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Abstract 
Current decarbonization policies neglect damages from local air pollutants. We analyze 
the trade-off between complementary taxation of carbon emissions and local air pollu-
tion. We quantify results for the European power market until 2050. Taxing only air 
pollution results in social cost of 5,890 billion € and fosters nuclear deployment. Taxing 
only carbon yields social cost of 716 billion € and promotes CCS deployment. Taxing 
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1. Introduction

Climate change calls for prompt reductions of CO2 emissions to keep global warming below 2°
Celsius (Paris Agreement, 2015), but a focus on CO2 emissions and climate change neglects local
effects from related air pollution and associated damages on human health or loss of biodiversity,
respectively. We address this issue by showing how power system transformations and related
social cost change when accounting for social cost of air pollution (SCAP) as well as social cost of
carbon (SSC) and analyze possible co-benefits and trade-offs when jointly mitigating the two.

With more than 40%, electricity and related heat generation are the biggest contributors of
the 36.3 Gt of energy-related CO2 emissions.1 Electricity generation and its role for emitting CO2
significantly increased over the last decades. It is expected to assume an ever bigger share in
the future due to electrification trends (digitization, air conditioning, electric mobility, economic
development). Thus, many policies focus on decarbonizing electricity generation. For example,
the European Union Emission Trading System (EU ETS) reduced—among other supplementary
policies—CO2 emissions from power generation from 1.191 to 0.914 Gt in the period 2013 to 2021.2
The European Union even proposes more ambitious targets to achieve carbon neutrality by 2045.
However, European actions alone will not completely suffice to reduce CO2 emissions in other parts
of the world and, more importantly, climate change’s global impact. The characteristic of CO2
emissions as public bad (or reducing them as public good) allows for free riding and hampers the
binding and enforceable implementation of goals and targets.3

Air pollution emissions, in turn, have local impacts and every country should undertake efforts
to internalize those local damages by means of appropriate taxation at the respective marginal
damages. Thus, shifting the focus away from sole mitigation of CO2 emissions towards the in-
ternalization of air pollution might be a complementary policy to partly resolve the free riding
problem. Moreover, each electricity generation technology has a unique profile of carbon and air
pollution intensity. This allows sensitive response of the optimal technology mix to different sce-
narios of internalizing social cost. Some climate neutral technologies such as biomass with carbon
capture and storage (bio-CCS) reflect internalization trade-offs as they bind CO2 emissions but are
heavily locally air-polluting, giving way to interesting questions about how to design a technology
mix with both low carbon and low air pollution emissions.

We internalize SCC and SCAP via taxes and implement this strategy in the EUREGEN model,
a multi-region partial equilibrium model of the European power market that optimizes investments,
decommissioning, and dispatch of multiple generation, storage, and transmission technologies until
2050 (Weissbart and Blanford, 2019). We use air pollution emission factors (Cai et al., 2012, EPA,
1995, EEA, 2019, UBA, 2019), calibrate the DICE model (Nordhaus, 2014) to deliver SCC that

1See https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.
2See https://ec.europa.eu/clima/news-your-voice/news/emissions-trading-greenhouse-gas-emissions-73-2021-compared-2020-2022-04-25_

en.
3The literature developed and analyzed multiple approaches how to mitigate the problem of free-riding (e.g.,

Barrett, 1994, Nordhaus, 2015) but those approaches have not been globally implemented so far.
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match population projections from the World Bank4 as well as GDP projections from EUREGEN’s
CGE model calibration (Mier et al., 2020, 2022, Siala et al., 2022), and obtain SCAP from the
externE project series (Friedrich and Bickel, 2001, Pietrapertosa et al., 2009).

There exists an array of literature on emissions and resulting damages of electricity generation,
among which several papers also consider local air pollutants.5 Klaassen and Riahi (2007) apply
MESSAGE-MACRO to internalize air pollution damages but unlike in our analysis they refrain
from internalizing climate damages (from CO2 emissions). They also use SCAP estimates from
the externE project series (that are similar but less recent than ours). However, two of our core
technologies, bio-CCS and gas-CCS, are not part of their technology set. Nam et al. (2010) find,
using a CGE analysis for 18 European countries, fundamental welfare losses (2%) from air pollution.
Barteczko-Hibbert et al. (2014) integrate life cycle assessment and electricity generation but focus
on greenhouse gases and less on local damages from air pollution. Shindell (2015) extends the
SCC framework to incorporate (local) damages from air pollutants. He finds annual damages of
330 to 970 billion $ for US electricity generation. Also, Holland et al. (2020) use local and global
damages from CO2 emissions and air pollution. Using an integrated assessment model, they find
that annual damages fell from 245 billion $ in 2010 to 133 billion $ in 2017. Burtraw et al. (2014)
look at the introduction of CO2 emissions regulation in the US in addition to existing air pollution
regulation (only covering SO2) under different policy scenarios by using a power market model.
Their analysis focuses on quantifying (consumer) surplus depending on the policy instrument used.
Driscoll et al. (2015) find co-benefits for human health from improvements in air quality following
from CO2 emissions regulation scenarios by using US power market models. However, they do not
quantify health benefits in monetary terms and do not take into account social damages beyond
human health (as we do). Their scenarios differ by options to reduce CO2 emissions and only
one of their scenarios uses SCC in the sense of carbon taxation. Moreover, Driscoll et al. (2015)
only allow for carbon-capture-and-storage (CCS) in coal-fired plants. We allow for this technology
as well but identify CCS on the basis of biomass (bio-CCS) and natural gas-fired power plants
(gas-CCS) as key technologies to manage the trade-offs between damages from CO2 emissions and
local air pollutants.6 Millstein et al. (2017) carry out a retrospective quantification of avoided
CO2 and air pollution emissions via substitution effects of renewable energy generation in the US.
However, they do not allow for insights from optimization trade-offs in the long-run.

Our contribution delivers insights into how the long term technology and emission mix of
the European power system varies under different internalization strategies or taxation choices
(no taxation, sole air pollutant taxation, sole CO2 taxation, joint CO2 and air pollutant taxation),
respectively. We test robustness of results by varying assumptions about SCC, SCAP, air pollutant

4See https://databank.worldbank.org/source/population-estimates-and-projections.
5This paper is a substantial expansion of Mier et al. (2021) but focuses on the complementary taxation of

carbon emissions and local air pollutants only. The effect of diverging private and social discount rates is analyzed
in another succeeding work.

6In fact, coal-CCS is absent in our optimized equilibrium because capture rates are worse and cost are consid-
erably higher than for gas-CCS.
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emission factors, and technological progress of wind power. Focusing solely on CO2 taxation leads
to accumulated SCC of 281 billion e in the 30 years from 2021 to 2050. Accumulated SCAP of
435 billion e are not internalized (sum of 716 billion e). The relation of SCC to SCAP turns when
looking at discounted values (194 billion e of accumulated SCC vs. 92 billion e for accumulated
SCAP) because CO2 emissions are initially high and become even negative in the long-run, while
the relative dominance of carbon damages yield considerably higher (and more costly) air pollution.
Those late air pollutant emission damages, in turn, are discounted heavily so that the discounted
values are below the ones from CO2 emissions. When only taxing air pollution, 5,547 (1,340)
billion e of (discounted) accumulated SCC remain non-internalized and SCAP are reduced to 343
(92) billion e (in discounted terms). Our results show that sole CO2 taxation yields tremendously
lower social cost compared to taxing solely air pollution, underlining that the mitigation of carbon
emissions should dominate the policy making.

Interestingly, jointly mitigating the two yields accumulated SCC (SCAP) of 923 (195) billion
e. In discounted values, we obtain cost of 307 or 53 billion e, respectively. Thus, the efficient
combination of CO2 and air pollution yield higher SCC but lower SCAP; adding air pollution
taxation to existing carbon taxation thus inherits a trade-off for mitigating damages from CO2,
whereas adding carbon taxation to existing air pollution taxation comes with a substantial co-
benefit. We further determine trade-offs and co-benefits of taxation choices when adding imperfect
taxation choices for one emission type (e.g., air pollution) to the perfect taxation choices for the
other emission type (e.g., CO2). In particular, adding air pollution taxation to existing carbon
taxation always comes with a trade-off because accumulated SCC increase substantially. Adding
CO2 taxation to already existing air pollution taxation in turn comes with some co-benefits as
long as the carbon tax level is not above the efficient one, i.e., total air pollutant damages become
lower. Increasing the carbon tax above the efficient level in turn increases air pollution and related
damages. Such non-linear effects stem from the substantial diverging emission profiles of electricity
generation technologies. In particular, high CO2 taxes lead to a technology switch from gas-CCS
to bio-CCS, whereas low or no air pollution taxes substitute nuclear by bio-CCS. High air pollution
taxes in turn reverse this shift away from nuclear at cost of CCS technologies. Finally, low CO2
taxes foster the usage of conventional gas technologies. Policy makers can use those findings to
shape policies according to their preferences. When the main goal is to primarily reduce CO2
emissions and related SCC, additional air pollution taxation creates mitigation trade-offs. When
the the primary goal is to reduce air pollution and SCAP, moderate additional carbon taxation
can further contribute to this.

Section 2 introduces the modeling strategy. Section 3 presents the calibration by focusing on
emissions and social cost. Section 4 presents results and tests for robustness. Section 5 discusses,
summarizes, and extends most important results from the previous section. Section 6 concludes.

2. Modeling strategy

Notation. Suppose there are generation technologies i, storage technologies j, and transmission
technologies k. r indicates regions and rr is an alias of r. We use subscripts i, j, k, r, rr for
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technologies as well as regions and parentheses (h, v, t) for time indices—h is the hour, v the year
of installation (vintage), and t the current year (period)—to denote parameters (small letters) and
variables (capital letters).

IQ (v) are investments from vintage v that translate into currently (in period t) active capacities
Q (v, t) (both in GW). Capacity investments are costly, cIQ > 0 (in e/GW), as it is holding
capacity, cQ > 0 (in e/GW and year), so that endogenous decommissioning might be optimal,
i.e., Q (v, t) ≤ IQ (v). For storage technologies, charge and discharge capacity (e.g., pumps and
turbines) are assumed to be the same. We assume that cost of holding capacity apply only for
joint charge and discharge capacity but not for the storage size. For transmission technologies, we
refer to net transfer capacities (NTC) and distinguish between export and import lines to reflect
current political situation of constraining capacities in one of the respective directions.

Yi is generation, Y +
j is storage charge, Y −

j is storage discharge, and Yk,r,rr is the bilateral trade
flow from region r to rr (all in GWh). Generation is costly, cYi (v, t) > 0 (in e/GWh), but we
assume no further variable cost for storage operations and transmission (only losses for charge,
discharge, hourly discharge, and for transmission). η ∈ (0, 1] denotes efficiencies. In particular, ηi
is the burning efficiency of generation technologies. Finally, the overall target is to meet electricity
demand d but it could to optimal to allow for lost load L (both in GWh) at cost cL > 0 (in
e/GWh).

Objective. The objective is to minimize the net present value of total system cost (δ (t) is the
discount factor) from investments (IQ is the vector of investment decisions for all generation,
storage, transmission technologies), holding capacity (Q the vector of capacity decisions), and
dispatch (Y is the vector of dispatch decisions) over all regions and time periods:

min
IQ,Q,Y

∑
t,r

δ (t)

[
cLr (t)

∑
h

Lr (h, t)+

∑
i

(∑
v=t

cIQir (v) IQir (v) Γi (v, t) +
∑
v≤t

cQir (v, t)Qir (v, t) +
∑
v≤t

cYir (v, t)
∑
h

Yir (h, v, t)

)
+

∑
j

(∑
v=t

cIQjr (v) IQjr (v) Γj (v, t) +
∑
v≤t

cQjr (v, t)Qjr (v, t)

)
+

∑
k,rr

(∑
v=t

cIQk,r,rr (v) IQk,r,rr (v) Γk (v, t) +
∑
v≤t

cQk,r,rr (v, t)Qk,r,rr (v, t)

)]
, (1)

where Γ (v, t) is the fraction of investment cost that should be considered within the planning
horizon (from t until tend). In particular, Γ (v, t) = 1 when the depreciation time of an investment
is completely within the planning horizon and Γ (v, t) < 1 when the depreciation time of an
investment spans above the planning horizon (depreciates longer than tend). This endeffect is
calculated on the basis of private discount rates and the time exceeding the planning horizon. The
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first line of (1) after the square bracket reflects cost of lost load, the second line reflects generation
cost, the third line reflects storage cost, and the fourth line reflects transmission cost.

Internalization of social cost. We suppose that a social planner internalizes social cost from carbon
emissions and air pollution by setting tax rates according to the respective marginal damages. We
can thus directly include those marginal damages—the specific SCC and the specific SCAP—into
our objective function via generation cost. Denote by scc (t) the specific SCC and by scapr,ap (t)
the specific SCAP (both in e/ton) with ap being different air pollutants. SCC and SCAP change
over time. Moreover, SCAP are region-specific, whereas SCC refer to a global value. Carbon
emission factors ξcar (v), air pollution emission factors ξairi,ap (v) (both in ton/GWh thermal), and
power plant efficiencies ηi (v) depend on the vintage, that is, older vintages have lower efficiencies
and higher emission factors leading to higher emissions. In particular,

∑
v≤t

∑
h

1
ηi(v)

Yir (h, v, t) is
total fuel used per technology in period t (in GWh thermal) with pir (t) beeing the time-varying
fuel price in region r for technology i. Multiplying this total fuel used with the respective emission
factors yields CO2 emissions and local air pollution (in ton). We can now derive the generation
cost as

cYir (v, t) = cvarir (v) +

[
pir (t) + scc (t) ξcari (v) +

∑
ap

scapr,ap (t) ξ
air
i,ap (v)

]∑
v≤t

∑
h

1

ηi (v)
. (2)

Variable cost cvar are independent of efficiencies. Cost from fuel, SCC, and SCAP in turn
depend on those efficiencies, while the latter two are also subject to their respective emission
factors.

Optimization constraints. The minimization problem is subject to multiple constraints that we
abstain from showing here but Appendix A contains the full set of demand, generation, storage,
and transmission constraints of the optimization problem.

3. Calibration

3.1. Setup
We quantify the trade-offs and potential benefits of internalizing damages from CO2 and air

pollutant emissions with EUREGEN (Weissbart and Blanford, 2019). EUREGEN is a multi-region
partial equilibrium model of the European power market that intertemporally optimizes (i.e.,
assumes perfect foresight) overall system cost (from investments, holding and decommissioning of
capacity, and dispatch of multiple generation, storage, and transmission technologies) from 2015
(base year) to 2050 (end year). We work with an adjusted 2015 calibration to account for real-
world developments until 2020. In particular, we assume that taxation choices in 2015 and 2020
reflect real-world policies, i.e., CO2 prices follow from the EU ETS and there is no air pollution tax
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in place.7 From 2021 onwards, we change policies to either not tax at all, tax only air pollution,
only CO2 emissions, or both (at the respective efficient levels).

The CGE model PACE delivers annual electricity demand and major fuel prices.8 CO2 emis-
sions follow from an emission factor and EUREGEN applies either a carbon price (e.g., Mier et al.,
2022) or a quantity target (e.g., Weissbart, 2020, Mier and Weissbart, 2020, Azarova and Mier,
2021). We extend the EUREGEN model by emission factors for different air pollutants (Subsection
3.3). We refrain from using carbon prices resulting from the CGE calibration or quantity targets
as imposed for instance by the EU ETS and instead apply optimal carbon or air pollution taxes
that follow from specific SCAP (Subsection 3.4) and SCC (Subsection 3.5) from 2021 onwards.9

EUREGEN can switch between implementations of different discount and interest rates, in-
vestor types, and spatial resolutions (Mier and Azarova, 2021a,b). We opt for a discount rate of 7%.
Furthermore, we apply the normal investor that carries cost of investments within the period of
investment and uses endeffects if the investment’s depreciation extends beyond the model horizon
(and thus neglects the role of different interest rates). Moreover, we apply the maximum spatial
resolution of 28 countries (EU27 less the island states of Cyprus and Malta, including Norway,
Switzerland, and United Kingdom) and an hour choice algorithm to reduce temporal resolution of
the year for numerical feasibility.10

3.2. Considered technologies
Our generation technologies burn either biomass, coal, lignite, natural gas, and uranium or

use wind, solar, geothermal, and hydro power to generate electricity. We further consider steam
turbines, gas turbines, combined-cycle gas turbines, and engines. In particular, we consider steam
turbines ”burning” biomass (bioenergy), steam turbines ”burning” biomass with carbon-capture
and storage (bio-CCS), steam turbines ”burning” coal, coal-CCS, steam turbines ”burning” lignite,
and steam turbines ”burning ”natural gas (gas-ST).11 We further consider open-cycle gas turbines
burning natural gas (gas-OCGT), combined-cycle gas turbines burning natural gas (gas-CCGT),
the same with carbon-capture and storage (gas-CCS), and gas turbines or engines, respectively,
using oil and other non-biomass non-natural gas fuels (oil). We restrict the annual level of burnable
biomass to 2,045 thermal TWh (half of the total available sustainable biomass potential) but
have no further limits for other fuels. Moreover, We do not account for combined-heat-and-
power (CHP) plants due to the considerable transformation in the heating sector that is driven by

7Except 2015, all periods reflects 5 years, i.e., 2020 considers the years 2016 to 2020, ..., and 2050 the year 2046
to 2050.

8Appendix B contains detailed values. See Mier et al. (2020, 2022), Siala et al. (2022) for applications of the
very same calibration.

9Optimality refers to full internalization of the social cost.
10The hour choice algorithm selects and weights hours that present the extremes of load, wind onshore, wind

offshore, solar, and hydro generation. We obtain 280 hours and finally scale timeseries to match annual demand
and full-load hours of all intermittent technologies.

11Indeed, steam turbines only use the steam generated from burning the respective fuel and are not burning it
directly.
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decarbonization efforts and demands for not burning fossil fuels anymore. Such transformations
make most existing CHP plants obsolete. Moreover, heating electrification is considered by the
CGE calibration.

We further consider steam turbines using uranium (nuclear) and geothermal power plants.
Out of the group of intermittent technologies, we model run-in-the-river power plants (hydro),
wind onshore, wind offshore, and solar PV by means of hourly-varying availability. Regarding
wind onshore and wind offshore we assume that the existing fleet has hub heights of 80m, while
we consider hub heights of 100m for future vintages. Hydro cannot be expanded beyond the
existing level. Nuclear, lignite, and coal expansion is restricted to countries that already use those
technologies. Wind and solar expansion is constrained by resource potential quality classes (high,
mid, and low). Appendix C summarizes efficiencies, emission factors, and investment cost of those
technologies. We further model three storage technologies (pump hydro, batteries, and power-to-
gas), where expansion of pump hydro is again restricted to existing capacities. Transmission
technologies are represented by AC lines as well as DC cables.12

3.3. Emissions from electricity generation
CO2 emissions are the major source of pollution from electricity generation. We additionally

focus on ammonia NH3, non-methane volatile organic compounds NMVOC, nitrogen oxides NOx,
particulate matter PPM10 as well as the finer PPM2.5, and sulfur dioxide SO2 (or SOx expressed
in SO2 equivalents).13 We aim for fleet average emission factors for existing plant vintages, which
are calculated via annual statistics of total emissions and total fuel consumption. The literature
provides lower and upper bounds as well as medium range emission factors (EPA, 1995, Cai et al.,
2012, EEA, 2019, UBA, 2019).

We choose medium emission factors for existing vintages. Where applicable, we include linear
improvements in average abatement efficiency for future vintages, so that 2050 vintages across all
regions achieve abatement efficiencies of today’s most modern plants. Table 1 summarizes emission
factors of different technologies for 2020 vintages. Observe that CO2 emission factors are by far the
highest. Among the air pollutants NOx, PPM10, and PPM2.5 are most emitted. Gas technologies
do not emit relevant amounts of NH3, and sulfur-content of natural gas is almost negligible. In
general, technologies burning natural gas are the cleanest, whereas biomass technologies are the
most emission intensive.14

3.4. Social cost of air pollution
Air pollution leads to higher mortality, discomfort, and productivity loss (e.g., Markandya

and Wilkinson, 2007, Dedoussi and Barrett, 2014, Dedoussi et al., 2020). Value of life concepts

12DC cables mainly apply to connect countries that are divided by water.
13EEA (2019) provides information on how these air pollutants occur, and what general measures exist to mitigate

their air release.
14Biomass emission factors are quite dispersed in range. This reflects the availability of different abatement tech-

niques in combination with the variation in emission intensity from using heterogeneous fuels or fuel compositions
(wood, crops and agricultural residues, waste).
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Table 1: 2020 emission factors (in ton/GWh electric)

NOx SO2 PPM2.5 PPM10 NH3 NMVOC All AP CO2

Bio-CCS 1.719 0.243 0.629 0.716 0.086 0.164 3.557 -855
Bioenergy 1.376 0.194 0.503 0.573 0.023 0.132 2.801

Gas-CCGT, Gas-ST 0.001 0.005 0.005 0.001 0.201 341
Gas-CCS 0.001 0.007 0.007 0.002 0.253 41
Gas-OCGT 0.001 0.008 0.008 0.002 0.287 484

Coal 0.582 0.509 0.027 0.062 0.002 0.008 1.190 763
Coal-CCS 0.728 0.509 0.034 0.077 0.009 0.010 1.367 91
Lignite 0.545 0.686 0.024 0.059 0.002 0.011 1.327 838
Oil 0.825 0.225 0.294 0.027 2.031 910
Appendix D contains the full set of emission intensities (in g/GJ). We combine those with technology- and vintage-
specific plant efficiencies (Table C.4 in Appendix C) to arrive at a sophisticated representation of actual emission factors
(in ton/GWh electric). For CCS technologies, we further consider increased NH3 emissions occurring during the capture
process (Heo et al., 2015) and reflect overall slightly increased emissions for NOx, NMVOC, and PPM due to increased
fuel consumption via decreased efficiencies of CCS plants compared to their non-CCS counterparts.

(e.g., Viscusi and Aldy, 2003) such as disabled adjusted life years (e.g., Murray, 1994, Anand
and Hanson, 1997, Murray et al., 2012) monetize those damages. The externE project series
calculates those damages by employing life cycle assessment (e.g., Klöpffer, 1997), the impact
pathway approach (e.g., Douthwaite et al., 2003), diffusion patterns of air pollutants, as well as
meteorological, geological, demographic, and health data.

We apply results from the NEEDS project (part of the externE project series) that provides
specific SCAP (in current 2000-e) for six air pollutants (NH3, NMVOC, NOx, PPM10, PPM2.5,
SO2) for five categories (human health, loss of biodiversity, regional crops, materials, and interna-
tional damages) in the 28 countries under investigation.15 We take the estimates for high release
heights (as suggested in the user manual for electricity generation) that are calculated for me-
teorological conditions of 2010. NEEDS authors suggest increasing the specific SCAP by a rate
according to GDP growth. GDP of the 28 countries under consideration grew by 25.84% between
2000 and 2015. We apply the same increase to translate the values from current 2000-e to current
2015-e.16 Growth rates for 2020 onwards are based on country-level projections from our CGE
calibration.17

Table 2 shows average SCAP (in current e/ton), weighted by 2020 country annual electricity
demand, for the six air pollutants and the damage categories. The category International accu-
mulates the impact of those air pollutants outside of the 28 countries under consideration and

15See https://cordis.europa.eu/project/id/502687/de for details. The project page, https://needs-
project.org, is no longer available. Data and further documents can be now accessed via the project page of
the University of Stuttgart, https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/.

16We increase specific SCAP by 1.2584 to reflect GDP growth and then divide again by 1.3334. In fact, 2000-e
SCAP have the same absolute value as do 2015-e SCAP.

17See Table E.6 in Appendix E for GDP projections.

9

https://cordis.europa.eu/project/id/502687/de
https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/


Table 2: 2020 specific SCAP (e/ton) by impact category and air pollutant

NOx SO2 PPM2.5 PPM10 NH3 NMVOC

Human health 8,516 10,490 24,538 1,081 17,561 1,100
Loss of biodiversity 1,672 612 6,197 -136
Regional crops 382 -118 -302 337
Materials 124 463
International 234 498 282 4 5 640

Total global cost 10,928 11,945 24,820 1,084 23,461 1,940
The presented values follow from weighting country-specific values with 2020 country-specific
annual demand. The depicted values are measured in current e. Country level data is available
in Appendix F. The international damage is the same for each country and we thus refrain from
presenting it in Appendix F.

is uppermost relevant for NMVOC (33% of NMVOC damages). Observe that (regional) human
health impacts dominate with shares of 57% (for NMVOC) to almost 100% (for PPM10). Moreover,
NH3 and PPM2.5 are the most damaging air pollutants, followed by NOx and SO2.18

3.5. Social cost of carbon
We apply a slightly adjusted version of DICE-2016R-091216a to calculate specific SCC (in

current e/ton).19 DICE maximizes the net present value of utility (from consumption) and thus
the specific SCC is calculated according to the fraction of the marginal of the emission equation
(in utility units per ton) and the consumption equation (in utility units per $). Utility units are in
present values, so that the division of present value utility (per ton) by present value utility (per $)
leaves specific SCC in current $/ton. We can thus use the calculated specific SCC directly again in
another discounting framework that uses current values to minimize the net present value of cost
via discounting. Table 3 presents calibration (GDP, population) and selected output (SCC, CO2
emissions, and temperature increase). We calculate specific SCC of 206 $/ton in 2050. Observe
that CO2 emissions drop from 39.6 Gt in 2020 to 25.3 Gt in 2050. The associated temperature
increase is 1.99°C in 2050.20

18The SCAP values grow with GDP per capita (per country) so that 2050 values would be around 60% higher
than 2020 values.

19We transform the 2015 world GDP of 105.5 trillion 2010-US$ to 86.1 trillion 2015–US$ and total factor produc-
tivity by 0.8254 to obtain real-world 2020 CO2 emission of 39.6 Gt. Moreover, we adjust population growth and total
factor productivity from 2020 to 2050 to obtain population projections from the World Bank and GDP projections
from the CGE model used to calibrate EUREGEN (see DICE calibration in Table 3). We further reduce the DICE
default pure rate of time preference from 1.5% to 0.04% (Drupp et al., 2018). Original GAMS code is available at
http://www.econ.yale.edu/~nordhaus/homepage/homepage/DICE2016R-091916ap.gms. The adjusted version is
available upon request from the corresponding author.

20The maximum temperature increase is indeed 3.36°C.
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Table 3: DICE calibration and output

2020 2030 2040 2050

Calibration Gross world GDP (trillion 2015-$) 101 134 175 224
World population (billion) 7.75 8.50 9.14 9.68

Output SCC ($/ton) 94 123 160 206
CO2 emissions (Gt) 39.60 31.03 29.05 25.26
Atmosphere temperature increase (°C) 1.02 1.36 1.68 1.99

Conversion in e SCC (e/ton) 86 112 145 187
We apply an exchange rate of 1.1 to convert US-$ into e, i.e., 1 e is worth 1.1 US-$ in 2015.

3.6. Comparison of carbon and air pollution taxes
Setting carbon or air pollutant taxes equal to their respective marginal damages (specific SCC

and SCAP) and calculating the respective tax rate per technology by employing efficiencies and
emission factors yields results in Table 4. The first block shows carbon taxes and the second one
shows air pollution taxes for each of the relevant technologies. We present taxes for 2025, 2030,
2040, and 2050. Remember that carbon and air pollution taxes in 2015 and 2020 are assumed to
reflect real-world conditions with carbon taxes of 7.75e/ton (in 2015) and 15 e/ton (in 2020), while
there is no air pollution tax in place. Periods 2035 and 2045 are not shown for sake of parsimony.
The chosen unit (e/MWh electric) makes tax rates directly comparable across technologies and
between carbon and air pollution taxes.

Table 4: Technology-specific carbon and air pollution taxes (in e/MWh electric)

Carbon tax Air pollution tax
2025 2030 2040 2050 2025 2030 2040 2050

Bioenergy 31.92 32.53 34.08 36.52
Bio-CCS -80.13 -89.66 -112.09 -139.34 41.32 42.16 44.24 47.49
Gas-CCGT, Gas-ST 32.30 36.29 47.19 60.94 2.33 2.41 2.69 3.06
Gas-CCS 4.01 4.58 5.95 7.68 2.92 3.02 3.37 3.84
Gas-OCGT 44.30 49.53 63.02 81.38 3.20 3.29 3.59 4.09

Coal 69.68 77.71 101.06 130.49 12.61 12.55 13.11 13.78
Coal-CCS 8.93 10.20 13.26 17.12 14.53 14.48 15.20 16.09
Lignite* 81.88 93.50 121.59 157.01 16.43 17.51 20.11 23.47
Oil* 88.89 101.50 131.99 170.44 25.44 27.09 31.01 36.18

Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values refer to 2015
vintages in the respective period because we do not observe any lignite and oil expansion in our results.

Remember that bioenergy is carbon-neutral and thus not subject to carbon taxes. Bio-CCS in
turn delivers negative carbon emissions so that the carbon tax is negative, i.e., a subsidy that grows
from 80.13 to 139.34 e/ton from 2025 to 2050. The air pollution tax in turn is positive but grows
only slightly from 41.32 to 47.49 e/ton due to two reasons. First, the specific SCAP grow with GDP
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by 60% from 2015 to 2050, while specific specific SCC more than double. Second, technological
improvements with regard to efficiencies and emission factors reduce the underlying damage and
thus have dampening effects on the optimal air pollution tax. However, air pollution taxes cannot
fully cover the benefits from the carbon subsidy for bio-CCS, which is highly negative (and even
higher than the average electricity price, around 70 e/MWh). Among the other technologies, coal,
lignite, and oil have by far the highest carbon tax and also air pollution tax rates are high. Gas
in turn has considerably lower carbon tax rates and air pollution rates are even lowest among
technologies, making gas technologies a viable option in the optimized technology mix. However,
gas-CCS combines the best of the two worlds with quite low carbon taxes and only marginally
higher air pollution taxes than the corresponding comparable conventional gas technology. Coal-
CCS in turn seems to be by far less competitive than gas-CCS due to considerably higher air
pollution taxes.

4. Results

We now analyze the generation and emission mix when a social planner decides for no taxation,
only taxing either air pollution or CO2, and jointly taxing air pollution and CO2 (Subsection 4.1).
We test sensitives of our results with regard to specific SCC and SCAP. We further test sensitivities
with regard to diverging air pollution emission factor assumptions and then analyze the impact
of wind power technology improvements on the generation and emission mix to ensure that our
findings are robust against more optimistic technology projections (all Subsection 4.2). Finally,
we summarize technology substitution patterns for those diverging tax choices as well as SCC and
SCAP levels (Subsection 4.3).

4.1. Taxation choice
Figure 1 visualizes taxation choice results. The stacked bars in the upper panel depict annual

generation by technology (in TWh). The stacked bars in the lower panel show annual emissions
by air pollutant (in Mt) and the gray diamonds depict annual CO2 emissions (in Gt). 2015 serves
as calibration year. Different model specifications are grouped for periods 2025, 2030, 2040, and
2050.21 Assuming no air pollution taxes and CO2 prices of 7.75 e/ton (2015 EU ETS average)
in our calibration year 2015, the technology mix is dominated by nuclear (836 TWh, 25.8%),
conventional gas (720 TWh, 22.2%), and coal (538 TWh, 16.6%). Hydro (418 TWh, 12.9%), wind
(306 TWh, 9.4%), lignite (245 TWh, 7.6%), and solar (109 TWh, 3.4%) contribute relevant shares
(above 2%). CO2 emissions are at 1.06 Gt and air pollution at 1.54 Mt, stemming mainly from
NOx and SO2. PPM and NMVOC are the remaining air pollutants and NH3 amounts are negligible
due to the absence of CCS technologies.

From 2025 onwards, taxation choices across specifications differ. No taxation (first column of
each grouping) encourages the short-run deployment of conventional gas technologies (from 720

21EUREGEN optimizes in five-year steps. For parsimony, we refrain from presenting 2020, 2035, and 2045
outcomes.
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Figure 1: Generation (upper panel) and emission (lower panel) mix for different taxation choices

TWh in 2015 to 1,225 TWh in 2025 to 1,171 TWh in 2050) at the cost of nuclear (from 836 TWh
to 351 TWh to 235 TWh), and promotes massive deployment of coal in the short-run as well
as long-run (from 538 to 1,286 to 3,862 TWh, generation shares of 16.6%, 28.8%, and 57.9%).
However, also wind generation more than doubles from 306 TWh (2015, 9.4%) to 763 TWh (2050,
11.4%). Solar PV shares remain constant (3.4%, generation increases from 109 to 227 TWh).
CO2 emissions increase already in 2025 to 1.66 Gt and continue to grow to 3.21 Gt in 2050. Also
related air pollution increases from 1.9 Mt in 2025 to 3.81 Mt in 2050.22 The composition of the
air pollution mix does not change much over time, NOx and SO2 emissions from burning coal thus
remain the dominant air pollutants.

22Observe that the bars and squares for no taxation leave the scale of the lower panel in 2040 already.
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The generation mix completely changes when imposing AP taxation (second column). Coal
is almost absent already in 2025 (small shares remain active until 2045). In turn, conventional
gas technologies start dominating in 2025 with a generation share of 62.2% (22.2% in 2015) that
increases to 67.2% in 2050. Nuclear generation drops from 2015 to 2025 (285 TWh) as well but then
remains almost constant until 2050 (261 TWh). Wind generation quadruples and solar generation
triples from 2015 to 2050. However, the 2050 generation shares of wind and solar are still low at
18.3% and 4.4%. The reliance on technologies burning natural gas is reflected in the air pollution
mix. Total air pollutant emissions drop to 0.72 Mt in 2025 already, whereas CO2 emissions see
almost no change. Also the air pollution composition changes away from high SO2 and substantial
PPM emissions to a completely NOx dominated system (82.22%). After 2025, both CO2 and air
pollutant emissions then slightly increase, but the increase of CO2 is more pronounced (to 1.55 Gt
in 2050). The composition further changes so that SO2 is almost absent and NOx is more or less
the only (air) pollution source (93.15%).

The substitution of coal by conventional gas technologies is the dominant change when adding
air pollution taxation to a policy regime of no taxation. Adding instead only CO2 taxation (third
column) or exchanging air pollution by CO2 taxes, respectively, yields a substantially more diverse
substitution pattern. There is no one single dominating technology anymore. Instead, gas-CCS
(21.8%) and wind (35.9%) overtake the major generation part in 2025. This dynamic even inten-
sifies over time. Gas-CCS generation grows to 1,674 TWh (share of 25%) and wind generation to
2,775 TWh (41.4%) in 2050. Additionally, nuclear generation rises from 302 TWh in 2025 to 604
TWh in 2050 (shares of 6.8% or 9%, respectively). Conventional gas contribution is only 2.4%.
Solar PV (714 TWh, 10.7% in 2050) and bio-CCS (362 TWh, 5.4%) are the remaining relevant
technologies. Turning to the emission mix, observe that CO2 and air pollution emissions immedi-
ately drop to 0.36 Gt or 0.42 Mt, respectively, in 2025. The air pollution level remains low until
bio-CCS is introduced to the technology mix in 2040. We can now observe substantial amounts of
SO2, PPM, NMVOC, and also NH3, all stemming mainly from burning biomass. The CO2 in turn
is captured, so that the European power system is carbon neutral already in 2040. The spread in
the development between air pollutant and CO2 emissions grows with bio-CCS usage until 2050,
so that final air pollution is at 1.46 Mt, whereas CO2 emissions are at -0.15 Gt.

The joint taxation of CO2 and air pollution (CO2 and AP taxation, fourth column) shows
similar patterns as sole CO2 taxation in 2025 and 2030. The gas-CCS share is slightly lower, while
conventional gas and wind generation is slightly higher. Those small differences yield slightly higher
CO2 and slightly lower air pollutant emissions. However, the composition of air pollutants remains
the same. Major differences start in 2040 again, when sole CO2 taxation starts deploying bio-CCS,
while additional air pollution taxation discourages bio-CCS in the optimized system. However, the
CO2 price increases further from 145 to 187 e/ton until 2050, making small amounts of bio-CCS
(103 TWh, 1.5%) competitive in the generation mix. CO2 emissions drop from 0.18 to 0.06 Gt,
whereas air pollution increases from 0.44 to 0.67 Mt. Air pollution composition is comparable to
sole taxation of CO2. The lower bio-CCS and gas-CCS generation is substituted by substantially
higher nuclear generation (12.6% compared to 9% in 2050) and more wind deployment (42.9% vs.
41.4%).
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Different taxation choices for CO2 and air pollutants impose vastly different optimal technology
and emission mixes. The taxation of air pollutants fosters conventional gas technologies. Those
technologies burn natural gas, which comes at substantially lower SO2 and PPM emissions. Carbon
taxation in turn encourages the deployment of intermittent renewable energies such as wind and
solar and, additionally, the deployment of CCS technologies that capture carbon and permanently
store it. As a result, gas-CCS is almost carbon-neutral and bio-CCS is even carbon-negative. There
is little need for nuclear when only taxing CO2 because other emission types do not matter. Adding
air pollution taxation to already existing CO2 taxation in turn incentivizes nuclear deployment
because the dispatchable carbon-neutral (gas-CCS) or carbon-negative (bio-CCS) technologies still
come with substantial air pollution (and at the related cost). However, also wind power is fostered
by air pollution taxation.

4.2. Sensitivity analysis
Despite careful calibration, some uncertainty remains regarding specific SCAP and SCC as well

as air pollution emission factors.23 We address this uncertainty by additionally modifying specific
SCAP and SCC levels to 25%, 50%, 200%, 400%, and 800% of the default level. We use the joint
taxation specification CO2 and AP taxation as a benchmark for this task, where we modify either
SCC or SCAP to alternative levels, while the other one stays at the 100% default level. For air
pollution emission factors, we additionally develop a low and a high emission factor scenario. The
low scenario starts at same values as our benchmark but assumes more optimistic technological
progress of pollution abatement than the benchmark. The high scenario in turn is less optimistic
than our default scenario. We apply those scenarios on sole air pollution taxation as well as joint
CO2 and air pollution taxation. Appendix G contains visualizations of our sensitivity analysis.

Specific SCAP. Bio-CCS embodies an emission trade-off, as it is severely locally air polluting but
tremendously reduces CO2 emissions. As a result, cheap air pollution at 25% SCAP encourages
full usage of the biomass potential in terms of bio-CCS in 2050. The 50% SCAP scenario exploits
almost the total biomass potential in 2050 (but 2040 and 2045 deployment is substantially lower).
200% SCAP ends up with negligible bio-CCS generation in 2050 (0.2%). Higher SCAP levels
prevent bio-CCS altogether. Gas-CCS contributes 24.2% (23.4%, 20.9%, 17%, 9.1%) and nuclear
9.4% (10.4%, 15%, 17.7%, 27%) for 25% (50%, 200%, 400%, 800%) SCAP. Wind (41.6% for 25%
SCAP, 44% for 800% SCAP) and solar (10.6% for 25% SCAP, 8.1% for 800% SCAP) are less
affected by changing specific SCAP. Lower SCAP thus foster CCS technologies, yield more air
pollution but lowest CO2 emissions. Higher SCAP in turn foster nuclear and wind, leading to a
lower air pollution but higher CO2 emissions.

Specific SCC. 25% and 50% SCC are insufficient to induce competitiveness of CCS technologies.
Instead, conventional gas technologies substitute for bio-CCS, gas-CCS, substantial parts of nuclear

23Carbon emission factors are not modified as they mainly depend on the plant efficiency and fuel used, which
are both explicitly modeled. Air pollution emission factors additionally depend for instance on the firing/furnace
technology and a broad but diverse set of available abatement technologies. See EEA (2019) for an overview.
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(for 25% and 50% SCC), and considerable wind generation (only 30.2% in 2050 for 25% SCC).
Not relying on CCS technologies leaves 25% and 50% SCC with a substantially lower air pollution
burden but tremendously higher CO2 emissions (1.11 Gt for 25% SCC and 0.75 Gt for 50% SCC in
2050). 200% SCC uses almost the entire biomass potential for CCS from 2030 onwards. 400% and
800% SCC use almost the entire potential already from 2025 onwards. This biomass usage makes
the European power system carbon-negative from 2025 onwards when doubling the underlying
SCC. Associated air pollution in turn skyrockets to 2015 levels with substantially higher shares
of PPM, NMVOC, and NH3 (SO2 share is smaller due to the absence of oil, lignite, and coal).
Increasing SCC above 200% does not change much in the overall CO2 emission level because
biomass usage is limited. Instead, there is a substantial shift from gas-CCS to nuclear to avoid
even the small remaining CO2 emissions associated with gas-CCS. As a consequence, also air
pollution decreases again for very high SCC values. Wind (42.2% for 50% SCC and 42% for 800%
SCC) and solar shares (10.7% for 25% SCC and 8.1% for 800% SCC) are impacted considerably
less.

Air pollution emission factors. Start with sole air pollution taxation. The impact on the technology
mix is minor. 2050 wind, solar, and conventional gas generation is slightly lower for the low
scenario, while there is a small amount of coal generation in 2050 (3.3%). The high scenario
comes with slightly higher nuclear generation that substitutes for conventional gas (+0.3 or –0.4%,
respectively). Resulting CO2 emissions are lowest for the high scenario (1.51 Gt) and highest
for the low scenario (1.65 Gt). Air pollution effects are reversed and the relative differences are
substantially higher. Now turn to joint taxation. Interestingly, 2050 CO2 emissions are now
highest (0.14 Gt) and air pollution lowest (0.39 Mt) for the high air pollution emission factor
scenario because the high emission factors prevent bio-CCS from being competitive. In contrast,
small amounts of bio-CCS are introduced in 2050 for the other two emission factor scenarios. As a
consequence, wind and nuclear generation is slightly higher in the high scenario. The results show
that emission factor assumptions have substantial impact when a certain threshold is reached as
it is the case for coal (under sole air pollution taxation with low emission factors) and bio-CCS
(under joint taxation with high emission factors).

Technology boost. We observe stable 2050 wind deployment across taxation choices (shares of
41.4% when taxing CO2 only and 42.9% when adding air pollution taxation), specific SCAP levels
(41.6% for 25% SCAP and 44% for 800% SCAP), specific SCC levels (42.2% for 50% SCC and
42% for 800% SCC), and air pollution emission factor scenarios (42.2% for low and 43.6% for
high under joint taxation).24 This consistency in deployment indicates that the economically
viable potential of wind does not differ much across the underlying specifications and in turn
promotes nuclear expansion as alternative emission-free technology. We test for this effect by

24Deciding for no taxation (11.4%), sole air pollution taxation with low (17.3%), mid (18.3%), and high emission
factor assumptions (18.2%) as well as deciding to internalize only 25% of the SCC (30.2%) yield indeed substantially
lower wind deployment rates. However, those options are also furthest away from realistic policy options in Europe,
where substantial carbon pricing plays a key role.
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introducing a technology boost in 2040—i.e., full-load hours (FLH) of wind onshore and offshore
increase (see Appendix H for details)—and apply joint CO2 and air pollution taxation. 2050
wind generation increases to 62.2% (42.9% without boost), nuclear contributes only 3.4% (12.6%),
gas-CCS 16.5% (23.1%), bio-CCS 0.5% (1.5%), and solar 8.1% (10.6%). The higher wind potential
thus reduces nuclear shares, hinting that wind and nuclear are deployed by the model as emission-
free technological substitutes. However, higher wind potential also reduces CCS shares so that
overall air pollution is brought down to 0.39 Mt (compared to 0.67 Mt without boost), whereas
CO2 emissions are slightly higher with boost (0.104 vs. 0.063 Gt).

4.3. Substitution patterns
From the previous results it is apparent that technology switch patterns are of high relevance

when accounting for local air pollution. We thus analyze general behavioral patterns and trends of
technology deployment in this subsection. This allows us to synthesize technological substitution
effects in relation to system profiles of CO2 emissions and air pollution. In particular, we group
specifications into policy clusters and analyze for each cluster which technologies systematically
gain and lose most in the final 2050 mix compared to our benchmark CO2 and AP taxation (at
100% SCAP and SCC levels). We exploit the fact that the (relative) taxation intensity of CO2
vs. air pollution varies across all our specifications. This is achieved by different taxation choices,
varying specific SCAP and SCC.25 We can therefore sort specifications into clusters of high air
pollution taxes, low air pollution taxes, high CO2 taxes, and low CO2 taxes. Figure 2 depicts all
clustered specifications in a scatter plot. The y-axis measures 2050 CO2 emissions and the x-axis
measures 2050 air pollution emissions, each in absolute differences to the benchmark.26 The color
scheme indicates cluster membership and emphasizes the technologies that are at the center of the
cluster’s technology switch.

Clusters Low AP tax and High CO2 tax both exhibit a distinct switch towards bio-CCS. For Low
AP tax, the switch takes place away from emission-neutral nuclear, whereas for High CO2 tax the
substitution happens away from gas-CCS to fully avoid this technology’s residual CO2 emissions.
However, observe that the resulting CO2 and air pollution profiles of the systems are very similar
for both clusters despite very different taxation regimes. High AP tax is marked by specifications
that shift away from air polluting CCS technologies (bio-CCS and gas-CCS) towards emission-
neutral nuclear. This substitution pattern under aggressive air pollution taxation is associated
with a nearly horizontal movement along the x-axis, and thus hardly impacts CO2 intensity of
the system. Low CO2 tax is characterized by an extensive shift from various technologies to
conventional gas. Such a regime of cheap CO2 emissions does not only increase CO2 emissions but
also increasingly enhances local air pollution when burning natural gas.

25We spare the technology boost here because it hampers comparability of results. For the same reason, we
also spare the emission factor scenarios as they structurally shift the intensity and composition of the air pollution
profile of technologies.

26Note that social damages from CO2 are proportional to the CO2 intensity of the system. This is not the case for
air pollution, as we depict the total aggregate of all air pollutants for complexity reasons here. Across specifications,
the composition of total air pollution might change between more or less harmful compositions.
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Figure 2: 2050 emissions in relation to benchmark and clustered by technology switch

CO2 and air pollutant emissions are displayed in absolute difference to the benchmark of joint CO2 and AP taxation at 100% SCC and
SCAP.

It is interesting to note that excessive taxing of either of the emission types, i.e., clusters High
CO2 tax and High AP tax, is also at the expensive of the solar PV generation share. The intuition
behind this implies that both clusters switch away from dispatchable gas-CCS generation, whose
low but nevertheless existing emissions are heavily taxed. This leaves the system at a lack of
a flexible (low-emission) technology to balance intermittent renewable generation. For cluster
High CO2 tax, bio-CCS as a dispatchable carbon-negative technology is expanded. However, the
biomass limits constrain usage to compensate large-scale fluctuating renewable supply. As a result,
the model in both clusters slightly cuts down on intermittent solar PV and relies more on emission-
neutral nuclear.

5. Discussion

Our results indicate that joint taxation schemes bear important mitigation dynamics. We thus
discuss accumulated (discounted and non-discounted) social cost under different taxation choices
as well as co-benefits of complementary taxation in the remainder of this section.

Table 5 presents accumulated CO2 emissions (in Gt) and air pollution (in Mt) as well as
corresponding social cost (in billion e, discounted values in parentheses) from 2021 to 2050 for our
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four main specifications Observe that accumulated CO2 and air pollutant emissions are by far the
highest for no taxation. Further, CO2 emissions drop when taxing air pollution. SCC decrease by
more than 5,000 billion e, while SCAP are reduced by around 1,000 billion e only. Social cost are
considerably lower when taxing only CO2 emissions, as are accumulated CO2 emissions (3.3 Gt).
At the same time, accumulated air pollution is only slightly higher than when solely taxing air
pollution (27 vs. 23.1 Mt). However, discounted accumulated SCAP are at the same level because
the time profile of air pollutant emissions differs considerably. Air pollution taxation reduces air
pollution in later periods. In contrast, CO2 taxation has quite an extensive impact (by means
of reducing air pollution) in the mid-term, whereas in the long-run air pollution is substantially
higher (due to bio-CCS usage). We observe a similar effect for accumulated SCC when adding air
pollution taxation to existing CO2 taxes. Here, accumulated non-discounted SCC increase by 642
billion e, but discounted SCC only by 115 billion e. Again, differences in emissions and related
social cost manifest mainly in the long-run due to the deployment of bio-CCS.

Table 5: Accumulated emissions and social cost as well as electricity price range from period 2025
to 2050

CO2 SCC* AP SCAP* Electricity price**
(Gt) (billion e) (Mt) (billion e) (e/MWh)

No taxation 73.1 10,636 (2,449) 87.9 1,420 (346) 51.44–47.04 (2025)
AP taxation 38.8 5,547 (1,340) 23.1 343 (92) 53.78–52.03 (2025)
CO2 taxation 3.3 281 (194) 27.0 435 (92) 78.39–77.84 (79.91, 2035)
CO2 and AP taxation 7.4 923 (311) 13.7 195 (53) 80.41–79.03 (81.07, 2045)
CO2, SCC, air pollution (AP), and SCAP values are accumulated values from period 2025 to 2050 (30 years because
2025 reflects years 2021–2025). *The values for SCC and SCAP in parentheses show discounted social cost. **We
present ranges of electricity prices with the first value referring to 2025 and the second one to 2050. Parentheses
show the maximum electricity price with the respective year.

Furthermore, electricity prices are lowest for no taxation and air pollution taxation increase
them only by 5% (in 2025) to 10% (in 2050). However, CO2 taxes have a overarching effect on
prices that are no more than 50% higher than in the no taxation case and also almost 50% higher
than in the policy regime of taxing air pollution only. Combining air pollution and carbon taxes
finally result in highest prices.

The intuition that joint taxation schemes significantly reduce social cost is not generally true
because the model takes into account related abatement cost when minimizing the net present value
of system cost. However, the composition of cost (SCAP vs. SCC) fundamentally changes. Such
findings open up discussions about co-benefits of complementary taxation. Moreover, in practice
it may not be necessary, feasible, or intended to heavily tax both emission types and nor may ”the
more the better” lead to efficient returns from taxation. With the goal of understanding how long
a way co-mitigation effects go, we analyze the co-benefits of CO2 and air pollution taxation on
the respective other emission type. For instance, if taxing air pollution as a measure to internalize
local damages also has positive benefits for ongoing CO2 emission mitigation, this would be a
useful instrument to complement existing policies of carbon pricing.
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Starting with sole CO2 taxation (at 100% SCC level) as benchmark, we iteratively add increas-
ing levels of air pollution taxation (as done implicitly by 25% to 800% SCAP). The co-benefits
are the amount of (non-discounted, unless stated otherwise) CO2 emission damages (expressed at
the 100% SCC level) that are additionally avoided compared to the benchmark. For example, sole
CO2 taxation leads to 281 billion e of aggregate SCC (see Table 5). When air pollution taxation is
added as a complementary instrument at 25% SCAP level, this leaves a system with 182 billion e
higher aggregate SCC. The co-benefit of added air pollution taxation on SCC would then be –182
billion e. Increasing air pollution taxation to 50% SCAP level yields an even more negative co-
benefit of –356 billion e. We continue this exercise until arriving at 800% SCAP (co-benefit is –937
billion e) and repeat it vice versa for sole air pollution taxation and added levels of CO2 taxation.
Figure 3 presents results. The left panel shows the dynamics of adding CO2 taxation to existing
air pollution taxation. The co-benefit (filled blue triangles) is thus expressed in avoided accumu-
lated SCAP. Hollow triangles show discounted co-benefits. The right panel presents the outcome
of adding air pollution taxation to existing CO2 taxation. The co-benefit (filled gray diamonds) is
measured in avoided accumulated SCC. Hollow diamonds show discounted co-benefits.

Figure 3: Co-benefits of complementary taxation as accumulated social damages avoided

The left panel shows AP taxation with diverging levels of CO2 taxation. The right panel shows CO2 taxation with diverging levels
of AP taxation. Co-benefits are expressed in 100% SCC or SCAP levels, respectively. Filled markers represent non-discounted values;
hollow markers represent discounted values.

Coming from existing air pollution taxation (left panel), adding mild to moderate carbon
pricing has increasingly positive co-mitigation effects on local air pollution. Such taxation schemes
discourage the deployment of technologies that exhibit residual emissions of both types (e.g.,
conventional gas, gas-CCS). Co-benefits grow from 74 billion e at 25% to a peak of 148 billion
e at 100% CO2 taxation. Co-benefits are however strongly non-linear so that beyond 100% CO2
taxation, the co-benefits actually turn into mitigation trade-offs. Indeed, co-benefits drop to –250
billion e for 200% and then slightly improve to –185 billion e for 800%. Aggressive CO2 taxation
leads to a technology mix that accepts increased air pollution damages for extensive mitigation of
carbon emissions, e.g., via bio-CCS usage towards the end of the model horizon. Hence, in case
the primary policy goal is mitigation of local air pollution, the mitigation benefits can be even
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increased by low to moderate carbon pricing as a complementary policy.
Coming from a taxation scheme that fully internalizes CO2 emission damages already (right

panel), CO2 emissions cannot be further decreased through complementary air pollution taxation.
For all our specifications with additive air pollution taxation, co-mitigation effects on CO2 are
negative (overall effect on social damage mitigation may still be positive). Yet again, co-benefit
effects are non-linear, such that they are slightly negative for mild air pollution taxation (–182
billion e at 25% air pollution taxation ) and floor at –966 to –937 billion e for high to very high
levels of air pollution taxation. Note that these numbers are aggregate co-benefits covering the long
term optimization horizon. It is important to keep in mind that timing of co-benefit effects matters
strongly here for two reasons. (1) The negative co-benefits of CO2 are strongly driven by bio-CCS
usage in later periods, which can turn positive mid term co-benefits into negative co-benefits in the
cumulative long-term. (2) As the negative co-benefits driven by bio-CCS occur in later periods,
they are heavily discounted in the optimization process. This causes an increasing gap between
discounted co-benefits and non-discounted co-benefits for excessive air pollution taxation. This
divergence should be taken into account when assessing actual generational (i.e. non-discounted)
damages of different policy regimes.

6. Conclusion

We derive emissions factors of six local air pollutants (NH3, NMVOC, NOx, PPM10, PPM2.5,
and SO2) for multiple electricity generation technologies (e.g., bio-CCS, coal, gas-CCGT, gas-CCS)
depending on fuel used (e.g., biomass, coal, natural gas) and underling technological characteristics
as well as the year of installation to reflect potential air pollution of the current and future power
plant fleet in Europe (Cai et al., 2012, EPA, 1995, EEA, 2019, UBA, 2019). We then use estimates of
the social cost of air pollution (SCAP) from the externE project series that are tailored to electricity
generation technologies (Friedrich and Bickel, 2001, Pietrapertosa et al., 2009). We further derive
social cost of carbon (SCC) from an own calibration of DICE-2016R-091216a (Nordhaus, 2014).
We implement air pollution emission factors and pollution taxes (equal to the respective SCAP
and SCC) in EUREGEN (Weissbart and Blanford, 2019) to quantify the impact of accounting
for air pollution for the European power market until 2050.27 In particular, we match SCAP
and SCC estimates with EUREGEN’s CGE calibration by accounting for country-specific GDP
growth and the underlying population projections from the World Bank. We then analyze different
internalization strategies of social cost by either deciding for no taxation, only taxing air pollution
or CO2, respectively, or jointly taxing both emission types. We additionally test for sensitivities of
SCC levels, SCAP levels, air pollution emission factors, and technological progress of wind power to
gain insight into technological substitution patterns when deciding for taxing air pollution and/or
CO2 emissions. We finally calculate the social cost occurring from different taxation choices and
determine whether or not adding CO2 (or air pollution) taxation to already existing air pollution

27EUREGEN is a multi-region partial equilibrium model of the European power market that optimizes invest-
ments, decommissioning, and dispatch of multiple generation, storage, and transmission technologies.
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(CO2) taxation comes with co-benefits (or trade-offs) by means of reduced (increased) damages
from air pollution (CO2). Our key findings are fourfold.

First, we determine the technology and emission mix occurring under different taxation choices.
No taxation fosters coal deployment. Air pollution taxation fosters the usage of conventional
gas technologies and comes with significant reductions in air pollution, whereas carbon emissions
increase. CO2 taxation yields considerable amounts of nuclear as well as gas-CCS and employs air
polluting bio-CCS up to the biomass limit. Consequently, air pollution increases considerably when
introducing bio-CCS but overall carbon emissions indeed drop to negative levels in the long-run.
Binary decisions to tax either air pollution or carbon thus come with completely diverging emission
profiles, mainly due to the employment of bio-CCS (and secondarily also due to gas-CCS). The
technology and emission mix when jointly taxing air pollution and CO2 is dominated by carbon
taxes. However, additional air pollution taxation halves the total air pollution by reducing usage
of CCS technologies, whereas nuclear generation is substantially higher.

Second, we test robustness of results by changing the underlying SCC and SCAP levels and
thus the respective taxation levels. We use those results to systematically assess technological
substitutions patterns. The results of this task underline that high air pollution taxes foster
nuclear at the cost of bio-CCS and gas-CCS. Low air pollution taxes in turn substitute nuclear
by bio-CCS only. High CO2 taxes foster nuclear at the expense of gas-CCS because gas-CCS still
emits residual amounts of CO2. Moreover, bio-CCS is fostered, too, as long as the biomass limit
is not reached already. Low CO2 taxes in turn foster conventional gas technologies.

Third, we scrutinize accumulated social cost as well as electricity prices in the period 2021
to 2050 under different taxation choices. No taxation comes with lowest electricity prices (47
e/MWh in 2050) but social cost accumulate to 12,056 billion e, which amounts to more than 400
billion e/a and is close to the 2022 annual government budget of Germany—the biggest country
within the European power market. Sole air pollution taxation more than halves those damages,
whereas electricity prices increase only by 10% in the long-run. Interestingly, air pollution taxation
reduces the burden of SCC from 10,636 to 5,547 billion e. CO2 taxation actually yields lowest
overall damages (281 billion e from CO2 and 435 billion e from air pollution). Here, air pollution
(damage) is only around 16% (92 billion e) higher. Electricity prices increase tremendously by
around 26 e/MWh (+48%). Those results show some complementarity in the mitigation of CO2
and air pollutants emissions. However, the socially optimal policy regime is joint taxation of
both emission types. Such a policy regime in fact increases the overall social cost from 716 to
1,118 billion e but comes at similar electricity prices (compared to sole CO2 taxation). However,
the objective is not to minimize social cost but the net present value of total system cost; thus
abatement cost play a role as well. In particular, the discounted social cost increase only from
286 to 364 billion e. Notably, discounting plays a fundamental role when assessing damages from
CO2 and air pollution because different taxation choices impose a completely different time profile
of emissions. For example, only taxing CO2 yields 55% higher social cost from air pollution than
from carbon emissions but, when looking at discounted values, damages from air pollution are
actually 53% lower than those from CO2. Bio-CCS again plays a fundamental role here because
it reduces carbon emissions in late periods (little benefits for discounted social cost of carbon),
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whereas it increases air pollution in those periods (high undiscounted social cost of air pollution).
Fourth, we determine co-benefits from different taxation regimes. In particular, we do not

observe large power systems that jointly internalize damages from CO2 and air pollution. For
example, the United States mainly focus on air pollution regimes, thereby neglecting damage
mitigation from CO2. Europe in turn predominantly focuses on CO2 mitigation. However, the
internalization of local damages from air pollution should be undertaken by each country on their
own iniative because free-riding does not matter. This might lead to situations where additional
air pollution (in Europe) possibly reduces also (global) damages from CO2. In turn, one argument
to employ carbon pricing in the United States might be that there is also a related benefit in terms
of reduced air pollution. We quantify those scenarios and find that there is indeed a co-benefit
when CO2 taxation is added to existing air pollution taxation as long as the level of CO2 taxation
is not above the efficient one. However, adding air pollutant taxes to existing carbon taxes always
comes with negative co-benefits for CO2 mitigation.

Our paper shows that the interpretation of modeling results and their consideration by policy
makers requires careful review of the assumptions about taxes, underlying technological character-
istics, and prioritization of policy goals. Our findings inform about impacts of different taxation
choices and levels on resulting emissions, associated damages and technology switch patterns. Our
results also emphasize how sensitive the optimal system reacts to different versions of complemen-
tary taxation schemes. Interestingly, nuclear plays a key role because wind and solar deployment
at competitive spots is naturally limited and thus nuclear is the only remaining (competitive and
expandable) emission-neutral technology. As a consequence, accounting for air pollutant damages
shifts the focus back towards nuclear in the choice set of policy makers. In addition, bio-CCS is
the dominant technology that drives air pollutant damages but reduces those of CO2 emissions.
This trade-off challenges the role of bio-CCS as panacea to achieve a deep decarbonization. Our
findings also inform about policies that do not appropriately internalize CO2 or air pollutant dam-
ages, respectively, and underline that the focus on decarbonization should leave space also for
co-internalization of air pollutant damages. This is particularly important once CCS technologies
become competitive. We also deliver insights into how much potential is borne in complementary
taxation schemes to yield co-benefits for an existing primary mitigation goal. Those co-mitigation
effects need to be carefully handled by policy makers as they are non-linear. To summarize, we
advise policy makers to use mild carbon pricing as additional tool to reduce air pollution but not
to use air pollution taxes as a tool to reduce carbon emissions. However, from a holistic system
perspective it is best to jointly internalize both emission types. This joint taxation also means
that ambitions to decarbonize economies must be reviewed in the sense that one of the most pow-
erful carbon-negative technologies, biomass in combination with carbon-capture and storage, is
problematic regarding its air pollution impact.

Our analysis comes with some limitations. We use a European power market model to quantify
results. Consequently, quantification of social cost is only valid for Europe which is quite densely
populated and thus carries quite high damages from air pollutants. However, technology cost are
similar across the globe and the determined substitution effects and the emissions trade-offs of
CCS technologies are generally applicable. Moreover, wind and solar potential in time and space
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is limited under current electricity demand projections. Other world regions without that scarcity
might overcome the entire air pollutant relevance by avoiding CCS technologies. Moreover, the
quite prominent role of nuclear is fostered by the fact that we do not account (for short- and
long-term) radiation damages from using nuclear. Considering them could be a useful topic for
future work. However, reduced nuclear capacities come with higher reliance on CCS technologies,
which in turn makes the role of air pollutant damages and their appropriate taxation even more
severe. Finally, we apply the very same discount rate to evaluate damages from carbon and air
pollutant emissions. There are at least some arguments that promote that air pollutant damages
might be evaluated at higher discount rates than social cost of carbon, because the damages of
local air pollution are immediate and not as long-lasting (over several generations) as are those
from emitting CO2.
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Appendix

Appendix A. Optimization constraints

Demand constraints. Equation (A.1) ensures to meet an exogenous given demand dr (h, t), which
can be reduced by allowing for lost load Lr (h, t) (demand-equals-supply constraint). The difference
of demand and lost load is final consumption. Total supply from generation

∑
i,v Yir (h, v, t), storage

operations (discharge including discharge losses η−jr (v) less charge, second line), and transmission
operations (imports including import losses ηk,rr,r less exports including export losses ηk,r,rr, third
line; µk,r,rr describes the mapping of regions that are eligible for transmission exchange) must be
higher than consumption by distribution grid losses ηlossr (t) .

Equation (A.2) ensures that there is sufficient back-up capacity in every region to meet demand
and refrains from accounting for the possibility of lost load (resource adequacy constraint). We
work with capacity credits α that indicate the secured amount of capacity for each technology.
Storage charge and exports does not play any role here due to the fact that those operations
hamper to meet the adequacy target.

dr (h, t)− Lr (h, t)

ηlossr (t)
=
∑
i,v

Yir (h, v, t)

+
∑
j,v≤t

(
Y −
jr (h, v, t) η

−
jr (v)− Y +

jr (h, v, t)
)

+
∑
µk,rr,r

Yk,rr,r (h, t) ηk,rr,r −
∑

µk,r−rr

Yk,r,rr (h, t)

ηk,r,rr
∀ (h, r, t) , (A.1)

dr (h, t)

ηlossr (t)
=
∑
i,v

αiQir (h, v, t)

+
∑
j,v≤t

αjQ
−
jr (h, v, t) η

−
jr (v)

+
∑
µk,rr,r

αkQk,rr,r (h, t) ηk,rr,r ∀ (h, t) . (A.2)

Generation constraints. Equation (A.3) restricts generation by available capacity (capacity con-
straint). βirnw(i),r (h, v) ∈ [0, 1] is hourly availability of the subset of intermittent renewables
irnw (i) (solar PV, wind onshore, wind offshore, hydro), γnot irnw,r (h, v) ∈ [0, 1] is hourly availabil-
ity for all other technologies (bioenergy, bio-CCS, gas-OCGT, gas-CCGT, gas-ST, gas-CCS, coal,
coal-CCS, lignite, oil, nuclear, and geothermal) following from monthly generation patterns and
reliability assumptions. We further have βnotirnw(i) = γirnw(i) = 1.

Equations (A.4) and (A.5) describe the movement of capacity over time (capacity stock con-
straints). Equation (A.4) describes the movement of existing capacities qbaseir (v) that is still active
at tbase (the beginning of the planning horizon). Equation (A.5) describes the movement of added
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capacity. Λi (v, t) ∈ [0, 1] is a lifetime parameter that describes the respective active share of ca-
pacity. Endogenous decommissioning is permitted from tbase + 1 onward. We relinquish to show
the respective constraints that avoid early decommissioning of existing capacities in tbase already.
Existing or added capacity, respectively, is capable of reaching the end of the specified lifetime.
Additionally, 50\% might be still active 5 years later, and 30% even 10 years later. We further
specify Λ

(
tbase

)
,Λ
(
tbase + 1

)
= 1 for existing capacities to avoid distortions from enforced decom-

missioning in early periods although those existing capacities are still active in reality. We then
apply the 50% or 30% metric with one period lag.

Equation (A.6) enforces monotonic decommissioning of capacity (monotonicity constraint),
that is, ensures that already decommissioned capacity cannot be build up again. Equation
(A.7) enforces that overall capacity does not exceed a certain limit qlimir (t) (capacity limit con-
straint). Equation (A.8) enforces investments that are already planned or under construction
but not commissioned yet iqir(v)

pipe (pipeline constraint). This constraint is particular important
in tbase + 1 = 2020 for wind and solar investments but also in later periods when it is about
ongoing nuclear projects. We work with an adapted 2015 calibration that already contains lots
of investments until the end of 2020 that are enforced in the model by this pipeline constraint.
Equation (A.9) restricts expansion of intermittent renewable energies according to their resource
potential by quality class (resource potential constraint). In particular, we consider three classes
(high, mid, low) of wind onshore, wind offshore, and solar PV potential. µirnw(i) (class) is the
mapping of the respective intermittent technology to its class. qlimir (class) is then the upper limit
of the respective quality class (GW). Equation (A.10) restricts annual usage of biomass (biomass
constraint). bio (i) is the subset of technologies using biomass,

∑
bio(i)

∑
h,v≤t

1
ηir(v)

Yir (h, v, t) is
used biomass, and biolimr (t) the annual limit per region (both in GWh thermal). Equation (A.11)
restrict overall storage of carbon in the ground (stored carbon constraint). ccs(i) is the subset
of carbon-capture-and-storage (CCS) technologies, εCCS

ir the capture rate (ton/GWh electric), and
sclimr is the region-specific potential of storing carbon in the ground (ton).
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Yir (h, v, t) ≤ βir (h, v) γir (h, v)Qir (v, t) ∀ (i, r, h, v ≤ t, t) , (A.3)
Qir (v, t) ≤ qbaseir (v) Λi (v, t) ∀

(
i, r, v ≤ tbase, t

)
, (A.4)

Qir (v, t) ≤ IQir (v) Λi (v, t) ∀
(
i, r, tbase < v ≤ t, t

)
, (A.5)

Qir (v, t) ≥ Qir (v, t+ 1) ∀
(
i, r, v ≤ t, t < tend

)
, (A.6)∑

v≤t

Qir (v) ≤ qlimir (t) ∀ (i, r, t) , (A.7)

IQir (v) ≥ iqpipeir (v) ∀
(
i, r, tbase < v

)
, (A.8)∑

µirnw(i)(class)

∑
v≤t

Qir (v, t) ≤ qlimir (class) ∀
(
µirnw(i)(class), r, t

)
, (A.9)

∑
bio(i)

∑
h,v≤t

Yir (h, v, t)

ηir (v)
≤ biolimr (t) ∀ (r, t) , (A.10)

∑
ccs(i)

∑
h,v,t

εCCS
ir (v)Yir (h, v, t) ≤ sclimr ∀ (r) . (A.11)

Storage constraints. Equation (A.12) restricts storage charge by storage capacity (charge con-
straint). Equation (A.13) restricts storage discharge by storage capacity (discharge constraint).
Equation (A.14) restricts the storage balance by storage size (size constraint). For parsimony, we
assume a fixed relation between charge and discharge capacity to the storage size with hoursjr (v)
being a constant parameter (in hours) for each technology-region pair. Equation (A.15) describes
the movement of stored energy over time (balance constraint), including hourly storage losses
ηhjr (v) and charge losses η+jr (v) (discharge losses η−jr (v) enter the demand-equals-supply constraint
(A.1)). Equations (A.16) and (A.17) are the capacity stock constraints, Equation (A.18) is the
monotonicity constraint, Equation (A.19) the capacity limit constraint, and Equation (A.20) the
pipeline constraint. Those five constraints mirror equations (A.4) to (A.8) from the set of genera-
tion constraints.
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Y +
jr (h, v, t) ≤ Qjr (v, t) ∀ (j, r, h, v ≤ t, t) , (A.12)

Y −
jr (h, v, t) ≤ Qjr (v, t) ∀ (j, r, h, v ≤ t, t) , (A.13)

Bjr (h, v, t) ≤ Qjr (v, t) · hoursjr (v) ∀ (j, r, h, v ≤ t, t) , (A.14)
Bjr (h, v, t) = Bjr (h− 1, v, t) ηhjr (v)

+Y +
jr (h, v, t) η

+
jr (v)− Y −

jr (h, v, t) ∀ (j, r, h, v ≤ t, t) , (A.15)
Qjr (v, t) ≤ qbasejr (v) Λj (v, t) ∀

(
j, r, v ≤ tbase, t

)
, (A.16)

Qjr (v, t) ≤ IQjr (v) Λj (v, t) ∀
(
j, r, tbase < v ≤ t, t

)
, (A.17)

Qjr (v, t) ≥ Qjr (v, t+ 1) ∀
(
j, r, v ≤ t, t < tend

)
, (A.18)∑

v≤t

IQjr (v) ≤ qlimjr (t) ∀ (j, r, t) , (A.19)

IQjr (v) ≥ iqpipejr (v) ∀ (j, r, v) . (A.20)

Transmission constraints. Equation (A.21) restricts transmission between eligible region pairs to
the overall amount (over all vintages) of transmission capacity (trade constraint). Equations (A.22)
and (A.23) are the capacity stock constraints, Equation (A.24) is the monotonicity constraints,
Equation (A.25) is the limit constraint, and Equation (A.26) is the pipeline constraint. Those five
constraints mirror equations (A.4) to (A.8) from the set of generation constraints. qlimk,r,rr is the
upper limit of possible transmission expansion and grows over time to account for the political will
to increase interchange in Europe but still limits expansion to a socially acceptable level. iqpipek,r,rr

refects plans of transmission system operators to reach a 25% interconnectivity target and contains
already planned projects.

Yk,r,rr (h, t) ≤
∑
v≤t

Qk,r,rr (v, t) ∀ (µk,r,rr, h, t) , (A.21)

Qk,r,rr (v, t) ≤ qbasek,r,rr (v) Λk (v, t) ∀
(
µk,r,rr, v ≤ tbase, t

)
, (A.22)

Qk,r,rr (v, t) ≤ IQk,r,rr (v) Λk (v, t) ∀
(
µk,r,rr, t

base < v ≤ t, t
)
, (A.23)

Qk,r,rr (v, t) ≥ Qk,r,rr (v, t+ 1) ∀
(
µk,r,rr, v ≤ t, t < tend

)
, (A.24)∑

rr,v≤t

IQk,r,rr (v) ≤ qlimk,r,rr (t) ∀ (µk,r,rr, t) , (A.25)

IQk,r,rr (v) ≥ iqpipek,r,rr (v) ∀ (µk,r,rr, v) . (A.26)
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Appendix B. Electricity demand and fuel prices from the CGE calibration

Table B.1: Annual electricity demand (TWh)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 63 64 78 91 137 147 156 163
Belgium 83 82 96 107 131 157 181 196
Bulgaria 30 30 35 36 37 39 41 43
Croatia 16 16 17 18 18 20 23 25
Czech Republic 59 63 116 121 125 133 141 149
Denmark 32 32 37 35 39 47 52 56
Estonia 7 8 9 11 12 12 13 14
Finland 80 73 83 79 80 82 87 91
France 448 450 759 768 813 868 926 986
Germany 528 534 832 843 843 874 910 950
Greece 52 53 58 54 58 63 68 71
Hungary 38 37 44 53 67 71 75 81
Ireland 26 26 31 32 39 42 45 49
Italy 297 319 421 562 597 644 689 735
Latvia 6 7 8 9 10 12 12 13
Lithuania 10 12 18 18 17 18 19 20
Luxembourg 6 6 7 8 11 14 15 17
Netherlands 109 113 148 186 189 199 210 226
Norway 119 124 131 126 158 168 179 190
Poland 139 143 164 179 229 267 280 293
Portugal 47 52 61 62 66 70 73 76
Romania 47 47 54 58 60 67 74 80
Slovak Republic 25 27 34 39 48 56 58 60
Slovenia 13 13 15 17 19 22 23 24
Spain 239 247 313 367 494 523 543 568
Sweden 128 133 159 161 232 248 265 282
Switzerland 58 61 67 71 117 128 139 151
United Kingdom 311 317 358 389 435 489 533 595
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Table B.2: Exemplary fuel prices for Germany (e/MWh thermal)

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Coal 8.35 8.22 8.09 7.94 7.79 7.68 7.58 7.49
Lignite 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Gas 20.65 20.34 20.01 19.63 19.27 18.99 18.74 18.53
Oil 40.26 40.84 41.18 41.58 42.14 42.74 43.51 44.34
Uranium 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33

Bioenergy, lignite, and uranium prices are the same for each country. Coal, gas, and oil
prices slightly differ reflecting results from the CGE calibration. However, differences are
not decisive with regard to overall competitiveness of technologies in certain regions.

Appendix C. Technology parameters

Table C.3: Efficiencies of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.23
Bio-CCS 0.16 0.16 0.17 0.17 0.17 0.18 0.18 0.18

Gas-CCGT, Gas-ST 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Gas-CCS 0.47 0.48 0.49 0.50 0.50 0.50 0.50 0.50
Gas-OCGT 0.42 0.44 0.45 0.46 0.46 0.47 0.47 0.47

Coal 0.45 0.47 0.48 0.49 0.49 0.49 0.49 0.49
Coal-CCS 0.36 0.37 0.38 0.39 0.39 0.39 0.39 0.39
Lignite* 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Oil* 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Geothermal 0.09 0.11 0.11 0.12 0.13 0.13 0.14 0.14
Nuclear 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values
refer to 2015 vintages in the respective period because we do not observe any lignite and oil
expansion in our results.
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Table C.4: Carbon emission factors (ton/GWh electric) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bio-CCS -855 -855 -805 -805 -805 -760 -760 -760

Gas-CCGT, Gas-ST 347 341 335 330 330 330 330 330
Gas-CCS 42 41 40 39 39 39 39 39
Gas-OCGT 507 484 473 463 463 453 453 453

Coal 797 763 747 732 732 732 732 732
Coal-CCS 94 91 89 86 86 86 86 86
Lignite 838 838 838 838 838 838 838 838
Oil 910 910 910 910 910 910 910 910
Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values
refer to 2015 vintages in the respective period because we do not observe any lignite and oil
expansion in our results. Bioenergy, geothermal, and nuclear are emission neutral.

Table C.5: Investment cost (e/kW) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 4,322 4,236 4,149 4,149 4,106 4,063 4,063 4,020
Bio-CCS 6,322 6,236 6,149 6,149 6,106 6,063 6,063 6,020

Gas-CCGT, Gas-ST 850 850 850 850 850 850 850 850
Gas-CCS 1,495 1,495 1,495 1,495 1,495 1,495 1,495 1,495
Gas-OCGT 437 437 437 437 437 437 437 437

Coal 1,500 1,500 1,440 1,410 1,395 1,380 1,380 1,365
Coal-CCS 3,415 3,415 3,278 3,210 3,176 3,142 3,142 3,108
Lignite* 1,640 1,640 1,640 1,640 1,640 1,640 1,640 1,640
Oil* 822 822 822 822 822 822 822 822

Geothermal 12,364 11,993 11,622 11,498 11,251 11,127 11,004 11,004
Nuclear** 7,600 7,006 6,346 6,082 5,818 5,488 5,488 5,356

Solar 1,300 1,027 936 858 819 780 741 715
Wind offshore 3,600 3,024 2,700 2,520 2,376 2,268 2,160 2,088
Wind onshore 1,520 1,397 1,368 1,339 1,325 1,310 1,310 1,296
Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values refer to 2015 vintages
in the respective period because we do not observe any lignite and oil expansion in our results. **Social cost of
nuclear are often neglected in energy system analysis, in particular, decommissioning cost and storing nuclear
waste. Given cost estimates of around 6,000 e/kW for installing nuclear facilities, estimates are around 1,000
e/kW for decommissioning them. However, the timing of those cost at the very end of the respective life times
impedes their appropriate consideration. In fact, a discount rate of 7% leads to the consideration of only 100
e/kW decommissioning cost. We thus opt for an approach, where firms need to pay a decommissioning premium
of 1,000 e/kW into a decommissioning fund at time of construction, so that 2020 investment cost are at 7,000
(instead of 6,000) e/kW.
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Appendix D. Air pollution emission intensities (g/GJ thermal)

2015 2020 2025 2030 2035 2040 2045 2050

NH3
Bio-CCS 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
Bioenergy 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28
Coal 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23
Coal-CCS 0.90 0.87 0.84 0.81 0.78 0.75 0.72 0.69
Gas-CCGT, Gas-OCGT, Gas-ST, Oil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas-CCS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Lignite 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

NMVOC
Bio-CCS, Bioenergy 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31
Coal, Coal-CCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Lignite 1.40 1.35 1.31 1.26 1.21 1.17 1.12 1.07
Oil 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30

NOx
Bio-CCS, Bioenergy 76.42 73.77 71.13 68.48 65.84 63.19 60.55 57.90
Coal, Coal-CCS 72.50 71.23 69.96 68.69 67.43 66.16 64.89 63.62
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 31.01 30.62 30.24 29.85 29.46 29.07 28.69 28.30
Lignite 72.50 71.64 70.78 69.92 69.07 68.21 67.35 66.49
Oil 56.60 54.57 52.54 50.51 48.49 46.46 44.43 42.40

PPM10
Bio-CCS, Bioenergy 31.81 31.81 31.81 31.81 31.81 31.81 31.81 31.81
Coal, Coal-CCS 7.70 6.85 6.00 5.15 4.30 3.45 2.60 1.75
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 7.90 6.85 5.80 4.75 3.71 2.66 1.61 0.56
Oil 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20

PPM2.5
Bio-CCS, Bioenergy 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94
Coal, Coal-CCS 3.40 3.14 2.87 2.61 2.35 2.09 1.82 1.56
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 3.20 2.81 2.43 2.04 1.65 1.26 0.88 0.49
Oil 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30

SO2
Bio-CCS, Bioenergy 10.80 10.24 9.68 9.12 8.57 8.01 7.45 6.89
Coal 63.45 59.74 56.03 52.32 48.60 44.89 41.18 37.47
Coal-CCS 50.76 47.79 44.82 41.85 38.88 35.91 32.95 29.98
Gas-CCGT, Gas-OCGT, Gas-ST 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Gas-CCS 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Lignite 91.20 81.44 71.68 61.92 52.16 42.40 32.64 22.88
Oil 70.70 68.69 66.67 64.66 62.64 60.63 58.61 56.60
Emission intensities are displayed for each vintages and thus include technological progress of mitigation measures that differ for
each air pollutant.
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Appendix E. GDP and population projections

Table E.6: GDP projections (billion 2015-e)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 436 474 511 546 589 636 683 728
Belgium 528 566 606 654 719 797 877 960
Bulgaria 56 62 67 71 75 79 83 86
Croatia 57 62 65 69 75 82 88 94
Czech Republic 204 223 238 258 277 297 317 338
Denmark 346 388 429 463 499 542 590 643
Estonia 26 29 31 33 35 38 40 41
Finland 271 287 303 323 350 382 413 445
France 2,841 3,066 3,270 3,488 3,763 4,094 4,435 4,820
Germany 3,850 4,091 4,328 4,490 4,640 4,855 5,097 5,334
Greece 234 241 246 256 275 295 306 316
Hungary 137 148 165 180 194 207 217 231
Ireland 250 282 306 333 363 393 420 455
Italy 2,132 2,273 2,409 2,556 2,733 2,939 3,144 3,385
Latvia 31 35 39 42 44 47 50 52
Lithuania 47 54 57 58 59 63 67 71
Luxembourg 65 74 84 95 108 123 138 154
Netherlands 876 938 987 1,028 1,083 1,153 1,230 1,317
Norway 507 555 601 654 715 785 861 936
Poland 542 622 698 769 826 881 919 947
Portugal 228 245 266 281 296 309 319 330
Romania 198 222 243 261 278 297 317 338
Slovak Republic 99 114 128 144 156 164 169 173
Slovenia 49 53 58 62 65 70 74 78
Spain 1,376 1,510 1,652 1,793 1,936 2,061 2,141 2,264
Sweden 570 630 697 765 847 937 1,033 1,131
Switzerland 700 776 859 950 1,055 1,172 1,300 1,430
United Kingdom 2,984 3,188 3,366 3,611 3,948 4,354 4,780 5,215

World 78,242 90,573 104,038 119,466 136,834 155,959 175,894 196,762
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Table E.7: Population projections (million)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 8.64 8.92 8.98 9.04 9.07 9.06 9.01 8.93
Belgium 11.27 11.54 11.70 11.83 11.93 12.01 12.06 12.09
Bulgaria 7.18 6.92 6.66 6.38 6.10 5.84 5.59 5.36
Croatia 4.20 4.04 3.93 3.82 3.70 3.56 3.43 3.30
Czech Republic 11 11 11 11 11 11 11 11
Denmark 5.68 5.83 5.94 6.03 6.10 6.17 6.21 6.25
Estonia 1.32 1.33 1.30 1.27 1.24 1.21 1.18 1.15
Finland 5.48 5.53 5.56 5.55 5.52 5.50 5.48 5.45
France 66.55 67.20 68.01 68.54 68.87 69.09 69.18 69.09
Germany 81.69 83.15 82.55 82.22 81.72 80.93 79.80 78.53
Greece 10.82 10.66 10.38 10.15 9.93 9.71 9.48 9.20
Hungary 9.84 9.74 9.58 9.40 9.18 8.94 8.73 8.52
Ireland 4.70 4.98 5.14 5.27 5.38 5.50 5.60 5.68
Italy 60.73 60.18 59.51 58.59 57.64 56.62 55.29 53.59
Latvia 1.98 1.89 1.81 1.73 1.66 1.60 1.55 1.50
Lithuania 2.90 2.76 2.64 2.54 2.44 2.35 2.26 2.18
Luxembourg 0.57 0.63 0.66 0.69 0.72 0.74 0.76 0.78
Netherlands 16.94 17.38 17.55 17.65 17.67 17.61 17.48 17.29
Norway 5.19 5.39 5.62 5.83 6.03 6.21 6.37 6.52
Poland 37.99 37.91 37.57 36.95 36.09 35.09 34.12 33.19
Portugal 10.36 10.25 10.11 9.95 9.77 9.57 9.34 9.08
Romania 19.82 19.25 18.82 18.35 17.84 17.31 16.82 16.30
Slovak Republic 5.42 5.46 5.44 5.39 5.30 5.19 5.07 4.96
Slovenia 2.06 2.09 2.08 2.06 2.03 2.00 1.97 1.93
Spain 46.44 47.13 46.87 46.46 45.93 45.30 44.51 43.49
Sweden 9.80 10.34 10.61 10.83 11.01 11.19 11.38 11.55
Switzerland 8.28 8.63 8.90 9.13 9.32 9.47 9.59 9.68
United Kingdom 65.12 67.16 68.44 69.54 70.48 71.36 72.13 72.74

World 7,339 7,754 8,140 8,501 8,836 9,145 9,426 9,676
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Appendix F. Specific SCAP

Table F.8: 2020 weighted average of specific SCAP (e/ton) by impact category and air pollutant (1)

Average AT BE BG CH CZ DE DK EE EL

Human health
NH3 16,543 19,650 36,698 9,475 14,214 28,161 21,930 11,964 8,563 7,149
NMVOC 1,039 1,702 2,633 -87 1,301 980 1,394 957 273 259
NOx 8,003 11,803 9,576 7,235 20,071 9,885 11,574 5,131 1,903 2,553
PPM10 1,019 789 2,441 634 549 939 1,493 591 241 500
PPM2.5 23,105 24,759 33,185 15,381 26,800 27,356 36,745 11,805 7,360 11,544
SO2 9,844 11,300 13,504 7,551 16,003 11,381 13,067 6,214 5,397 7,207

Loss of biodiversity
NH3 5,790 6,483 3,342 1,382 14,710 8,897 10,510 2,297 5,585 1,118
NMVOC -129 -80 -60 -14 -177 -146 -356 -82 -50 -17
NOx 1,570 1,276 1,100 229 2,567 2,413 2,435 1,426 941 325
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 583 402 480 32 424 731 944 630 349 69

Regional crops
NH3 -281 -97 -133 -125 -207 -211 -106 -149 -11 -318
NMVOC 319 119 432 35 254 228 470 334 51 51
NOx 356 324 1 214 784 390 629 212 55 149
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -112 -73 -111 4 -214 -100 -195 -127 -26 -5

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 116 141 78 82 120 203 156 121 52 88
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 435 355 461 178 387 850 733 425 165 142
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Table F.9: 2020 weighted average of specific SCAP (e/ton) by impact category and air pollutant (2)

ES HU FI FR HR HU IE IT LT LU

Human health
NH3 6,024 22,941 5,302 14,423 19,968 22,941 3,028 16,842 7,296 29,975
NMVOC 546 810 294 1,178 992 810 859 857 547 2,554
NOx 3,034 11,998 1,905 10,928 9,590 11,998 4,149 8,406 5,868 11,334
PPM10 489 1,119 74 1,040 819 1,119 384 1,073 366 1,355
PPM2.5 11,273 27,537 4,921 27,382 23,825 27,537 9,386 22,115 10,308 32,757
SO2 7,391 10,882 3,742 10,548 11,005 10,882 7,651 10,455 6,809 14,702

Loss of biodiversity
NH3 2,705 5,335 3,090 5,224 7,844 5,335 635 9,755 3,905 11,331
NMVOC -43 -82 -55 -95 -100 -82 -34 -130 -49 -136
NOx 851 1,822 1,266 1,570 2,167 1,822 668 1,894 940 2,541
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 197 475 641 950 562 475 251 265 241 996

Regional crops
NH3 -451 -280 -4 -529 -336 -280 -279 -447 -19 -285
NMVOC 139 144 50 376 234 144 206 327 59 564
NOx 438 659 59 389 1,121 659 438 590 171 891
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -80 -34 -31 -162 -108 -34 -112 -62 -75 -261

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 31 298 36 126 120 298 53 93 124 175
PPM10 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0
SO2 69 817 144 420 387 817 118 188 324 755
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Table F.10: 2020 weighted average of specific SCAP (e/ton) by impact category and air pollutant (3)

Average LV NL NO PL PT RO SE SI SK UK

Human health
NH3 6,024 8,096 28,196 4,273 16,194 4,958 11,039 10,224 22,073 25,327 21,596
NMVOC 546 497 2,038 461 758 521 489 482 1,399 653 1,093
NOx 3,034 3,995 8,678 3,585 6,510 916 8,508 3,693 9,935 10,156 4,807
PPM10 489 348 2,388 191 1,012 328 917 170 843 928 1,136
PPM2.5 11,273 8,838 36,246 6,012 24,798 7,080 18,976 6,421 23,387 23,614 20,252
SO2 7,391 5,891 12,927 2,093 10,981 4,831 9,108 4,833 12,333 10,576 8,858

Loss of biodiversity
NH3 2,705 5,220 5,929 1,399 6,486 1,737 3,963 2,403 13,424 9,157 1,042
NMVOC -43 -59 -107 -74 -90 -17 -36 -68 -150 -99 -53
NOx 851 994 1,760 825 1,781 270 675 1,638 2,965 1,656 1,020
PPM10 0 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0 0
SO2 197 249 1,223 463 -54 86 101 967 748 524 377

Regional crops
NH3 -451 -14 -279 -36 -160 -361 -192 -33 -321 -216 -406
NMVOC 139 67 645 146 192 91 75 111 262 156 521
NOx 438 60 -263 360 236 102 326 191 922 644 -30
PPM10 0 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0 0
SO2 -80 -39 -200 -47 -13 -42 -9 -74 -189 -47 -102

Materials
NH3 0 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0 0
NOx 31 78 137 120 220 19 222 53 215 273 70
PPM10 0 0 0 0 0 0 0 0 0 0 0
PPM2.5 0 0 0 0 0 0 0 0 0 0 0
SO2 69 216 827 387 880 49 644 186 576 813 320
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Appendix G. Visualizations of sensitivity analysis

Figure G.1: Generation (upper panel) and emission (lower panel) mix for SCAP sensitivity

The percentage values reflect a change in specific SCAP and the respective air pollution taxes from 2025 onwards. The specific SCC
and respective carbon tax remains unchanged.
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Figure G.2: Generation (upper panel) and emission (lower panel) mix for SCC sensitivity

The percentage values reflect a change in specific SCC and the respective carbon tax from 2025 onwards. The specific SCAP and
respective air pollution taxes remain unchanged.
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Figure G.3: Generation (upper panel) and emission (lower panel) mix for air pollution emission factor sensitivity
and the technology boost

Low, mid, and high in brackets present the respective air pollution emission factor scenarios. The mid scenario is used for all prior
specifications. The low scenario starts at very same 2015 emission factors as the mid scenario but assumed technological progress is
higher, so that emission factor decrease more. The high scenario starts at higher 2015 emission factors (less optimistic assumptions

about current fleet) and technological progress is less optimistic as well (compared to the mid scenario). The technology boost indeed
uses joint CO2 and air pollution taxation with emission factors from the mid scenario.
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Appendix H. Technology boost

The Table H.11 shows the total theoretical potential by wind resource class as well as corre-
sponding average (potential-weighted) full-load hours (FLH) for wind onshore (see Table H.12 for
country-specific potentials). Wind offshore is less relevant in the technology mix. We thus refrain
from showing it here (see Tables H.13 and H.14 for details). Observe that total wind onshore
potential in the high resource class is 585 GW. The potential above 3,000 FLH is just 275 GW.
The technology boost increases this potential to 946 GW, whereas FLH increase by 23% in the
high class and by 49% in the mid class.

Table H.11: Potential and full-load hours of wind onshore by resource class (low, mid, high) without and with
technology boost

Resource class low mid high

Total potential (GW) 585 1,756 585
Potential (GW) ≥ 3000 FLH without boost 0 0 275
Potential (GW) ≥ 3000 FLH with boost 50 487 409
Average FLH without boost 1,089 1,725 2,898
Average FLH with boost 1,776 2,578 3,558

Difference in FLH 63.08% 49.49% 22.78%
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Table H.12: Potential (GW) of wind technologies by country and resource class (low, mid, high)

Wind offshore Wind onshore
low mid high low mid high

Austria 10 30 10
Belgium 1 2 1 3 9 3
Bulgaria 12 36 12 14 43 14
Croatia 19 57 19 7 22 7
Czech Republic 10 29 10
Denmark 36 108 36 5 16 5
Estonia 13 38 13 5 16 5
Finland 27 82 27 40 119 40
France 119 358 119 71 214 71
Germany 19 58 19 43 128 43
Greece 167 502 167 17 50 17
Hungary 12 36 12
Ireland 148 444 148 9 28 9
Italy 178 535 178 37 111 37
Latvia 10 30 10 8 24 8
Lithuania 2 7 2 8 25 8
Luxembourg 0 1 0
Netherlands 22 67 22 4 12 4
Norway 321 963 321 35 106 35
Poland 10 31 10 40 119 40
Portugal 110 329 110 12 36 12
Romania 10 31 10 31 92 31
Slovak Republic 6 18 6
Slovenia 0 0 0 2 7 2
Spain 195 585 195 67 201 67
Sweden 53 159 53 53 158 53
Switzerland 5 14 5
United Kingdom 252 756 252 31 92 31

Sum 1,724 5,178 1,724 585 1,756 585
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Table H.13: Full-load hours of wind technologies by resource class (low, mid, high) without technology boost

Wind offshore Wind onshore
low mid high low mid high

Austria 558 1,675 2,814
Belgium 2,758 2,763 3,255 2,197 2,292 2,930
Bulgaria 594 1,203 1,523 479 1,337 2,555
Croatia 462 1,107 915 284 619 2,288
Czech Republic 1,894 2,326 2,812
Denmark 2,800 3,312 4,106 1,376 2,764 2,992
Estonia 2,248 2,160 3,420 1,299 1,836 2,903
Finland 1,151 2,033 2,683 742 940 3,462
France 1,671 2,735 3,414 1,462 2,003 2,889
Germany 2,617 3,190 3,267 1,757 2,105 2,403
Greece 610 1,440 2,133 259 718 2,201
Hungary 637 848 2,686
Ireland 2,061 3,557 4,046 2,131 2,682 3,324
Italy 664 979 956 255 970 1,849
Latvia 1,809 2,833 3,375 648 2,265 2,704
Lithuania 1,885 2,708 1,881 485 1,580 2,317
Luxembourg 1,862 2,087 2,254
Netherlands 2,959 3,116 3,728 1,929 2,135 2,513
Norway 1,114 2,218 2,070 664 2,317 3,303
Poland 2,196 2,751 3,149 1,883 2,032 3,406
Portugal 1,368 1,632 2,211 620 1,619 2,821
Romania 1,112 1,336 1,667 512 1,010 2,518
Slovak Republic 679 1,620 2,834
Slovenia 685 685 457 331 894 1,722
Spain 752 1,084 1,574 1,602 2,328 3,295
Sweden 709 1,391 3,003 325 947 3,258
Switzerland 1,499 1,793 2,501
United Kingdom 2,912 3,150 4,148 1,901 2,700 3,019

Average 1,450 2,135 2,601 1,089 1,725 2,898
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Table H.14: Full-load hours of wind technologies by resource class (low, mid, high) with technology boost

Wind offshore Wind onshore
low mid high low mid high

Austria 831 2,719 3,753
Belgium 2,964 2,970 3,489 3,269 3,247 3,616
Bulgaria 881 1,333 1,685 732 2,120 3,242
Croatia 893 923 996 472 966 2,975
Czech Republic 2,722 3,178 3,834
Denmark 3,037 3,567 4,353 1,876 4,083 4,443
Estonia 2,459 2,978 3,654 1,888 2,573 4,328
Finland 1,190 1,695 2,901 1,419 1,776 3,886
France 1,833 2,964 3,638 3,053 3,003 3,708
Germany 2,836 2,573 3,661 2,893 2,977 3,003
Greece 773 1,270 2,318 456 1,060 2,896
Hungary 965 1,271 3,575
Ireland 2,217 3,980 4,214 2,797 3,737 3,895
Italy 735 1,058 1,886 394 1,498 2,401
Latvia 1,970 3,065 3,607 1,012 3,550 3,664
Lithuania 2,044 2,891 3,205 766 2,644 3,216
Luxembourg 2,523 2,660 2,903
Netherlands 3,175 3,338 3,956 2,843 3,251 3,331
Norway 1,244 1,843 2,167 940 3,271 3,835
Poland 2,110 2,973 3,390 2,873 3,263 4,314
Portugal 1,237 1,970 2,413 968 2,847 3,646
Romania 1,240 1,583 1,844 832 1,752 2,881
Slovak Republic 1,010 2,209 3,652
Slovenia 761 761 507 515 1,509 2,417
Spain 832 1,511 2,499 2,578 3,031 3,928
Sweden 796 1,796 3,200 550 1,770 3,704
Switzerland 2,141 2,520 2,838
United Kingdom 3,127 3,375 4,324 2,387 3,642 3,615

Average 1,577 2,230 2,937 1,776 2,578 3,558
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