion of nonnegative income effects. Although

we do not introduce the income of an agent in our model explicitly, the zero payment

(ti = 0) can be regarded as the initial income of the agent. Then, each payment ti ∈ R
can be regarded as the negative of the (relative) income. Thus, the increase of the income

is equivalent to the decrease of the payment. Then, the notion of the nonnegative income

effect states that if an agent’s income increases (or equivalently, if an agent’s payment

decreases), then he demands at least as many units of the object at the new income level

as at the original one.

Definition 3. A preference Ri exhibits the nonnegative income effect if for each pair

xi, x
′
i ∈ M with xi > x′

i, each pair ti, t
′
i ∈ R with ti > t′i, and each δ ∈ R++, (xi, ti) Ii (x

′
i, t

′
i)

implies (xi, ti − δ) Ri (x
′
i, t

′
i − δ).

Let R+ denote the class of preferences that exhibit nonnegative income effects. Note

that RQ ⊊ R+, i.e., any quasi-linear preference exhibits nonnegative income effects.

Remark 2. Let Ri ∈ R. For each xi ∈ M\{m}, let hi(·;xi) : R → R++ be such that

for each ti ∈ R, hi(ti;xi) = Vi(xi + 1, (xi, ti))− ti. Then, Ri ∈ R+ if and only if for each

xi ∈ M\{m}, hi(·;xi) is nondecreasing in ti.

Throughout the paper, we consider preferences that exhibit both nonincreasing marginal

valuations and nonnegative income effects. Thus, hereafter we assume thatR ⊆ RNI ∩ R+.

In order to emphasize our assumption on a class of preferences, we explicity record it.

Assumption. For each class of preferences R, we assume that R ⊆ RNI ∩ R+.

2.2 Allocations and rules

Let X ≡ {(x1, . . ., xn) ∈ Mn :
∑

i∈N xi = m} denote the set of (feasible) object alloca-

tions. Note that we assume each object is assigned to some agent. Given x ∈ X, let

10



N+(x) ≡ {i ∈ N : xi ̸= 0} denote the set of agents who receive the object (winners) at

x.

A (feasible) allocation is an n-tuple z ≡ (z1, . . ., zn) ≡ ((x1, t1), . . ., (xn, tn)) ∈ (M × R)n

such that (x1, . . ., xn) ∈ X. Let Z denote the set of allocations. We denote the object al-

location and the payments at z ∈ Z by x ≡ (x1, . . ., xn) and t ≡ (t1, . . ., tn), respectively.

We may write z ≡ (x, t) ∈ Z.

A preference profile is an n-tuple R ≡ (R1, . . ., Rn) ∈ Rn. A set Rn of preference

profiles is a domain. Given R ∈ Rn and i ∈ N , let R−i ≡ (Rj)j∈N\{i}.

Given z ≡ (zi)i∈N ∈ (M × R)n and R ∈ Rn, let mvk(R, z) denote the k-th highest

marginal valuation among the set of marginal valuations at z for R: {vi(xi + 1, zi) −
vi(xi, zi) : i ∈ N, xi ∈ M\{m}}. When zi = 0 for each i ∈ N , we may simply write

mvk(R) ≡ mvk(R, z). Note that by Remark 1 (i), if R ∈ (RQ)n, then mvk(R, z) =

mvk(R).

An allocation rule, or a rule for short, on Rn is a function f : Rn → Z. We may

write f ≡ (xf , tf ), where xf : Rn → X and tf : Rn → Rn are the object allocation and

the payment rules associated with f , respectively. The consumption bundle of agent i

under a rule f at a preference profile R is denoted by fi(R) = (xf
i (R), tfi (R)), where xf

i (R)

and tfi (R) are the consumption level of the object and the payment of agent i under the

rule f , respectively.

2.3 Properties of rules

Next, we introduce the properties of rules.

First, we introduce a standard property of fairness introduced by Foley (1967) as a

benchmark. It requires that no agent should envy other agents’ bundles to his own.

No envy. For each R ∈ Rn and each pair i, j ∈ N , fi(R) Ri fj(R).

Then, we introduce a new fairness property that plays a central role in this paper.

Ftrst, we define a price faced by agent i ∈ N at a preference profile R ∈ Rn under a rule

f . In this paper, we regard the per-unit payment as a price. Given a rule f , a preference

profile R ∈ Rn, and i ∈ N+(xf (R)), let pfi (R) ∈ R be a price of agent i for R under

f such that

pfi (R) =
tfi (R)

xf
i (R)

.

That it, if agent i receives the object, then his price is determined as the per unit payment.

Note that we define a price only for the winners since it is difficult to define the per-unit

payments (prices) of the losers in a natural way. We discuss such a difficulty in detail

in Section 5.1.1. Note also that in our definition of price, the prices may be different by

11



agent.

Now, we are ready to define our property of fairness of prices. The next property is an

extension of the no envy test (Foley, 1967) over bundles to prices, which requires that no

agent should prefer other agents’ prices in the sense that if he has a chance to buy some

units of the object at other agents’ prices, then he can get better off than his bundle.

No price envy. For each R ∈ Rn and each i ∈ N , there is no j ∈ N+(xf (R)) such that

(xi, p
f
j (R)xi) Pi fi(R) for some xi ∈ M .

The next remark states that no price envy is independent of (i.e., neither implies nor

is implied by) no envy .

Remark 3. In general, no price envy does not imply no envy , and vice versa.

In Section 5.1.2, we will compare no price envy to related properties introduced by

other authors in detail.

The third property requires that no agent should have an incentive to misreport his

preference.

Strategy-proofness. For each R ∈ Rn, each i ∈ N , and each R′
i ∈ R, it holds that

fi(R) Ri fi(R
′
i, R−i).

Given a preference profile R ∈ Rn and i ∈ N , a rule f on Rn is manipulable at R

by i if there is R′
i ∈ R such that fi(R

′
i, R−i) Pi fi(R). Note that f is strategy-proof if and

only if f is not manipulable at each preference profile by each agent.

The fourth property is concerned with the nonnegative payments, which requires that

an agent who receives no object (a loser) should not receive money. We regard this

condition as desirable since it excludes “dummy” agents interested only in participation

subsidy.

No subsidy for losers. For each R ∈ Rn and each i ∈ N\N+(xf (R)), tfi (R) ≥ 0.

The last property states that a rule should select an allocation at which no agent gets

worth off than the status quo bundle 0.

Individual rationality. For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.
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3 The inverse uniform-price rule

In this section, we define the new class of rules that we call the inverse uniform-price

rules.

First, we define the uniform-price rule for quasi-linear preferences as a benchmark.

Definition 4. A rule f on Rn ⊆ (RQ)n is a uniform-price rule if it satisfies the fol-

lowing two conditions.

(i). For each R ∈ Rn, xf (R) ∈ arg max
x∈X

∑
i∈N vi(xi).

(ii). There is a function πf : Rn → R+ such that (ii-i) for each R ∈ Rn, it holds

that πf (R) ∈ [mvm+1(R),mvm(R)], and (ii-ii) for each R ∈ Rn and each i ∈ N , tfi (R) =

πf (R)xf
i (R).

In words, the first condition (i) states that the object is allocated so as to maximize

the sum of net valuations, and the second condition (ii) states that there is a (common)

price function such that (ii-i) the price is set between the highest losing marginal valuation

and the lowest winning one, and (ii-ii) each agent pays the price for the object.

We introduce the subclass of the uniform-price rule for quasi-linear preferences. The

minimum uniform-price rule chooses the highest losing marginal valuation as the price.

Definition 5. A rule f on Rn ⊆ (RQ)n is a minimum uniform-price rule if it is a

uniform-price rule associated with a price function πf : Rn → R+ such that for each

R ∈ Rn, πf (R) = mvm+1(R).

Next, we extend the uniform-price rule for quasi-linear preferences to non-quasi-linear

preferences. There are several possible ways to extend the uniform-price rule to non-quasi-

linear preferences, and one natural way to extend the uniform-price rule is to adopt the

net valuations at 0 to the uniform-price rule.11 In this paper, we introduce an alternative

extension of the uniform-price rule to non-quasi-linear preferences. To this end, we will

introduce the inverse-demand set of Shinozaki et al. (2020).

The next remark is a slight extension of Lemmas 9 and 11 of Shinozaki et al. (2020)

for a preference with decreasing marginal valuations and positive income effects to a

preference with nonincreasing marginal valuations and nonnegative income effects. The

proof of it can be found in the supplementary material.

Remark 4. Let Ri ∈ RNI ∩ R+.

(i) For each xi ∈ M\{0,m}, there is a unique payment t∗(xi) ∈ (0, Vi(xi,0)] such that

Vi(xi + 1, (xi, t
∗(xi)))− t∗(xi) =

t∗(xi)
xi

.

(ii) For each xi ∈ M\{0,m− 1,m}, t∗(xi)
xi

≥ t∗(xi+1)
xi+1

.

11Note that this extension is parallel to the way that the Vickrey rule (Vickrey, 1961) for quasi-linear
preferences is extended to the generalized Vickrey rule (Saitoh and Serizawa, 2008; Sakai, 2008) for
non-quasi-linear preferences.
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Given Ri ∈ R and xi ∈ M , the inverse-demand set at xi for Ri is defied as the set

P (xi;Ri) ≡ {p ∈ R+ : (xi, pxi) Ri (x
′
i, px

′
i) for each x′

i ∈ M}. Note that P (xi;Ri) may

be an empty set for some Ri ∈ R and xi ∈ M . Further, given Ri ∈ R, the inverse-

demand function is a function p(·;Ri) : M → R+ ∪ {∞} such that for each xi ∈ M ,

p(xi;Ri) ≡ inf P (xi;Ri), where inf ∅ ≡ ∞.

The next proposition generalizes Corollary 1 of Shinozaki et al. (2020) for a preference

with decreasing marginal valuations and positive income effects to a preference with non-

increasing marginal valuations and nonnegative income effects. It identifies the inverse-

demand function of a preference with nonincreasing marginal valuations and nonnegative

income effects. Since the proof of the next proposition is same as that of Shinozaki et al.

(2020), we omit it.

Proposition 1. Let Ri ∈ RNI ∩ R+. We have p(0;Ri) = Vi(1,0), p(m;Ri) = 0, and

for each xi ∈ M\{0,m}, p(xi;Ri) =
t∗(xi)
xi

.

By Remark 4 and Proposition 1, given Ri ∈ RNI ∩ R+, we can define a preference

Rinv
i ∈ RNI ∩ RQ such that for each xi ∈ M\{m}, vinvi (xi + 1) − vinvi (xi) = p(xi, Ri).

Given R ∈ (RNI ∩ R+)n and i ∈ N , let Rinv ≡ (Rinv
j )j∈N and Rinv

−i ≡ (Rinv
j )j∈N\{i}.

The next remark states that (i) if a preference Ri ∈ RNI ∩ R+ is quasi-linear, then

the transformed preference Rinv
i from Ri coincides with the original preference Ri, and

that (ii) if a preference exhibits constant marginal valuations, then the net valuations of

the original preference at 0 coincide with those of the trnasformed preference.

Remark 5. Let Ri ∈ RNI ∩ R+.

(i). If Ri ∈ RQ then, Rinv
i = Ri.

(ii). If Ri ∈ RC , then vinvi (xi) = vi(xi,0) for each xi ∈ M .

Now, we are ready to define the inverse uniform-price rule. It adopts the transformed

preference profile Rinv from the original preference profile R to the uniform-price rule.

Definition 6. A rule f on Rn is an inverse(-demand-based generalized) uniform-

price rule if it satisfies the following two conditions.

(i). For each R ∈ Rn, xf (R) ∈ arg max
x∈X

∑
i∈N vinvi (xi).

(ii). There is a function πf : Rn → R+ such that (ii-i) for each R ∈ Rn, it holds

that πf (R) ∈ [mvm+1(Rinv),mvm(Rinv)], and (ii-ii) for each R ∈ Rn and each i ∈ N ,

tfi (R) = πf (R)xf
i (R).

Note that by Remark 5 (i), the inverse uniform-price rule coincides with the uniform-

price rule on (RNI ∩ RQ)n.

Finally, we introduce the two subclass of the inverse uniform-price rule.

Definition 7. A rule f on Rn is a minimum inverse uniform-price rule if it is an

inverse uniform-price rule associated with a price function πf : Rn → R+ such that for

each R ∈ Rn, πf (R) = mvm+1(Rinv).
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4 Main results

In this section, we provide the main results of this paper.

Our first result states that the inverse uniform-price rule is the only rule satisfying no

price envy and no subsidy for losers on a domain contained in the domain with nonin-

creasing marginal valuations and nonnegative income effects.

Theorem 1. Let R ⊆ RNI ∩ R+. A rule f on Rn satisfies no price envy and no subsidy

for losers if and only if it is an inverse uniform-price rule.

Note that Theorem 1 is free from richness of a domain, and it holds for each subdomain

of the domain (RNI ∩ R+)n.

Both the properties in Theorem 1 are indispensable in the sense that if we drop one

of these properties, then Theorem 1 does not hold. The following examples demonstrate

this fact on any domain Rn ⊆ (RNI ∩ R+)n.

Example 1 (Dropping no price envy). Let f be a rule on Rn such that for each

R ∈ Rn, f1(R) = (m, 0) and fi(R) = 0 for each i ∈ N\{1}. Then, if satisfies no subsidy

for losers and strategy-proofness , but violates no price envy .

Example 2 (Dropping no subsidy for losers). Let f be a rule on Rn such that for

each R ∈ Rn and each i ∈ N , (i-i) xf
i (R) ∈ {0,m}, (i-ii) if xi(R) = m, then it holds

that vi(m, (m, 0)) ≥ maxj∈N\{i} vj(m, (m, 0)), (ii-i) tfi (R) = −maxj∈N\{i} vj(m, (m, 0)) if

xf
i (R) = 0, and (ii-ii) tfi (R) = 0 if xf

i (R) = m. Then, it satisfies no price envy and

strategy-proofness , but violates no subsidy for losers .

Since no subsidy for losers is a minimal condition on nonnegatice payments, Theorem 1

states that no price envy almost fully characterizes the inverse uniform-price rule. Indeed,

in many cases, it is reasonable to incorporate nonnegatieve payments in the model, and

no subsidy for losers trivially holds in such a model. Thus, in a model that incorporates

nonnegative payments, no price envy is a redefinition of the inverse uniform-price rule.

4.1 Maximal domain

Next, we turn to the non-manipulability of rules. In this subsection, we identify the

maximal domain for the existence of a rule satisfying no price envy , strategy-proofness ,

and no subsidy for losers .

Definition 8. A domain Rn is a maximal domain for a list of properties if (i) there is

a rule on Rn satisfying the list of properties, and (ii) for each R′ ⊋ R, there is no rule on

(R′)n satisfies the list of properties.12

12Note that by our assumption, R,R′ ⊆ RNI ∩ R+.
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The next definition inntroduces a preference whose valuation at 0 exhibits constant

marginal valuations.

Definition 9. A preference Ri ∈ RNI ∩ R+ exhibits the partly constant marginal

valuations if vi(xi + 1,0)− vi(xi,0) = vi(xi,0)− vi(xi − 1,0) for each xi ∈ M\{0,m}.

Let R̂C denote the class of preferences that exhibits partly constant marginal valua-

tions. Clearly, R̂C ⊇ RC ∩ R+. Thus, R̂C ⊇ RC ∩ RQ. Moreover, since we restrict our

attention to preferences with both nonincreasing marginal valuations and nonnegative

income effects, we must have R̂ ⊆ RNI ∩ R+. Note that by Remark 5 (ii), Ri ∈ R̂C if

and only if Rinv
i ∈ RC .

The next proposition states that if we add one arbitrary preference that does not

exhibit partly constant marginal valuations to the quasi-linear domain with constant

marginal valuations, then no rule on the expanded domain satisfies no price envy , strategy-

proofness , and no subsidy for losers .

Proposition 2. Let R0 ∈ (RNI ∩ R+)\R̂. Let R be such that R ⊆ RNI ∩ R+ and

R ⊇ (RC ∩ RQ) ∪ {R0}. Then. no rule on Rn satisfies no price envy, strategy-proofness,

and no subsidy for losers.

As a result of Proposition 2, we obtain the following.

Corollary 1. Let R ∈ {RNI ∩ RQ,RNI ∩ R+}. Then, no rule on Rn satisfies no price

envy, strategy-proofness, and no subsidy for losers.

Proposition 2 furhter serves to obtain a maximal domain result for no price envy ,

strategy-proofness , and no subsidy for losers . The next theorem stats that if a domain

includes all quasi-linear preferences with constant marginal valuations, then the domain

with partly constant marginal valuations is the unique maximal domain for no price envy ,

strategy-proofness , and no subsidy for losers .

Theorem 2. Let R be such that RC ∩ RQ ⊆ R ⊆ RNI ∩ R+. Then, Rn is a maximal

domain for no price envy, strategy-proofness, and no subsidy for losers if and only if

R = R̂C

Note that by Theorem 1, the minimum inverse uniform-price rule on (R̂C)n satisfies

both no price envy and no subsidy for losers . Moreover, we show that it satisfies strategy-

proofness on (R̂C)n. Thus, there is a rule satisfying the three properties in Theorem 2 on

(R̂C)n. Then, we exploit Proposition 2 to show the maximal domain property of (R̂C)n

and the uniqueness of the maximal domain.

Note also that the assumption that for any class of preferences R, R ⊆ RNI ∩ R+

is necessary for a maximal domain result (Theorem 2). Indeed, if we add one arbi-

trary preference with increasing marginal valuations to the domain (RC ∩ RQ)n, then
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the generalized Vickrey rule satisfies no price envy , strategy-proofness , and no subsidy for

losers .13

The next result further states that on a domain that includes the quasi-linear domain

with constant marginal valuations and is contained by the domain with partly constant

marginal valuations, the minimum inverse uniform-price rule is the only rule satisfying

no price envy , strategy-proofness , and no subsidy for losers .

Theorem 3. Let R be such that RC ∩ RQ ⊆ R ⊆ R̂C. A rule on Rn satisfies no price

envy, strategy-proofness, and no subsidy for losers if and only if it is a minimum inverse

uniform-price rule.

By using the same examples as in Theorem 1, we can show that both no price envy

and no subsidy for losers are indispensable for Theorem 3. Moreover, strategy-proofness

is also indispensable for Theorem 3 because inverse uniform-price rules which are different

from the minimum one satisfies both no price envy and no subsidy for losers , but violates

strategy-proofness .

4.2 Minimal manipulability

Although Theorem 2 states that the assumption of (partly) constaint marginal valuations

is not only suffienct but also necessary in a maxiaml domain sense for the existence of

a rule satisfying no price envy , strategy-proofness , and no subsidy for losers , in many

situations it is rather natural and plausible to assume that agents have preferences with

nonincreasing marginal valuations. However, Corollary 1 states that there is no such

a desirable rule when agents have preferences with nonincreasing marginal valuations.

Given an impossibility theorem for no price envy , strategy-proofness , and no subsidy for

losers (Corollary 1), we must give up one of the three properties. As already stated in

Section 1.2, we give up strategy-proofness instead of the other two properties in this paper.

In terms of non-manipulability, a (non-strategy-proof ) rule is more desirable than another

rule if it is less manipulable than the other rule. Thus, we investigate a rule that satisfies

no price envy and no subsidy for losers , and is minimally manipulable among the class

of rules satisfying both the properties.

Our manipulability measure extends Pathak and Sönmez (2013)’s one. They introduce

a manipulability measure that takes the gains from manipulations into account for quasi-

linear preferences, and a rule is said to be as intensively and strongly manipuble as another

rule g if (i) whenever the latter rule is manipulable at a preference profile by an agent, the

former rule is as well at the preference profile by him, and (ii) the gain from manipulation

of the former rule is greater than or equal to that of the latter rule.

13For the formal definition of the generalized Vickrey rule, see, for example, Shinozaki et al. (2020).
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Now, we formalize the above manipulability measure in our setting with non-quasi-

linear preferences. Given a rule f on Rn, R ∈ Rn, i ∈ N , and R′
i ∈ R, the gain from

manipualtion R′
i at R by i under f is defined as

Gf
i (R

′
i;R) ≡ Vi(x

f
i (R

′
i, R−i), fi(R))− tfi (R

′
i, R−i).

The next remark states that (i) the gain from manipulation is positive if and only if

the manipulation is successful, and (ii) if a preference is quasi-linear, our notion of gain

from manipulation coincides with that of Pathak and Sönmez (2013).

Remark 6. Let f be a rule on Rn. Let R ∈ Rn, i ∈ N , and R′
i ∈ R.

(i). We have Gf
i (R

′
i;R) > 0 if and only if fi(R

′
i, R−i) Pi fi(R).

(ii). If Ri ∈ RQ, then

Gf
i (R

′
i;R) = vi(x

f
i (R

′
i, R−i))− tfi (R

′
i, R−i)− (vi(x

f
i (R))− tfi (R)).

The next definition generalizes the “as intensely and strongly manipulability” relation

of Pathak and Sönmez (2013) for quasi-linear preferences to non-quasi-linear preferences.14

Definition 10. A rule f onRn is at least as manipulable as another rule g onRn if for

each R ∈ Rn, each i ∈ N , each R′
i ∈ R, and each ε ∈ R++, whenever gi(R

′
i, R−i) Pi gi(R),

there is R′′
i ∈ R such that fi(R

′′
i , R−i) Pi fi(R) and Gf

i (R
′′
i ;R) > Gg

i (R
′
i;R)− ε.

We will discuss the relation between our manipulabilty measure to ones proposed by

other authors in detail in Section 5.1.2.

The next proposition is a key building block of the main result of this subsection,

which states that under a class of rules satisfying both no price envy and no subsidy for

losers , a rule is at least as manipulable as another rule if and only if each agent weakly

prefers the bundle of the latter rule to that of the former rule for each preference profile.

Proposition 3. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. Let f, g be a pair of

rules on Rn satisfying both no price envy and no subsidy for losers. Then, g is at least

as manipulable as f if and only if fi(R) Ri gi(R) for each R ∈ Rn and each i ∈ N .

Next, we investigate the minimally manipulable rule among the class of rules satisfying

no price envy and no subsidy for losers according to our manipulability measure.

Definition 11. A rule f on Rn is minimally manipulable among the class of rules

if (i) f is in the class, and (ii) for each rule g onRn in the class, g is at lesat as manipulable

as f .

14For simplicity of notation, we simply say that a rule f is at least as manipulable as another rule g
instead of that f is as intensely and strongly manipulable as g as in Pathak and Sönmez (2013). Clearly,
this will create no confusion in this paper.
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If a rule f on Rn is strategy-proof , then it is minimally manipulable among any class

of rules on Rn to which the rule belongs since no agent can manipulate the rule f at

any R ∈ Rn. Thus, strategy-proofness implies the minimal manipulability among a given

class of rules.

The next result is a main result of this subsection, which states that among the class

of rules satisfying no price envy and no subsidy for losers , the minimum inverse uniform-

price rule is the only minimally manipulable rule.

Theorem 4. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. A rule f on Rn is

minimally manipulable among the class of rules on Rn satisfying no price envy and no

subsidy for losers if and only if it is a minimum inverse uniform-price rule.

Recall that Theorem 1 states that the class of rules satisfying no price envy and

no subsidy for losers coincides with that of the inverse uniform-price rules. Thus, as a

corollary of Theorems 1 and 4, we obtain the following.

Corollary 2. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. A rule f on Rn is

minimally manipulable among the class of inverse uniform-price rules on Rn if and only

if it is a minimum inverse uniform-price rule.

5 Discussion

In this section, we discuss some topics about no price envy and our manipulability mea-

sure.

5.1 No price envy

5.1.1 Prices for losers

In our formulation of no price envy , we do not take the prices of the losers into account.

Here, we show the difficulty of defining the prices of the losers by pursuing some possible

ways to formulate the prices.

One possible way to define the prices of the losers is to set them at zero. This formu-

lation seems plausible since such agents pay no money for the object. However, if we set

the prices of the losers at zero, then no price envy gets so strong that is incompatible with

a minimal requirement of no subsidy for losers since the winners must envy the losers’

prices, and is no longer an attractive property.

Instead, if we follow the interpretation of no price envy that agents choose an optimal

bundle given his price, it seems reasonable to think that a loser faces so high price that

his optimal choice at the price is to receive nothing. Now, we again confront the difficulty

of defining the “high” prices that the losers face in a natural way. In our view, there is
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no natural way to formulate the “high” prices of the losers which keeps no price envy

attractive.15

Thus, instead of defining the prices of the losers, we choose not to define them.

5.1.2 Comparison to related properties

Here, we compare our no price envy to related properties introduced by other authors.

Varian (1976) introduces opportunity fairness in the exchange economy model, which

requires that each agent prefers his bundle to any bundle in other agents’ budget sets

whose price is determined as the exogenously given equilibrium price.16 Our no price envy

is different from opportunity fairness of Varian (1976) since the prices in our property is

determined endogenously by the rule, but the price in opportunity fairness exogenously

determined at the equilibrium price. In particular, opportunity fairness implies no price

envy , but the converse is not true.

Thomson (1994) generalizes opportunity fairness of Varian (1976), and introduces the

property of fairness that he calls no envy of opportunities . A rule f satisfies no envy of

opportunities if there is a a family of opportunity sets B such that for each R ∈ R, the

following two conditions hold: (i) for each i ∈ N , there is a choice set Bi ∈ B of agent i,

and (ii) for each pair i, j ∈ N , there is no zj ∈ Bj such that zj Pi fi(R). Note that no

envy of opportunities is a fairly general property, and it subsumes opportunity fairness

of Varian (1976). However, no price envy neither implies nor is implied by no envy of

opportunities since no price envy does not take the losers’ prices into account.

5.2 Other manipulability measures

Here, we compare our manipulability measure to ones introduced by other authors.

Day and Milgrom (2008) consider the heterogeneous objects model with quasi-linear

preferences, and introduce the gain from manipulations that they call the incentive profile.

In our model, the incentive profile of a rule f on Rn at R ∈ Rn is defined as the profile

(εfi (R))i∈N such that for each i ∈ N ,

εfi (R) ≡ sup
R′

i∈R
Gf

i (R
′
i;R).

We say that a rule f on Rn is DM-at least as manipulable as17 another rule g on Rn if

for each R ∈ Rn and each i ∈ N , εfi (R) ≥ εgi (R).

15An example of a “high” price of a loser i ̸∈ N+(xf (R)) for R under f is pfi (R) = p(Ri; 0), i.e., the
inverse-demand of 0 unit for Ri. However, again no price envy becomes incompatible with no subsidy
for loses if we incorporate such losers’ prices to no price envy .

16In our model, a price p ∈ R is an equilibrium price for R ∈ Rn if there is z ≡ (x, t) ∈ Z such that
(i) for each i ∈ N and each x′

i ∈ X, (xi, pxi) Ri (x
′
i, px

′
i), and (ii) for each i ∈ N , ti = pxi.

17Note that “DM” refers to Day and Milgrom (2008).
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Chen et al. (2016) consider the (many-to-many) matching with contracts model, and

compare stable rules according to their manipulability measure. Since the manipulability

measure in Chen et al. (2016) is for the finite model, we need to slightly modify their

measure so as to be comparable to our measure. To this end, we introduce a distance

function to the consumption set M × R. Let d : (M × R)2 → R be a distance function

such that for each pair (xi, ti), (x
′
i, t

′
i) ∈ M × R18

d((xi, ti), (x
′
i, t

′
i)) = |xi − x′

i|+ |ti − t′i|.

According to the manipulability measure of Chen et al. (2016), a rule is at least as

manipulable as another rule if whenever an agent can manipulate the latter rule at a

preference profile and achieves a certain bundle, he can also manipulate the former rule

and achieve the same bundle as a result of the manipulation. Now, we slightly modify the

manipulability measure of Chen et al. (2016) to be able to handle the issue of tie-breaking,

and say that a rule is at least as manipulable as another rule if whenever an agent can

achieve a bundle as a result of the manipulation of the latter rule, he can achieve almost

the same bundle as a consequence of the manipulation of the former rule.

Formally, we say that a rule f on Rn is C-at least as manipulable as19 another rule

g on Rn if for each R ∈ Rn, each i ∈ N , each R′
i ∈ R, and each ε ∈ R++, whenever

gi(R
′
i, R−i) Pi gi(R), there is R′′

i ∈ R such that fi(R
′′
i , R−i) Pi fi(R) and

d(fi(R
′′
i , R−i), gi(R

′
i, R−i)) < ε.

We define the minimal manipulabilities according to the manipulability measures in-

troduced by other authors.

Definition 12. (i). A rule f on Rn is DM -minimally manipulable among the class

of rules if (i) f is in the class, and (ii) for each rule g on Rn in the class, g is DM -at

lesat as manipulable as f .

(ii). A rule f on Rn is C-minimally manipulable among the class of rules if (i) f

is in the class, and (ii) for each rule g on Rn in the class, g is C-at lesat as manipulable

as f .

The next remark states that our manipulability measure is equivalent to the one

introduced by Day and Milgrom (2008).

Remark 7. Let f, g be a pair of rules on Rn. Then, the following statements are equiv-

alent.

18The following discussion is valid if we replace the distance function d with the Euclidean distance
function or any other equivalent distance function. Our choice of a distance function is only for simplicity
of the discussion.

19Note that “C” refers to Chen et al. (2016).

21



(i). f is at least as manipulable as g.

(ii). f is DM -at least as manipulable as g.

Thus, we obtain the next result as a corollary of Theorem 4.

Corollary 3. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. A rule f on Rn is

DM-minimally manipulable among the class of rules on Rn satisfying no price envy and

no subsidy for losers if and only if it is a minimum inverse uniform-price rule.

The next example shows that our manipulability measure is not equivalent to C-

manipulability measure over the class of rules satisfying both no price envy and no subsidy

for losers . This contrasts with Theorem 3 of Chen et al. (2016), which states that in

their matching with contracts model, C-manipulability measure is equivalent to DM -

manipulability measure.

Example 3. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. Let R∗ ∈ (RNI ∩ RQ)n

be such that (i) v∗1(x1 + 1) − v∗1(x1) = 100m for each x1 ∈ M\{m}, and (ii) for each

i ∈ N\{1}, v∗i (xi+1)−v∗i (xi) = 1 for each xi ∈ M\{m}. Let R′
1 ∈ RC ∩ RQ be such that

v′1(x1+1)− v′1(x1) = 5 for each x1 ∈ M\{m}. Then, mvm+1(R∗) = mvm+1(R′
1, R

∗
−1) = 1,

mvm(R∗) = 100m, and mvm(R′
1, R

∗
−1) = 5. Then, for each inverse uniform-price rule f on

Rn, it holds that xf
1(R

∗) = xg
1(R

∗) = xf
1(R

′
1, R

∗
−1) = m, πf (R∗), πg(R∗) ∈ [1, 100m] and

πf (R′
1, R

∗
−1) ∈ [1, 5].

Let f, g be a pair of inverse uniform-price rules on Rn such that (i) πf (R∗) = πg(R∗) =

5, (ii) πf (R′
1, R

∗
−1) = 3 and πg(R′

1, R
∗
−1) = 4, and (iii) for each R ∈ Rn\{R∗, (R′

1, R
∗
−1)},

πf (R) = πg(R) = mvm+1(Rinv). Then, fi(R) Ri gi(R) for each R ∈ Rn and each i ∈ N .

Thus, by Proposition 3, g is at least as manipulable as f .

Note that f1(R
′
1, R

∗
−1) = (m, 3m) P ∗

1 (m, 5m) = f1(R
∗). Let ε ∈ R++ be such that

ε < m. LetR′′
1 ∈ R be such that g1(R

′′
1, R−1) P1 g1(R) = (m, 5m). Then, by the definition

of R∗
1 and tg1(R

′′
1, R−1) ≥ 0, xg

1(R
′′
1, R−1) = m. Then, by the definition of πg, either

πg(R′′
1, R

∗
−1) = 4 or πg(R′′

1, R
∗
−1) = 1. Thus, we have

d(g1(R
′′
1, R

∗
−1), f1(R

′
1, R

∗
−1)) ≥ |5m− 4m| = m > ε.

Thus, g is not C-at least as manipulable as f , and the the equivalnece between our

manipulability measure and C-manipulability measure does not hold.

The next theorem, however, states that even though C-manipulability measure is not

equivalent to ours as the above example demonstrates, the minimum inverse uniform-price

rule is still the only minimally manipulable rule among the class of rules satisfying no

price envy and no subsidy for losers according to C-manipulability measure. The proof

of the next theorem can be found in the supplymentary material.
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Theorem 5. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. A rule f on Rn is C-

minimally manipulable among the class of rules on Rn satisfying no price envy and no

subsidy for losers if and only if it is a minimum inverse uniform-price rule.

In the supplementary material, we further discuss the relationship between our ma-

nipulability measure and the one introduced by Pathak and Sönmez (2013) which does

not take gains from manipulations into account.

6 Conclusion

In this paper, we propose a new property of fairness: no-price-envy , and investigate its

implications in conjunction with the other desirable properties. We identify the unique

maximal domain for no price envy , strategy-proofness , and no subsidy for losers , and show

that on the domain the minimum inverse uniform-price rule is the unique rule satisfying

the three properties. Our maximal domain result implies that in the case of nonincreasing

marginal valuations, no rule satisfies no price envy , strategy-proofness , and no subsidy for

losers , but we show in such a case that the minimum inverse uniform-price rules is the

only minimally manipulable rule among the class of rules satisfying no-price-envy and no

subsidy for losers . These results provides a rationale for the use of the minimum uniform-

price rule that is one of the most popular auction rules in real-life auctions in terms of

fairness and non-manipulability.

Appendix

A Basic lemmas

In this section, we prove the basic lemmas that will be used to prove the results.

The next lemma states that if a rule satisfies no price envy , then it satisfies individual

rationality .

Lemma 1 (Individual rationality). Let f be a rule on Rn satisfying no price envy.

Then, it satisfies individual rationality.

Proof. Let R ∈ Rn and i ∈ N . First, if xf
i (R) > 0, then no price envy implies that

fi(R) Ri(0, p
f
i (R)0) = 0. Second, if xf

i (R) = 0, then there is j ∈ N\{i} such that

xf
j (R) > 0 by the feasibility. Then, no price envy implies that fi(R) Ri (0, p

f
j (R)0) = 0,

as desired.

The next lemma states that if a rule satisfies no price envy and no subsidy for losers ,

then a loser makes no monetary transfer.
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Lemma 2 (Zero payment for losers). Let f be a rule on Rn satisfying no price envy

and no subsidy for losers. Let R ∈ Rn and i ∈ N . If xf
i (R) = 0, then tfi (R) = 0.

Proof. Suppose xf
i (R) = 0. By no subsidy for losers , tfi (R) ≥ 0. By Lemma 1, f sat-

isfies individual rationality . Then, it holds that (0, tfi (R)) = fi(R) Ri 0, which implies

tfi (R) ≤ 0. Thus, tfi (R) = 0.

The following lemma states that under a rule satisfying no price envy , winners face

the equal prices.

Lemma 3 (Equal prices for winners). Let f be a rule on Rn satisfying no price envy.

Let R ∈ Rn and i, j ∈ N+(xf (R)). Then, pfi (R) = pfj (R).

Proof. Suppose by contradiction that pfi (R) ̸= pfj (R). If pfi (R) > pfj (R), then it holds

that tfi (R) > pfj (R)xf
i (R). Then, (xf

i (R), pfj (R)xf
i (R)) Pi fi(R). However, this contra-

dicts no price envy . Instead, if pfi (R) < pfj (R), then tfj (R) > pfi (R)xf
j (R). Then,we have

(xf
j (R), pfi (R)xf

j (R)) Pj fj(R), which contradicts no price envy .

The next lemma provides a characterization of an efficient allocation for preferences

with nonincreasing marginal valuations.

Lemma 4. Let R ∈ (RNI)n. Let z ≡ (x, t) ∈ Z. Then, x ∈ arg max
x′∈X

∑
i∈N vi(x

′
i, zi) if

and only if for each pair i, j ∈ N with xi ̸= 0 and xj ̸= m,

vi(xi, zi)− vi(xi − 1, zi) ≥ vj(xj + 1, zj)− vj(xj, zj).

Proof. First, we show the “if” part. Suppose x ∈ arg max
x′∈X

∑
i∈N vi(x

′
i, zi). Let i, j ∈ N

be a pair such that xi ̸= 0 and xj ̸= m. By contradiction, suppose that

vi(xi, zi)− vi(xi − 1, zi) < vj(xj + 1, zj)− vj(xj, zj). (1)

Note that by Ri, Rj ∈ RNI , i ̸= j. Let x′ ∈ X be such that x′
i = xi − 1, x′

j = xj + 1, and

x′
k = xk for each k ∈ N\{i, j}. Then, by (1),∑

k∈N

vk(x
′
k, zk)−

∑
k∈N

vk(xk, zk) = vj(xj +1, zj)− vj(xj, zj)− (vi(xi, zi)− vi(xi− 1, zi)) > 0,

or
∑

k∈N vk(x
′
k, zk) >

∑
k∈N vk(xk, zk). However, this contradicts x ∈ arg max

x′∈X

∑
k∈N vk(x

′
k, zk).

Next, we show the “only if” part. Suppose that for each pair i, j ∈ N with xi ̸= 0 and

xj ̸= m,

vi(xi, zi)− vi(xi − 1, zi) ≥ vj(xj + 1, zj)− vj(xj, zj). (2)
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Let x′ ∈ X. Let N> ≡ {i ∈ N : xi > x′
i}, N= ≡ {i ∈ N : xi = x′

i}, and N< ≡ {i ∈ N :

xi < x′
i}. Note that {N>, N=, N<} is a partition of N . Note also that for each i ∈ N>,

xi ̸= 0, and for each i ∈ N<, xi ̸= m.

By the feasibility,
∑

i∈N xi = m =
∑

i∈N x′
i. Thus, we have

0 =
∑
i∈N

(xi − x′
i)

=
∑
i∈N>

(xi − x′
i) +

∑
i∈N<

(xi − x′
i),

or ∑
i∈N>

(xi − x′
i) =

∑
i∈N<

(x′
i − xi). (3)

Then,∑
i∈N

vi(xi, zi)−
∑
i∈N

vi(x
′
i, zi)

=
∑
i∈N>

(vi(xi, zi)− vi(x
′
i, zi))−

∑
i∈N<

(vi(x
′
i, zi)− vi(xi, zi))

≥
∑
i∈N>

(xi − x′
i)(vi(xi, zi)− vi(xi − 1, zi))−

∑
i∈N<

(x′
i − xi)(vi(xi + 1, zi)− vi(xi, zi))

(by R ∈ (RNI)n)

≥
∑
i∈N>

(xi − x′
i)
(
min
i∈N>

{vi(xi, zi)− vi(xi − 1, zi)}
)
−

∑
i∈N<

(x′
i − xi)

(
max
i∈N<

{vi(xi + 1, zi)− vi(xi, zi)}
)

≥ 0, (by (2) and (3))

or
∑

i∈N vi(xi, zi) ≥
∑

i∈N vi(x
′
i, zi).

The next lemma gives both the lower and the upper bounds of the marginal valuations

at an efficient allocation.

Lemma 5. Let R ∈ (RNI)n and z ≡ (x, t) ∈ Z be such that x ∈ arg max
x′∈X

∑
i∈N vi(x

′
i, zi).

Let i ∈ N .

(i). If xi ̸= 0, then vi(xi, zi)− vi(xi − 1, zi) ≥ mvm(R, z).

(ii). If xi ̸= m, then vi(xi + 1, zi)− vi(xi, zi) ≤ mvm+1(R, z).

Proof. First, we show (i). Suppose xi ̸= 0. For each j ∈ N , let Mj ≡ {x′
j ∈ M\{m} :

x′
j ≥ xj}. Then, for each j ∈ N , |Mj| = m− xj. Thus,∑

j∈N

|Mj| = nm−
∑
j∈N

xj = nm−m = (n− 1)m,
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where the second equality follows from the feasibility. Further, for each j ∈ N , let

M j ≡
{
x′
j ∈ M\{m} : vj(x

′
j + 1, zj)− vj(x

′
j, zj) ≤ vi(xi, zi)− vi(xi − 1, zi)

}
.

By xi ̸= 0 and R ∈ (RNI)n, Lemma 4 implies that for each j ∈ N , Mj ⊆ M j. Thus,

|Mj| ≤ |M j| for each j ∈ N . Moreover, by xi − 1 ∈ M i, |Mi| < |M i|. Then,

(n− 1)m =
∑
j∈N

|Mj| <
∑
j∈N

|M j|.

This means that there are more than (n−1)m marginal valuations at z that is no greater

than vi(xi, zi) − vi(xi − 1, zi) among all the nm marginal valuations at z. Thus, by

nm− (n− 1)m = m, we obtain vi(xi)− vi(xi − 1) ≥ mvm(R, z).

Then, we show (ii). Suppose xi ̸= m. For each j ∈ N , let Mj ≡ {x′
j ∈ M\{0} :

x′
j ≤ xj}. Then, |Mj| = xj for each j ∈ N . Thus, by the feasibility,∑

j∈N

|Mj| =
∑
j∈N

xj = m.

For each j ∈ N , let

M j ≡
{
x′
j ∈ M\{0} : vj(x

′
j, zj)− vj(x

′
j − 1, zj) ≥ vi(xi + 1, zi)− vi(xi, zi)

}
.

By xi ̸= m and R ∈ (RNI)n, Lemma 4 implies Mj ⊆ M j for each j ∈ N . Moreover, by

{xi + 1} ∪ Mj ⊆ M i, Mi ⊊ M i. Thus,

m =
∑
j∈N

|Mj| <
∑
j∈N

|M j|.

This implies that vi(xi + 1, zi)− vi(xi, zi) ≤ mvm+1(R, z).

The next lemma is a slight generalization of Lemma 10 of Shinozaki et al. (2020).

Since the proof is same as that of Shinozaki et al. (2020), we omit it.

Lemma 6. Let Ri ∈ RNI ∩ R+ and xi ∈ M\{0,m}. For each ti ∈ R+, ti < t∗(xi) if

and only if Vi(xi + 1, (xi, ti))− ti >
ti
xi
.

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. Throughout the section, letR ⊆ RNI ∩ R+.
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B.1 “If” part

Let f be an inverse uniform-price rule on Rn.

It is obvious that f satisfies no subsidy for losers . Thus, we here show that f satisfies

no price envy . The proof is in four steps.

Step 1. Let R ∈ Rn and i ∈ N . Let j ∈ N+(x(R)) and xi ∈ M . Then,

pfj (R) =
tj(R)

xj(R)
=

xj(R)πf (R)

xj(R)
= πf (R).

Step 2. Let xi ∈ M be such that xi < xf
i (R). We show (xi+1, πf (R)(xi+1)) Ri (xi, π

f (R)xi).

We have

πf (R) ≤ mvm(Rinv) ≤ vinvi (xf
i (R))− vinvi (xf

i (R)− 1) ≤ vinvi (xi + 1)− vinvi (xi), (1)

where the second inequality follows from Lemma 5 (ii), and the last one from Rinv
i ∈ RNI .

Suppose xi = 0. Then,

πf (R) ≤ vinvi (1) = p(0;Ri) = Vi(1,0),

where the inequality follows from (1), and the second equality from Proposition 1. This

implies

(1, πf (R)) Ri 0 = (0, πf (R)0).

Suppose next xi > 0. Then,

πf (R) ≤ vinvi (xi + 1)− vinvi (xi) = p(xi;Ri) =
t∗(xi)

xi

,

where the inequality follows from (1), and the second equality from Proposition 1. This

implies πf (R)xi ≤ t∗(xi). This, together with Lemma 6, implies

Vi(xi + 1, (xi, π
f (R)xi))− πf (R)xi ≥

πf (R)xi

xi

= πf (R),

or Vi(xi + 1, (xi, π
f (R)xi)) ≥ πf (R)(xi + 1). This implies

(xi + 1, πf (R)(xi + 1)) Ri (xi, π
f (R)xi),

as desired.

Step 3. Let xi ∈ M be such that xi > xf
i (R). We show (xi−1, πf (R)(xi−1)) Ri (xi, π

f (R)xi).
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Note that

πf (R) ≥ mvm+1(Rinv) ≥ vinvi (xf
i (R) + 1)− vinvi (xf

i (R)) ≥ vinvi (xi)− vinvi (xi − 1), (2)

where the second inequality follows from Lemma 5 (ii), and the last one from Rinv
i ∈ RNI .

Note that by xi > xf
i (R), xi ≥ 1.

Suppose xi = 1. Then,

πf (R) ≥ vinvi (1) = p(0;Ri) = Vi(1,0),

where the inequaliy follows from (2), and the last equality from Proposition 1. Thus, we

obtain

(0, πf (R)0) = 0 Ri (1, π
f (R)).

Suppose xi > 1. We have

πf (R) ≥ vinvi (xi)− vinvi (xi − 1) = p(xi − 1;Ri) =
t∗(xi − 1)

xi − 1
,

where the inequality follows from (2), and the last inequality from Proposition 1. This

gives πf (R)(xi − 1) ≥ t∗(xi − 1). Thus, by Lemma 6,

Vi(xi, (xi − 1, πf (R)(xi − 1)))− πf (R)(xi − 1) ≤ πf (R)(xi − 1)

xi − 1
= πf (R),

or Vi(xi, (xi − 1, πf (R)(xi − 1))) ≤ πf (R)xi. This implies

(xi − 1, πf (R)(xi − 1)) Ri (xi, π
f (R)xi).

Step 4. First, if xi(R) = xi, then fi(R) = (xi, π
f (R)xi). Thus, fi(R) Ri (xi, π

f (R)xi).

Next, if xi < xi(R), then Step 2 gives

fi(R) = (xi(R), πfxi(R)) Ri · · · Ri (xi, π
f (R)xi).

Finally, if xi > xi(R), then Step 3 gives

fi(R) = (xi(R), πfxi(R)) Ri · · · Ri (xi, π
f (R)xi),

as desired. ■
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B.2 “Only if” part

We do the proof of the “only if” part in six steps.

Step 1. Let f be a rule on Rn satisfying both no price envy and no subsidy for losers .

We define a price function πf : Rn → R of the rule f . Let R ∈ Rn. By the feasibility,

N+(xf (R)) ̸= ∅. By Lemma 3, for each pair i, j ∈ N+(xf (R)), pfi (R) = pfj (R). Thus, we

can define a function πf : Rn → R such that for each R ∈ Rn, πf (R) = pfi (R) for each

i ∈ N+(x(R)).

Step 2. Let R ∈ Rn and i ∈ N be such that xf
i (R) ̸= 0. In this step, we show that

πf (R) ≤ vinvi (xi(R))− vinvi (xi(R)− 1). By contradiction, suppose

πf (R) > vinvi (xi(R))− vinvi (xi(R)− 1). (1)

Note that by xf
i (R) ̸= 0, xf

i (R) ≥ 1.

Suppose first xf
i (R) = 1. Then, by Proposition 1,

vinvi (xf
i (R))− vinvi (xf

i (R)− 1) = p(0;Ri) = Vi(1,0). (2)

Thus, by (1),

πf (R) > Vi(1,0).

This implies

0 Pi (1, π
f (R)) = fi(R),

where the equality follows from xf
i (R) = 1. However, this contradicts Lemma 1.

Next, suppose xf
i (R) > 1. By Proposition 1,

vinvi (xf
i (R))− vinvi (xf

i (R)− 1) = p(xf
i (R)− 1;Ri) =

t∗(xf
i (R)− 1)

xf
i (R)− 1

.

This, together with (1), implies

πf (R) >
t∗(xf

i (R)− 1)

xf
i (R)− 1

,

or πf (R)(xf
i (R)− 1) > t∗(xf

i (R)− 1). Thus, by Lemma 6,

Vi

(
xf
i (R), (xf

i (R)−1, πf (R)(xf
i (R)−1))

)
−πf (R)(xf

i (R)−1) <
πf (R)(xf

i (R)− 1)

xf
i (R)− 1

= πf (R),

29



or

Vi

(
xf
i (R), (xf

i (R)− 1, πf (R)(xf
i (R)− 1))

)
< πf (R)xf

i (R).

This implies

(xf
i (R)− 1, πf (R)(xf

i (R)− 1)) Pi (x
f
i (R), πf (R)xf

i (R)) = fi(R),

which contradicts no price envy .

Step 3. Let R ∈ Rn and i ∈ N be such that xf
i (R) ̸= m, In this step, we show that

πf (R) ≥ vinvi (xf
i (R) + 1)− vinvi (xf

i (R)). Suppose to the contrary that

πf (R) < vinvi (xf
i (R) + 1)− vinvi (xf

i (R)). (3)

Suppose xf
i (R) = 0. By Proposition 1,

vinvi (xf
i (R) + 1)− vinvi (xf

i (R)) = p(0;Ri) = Vi(1,0). (4)

Then, by (3),

πf (R) < Vi(1,0). (5)

By Lemma 2, fi(R) = 0. Thus, by (5),

(1, πf (R)) Pi 0 = fi(R),

which contradicts no price envy .

Suppose instead xf
i (R) > 0. Then, by Proposition 1,

vinvi (xf
i (R) + 1)− vinvi (xf

i (R)) = p(xf
i (R);Ri) =

t∗(xf
i (R))

xf
i (R)

.

Thus, by (3),

πf (R) <
t∗(xf

i (R))

xf
i (R)

.

This implies πf (R)xf
i (R) < t∗(xf

i (R)). By Lemma 6,

Vi

(
xf
i (R) + 1, (xf

i (R), πf (R)xf
i (R))

)
−πf (R)xf

i (R) >
πf (R)xf

i (R)

xf
i (R)

= πf (R),

which implies

Vi

(
xf
i (R) + 1, (xf

i (R), πf (R)xf
i (R))

)
> πf (R)(xf

i (R) + 1).
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Thus, we have

(xf
i (R) + 1, πf (R)(xf

i (R) + 1)) Pi (x
f
i (R), πf (R)xf

i (R)) = fi(R).

However, this contradicts no price envy .

Step 4. Let R ∈ Rn. Let i ∈ N be such that xf
i (R) ̸= 0. We show that vinvi (xf

i (R)) −
vinvi (xf

i (R)− 1) ≥ mvm(Rinv).

For each j ∈ N , let

Mj ≡
{
xj ∈ M\{m} : vinvj (xj + 1)− vinvj (xj) ≤ vinvi (xf

i (R))− vinvi (xf
i (R)− 1)

}
.

Now, we claim that
∑

j∈N |Mj| > (n− 1)m.

First, suppose there is j ∈ N such that xf
j (R) = m. By xf

i (R) ̸= 0, it must hold that

xf
i (R) = m. Then, for each j ∈ N\{i}, xj(R) = 0. Thus, by Steps 2 and 3, for each

j ∈ N\{i},
vinvj (1) ≤ πf (R) ≤ vinvi (m)− vinvi (m− 1).

Thus, for each j ∈ N\{i}, by Rinv
j ∈ RNI ,

Mj = M\{m}.

By m− 1 ∈ Mi, Mi ̸= ∅. Thus,∑
j∈N

|Mj| >
∑

j∈N\{i}

|Mj| = (n− 1)m.

Second, suppose xf
j (R) ̸= m for each j ∈ N . By Step 2 and 3,

vinvj (xf
j (R) + 1)− vinvj (xf

j (R)) ≤ πf (R) ≤ vinvi (xf
i (R))− vinvi (xf

i (R)− 1).

Thus, by Rinv
−i ∈ (RNI)n−1, for each j ∈ N\{i}, it holds that

{xf
j (R), . . .,m− 1} ⊆ Mj.

Then, |Mj| ≥ m− xf
j (R) for each j ∈ N\{i}. Moreover, by Rinv

i ∈ RNI ,

{xf
i (R)− 1, . . .,m− 1} ⊆ Mi.
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Thus, |Mi| ≥ m− xf
i (R) + 1. Then,∑

j∈N

|Mj| ≥ nm−
∑
j∈N

xf
j (R) + 1 = (n− 1)m+ 1 > (n− 1)m,

where the equality follows from the feasibility.

Thus, we have established
∑

j∈N |Mj| > (n−1)m. This means that there are more than

(n−1)mmarginal valuations forRinv which is no greater than vinvi (xf
i (R))−vinvi (xf

i (R)−1).

By nm− (n− 1)m = m, we get

vinvi (xf
i (R))− vinvi (xf

i (R)− 1) ≥ mvm(Rinv).

Step 5. Let R ∈ Rn and i ∈ N be such that xf
i (R) ̸= m. We show that vinvi (xf

i (R) +

1)− vinvi (xf
i (R)) ≤ mvm+1(Rinv).

For each j ∈ N , let

Mj ≡
{
xj ∈ M\{0} : vinvj (xf

j (R))− vinvj (xf
j (R)− 1) ≥ vinvi (xf

i (R) + 1)− vinvi (xf
i (R))

}
.

Note that N+(xf (R)) ̸= ∅ by the feasibility. For each j ∈ N+(xf (R)), by Steps 2 and

3,

vinvj (xf
j (R))− vinvj (xf

j (R)− 1) ≥ πf (R) ≥ vinvi (xf
i (R) + 1)− vinvi (xf

i (R)).

Thus, for each j ∈ N+(xf (R)), by Rinv
j ∈ RNI ,

{0, . . ., xf
j (R)− 1} ⊆ Mj.

This implies that |Mj| ≥ xf
j (R) for each j ∈ N+(xf (R)). Note that xf

i (R) ∈ Mi. If

i ∈ N+(xf (R)), then |Mi| ≥ xf
i (R) + 1. Thus,∑

j∈N

|Mj| ≥
∑

j∈N+(xf (R))

|Mj| ≥
∑

j∈N+(xf (R))

xf
j (R) + 1 = m+ 1 > m,

where the equality follows from the feasibility. Instead, if i ̸∈ N+(xf (R)), then byMi ̸= ∅,∑
j∈N

|Mj| >
∑

j∈N+(xf (R))

|Mj| ≥
∑

j∈N+(xf (R))

xf
j (R) = m,

where the equality follows from the feasibility.

Thus, we have established
∑

j∈N |Mj| > m. This means that there are more than m

marginal valuations for Rinv which are no less than vinvi (xf
i (R) + 1)− vinvi (xf

i (R)). Thus,
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we obtain

vinvi (xf
i (R) + 1)− vinvi (xf

i (R)) ≤ mvm+1(Rinv).

Step 6. In this step, we show that f is an inverse uniform-price rule on Rn whose price

function is πf , and complete the proof.

First, we show that f satisfies the first condition (i) of the inverse uniform-price rule.

Let R ∈ Rn. Let i, j ∈ N be such that xf
i (R) ̸= 0 and xf

j (R) ̸= m. Then, by Steps 4

and 5,

vinvi (xf
i (R))−vinvi (xf

i (R)−1) ≥ mvm(Rinv) ≥ mvm+1(Rinv) ≥ vj(x
f
j (R)+1)−vinvj (xf

j (R)).

Thus, by Lemma 4, it holds that

xf (R) ∈ arg max
x∈X

∑
i∈N

vinvi (xi).

Second, we show that f satifies the second condition (ii) of the inverse uniform-

price rule. By the feasibility, there must exist a pair i, j ∈ N such that xf
i (R) ̸= 0 and

xf
j (R) ̸= m. By Steps 2 and 4,

πf (R) ≤ vinvi (xf
i (R))− vinvi (xf

i (R)− 1) ≤ mvm(Rinv).

Moreover, by Steps 3 and 5,

πf (R) ≥ vinvj (xf
j (R) + 1)− vinvj (xf

j (R)) ≥ mvm+1(Rinv).

Thus, we obtain πf (R) ∈ [mvm+1(Rinv),mvm(Rinv)].

Let R ∈ Rn and i ∈ N . If i ∈ N+(xf (R)), then by πf (R) = pfi (R), we get

tfi (R) = πf (R)xf
i (R).

Moreover, if i ̸∈ N+(xf (R)), then by Lemma 2,

tfi (R) = 0 = πf (R)xf
i (R),

as desired. ■

C Proof of Proposition 2

In this section, we prove Proposition 2. Let R0 ∈ (RNI ∩ R+)\R̂C Then. Rinv
0 ̸∈ RC .

Let R be such that R ⊆ RNI ∩ R+ and R ⊇ (RC ∩ RQ) ∪ {R0}.
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Suppose that threre is a rule f on Rn satisfying no price envy , strategy-proofness , and

no subsidy for losers . Then, by R ⊆ RNI ∩ R+, Theorem 1 implies that f is an inverse

uniform-price rule on Rn.

Step 1. In this step, we construct a preference profile. Let R1 = R0. By Rinv
1 ∈ RNI\RC ,

there is x1 ∈ M\{0,m} such that

vinv1 (x1)− vinv1 (x1 − 1) > vinv1 (x1 + 1)− vinv1 (x1).

Let A2 ∈ R++ be a positive number such that

vinv1 (x1 + 1)− vinv1 (x1) < A2 < vinv1 (x1)− vinv1 (x1 − 1). (1)

Let R2 ∈ RC ∩ RQ be such that v2(x2) = A2x2 for each x2 ∈ M .

Let ε ∈ R++ be such that for each x′
1 ∈ M\{m},

ε < vinv1 (x′
1 + 1)− vinv1 (x′

1). (2)

Then, ε < A2. For each i ∈ N\{1, 2}, let Ri ∈ RC ∩ RQ be such that vi(xi) = εxi for

each xi ∈ M .

Step 2. In this step, we show that xf
2(R) = m− x1.

First, we show that xf
i (R) = 0 for each i ∈ N\{1, 2}. Let i ∈ N\{1, 2}. Suppose by

contradiction that xf
i (R) ̸= 0. Then, xf

1(R) ̸= m. Then, by (2),

vi(x
f
i (R))− vi(x

f
i (R)− 1) = ε < vinv1 (xf

1(R) + 1)− vinv1 (xf
1(R)).

By Lemma 4, this contradicts the first condition (i) of the inverse uniform-price rule.

Next, we show that xf
1(R) = x1 Suppose not.

First, suppose xf
1(R) > x1. Then, x

f
2(R) ̸= m. We have

vinv1 (xf
1(R))−vinv1 (xf

1(R)−1) ≤ vinv1 (x1+1)−vinv1 (x1) < A2 = v2(x
f
2(R)+1)−v2(x

f
2(R)),

where the first inequality follows from Rinv
1 ∈ RNI , and the second one from (1). However,

by Lemma 4, this contradicts the first condition (i) of the inverse uniform-price rule.

Second, suppose xf
1(R) < x1. Then, by x

f
i (R) = 0 for each i ∈ N\{1, 2}, the feasibility

implies xf
2(R) ̸= 0. We have

v2(x
f
2(R))−v2(x

f
2(R)−1) = A2 < vinv1 (x1)−vinv1 (x1−1) ≤ vinv1 (xf

1(R)+1)−vinv1 (xf
1(R)),

where the first inequality follows from (1), and the second one from Rinv
1 ∈ RNI . This
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contradicts the first condition (i) of the inverse uniform-price rule by Lemma 4.

Thus, xf
1(R) = x1, and for each i ∈ N\{1, 2}, xf

i (R) = 0. By the feasibility, we have

xf
2(R) = m− xf

1(R) = m− x1.

Step 3. By (1), (2), andRinv
1 ∈ RNI ,mvx1(Rinv) = vinv1 (x1)−vinv1 (x1−1),mvm+x1(Rinv) =

vinv1 (x1+1)−vinv1 (x1), and for each x ∈ M\{0},mvx1+x(Rinv) = A2. Thus, by x1 ∈ M\{0,m},
mvm(Rinv) = mvm+1(Rinv) = A2. Then, f2(R) = (m− x1, A2(m− x1)) by Step 2.

Let A′
2 ∈ R++ be such that

vinv1 (x1 + 1)− vinv1 (x1) < A′
2 < A2. (3)

Let R′
2 ∈ RC ∩ RQ be such that v′2(x2) = A′

2x2 for each x2 ∈ M . Then, by (1) and (3),

vinv1 (x1 + 1)− vinv1 (x1) < A′
2 < vinv1 (x1)− vinv1 (x1 − 1). (4)

Then, in the same way as in Step 2, we can show that xf
2(R

′
2, R−2) = m− x1. By (2),

(4), and Rinv
1 ∈ RNI , mvm(R′

2, R
inv
−2 ) = mvm+1(R′

2, R
inv
−2 ) = A′

2. Thus, π
f (R′

2, R−2) = A′
2.

Then, f2(R
′
2, R−2) = (m− x1, A

′
2(m− x1)). However, by (3),

f2(R
′
2, R−2) = (m− x1, A

′
2(m− x1)) P2 (m− x1, A2(m− x1)) = f2(R),

which contradicts strategy-proofness . ■

D Proof of Theorem 2

In this section, we prove Theorem 2. Let R be such that RC ∩ RQ ⊆ R ⊆ RNI ∩ R+.

D.1 “If” part

First, we show the “if” part. Suppose R = R̂C .

We first show that there is a rule on Rn satisfying no price envy , strategy-proofness ,

and no subsidy for losers . Let f be a minimum inverse uniform-price rule on Rn. Then,

by R ⊆ RNI ∩ R+, Theorem 1 implies that f satisfies both no price envy and no subsidy

for losers . Thus, it suffices to show that it satisfies strategy-proofness .

Let R ∈ Rn, i ∈ N , and R′
i ∈ R. We consider the following two cases.

Case 1. xf
i (R) ̸= 0.
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If xf
i (R

′
i, R−i) ̸= 0, then by Lemma 5 (i) and Rinv, (R′inv

i , Rinv
−i ) ∈ (RC)n,

pfi (R) = mvm+1(Rinv) = max
j∈N\{i}

vinvj (1) = mvm+1(R′inv
i , Rinv

−i ).

Thus, fi(R
′
i, R−i) = (xf

i (R
′
i, R−i), p

f
i (R)xf

i (R
′
i, R−i)). By no price envy , we get fi(R) Ri fi(R

′
i, R−i).

Instead, if xf
i (R

′
i, R−i) = 0, then by Lemma 1, we get fi(R) Ri 0 = fi(R

′
i, R−i).

Case 2. xf
i (R) = 0.

If xf
i (R

′
i, R−i) ̸= 0, then

vinvi (1) ≤ mvm+1(Rinv) ≤ max
j∈N\{i}

vinvj (1) ≤ mvm+1(R′inv
i , Rinv

−i ), (1)

where the first inequality follows from Lemma 5 (ii), the second one from the feasibility,

Lemma 5 (i), andRinv ∈ (RC)n, and the last one from Lemma 5 (i) and (R′inv
i , Rinv

−i ) ∈ (RC)n.

ByRi ∈ R̂C , vinvi (1) = vi(1,0) = vi(xi+1,0)−vi(xi,0) for each xi ∈ M with xi < xf
i (R

′
i, R−i).

Thus, by (1),

vi(x
f
i (R

′
i, R−i),0) ≤ xf

i (R
′
i, R−i)mvm+1(R′inv

i , Rinv
−i ) = tfi (R

′
i, R−i).

This implies 0 Ri fi(R
′
i, R−i). Thus, by Lemma 1, fi(R) Ri fi(R

′
i, R−i).

Instead, if xf
i (R

′
i, R−i) = 0, then fi(R) = 0 = fi(R

′
i, R−i).

Next, let R′ be such that R′ ⊋ R and R′ ⊆ RNI ∩ R+. By R′ ̸⊆ R, there is R0 ∈ R′

such that R0 ̸∈ R. Note that by R′ ⊆ RNI ∩ R+, R0 ∈ RNI ∩ R+. By R ⊇ RC ∩ RQ,

R′ ⊇ RC ∩ RQ. Thus, we have R′ ⊇ (RC ∩ RQ) ∪ {R0} for R0 ∈ (RNI ∩ R+)\R̂C ,

and Proposition 2 implies that there is no rule on (R′)n satifying no price envy , strategy-

proofness , and individual rationality .

D.2 “Only if” part

Next, we prove the “only if” part. Suppose by contradiction that R is a maximal domain

for no price envy , strategy-proofness , and no subsidy for losers , but R ̸= R̂C .

If R ⊆ R̂C , then by R ̸= R̂C , R ⊊ R̂C . However, this contradicts that Rn is a max-

imal domain for no price envy , strategy-proofness , and no subsidy for losers since the

minimum inverse uniform-price rule on (R̂C)n satisfies the three properties.

Thus, R ̸⊆ R̂C . Then, there is R0 ∈ R such that R0 ̸∈ R̂C . By R ⊆ RNI ∩ R+,

R0 ∈ RNI ∩ R+. Thus, by R ⊇ (RC ∩ RQ) ∪ {R0}, Proposition 2 implies no rue on
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Rn satisfies no price envy , strategy-proofness , and no subsidy for losers . However, this

contradicts that R is a maximal domain for no price envy , strategy-proofness , and no

subsidy for losers . ■

E Proof of Theorem 3

In this section, we prove Theorem 3. Let R be such that RC ∩ RQ ⊆ R ⊆ R̂C . By the

proof of the “if” part of Theorem 2, the minimum inverse uniform-price rule satisfies no

price envy , strategy-proofness , and no subsidy for losers on Rn. Thus, we here show the

“only if” part.

We begin with the following two lemmas.

Lemma 7. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn and

i ∈ N be such that mvm+1(Rinv) < mvm(Rinv). Let R′
i ∈ RC ∩ RQ be such that for each

xi ∈ M\{m},
mvm+1(Rinv) < v′i(xi + 1)− v′i(xi) < mvm(Rinv).

Then, (i) xg
i (R

′
i, R−i) = xf

i (R), and (ii) if 0 < xf
i (R) < m, then πg(R′

i, R−i) = v′i(xi +

1)− v′i(xi) for each xi ∈ M\{m}.

Proof. First, we show (i). By contradiction, suppose xg
i (R

′
i, R−i) ̸= xf

i (R). We consider

the following two cases.

Case 1. xg
i (R

′
i, R−i) < xf

i (R)

By the feasibility, there is j ∈ N\{i} such that xg
j (R

′
i, R−i) > xf

j (R). Then,

vinvj (xg
j (R

′
i, R−i))− vinvj (xg

j (R
′
i, R−i)− 1)

≤ vinvj (xf
j (R) + 1)− vinvj (xf

j (R)) (by Rinv
j ∈ RNI)

≤ mvm+1(Rinv) (by Lemma 5 (ii))

< v′i(x
g
j (R

′
i, R−i) + 1)− v′i(x

g
j (R

′
i, R−i)), (by the def. of R′

i)

which contradicts Lemma 4.

Case 2. xg
i (R

′
i, R−i) > xf

i (R)
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Then, there is j ∈ N\{i} such that xg
j (R

′
i, R−i) < xf

j (R). Then,

vinvj (xg
j (R

′
i, R−i) + 1)− vinvj (xg

j (R
′
i, R−i))

≥ vinvj (xf
j (R))− vinvj (xf

j (R)− 1) (by Rinv
j ∈ RNI)

≥ mvm(Rinv) (by Lemma 5 (i))

> v′i(x
g
i (R

′
i, R−i))− v′i(x

g
i (R

′
i, R−i)− 1), (by the def. of R′

i)

which contradicts Lemma 4.

Next, we show (ii). Suppose 0 < xf
i (R) < m. By (i) and xf

i (R) ̸= 0, xg
i (R

′
i, R−i) ̸= 0.

Thus, by Lemma 5 (i),

v′i(x
g
i (R

′
i, R−i))− v′i(x

g
i (R

′
i, R−i)− 1) ≥ mvm(R′

i, R
inv
−i ). (1)

Similarly, by (i) and xf
i (R) ̸= m, xg

i (R
′
i, R−i) ̸= m. Thus, by Lemma 5 (ii),

v′i(x
g
i (R

′
i, R−i) + 1)− v′i(x

g
i (R

′
i, R−i)) ≤ mvm+1(R′

i, R
inv
−i ). (2)

By mvm(R′
i, R

inv
−i ) ≥ mvm+1(R′

i, R
inv
−i ), (1), (2), and R′

i ∈ RC , we obtain that for each

xi ∈ M\{m},

mvm(R′
i, R

inv
−i ) = mvm+1(R′

i, R
inv
−i ) = v′i(xi + 1)− v′i(xi).

Thus, πg(R′
i, R−i) = v′i(xi + 1)− v′i(xi) for each xi ∈ M\{m}.

Lemma 8. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn and i ∈ N

be such that xf
i (R) = m. Let R′

i ∈ RNI ∩ RQ be such that v′i(xi+1)−v′i(xi) > mvm+1(Rinv)

for each xi ∈ M\{m}. Then, (i) xg
i (R

′
i, R−i) = m and (ii) πg(R′

i, R−i) ≤ v′i(m)− v′i(m−
1).

Proof. First, we show (i). Suppose by contradiction that xg
i (R

′
i, R−i) ̸= m. Then, by

the feasibility, there is j ∈ N\{i} such that xg
j (R

′
i, R−i) ̸= 0. Note that by xf

i (R) = m,

xf
j (R) = 0. Then, we have

mvm+1(Rinv) ≥ vinvj (1) (by Lemma 5 (ii))

≥ vinvj (xg
j (R

′
i, R−i))− vinvj (xg

j (R
′
i, R−i)− 1) (by Rinv

j ∈ RNI)

≥ mvm(R′
i, R

inv
−i ) (by Lemma 5 (i))

≥ mvm+1(R′
i, R

inv
−i )

≥ v′i(x
g
i (R

′
i, R−i) + 1)− v′i(x

g
i (R

′
i, R−i)) (by Lemma 5 (ii))

> mvm+1(Rinv),
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a contradiction.

Then, we show (ii). By (i), xg
i (R

′
i, R−i) = m. Thus, by Lemma 5 (i),

πg(R′
i, R−i) ≤ v′i(m)− v′i(m− 1),

as desired.

Now, we turn to the proof of the “only if” part of Theorem 3. Let f be a rule on Rn

satisfying no price envy , strategy-proofness , no subsidy for losers . Note that by Theo-

rem 1, f is an inverse uniform-price rule. By contradiction, suppose f is not a minimum

inverse uniform-price rule. Then, there is R ∈ Rn such that πf (R) ̸= mvm+1(Rinv). Let

ε ∈ R++ be such that ε < πf (Rinv)−mvm+1(Rinv). By the feasibility, there is i ∈ N such

that xf
i (R) ̸= 0. Let R′

i ∈ RC ∩ RQ be such that v′i(xi) = (πf (R)−ε)xi for each xi ∈ M .

We consider the following two cases.

Case 1. xf
i (R) ̸= m.

Since f is an inverse uniform-price rule, πf (R) ≤ mvm(Rinv). Thus, for each xi ∈ M\{m},

mvm+1(Rinv) < v′i(xi + 1)− v′i(xi) < mvm(Rinv),

where the first inequality follows from ε < πf (R)−mvm+1(Rinv). By Lemma 7, xf
i (R

′
i, R−i) =

xf
i (R) and πf (R′

i, R−i) = πf (R)− ε. Then, by xf
i (R

′
i, R−i) = xf

i (R) ̸= 0,

tfi (R
′
i, R−i) = πf (R′

i, R−i)x
f
i (R

′
i, R−i) < πf (R)xf

i (R) = tfi (R).

Thus, by xf
i (R

′
i, R−i) = xf

i (R), fi(R
′
i, R−i) Pi fi(R). However, this contradicts strategy-

proofness .

Case 2. xf
i (R) = m.

By ε < πf (R)−mvm+1(Rinv), for each xi ∈ M\{m},

v′i(xi + 1)− v′i(xi) > mvm+1(Rinv).

Thus, by Lemma 8, xf
i (R

′
i, R−i) = xf

i (R) = m and

πf (R′
i, R−i) ≤ πf (R)− ε < πf (R).

These imply ti(R
′
i, R−i) < ti(R). Thus, by xf

i (R
′
i, R−i) = xf

i (R), fi(R
′
i, R−i) Pi fi(R),
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which contradicts strategy-proofness . ■

F Proofs of Theorem 4 and Proposition 3

In this section, we prove Theorem 4 and Proposition 3. Throughout the section, let R be

such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+.

F.1 Preliminaries

First, we provide lemmas that will be used to prove Theorem 4 and Proposition 3.

The next lemma states that if an agent can manipulate an inverse uniform-price rule,

then he must receive some units of the object as a result of the manipulation.

Lemma 9. Let f be an inverse uniform-price rule on Rn. Let R ∈ Rn, i ∈ N , and

R′
i ∈ R be such that fi(R

′
i, R−i) Pi fi(R). Then, xf

i (R
′
i, R−i) ̸= 0.

Proof. By contradiction, suppose xf
i (R

′
i, R−i) = 0. By the second condition (ii) of the

inverse uniform-price rule, fi(R
′
i, R−i) = 0. By Theorem 1, f satisfies no price envy .

Thus, by Lemma 1,

fi(R) Ri 0 = fi(R
′
i, R−i),

which contradicts fi(R
′
i, R−i) Pi fi(R).

The next two lemmas state that for a given preference profile such that an agent

receives some but not all units of the object under an inverse uniform-price, there is a

quasi-linear preference that produces the same consumption level under another inverse

uniform-price rule as the original rule.

Lemma 10. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn and

i ∈ N be such that 0 < xf
i (R) < m and mvm+1(Rinv) = mvm(Rinv). Let R′

i ∈ RNI ∩ RQ

be such that

v′i(x
f
i (R) + 1)− v′i(x

f
i (R)) < mvm+1(Rinv) < v′i(x

f
i (R))− v′i(x

f
i (R)− 1).

Then, (i) xg
i (R

′
i, R−i) = xf

i (R) and (ii) v′i(x
f
i (R)+1)−v′i(x

f
i (R)) ≤ πg(R′

i, R−i) ≤ v′i(x
f
i (R))−

v′i(x
f
i (R)− 1).

Proof. We first show (i). Suppose by contradiction that xg
i (R

′
i, R−i) ̸= xf

i (R). We need

to consider the following two cases.

Case 1. xg
i (R

′
i, R−i) < xf

i (R)
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By the feasibility, there is j ∈ N\{i} such that xg
j (R

′
i, R−i) > xf

j (R). Then,

vinvj (xg
j (R

′
i, R−i))− vinvj (xg

j (R
′
i, R−i)− 1)

≤ vinvj (xf
j (R) + 1)− vinvj (xf

j (R)) (by Rinv
j ∈ RNI)

≤ mvm+1(Rinv) (by Lemma 5 (ii))

= mvm(Rinv)

< v′i(x
f
i (R))− v′i(x

f
i (R)− 1) (by the def. of R′

i)

≤ v′i(x
g
i (R

′
i, R−i) + 1)− v′i(x

g
i (R

′
i, R−i)), (by R′

i ∈ RNI)

which contradicts Lemma 4.

Case 2. xg
i (R

′
i, R−i) > xf

i (R)

Note that there is j ∈ N\{i} such that xg
j (R

′
i, R−i) < xf

j (R) by the feasibility. Then,

vinvj (xg
j (R

′
i, R−i) + 1)− vinvj (xg

j (R
′
i, R−i))

≥ vinvj (xf
j (R))− vinvj (xf

j (R)− 1) (by Rinv
j ∈ RNI)

≥ mvm(Rinv) (by Lemma 5 (i))

= mvm+1(Rinv)

> v′i(x
f
i (R) + 1)− v′i(x

f
i (R)) (by the def. of R′

i)

≥ v′i(x
g
i (R

′
i, R−i))− v′i(x

g
i (R

′
i, R−i)− 1), (by R′

i ∈ RNI)

which contradicts Lemma 4.

Next, we show (ii). By (i) and xf
i (R) ̸= 0, xg

i (R
′
i, R−i) ̸= 0. Thus, by Lemma 5 (i),

v′i(x
g
i (R

′
i, R−i))− v′i(x

g
i (R

′
i, R−i)− 1) ≥ mvm(R′

i, R
inv
−i ) ≥ πg(R′

i, R−i). (1)

By (i) and xf
i (R) ̸= m, xg

i (R
′
i, R−i) ̸= m. Thus, by Lemma 5 (ii),

v′i(x
g
i (R

′
i, R−i) + 1)− v′i(x

g
i (R

′
i, R−i)) ≤ mvm+1(R′

i, R
inv
−i ) ≤ πg(R′

i, R−i). (2)

Combining (1) and (2), we obtain the desired inequality.

Lemma 11. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn and

i ∈ N be such that 0 < xf
i (R) < m. Let ε ∈ R++. Then, there is R′

i ∈ RNI ∩ RQ such

that (i) xg(R′
i, R−i) = xf

i (R) and (ii) |tgi (R′
i, R−i)− tfi (R)| < ε.

Proof. We consider the following two cases.
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Case 1. mvm+1(Rinv) < mvm(Rinv).

We further divide the argument into two cases.

Case 1-1. mvm+1(Rinv) < πf (R).

Let ε′ ∈ R+ be such that

xf
i (R)ε′ < min{ε, πf (R)−mvm+1(Rinv)}.

Let R′
i ∈ RC ∩ RQ be such that v′i(xi) = (πf (R) − ε′)xi for each xi ∈ M . Then, by

ε′ < πf (R)−mvm+1(Rinv), for each xi ∈ M\{m},

v′i(xi + 1)− v′i(xi) > mvm+1(Rinv).

Moreover, by πf (R) ≤ mvm(Rinv), for each xi ∈ M\{m},

v′i(xi + 1)− v′i(xi) < mvm(Rinv).

Thus, by 0 < xf
i (R) < m, Lemma 7 implies that xg

i (R
′
i, R−i) = xf

i (R) and πg(R′
i, R−i) =

πf (R)− ε′. Then,

|tgi (R′
i, R−i)− tfi (R)| = xf

i (R)|πf (R)− ε′ − πf (R)| = xf
i (R)ε′ < ε,

where the first equality follows from xg
i (R

′
i, R−i) = xf

i (R), and the inequality from xf
i (R)ε′ < ε.

Case 1-2. mvm+1(Rinv) = πf (R).

Let ε′ ∈ R++ be such that

xf
i (R)ε′ < min{mvm(Rinv)−mvm+1(Rinv), ε}.

Let R′
i ∈ RC ∩ RQ be such that v′i(xi) = (πf (R) + ε′)xi for each xi ∈ M . Then, for each

xi ∈ M\{m}, by ε′ > 0,

v′i(xi + 1)− v′i(xi) > mvm+1(Rinv),

and by ε′ < mvm(Rinv)−mvm+1(Rinv) and πf (R) = mvm+1(Rinv),

v′i(xi + 1)− v′i(xi) < mvm(Rinv).
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Thus, as in Case 1-1, by 0 < xf
i (R) < m, Lemma 7 implies xg

i (R
′
i, R−i) = xf

i (R) and

πg(R′
i, R−i) = pfi (R) + ε′. Then, by xg

i (R
′
i, R−i) = xf

i (R) and xf
i (R)ε′ < ε, we obtain

|tgi (R′
i, R−i)− tfi (R)| < ε in the same way as in Case 1-1.

Case 2. mvm+1(Rinv) = mvm(Rinv).

Let ε′ ∈ R++ be such that

xf
i (R)ε′ < min{mvm(Rinv), ε}.

Let R′
i ∈ RNI ∩ RQ be such that for each xi ∈ M\{m}, v′i(xi+1)−v′i(xi) = mvm(Rinv)+

ε′ if xi < xf
i (R), and v′i(xi + 1) − v′i(xi) = mvm(Rinv) − ε′ if xi ≥ xf

i (R). Then, by

mvm(Rinv) = mvm+1(Rinv),

v′i(x
f
i (R) + 1)− v′i(x

f
i (R)) < mvm+1(Rinv) < v′i(x

f
i (R))− v′i(x

f
i (R)− 1).

Thus, by Lemma 10, xg
i (R

′
i, R−i) = xf

i (R) and

− ε′ < πg
i (R

′
i, R−i)− πf (R) < ε′.

Thus, by xg
i (R

′
i, R−i) = xf

i (R) and xf
i (R)ε′ < ε,

|tgi (R′
i, R−i)− tfi (R)| = xf

i (R)|πg(R′
i, R−i)− πf (R)| = xf

i (R)ε′ < ε,

as desired.

The next lemma states that for a preference profile such that an agent receives all the

units under an inverse uniform-price rule, there is a quasi-linear preference that produces

the same consumption level under another inverse uniform-price rule as the original rule.

Lemma 12. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn and

i ∈ N be such that xf
i (R) = m. Let ε ∈ R++. Then, there is R′

i ∈ RNI ∩ RQ such that

(i) xg
i (R

′
i, R−i) = m, and (ii) tgi (R

′
i, R−i)− tfi (R) < ε.

Proof. Note that πf (R) ≥ mvm+1(Rinv). We consider the following two cases.

Case 1. mvm+1(Rinv) = πf (R).

Let ε′ ∈ R++ be such that mε′ < m. Let R′
i ∈ RC ∩ RQ be such that for each

xi ∈ M\{m},

mvm+1(Rinv) < v′i(xi + 1)− v′i(xi) < mvm+1(Rinv) + ε′.
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Then, by Lemma 8, xg
i (R

′
i, R−i) = m and πg(R′

i, R−i) ≤ v′i(m)− v′i(m− 1). We have

πf (R) + ε′ > v′i(m)− v′i(m− 1) ≥ mvm(R′
i, R

inv
−i ) ≥ πg(R′

i, R−i), (1)

where the first inequality follows from mvm+1(Rinv) = πf (R). Then, we have

tgi (R
′
i, R−i)− tfi (R) = m(πg(R′

i, R−i)− πf (R)) < mε′ < ε,

where the equality follows from xg
i (R

′
i, R−i) = xf

i (R) = m, and the first inequality from

(1).

Case 2. mvm+1(Rinv) < πf (R).

Let R′
i ∈ RC ∩ RQ be such that for each xi ∈ M\{m},

mvm+1(Rinv) < v′i(xi + 1)− v′i(xi) < πf (R).

Then, by Lemma 8, xg
i (R

′
i, R−i) = m and πg(R′

i, R−i) ≤ v′i(m)− v′i(m− 1). Thus,

πg(R′
i, R−i) ≤ v′i(m)− v′i(m− 1) < πf (R).

By xg
i (R

′
i, R−i) = xf

i (R) = m, this implies

tgi (R
′
i, R−i) < tfi (R) < tfi (R) + ε,

or tgi (R
′
i, R−i)− tfi (R) < ε.

The next lemma states that each agent weakly prefers an outcome of an inverse

uniform-price rule than that of another rule if and only if the price of former rule is

no greater than that of the latter rule.

Lemma 13. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn and

i ∈ N . Then, fi(R) Ri gi(R) if and only if πf (R) ≤ πg(R).

Proof. First, we show the “if” part. Suppose πf (R) ≤ πg(R). By Lemma 3, πf (R) =

pfj (R) for each j ∈ N+(xf (R)). By Theorem 1, f satisfies no price envy . Thus,

fi(R) Ri (x
g
i (R), πf (R)xg

i (R)) Ri gi(R),

where the last relation follows from πf (R) ≤ πg(R).

Next, we show the “only if” part. Suppose by contradiction that fi(R) Ri gi(R) but
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πf (R) > πg(R). Then, by no price envy of g,

gi(R) Ri (x
f
i (R), πg(R)xf

i (R)) Pi fi(R),

where the second relation follows from πg(R) < πf (R). However, this contradicts that

fi(R) Ri gi(R).

Finally, the next lemma states the the set of gains of manipulation is bounded above

at each preference profile.

Lemma 14. Let f be an inverse uniform-price rule on Rn. Let R ∈ Rn and i ∈ N .

Then, supR′
i∈R

Gf
i (R

′
i;R) < ∞.

Proof. We show that the set G ≡ {Gf
i (R

′
i;R) : R′

i ∈ R} is bounded above. Then, the

continuity of the real numbers implies that there is supR′
i∈R

Gf
i (R

′
i;R). Let R′

i ∈ R be

such that fi(R) Ri fi(R
′
i, R−i). Then, Gf

i (R
′
i;R) ≤ 0. Instead, let R′

i ∈ R be such that

fi(R
′
i, R−i) Pi fi(R). Then, Gf

i (R
′
i, R−i) > 0. By πf (R′

i, R−i) ≥ mvm+1(R′inv
i , Rinv

−i ) > 0,

tfi (R
′
i, R−i) = πf (R′

i, R−i)x
f
i (R

′
i, R−i) ≥ 0.

Then,

max
xi∈M

Vi(xi, fi(R)) ≥ Vi(x
f
i (R

′
i, R−i), fi(R))− tfi (R

′
i, R−i) = Gf

i (R
′
i;R),

where the inequality follows from tfi (R
′
i, R−i) ≥ 0. Then, by Gf

i (R
′
i;R) > 0, we have

maxxi∈M Vi(xi, fi(R)) > 0. Thus, max{0,maxxi∈M Vi(xi, fi(R))} is an upper bound of the

set G.

F.2 Proof of Proposition 3

Now, we turn to the proof of Proposition 3.

Let f, g be a pair of rules on Rn satisfying no price envy and no subsidy for losers .

Then, by Theorem 1, f and g are both inverse uniform-price rules on Rn.

F.2.1 The “if” part

First, we show the “if” part. Suppose that fi(R) Ri gi(R). Then, we show that g is at least

as manipulable as f . Let R ∈ Rn, i ∈ N , and R′
i ∈ R be such that fi(R

′
i, R−i) Pi fi(R).

Let ε ∈ R++.

Note that by fi(R) Ri gi(R), for each xi ∈ M ,

Vi(xi, fi(R)) ≤ Vi(xi, gi(R)). (1)
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By fi(R
′
i, R−i) Pi fi(R), Lemma 9 implies xf

i (R
′
i, R−i) ̸= 0. Then, we divide the argument

into two cases.

Case 1. xf
i (R

′
i, R−i) ̸= m.

By 0 < xf
i (R

′
i, R−i) < m, Lemma 11 implies that there is R′′

i ∈ RNI ∩ RQ such that

xg
i (R

′′
i , R−i) = xf

i (R
′
i, R−i) and

|tgi (R′′
i , R−i)− tfi (R

′
i, R−i)| < ε. (2)

Then, we have

Gg
i (R

′′
i ;R)−Gf

i (R
′
i;R)

= Vi(x
f
i (R

′
i, R−i), gi(R))− tgi (R

′′
i , R−i)−

(
Vi(x

f
i (R

′
i, R−i), fi(R))− tfi (R

′
i, R−i)

)
(by xg

i (R
′′
i , R−i) = xf

i (R
′
i, R−i))

≥ tfi (R
′
i, R−i)− tgi (R

′′
i , R−i) (by (1))

> − ε, (by (2))

or Gg
i (R

′′
i ;R) > Gf

i (R
′
i;R)− ε.

Case 2. xf
i (R

′
i, R−i) = m.

By xf
i (R

′
i, R−i) = m, Lemma 12 implies that there is R′′

i ∈ RNI ∩ RQ such that

xg
i (R

′′
i , R−i) = xf

i (R
′
i, R−i) = m and

tgi (R
′′
i , R−i)− tfi (R

′
i, R−i) < ε. (3)

Then, we have

Gg
i (R

′′
i ;R) = Vi(m, gi(R))− tgi (R

′′
i , R−i) > Vi(m, fi(R))− tfi (R

′
i, R−i)− ε = Gf

i (R
′
i;R)− ε,

where the inequality follows from (1) and (3).

F.2.2 The “only if” part

We show the “only if” part. Suppose by contradiction that g is at least as manipulable

as f , but there are R ∈ Rn and i ∈ N such that gi(R) Pi fi(R). Then, by Lemma 13,

πg(R) < πf (R). The proof has three steps.

Step 1. We here show that xg
i (R) ̸= 0. Suppose xg

i (R) = 0. Then, tgi (R) = 0 by the
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definition of the inverse uniform-price rule. Thus, gi(R) = 0, and by gi(R) Ri fi(R),

0 Pi fi(R). However, this contradicts individual rationality of f , which follows from no

price envy of f by Lemma 1.

Step 2. Now, we claim that there isR′
i ∈ R such that fi(R

′
i, R−i) Pi fi(R). By gi(R) Pi fi(R),

tgi (R) < Vi(x
g
i (R), fi(R)). Thus, we can choose ε ∈ R++ such that

ε < Vi(x
g
i (R), fi(R))− tgi (R). (4)

By Step 1, xg
i (R) ̸= 0. Thus, by Lemmas 11 and 12, there is R′

i ∈ RNI ∩ RQ such that

xf
i (R

′
i, R−i) = xg

i (R) and tfi (R
′
i, R−i)− tgi (R) < ε. Then,

tfi (R
′
i, R−i) < tgi (R) + ε < Vi(x

f
i (R

′
i, R−i), fi(R)),

where the second inequality follows from (4) and xf
i (R

′
i, R−i) = xg

i (R). This implies

fi(R
′
i, R−i) Pi fi(R).

Step 3. Now, we will derive a contradiction, and complete the proof. We consider the

following two cases.

Case 1. For each R′′
i ∈ R, Gg

i (R
′′
i ;R) ≤ 0.

By Step 2, Gf
i (R

′
i;R) > 0. Let ε ∈ R++ be such that ε < Gf

i (R
′
i;R). Then, for each

R′′
i ∈ R,

Gg
i (R

′′
i ;R) ≤ 0 < Gf

i (R
′
i;R)− ε.

This, together with Step 2, yileds a contadiction that g is at least as manipulable as f .

Case 2. There is R′′
i ∈ R such that Gg

i (R
′′
i ;R) > 0.

Then, supR′′
i ∈R

Gg
i (R

′′
i ;R) > 0. Moreover, by gi(R) Pi fi(R), Vi(xi, gi(R)) < Vi(xi, fi(R))

for each xi ∈ M . Then, we can choose ε ∈ R++ such that

2ε < min
{
min
xi∈M

Vi(xi, gi(R))− Vi(xi, fi(R)), sup
R′′

i ∈R
Gg

i (R
′′
i ;R)

}
. (5)

By Lemma 14, for ε
2
> 0, there is R′′

i ∈ R such that

Gg
i (R

′′
i ;R) > sup

R̃i∈R
Gg

i (R̃i;R)− ε

2
. (6)

By (5) and (6), Gg
i (R

′′
i ;R) > 0. Thus, gi(R

′′
i , R−i) Pi gi(R), and by Lemma 9, xg

i (R
′′
i , R−i) ̸= 0.
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By Lemmas 11 and 12, for ε
2
> 0, there is Ri ∈ RNI ∩ RQ such that xf

i (Ri, R−i) =

xg
i (R

′′
i , R−i) and

tfi (Ri, R−i)− tgi (R
′′
i , R−i) <

ε

2
. (7)

Then, for each R̃i ∈ R,

Gg
i (R̃i;R) ≤ sup

R̃′
i∈R

Gg
i (R̃

′
i;R)

< Gg
i (R

′′
i ;R) +

ε

2
(by (6))

= Vi(x
f
i (Ri, R−i), gi(R))− tgi (R

′′
i , R−i) +

ε

2
(by xg

i (R
′′
i , R−i) = xf

i (Ri, R−i))

< Vi(x
f
i (Ri, R−i), gi(R))− tfi (Ri, R−i) + ε (by (7))

< Vi(x
f
i (Ri, R−i), fi(R))− tfi (Ri, R−i)− ε (by (5))

= Gf
i (Ri;R)− ε.

However, by Step 2, this contradicts that g is at least as manipulable as f . ■

F.3 Proof of Theorem 4

Theorem 4 directly follows from Proposition 3 and Lemma 13. ■
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multi-unit object allocation problem with

non-quasi-linear preferences”

Hiroki Shinozaki∗

February 25, 2022

In this supplementary metrial, we provide the proofs and discussions omitted in the

main text (Shinozaki, 2022).

1 Proof of Theorem 5

In this section, we prove Theorem 5.

Theorem 5. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. A rule f on Rn is C-

minimally manipulable among the class of rules on Rn satisfying no price envy and no

subsidy for losers if and only if it is a minimum inverse uniform-price rule.

Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+.

First, we give the lemmas that will be used to prove Theorem 5.

The next lemma states that if an agent can manipulate a minimum inverse uniform-

price rule, then his consumption level must be no greater than the original level as a

consequence of the manipulation.

Lemma 15. Let f be a minimum inverse uniform-price rule on Rn. Let R ∈ Rn, i ∈ N ,

and R′
i ∈ R be such that fi(R

′
i, R−i) Pi fi(R). Then, xf

i (R
′
i, R−i) ≤ xf

i (R).

Proof. Suppose by contradiction that xf
i (R

′
i, R−i) > xf

i (R). By xi(R
′
i, R−i) > xi(R) and

the feasibility, there is j ∈ N\{i} such that xj(R
′
i, R−i) < xj(R). We have

mvm+1(R′inv
i , Rinv

−i ) ≥ vinvj (xj(R
′
i, R−i) + 1)− vinvj (xj(R

′
i, R−i)) (by Lemma 5 (ii))

≥ vinvj (xj(R))− vinvj (xj(R)− 1) (by Rinv
j ∈ RNI)

≥ mvm(Rinv) (by Lemma 5 (i))

≥ mvm+1(Rinv).

∗Graduate School of Economics, Osaka University. Email: vge017sh@student.econ.osaka-u.ac.jp
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Thus, we obtain

πf (R′
i, R−i) = mvm+1(R′inv

i , Rinv
−i ) ≥ mvm+1(Rinv) = πf (R). (1)

Note that pfj (R) = πf (R). Note also that by Theorem 1, f satisfies no price envy .

Then,

fi(R) Ri (xi(R
′
i, R−i), π

f (R)xi(R
′
i, R−i)) Ri (xi(R

′
i, R−i), π

f (R′
i, R−i)xi(R

′
i, R−i)) = fi(R

′
i, R−i),

where the first relation follows from no price envy , and the second one from (1).

The next lemma further states that if an agent is successful in manipulating a min-

imum inverse uniform-price rule, then he can not receive all the units as a result of the

manipulation.

Lemma 16. Let f be a minimum inverse uniform-price rule on Rn. Let R ∈ Rn, i ∈ N ,

and R′
i ∈ R be such that fi(R

′
i, R−i) Pi fi(R). Then, xf

i (R
′
i, R−i) ̸= m.

Proof. By contradiction, suppose xf
i (R

′
i, R−i) = m. By Lemma 15 and fi(R

′
i, R−i) Pi fi(R),

xf
i (R) = m. Thus, by fi(R

′
i, R−i) Pi fi(R),

πf (R′
i, R−i)m = tfi (R

′
i, R−i) < tfi (R) = πf (R)m,

or

mvm+1(R′inv
i , Rinv

−i ) = πf (R′
i, R−i) < πf (R) = mvm+1(Rinv). (1)

However, by xf
i (R) = xf

i (R
′
i, R−i) = m, Lemma 5 (i) implies

vinvi (m)− vinvi (m− 1) ≥ mvm(Rinv) and v′invi (m)− v′invi (m− 1) ≥ mvm(R′inv
i , Rinv

−i ).

Thus, by Rinv
−i ∈ (RNI ∩ RQ)n−1,

mvm+1(Rinv) = max
j∈N\{i}

vinvj (1) = mvm+1(R′inv
i , Rinv

−i ).

This contradicts (1).

Finally, the next lemma states that if the prices of a pair of inverse uniform-price rules

are different at a preference profile, then each agent must receive the same number of

units under the two rules.

Lemma 17. Let f, g be a pair of inverse uniform-price rules on Rn. Let R ∈ Rn. If

πf (R) ̸= πg(R), then xf
i (R) = xg

i (R) for each i ∈ N .
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Proof. We will prove a contrapositive. Suppose there is i ∈ N such that xf
i (R) ̸= xg

i (R).

Without loss of generality, assume xf
i (R) > xg

i (R). Then,

mvm+1(Rinv) ≥ vinvi (xg
i (R) + 1)− vinvi (xg

i (R)) (by Lemma 5 (ii))

≥ vinvi (xf
i (R))− vinvi (xf

i (R)− 1) (by Rinv
i ∈ RNI)

≥ mvm(Rinv), (by Lemma 5 (i))

Thus, by mvm(Rinv) ≥ mvm+1(Rinv), we obtain mvm(Rinv) = mvm+1(Rinv). Thus, we

get

πf (R) = mvm+1(Rinv) = mvm(Rinv) = πg(R),

as desired.

1.1 The “if” part

First, we prove the “if” part of Theorem 5. Let f be a minimum inverse uniform-price rule

on Rn. Note that by Theorem 1, f satisfies both no price envy and no subsidy for losers .

Let g be a rule on Rn satisfying no price envy and no subsidy for losers . By Theorem 1,

g is an inverse uniform-price rule on Rn. We show that g is C-at least as manipulable as

f . Let R ∈ Rn, i ∈ N , and R′
i ∈ R be such that fi(R

′
i, R−i) Pi fi(R). Let ε ∈ R++.

By fi(R
′
i, R−i) Pi fi(R), tfi (R

′
i, R−i) < Vi(x

f
i (R

′
i, R−i), fi(R)). Let ε′ ∈ R++ be such

that

ε′ < min
{
Vi(x

f
i (R

′
i, R−i), fi(R))− tfi (R

′
i, R−i), ε

}
. (1)

By fi(R
′
i, R−i) Pi fi(R), Lemmas 7 and 16 together imply 0 < xf

i (R
′
i, R−i) < m. Thus,

by Lemma 11, there is R′′
i ∈ RNI ∩ RQ such that xg

i (R
′′
i , R−i) = xf

i (R
′
i, R−i) and

|tgi (R′′
i , R−i)− tfi (R

′
i, R−i)| < ε′. (2)

Now, we show that gi(R
′′
i , R−i) Pi gi(R). Note that πf (R) = mvm+1(Rinv) ≤ πg(R).

Thus, by Lemma 13, fi(R) Ri gi(R). This implies

Vi(x
g
i (R

′′
i , R−i), fi(R)) ≤ Vi(x

g
i (R

′′
i , R−i), gi(R)). (3)
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Then,

Vi(x
g
i (R

′′
i , R−i), gi(R))− tgi (R

′′
i , R−i)

≥ Vi(x
g
i (R

′′
i , R−i), fi(R))− tgi (R

′′
i , R−i) (by (3))

> Vi(x
g
i (R

′′
i , R−i), fi(R))− tfi (R

′
i, R−i)− ε′ (by (2))

= Vi(x
f
i (R

′
i, R−i), fi(R))− tfi (R

′
i, R−i)− ε′

> 0, (by (1))

or Vi(x
g
i (R

′′
i , R−i), gi(R)) > tgi (R

′′
i , R−i). This implies gi(R

′′
i , R−i) Pi gi(R).

By xf
i (R

′
i, R−i) = xg

i (R
′′
i , R−i), (1), and (2), we also have

d(gi(R
′′
i , R−i), fi(R

′
i, R−i)) = |tgi (R′′

i , R−i)− tfi (R
′
i, R−i)| < ε′ < ε.

Thus, g is C-at least as manipulable as f . ■

1.2 The “only” part

Then, we prove the “only if” part. Suppose by contradiction that f is not a minimum

inverse uniform-price rule on Rn, but is a C-minimally manipulable rule on the class of

rules on Rn satisfying no price envy and no subsidy for losers . Then, f satisfies both no

price envy and no subsidy for losers . Thus, by Theorem 1, f is an inverse uniform-price

rule. Since f is not a minimum inverse uniform-price rule, there is R ∈ Rn such that

πf (R) > mvm+1(Rinv).

Let g be a minimum inverse uniform-price onRn. By the feasibility, there is i ∈ N+(xf (R)).

Then, by πg(R) = mvm+1(Rinv) < πf (R), Lemma 17 implies xg
i (R) = xf

i (R). We consider

the following two cases.

Case 1. xf
i (R) ̸= m.

Let ε ∈ R++ be such that

2ε < min{πf (R)− πg(R), 1}.

LetR′
i ∈ RC ∩ RQ be such that v′i(xi) = (πf (R)−ε)xi for each xi ∈ M . By πf (R) ≤ mvm(Rinv)

and ε < πf (R)−mvm+1(Rinv), for each xi ∈ M\{m},

mvm+1(Rinv) < v′i(xi + 1)− v′i(xi) < mvm(Rinv).

Then, by 0 < xf
i (R) < m, Lemma 10 implies that xf

i (R
′
i, R−i) = xf

i (R) and πf (R′
i, R−i) =

πf (R) − ε. Then, πf (R′
i, R−i) < πf (R). Thus, by xf

i (R
′
i, R−i) = xf

i (R), we obtain
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fi(R
′
i, R−i) Pi fi(R).

Let R′′
i ∈ R be such that gi(R

′′
i , R−i) Pi gi(R). Suppose xg

i (R
′′
i , R−i) ̸= xf

i (R
′
i, R−i).

Then,

d(gi(R
′′
i , R−i), fi(R

′
i, R−i)) ≥ |xg

i (R
′′
i , R−i)− xf

i (R
′
i, R−i)| ≥ 1 > ε.

Instead, suppose xg
i (R

′′
i , R−i) = xf

i (R
′
i, R−i). Then, by xf

i (R
′
i, R−i) = xf

i (R) = xg
i (R) and

gi(R
′′
i , R−i) Pi gi(R), tgi (R

′′
i , R−i) < tgi (R). By xg

i (R) ̸= 0, πg(R′′
i , R−i) < πg(R). Then, by

ε < πf (R)− πg(R),

πg(R′′
i , R−i) < πf (R)− ε = πf (R′

i, R−i). (4)

Then,

d(gi(R
′′
i , R−i), fi(R

′
i, R−i))

= |tgi (R′′
i , R−i)− tfi (R

′
i, R−i)| (by xg

i (R
′′
i , R−i) = xf

i (R
′
i, R−i))

= xf
i (R

′
i, R−i)(π

f (R′
i, R−i)− πg(R′′

i , R−i)) (by (4))

> xf
i (R

′
i, R−i)(π

f (R′
i, R−i)− πg(R)) (by πg(R′′

i , R−i) < πg(R))

= xf
i (R

′
i, R−i)(π

f (R)− πg(R)− ε)

> xf
i (R

′
i, R−i)ε (by 2ε < πf (R)− πg(R))

≥ ε. (by xf
i (R

′
i, R−i) = xf

i (R) ̸= 0)

Thus, in either case, g is not C-at least as manipulable as f , which contradicts that f is

C-minimally manipulable among the class of rules satisfying no price envy and no subsidy

for losers .

Case 2. xf
i (R) = m.

By xg
i (R) = xf

i (R) = m and πg(R) < πf (R),

tgi (R) = mπg(R) < mπf (R) = tfi (R).

Let ε ∈ R++ be such that ε < tfi (R) − tgi (R). By xg
i (R) = m, Lemma 12 implies that

there is R′
i ∈ RNI ∩ RQ such that xf

i (R
′
i, R−i) = m and tfi (R

′
i, R−i)− tgi (R) < ε. Then,

tfi (R
′
i, R−i) < tgi (R) + ε < tfi (R),

where the second inequality follows from ε < tfi (R)−tgi (R). Thus, by xf
i (R) = xf

i (R
′
i, R−i) =

m, we obtain fi(R
′
i, R−i) Pi fi(R).

LetR′′
i ∈ R be such that gi(R

′′
i , R−i) Pi gi(R). By Lemma 16, xg

i (R
′′
i , R−i) ̸= m. Then,
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for ε = 1,

d(gi(R
′′
i , R−i), fi(R

′
i, R−i)) ≥ |xg

i (R
′′
i , R−i)− xf

i (R
′
i, R−i)| ≥ 1 = ε.

Thus, g is not C- at least as manipulable as f , a contradiction. ■

2 Proof of Remark 4

In this section, we prove Remark 4

Remark 4. Let Ri ∈ RNI ∩ R+.

(i) For each xi ∈ M\{0,m}, there is a unique payment t∗(xi) ∈ (0, Vi(xi,0)] such that

Vi(xi + 1, (xi, t
∗(xi)))− t∗(xi) =

t∗(xi)
xi

.

(ii) For each xi ∈ M\{0,m− 1,m}, t∗(xi)
xi

≥ t∗(xi+1)
xi+1

.

. The proof basically follows the proof of Lemmas 8 and 10 of Shinozaki et al. (2020),

but the proof here slightly generalize that of Shinozaki et al. (2020) in that we consider a

preference that exhibits both nonincreasing marginal valuations and nonnegative income

effects, while Shinozaki et al. (2020) consider a preference that exhibits both decreasing

marginal valuations and positive income effects.

Let Ri ∈ RNI ∩ R+.

First, we prove (i). Let xi ∈ M\{0,m}. Let h : R → R be such that h(ti) = Vi(xi +

1, (xi, ti)) − ti − ti
xi

for each ti ∈ R. By object monotonicity, (xi + 1, 0) Pi (xi, 0). This

implies Vi(xi + 1, (xi, 0)) > 0. Thus, we obtain

h(0) = Vi(xi + 1, (xi, 0)) > 0. (1)

Further, we have

h(Vi(xi,0)) = Vi

(
xi + 1,

(
xi, Vi(xi,0)

))
−Vi(xi,0)−

Vi(xi,0)

xi

= Vi(xi + 1,0)− Vi(xi,0)−
Vi(xi,0)

xi

= vi(xi + 1,0)− vi(xi,0)−
vi(xi,0)

xi

≤ 0, (2)

where the second equality follows from (xi, Vi(xi,0)) Ii 0, the third one from the definition

of the net valuation, and the inequality from Ri ∈ RNI .

Note that by Remark 2, h+(ti;xi) ≡ Vi(xi +1, (xi, ti))− ti is a nonincreasing function

on R. Thus, h(·) is strictly decreasing. Let ti ∈ R++ be such that ti > Vi(xi,0). Then,
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by (2),

h(ti) < h(Vi(xi,0)) ≤ 0. (3)

By continuity of Ri, h
+(·;xi) is continuous on [0, ti]. Thus, h(·) is continuous on [0, ti]

as well. Then, by (1) and (3), the intermediate value theorem implies that there is a

payment t∗i (xi) ∈ (0, ti) such that h(t∗i (xi)) = 0. This implies

Vi(xi + 1, (xi, t
∗
i (xi)))− t∗i (xi) =

t∗i (xi)

xi

.

Since h(·) is strictly decreasing, such a payment t∗i (xi) must be unique. Moreover, by

h(t∗i (xi)) = 0 and (2), we have t∗i (xi) ≤ Vi(xi,0) since h(·) is strictly decreasing.

Next, we prove (ii). Let xi ∈ M\{0,m− 1,m}. Suppose by way of contradiction that
t∗(xi)

x
< t∗(xi+1)

xi+1
. Let t ≡ Vi(xi + 1, (xi, t

∗(xi))).

First, we claim that t < t∗(xi+1). By Remark 4 (i), Vi(xi+1, (xi, t
∗(xi))) =

xi+1
xi

t∗(xi).

Thus, by t∗(xi)
x

< t∗(xi+1)
xi+1

, we obtain

t = Vi(xi + 1, (xi, t
∗(xi))) =

xi + 1

xi

t∗(xi) < t∗(xi + 1). (4)

Second, we claim that Vi(xi+2, (xi+1, t))−t < Vi(xi+2, (xi+1, t∗(xi+1)))−t∗(xi+1).

Note that by the definition of t, (xi + 1, t) Ii (xi, t
∗(xi)). This implies

Vi(xi, (xi + 1, t)) = Vi(xi, (xi, t
∗(xi))) = t∗(xi). (5)

Then,

Vi(xi + 2, (xi + 1, t))− t ≤ t− Vi(xi, (xi + 1, t)) (by Ri ∈ RNI)

= t− t∗(xi) (by (5))

=
t∗(xi)

xi

(by Remark 4 (i))

<
t∗(xi + 1)

xi + 1

= Vi(xi + 2, (xi + 1, t∗(xi + 1)))− t∗(xi + 1), (6)

where the last equality follow from Remark 4 (i).

We derive a contradiction to Remark 2 by (4) and (6). ■
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3 Manipulability measure without gains from manip-

ulations

In Section 6.2 of Shinozaki (2022), we compare our manipulability measure to other

measures that take gains from manipulations into account. In this section, we compare it

to a measure that does not take gains from manipulations into account. There are several

such manipulability measures, and we comapre ours to the one introduced by Pathak and

Sonmez (2013).

According to the “strongly as manipulable as” relation of Pathak and Sonmez (2013),

a rule is at least as manipulable as another rule if for each preference profile and each

agent, whenever he can manipulate the latter rule, he can also manipulate the former

rule. Formally, we say that a rule on Rn is said to be weakly at least as manipulable

as another rule g on Rn if for each R ∈ Rn each i ∈ N , and each R′
i ∈ R, whenever

gi(R
′
i, R−i) Pi gi(R), there is R′′

i ∈ R such that fi(R
′′
i , R−i) Pi fi(R). Clearly, if a rule f

on Rn is at least as manipulable as another rule g on Rn, then f is weakly at least as

manipulable as g.

Definition 12. A rule f on Rn is weakly minimally manipulable among the class

of rules if (i) f is in the class, and (ii) for each rule g on Rn in the class, g is weakly at

lesat as manipulable as f .

Given a rule f on Rn and i ∈ N , let

Mf
i ≡ {R ∈ Rn : ∃R′

i ∈ R s.t. fi(R
′
i, R−i) Pi fi(R)}

denote the set of preference profiles at which agent i can manipulate the rule f .

Remark 8. (i). A rule f on Rn is weakly at least as manipulable as another rule g on

Rn if and only if for each i ∈ N , Mg
i ⊆ Mf

i .

(ii). A rule f on Rn is weakly minimally manipulable among a given class of rules on Rn

if and only if (ii-i) f is in the class, and (ii-ii) for each rule g on Rn in the class and each

i ∈ N , Mf
i ⊆ Mg

i .

Note that if a rule is minimally manipulable among a given class of rules, then it is

also weakly minimally manipubale among the class. Thus, by Theorem 4, we obtain the

following.

Corollary 4. Let R be such that RNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. Then, a minimum

inverse uniform-price rule on Rn is weakly minimally manipulable among the class of

rules on Rn satisfying both no price envy and no subsidy for losers.
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The next example demonstrates that the converse of Corollary 4 does not hold, i.e.,

the minimum inverse uniform-price rule is not the only weakly minimally manipulable

rule among the class of rules satisfying both no price envy and no subsidy for losers .

Example 4. LetR be such thatRNI ∩ RQ ⊆ R ⊆ RNI ∩ R+. Let f and f̂ be minimum

and maximum inverse uniform-price rules onRn, respectively.1 Let R∗ ∈ (RNI ∩ RQ)n be

such that (i) v∗1(x1) = 4x1 for each x1 ∈ M , (ii) v∗2(1) = 3.5 and v∗2(x2) = 3.5+0.01(x2−1)

for each x2 ∈ M\{0, 1}, and (iii) v∗i (xi) = 0.01xi for each i ∈ N\{1, 2} and each xi ∈ M .

Let g be a rule on Rn such that for each R ∈ R, if R ̸= R∗, then g(R) = f(R), and if

R = R∗, then g(R) = f̂(R). Then, by πg(R∗) = 4 > 3.5 = πf (R∗), g is not a minimum

inverse uniform-price rule.

Note that R∗ ∈ Mg
1 ∩ Mf

1 , and for each i ∈ N\{1}, R∗ ̸∈ Mg
i ∪ Mf

i . Note also that

for each i ∈ N and each R ∈ Rn\{R∗}, by gi(R) = fi(R), R ∈ Mg
i if and only if R ∈ Mf

i .

Thus, Mg
i = Mf

i for each i ∈ N . Since f is weakly minimally manipulable among the

class of rules on Rn satisfying both no price envy and no subsidy for losers , g is as

well.
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