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social discount rates in intertemporal optimization frameworks, resulting in an optimal 
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1. Introduction

Climate change calls for prompt action by policymakers and firms. Policymakers need to
price carbon emissions and firms need to steer investments accordingly. Policymakers apply social
discount rates to calculate the social cost of carbon (SCC). Taxing carbon emissions at their
marginal damages (i.e., specific SCC) is seen as the efficient way to limit the magnitude of climate
change. However, firms’ investment decisions are subject to their private discount rates, which are
in general higher than social ones. Consequently, firms discount future tax payments to a larger
extent than a social planner intends. This leads to an incomplete internalization of damages,
which diminishes investments into cleaner technologies. This is particularly important considering
that investment decisions take place at least a decade before infrastructure such as power plants
become operative. We account for this misaligned behavior resulting from diverging private and
social discount rates and quantify results for the European power market until 2050.

The literature agrees that social and private discount rates differ (von Below, 2012, Belfiori,
2017, 2018, Barrage, 2018). Climate change impacts should be discounted with the lowest possible
discount rate due to their long-lasting and intergenerational effects (Weitzman, 1998). In turn,
firm discount rates follow from capital market interest rates (Steinbach, 2015). However, given that
CO2 emissions on the one hand, and investments, variable as well as fixed cost of firms on the other
hand have diverging discount rates, we encounter a problem of setting optimal intertemporal tax
rates on CO2. We show that intertemporal models aiming to reflect firm behavior need to tax CO2
at rates above their marginal damages for full internalization, because their social discount rates
lie below those of firms. This finding corresponds to those of Belfiori (2017) and Barrage (2018).
Belfiori (2017) shows that the optimal carbon tax does not equal the SCC in general and that
social discount rates are below those of private individuals. Barrage (2018) highlights that social
planners and households discount the future differently. Additional intertemporal effects distort
optimal decisions in general equilibrium, requiring massive taxation decisions to restore efficiency.
However, only few papers address the role of discount rates in energy system or similar models.
Steinbach (2015) argues that social discount rates differ from private ones and gives guidance on
how to determine those rates. García-Gusano et al. (2016), Mier and Azarova (2021a), and Mier
and Azarova (2021b) show that diverging discount rates considerably impact results.1

We internalize SCC via taxes in an intertemporal optimization framework. We hereby account
for the fact that firms evaluate their cash flows (investment, fixed, and variable cost as well as taxes)
with higher discount rates than a social planner would evaluate social cost. We implement this
strategy in EUREGEN, a multi-region partial equilibrium model of the European power market
that optimizes investments, dispatch, and decommissioning of multiple generation, storage, and
transmission technologies from 2020 to 2050.

Our general theoretical contribution demonstrates how diverging social and private discount
rates can be implemented simultaneously in an intertemporal optimizing framework (such as inte-

1This paper is a substantial expansion of Mier et al. (2021) but focuses on the taxation of carbon emissions only.
The taxation of air pollution is analyzed in another succeeding work.
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grated assessment, energy system, and power market models). This makes it possible to evaluate
firms’ cash flows differently from social cost occurring from carbon emissions.2 Social discount
rates being lower than private ones, combined with the existence of emissions, requires taxing CO2
emissions at rates above their marginal damages. Applying a pure rate of time preference (PRTP)
of 1%, consumption growth of 1.94%, and an elasticity of marginal utility of consumption of 1.45,
yields a social discount rate of 3.81% when applying the Ramsey formula. Further assuming SCC
of 95 e/ton in 2050 and a private discount rate of 7%, demands an optimal CO2 tax of 257 e/ton
because firms discount tax-inclusive cash flows (of their variable cost) differently from a social
planner.

Our numerical contribution delivers insights into how the technology and emission mix of
the European power system varies under different taxation choices. A business-as-usual policy—
which neglects the fact that private discount rates are above social ones—is not sufficient to spur
investments into carbon-capture-and-storage as well as nuclear so that CO2 emissions are at 0.83 Gt
in 2050. The optimal policy in turn—that accounts for diverging private and social discount rates
and sets carbon tax rates socially optimal—reduces emissions to –0.15 Gt and reduces accumulated
damages from emitting CO2 by 1,386 billion e until 2050. Electricity prices are higher for such
an optimal policy compared to a business-as-usual policy, but in fact carbon tax shares are lower
(and even negative in later periods due to negative overall emissions).

Section 2 introduces the modeling strategy within an intertemporal optimization framework
and optimal taxation following from diverging private and social discount rates. Section 3 presents
the calibration by focusing on social cost and the role of discounting. Sections 4 presents results
including sensitivities. Section 5 concludes.

2. Modeling strategy

We seek to develop a modeling framework where a social planner sets tax rates for carbon
emissions so that competitive firms consider social damages over time similarly as a social plan-
ner would do. In particular, we consider the problem of electricity generation and related CO2
emissions. We start with our notation (Subsection 2.1) and the demand constraints (Subsection
2.2). A detailed set of generation, storage, and transmission constraints is presented in Appendix
A. We then derive private and social cost, present the objective, and show how to set tax rates
intertemporally optimally given diverging private and social discount rates (Subsection 2.3).

2.1. Notation
Generation. Denote generation technologies by i and regions by r. h indicates the respective hour,
t is the current year (period), and v is the year of installation (vintage). We use subscripts i, r

2Our framework also allows to use diverging social discount rates to evaluate different kinds of social cost.
Consider the example of additional air pollution damages. A lower social discount rate for damages from CO2
emissions can be justified by the intergenerational effects of climate change, thereby assuming that air pollution
effects occur only in the present generation.
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and parentheses (h, v, t) to denote parameters and variables. Y is generation (in GWh), Q are
generation capacities, and IQ investments into generation capacity (both in GW). Thus, Yir (h, v, t)
is generation of technology i in region r in hour h and period t from capacity Qir (v, t) that is
originally installed as IQir (v) in vintage v.3

Storage. Denote storage technologies by j. GC is storage charge, GD is storage discharge (both
in GWh), GQ is the storage (charge and discharge) capacity (e.g., pumps and turbines), GIQ
investments into storage capacity (both in GW), ghours (in hours) describes the relation of storage
capacity to the maximum feasible amount of stored energy (e.g., reservoir size), and GB is the
storage balance (in GWh).4

Transmission. Denote transmission technologies by k. rr is a subset of regions. In particular,
µk,r−rr describes the mapping of regions that are eligible for transmission exchange (for each tech-
nology). E is the bilateral trade flow (in GWh), TQ transmission capacity, and TIQ investments
into transmission capacity (both in GW).

2.2. Demand constraints
Supply-equals-demand. Suppose that η ∈ (0, 1) are process efficiencies. xr (h, t) is demand and
ηlossr the distribution grid efficiency. Moreover, Lr (h, t) is lost load. ηimk,rr−r is the import efficiency
accounting for transmission losses that occur on the importing side (r is the importing region)
and ηexk,r−rr is the export efficiency (r is the exporting region). Both are always specific to the
respective region pair. Moreover, ηgd is the discharge efficiency reflecting the loss when releasing
stored energy. We can now define the demand-equals-supply constraint as

xr (h, t)

ηlossr

=
Lr (h, t)

ηlossr

+
∑
i,v

Yir (h, v, t)

+
∑
j,v≤t

(
GDjr (h, v, t) η

gd
jr (v)−GCjr (h, v, t)

)
+

∑
µk,rr−r

Ek,rr−r (h, t) η
im
k,rr−r −

∑
µk,r−rr

Ek,r−rr (h, t)

ηexk,r−rr

∀ (h, r, t) . (1)

Note that demand on the left side of the equality sign in the first line is a parameter (indicated
by not using capital letters). The right side satisfies demand but the satisfaction must be higher
by the region-specific distribution losses. The first line on the right side contains lost load and
aggregate generation. Lost load (first term) is subject to distribution losses as well. Aggregate
generation in turn is not (second term). The second line contains the difference between storage

3Endogenous decommissioning allows for IQ < Q.
4We simplify the complexity of storage by assuming that charge and discharge capacity are the same. We also

assume a fixed relation between (charge and discharge) capacity and the storage size.
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discharge and charge. Discharge is subject to discharge losses because less than one unit arrives
at the market. Charge in turn is not because GC is the amount taken from the market. The third
line contains the difference between imports (first term) and exports (second term). Imports and
exports are subject to transmission losses that depend on the underlying transmission technology
and the region pair.

Resource adequacy. Besides the classic demand-equals-supply constraint there is a resource ad-
equacy constraint that ensures that there is sufficient back-up capacity in each region to meet
demand. This constraint can be interpreted as the outcome of a reserve market. We apply ca-
pacity credits cred that indicate the amount of secured capacity. As a consequence, the resource
adequacy constraint is only binding in the peak period of each region hpeak

r , i.e.,

xr (h, t)

ηlossr

=
∑
i,v

credi ·Qir (v, t)

+
∑
j,v≤t

credj ·GQjr (h, v, t) η
gd
jr (v)

+
∑

µk,rr−r,v

credk · TQk,v,rr−r (h, t) η
im
k,rr−r ∀

(
hpeak
r , t

)
. (2)

The first line contains secured generation capacity, the second line depicts secured storage
capacity (for discharge), and the third line presents secured transmission capacity (for imports).
The assumptions about secured discharge and transmission are of course difficult to make because
whether or not the storage is empty or full, respectively, is endogenous to the optimization. Also
scarcity in other regions plays a role. As a consequence, the secured storage and transmission
capacity is at 10%, while the secured generation capacity is around 90% for non-intermittent
renewables. Solar PV in fact has 0% secured capacity, whereas wind has around 5%. Note that
this constraint does not prevent per se the occurrence of lost load, because storages can be empty,
imports not possible or too costly, or wind power not available at all. However, the constraint
favors secured capacity in the optimization game and generally reduces the occurrence of lost load.

2.3. Cost and optimization problem
Private cost. Capacity investments are costly, cIQir (v) , cGIQ

jr (v) , cTIQ
k,r−rr (v) > 0 (in e/GW), holding

capacity is costly, cQir (v, t) , c
GQ
jr (v, t) , cTQ

k,r−rr (v, t) > 0 (in e/GW*a), and generation is costly as
well, cYir (v, t) > 0 (in e/GWh). We assume no further variable cost for storage operations and
transfers.5 Moreover, lost load costs cLr (t) > 0 (in e/GWh). Private cost per region and time
period Cr (t) (in e) are then given by

5Remember that losses apply on the importing and exporting side. Moreover, charge, discharge, and hourly
losses reflect variable cost of storage operations.
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Cr (t) = cLr (t)
∑
h

Lr (h, t) +

∑
i

[∑
v=t

cIQir (v) IQir (v) Γi (v, t) +
∑
v≤t

cQir (v, t)Qir (v, t) +
∑
v≤t

cYir (v, t)
∑
h

Yir (h, v, t)

]

+
∑
j

[∑
v=t

cGIQ
jr (v)GIQjr (v) Γj (v, t) +

∑
v≤t

cGQ
jr (v, t)GQjr (v, t)

]

+
∑
k

∑
rr 6=r

[∑
v=t

cTIQ
k,r−rr (v)TIQk,r−rr (v) Γk (v, t) +

∑
v≤t

cQk,r−rr (v, t)TQk,r−rr (v, t)

]
, (3)

where Γ (v, t) is the fraction of investment cost that should be considered within the planning
horizon (called endeffect). In particular, Γ (v, t) = 1 when the depreciation time of an investment
is completely within the planning horizon (from t until tend), and Γ (v, t) < 1 when the depreciation
time of an investment spans beyond the planning horizon (depreciates longer than tend). This
endeffect is calculated on the basis of private discount rates and the time outside the planning
horizon. The first line of (3) reflects cost of lost load, the second line generation cost, the third
line storage cost, and the fourth line transmission cost.

Social cost. Denote by scc (t) the specific social cost of carbon (SCC, in e/ton). Carbon emission
factors ξi (v) (in ton/GWh thermal) and power plant efficiencies ηi (v) depend on the vintage, that
is, older vintages have lower efficiencies and higher emission factors leading to higher emissions. In
particular,

∑
v≤t

∑
h

1
ηi(v)

Yir (h, v, t) is total fuel used per technology in period t (in GWh thermal).
Multiplying this total fuel used with the respective emission factors yields CO2 emissions EM (in
ton):

EMr (t) =
∑
i

ξi (v)
∑
v≤t

∑
h

Yir (h, v, t)

ηi (v)
. (4)

Multiplying those emissions with the respective specific social cost yields total social cost
SCr (t) (in e), i.e.,

SCr (t) = scc (t)EMr (t) . (5)

Objective. Intertemporally optimizing models evaluate cash flows according to the social discount
rate (from a social planner perspective) or according to the private discount rate (from a private
firm perspective). Assume that ν is the private discount rate (PDR) and δ (t) = 1/ (1− ν)t−tbase is
the corresponding private discount factor (PDF). Moreover, νsoc is the social discount rate (SDR)
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and δsoc (t) = 1/ (1− νsoc)t−tbase is the corresponding social discount factor (SDF). We assume
νsoc ≤ ν so that δsoc (t) ≥ δ (t) to reflect myopic behavior of firms, long-term looking behavior of
social planners, and higher financing cost of private firms (compared to governmental entities).

We combine private cost from a firm perspective and social cost from a social planner perspec-
tive in a joint objective by using the respective private discount factor for private cost and the
social discount factor for social cost. We obtain

min
IQ,Q,Y

∑
t,r [δ (t)Cr (t) + δsoc (t)SCr (t)] , (6)

where IQ is the vector of generation, storage, and transmission investment decisions, Q is the
vector of capacity decisions for the three types of capacities, and Y contains generation, charge
and discharge, as well as trade decisions. Note that C (t) , SC (t) are measured in current values.
In turn, δ (t)C (t) represents the present value of private costs and δsoc (t)SC (t) , respectively, the
present value of social cost.

Taxation. Another way to achieve the same outcome is to implement a carbon tax τ car (t). The
objective changes to

min
IQ,Q,Y

∑
t,r δ (t) [Cr (t) + τ (t)EMr (t)] . (7)

The two objectives are equivalent when the social planner sets optimal tax rates of

τ (t)∗ = scc (t)
δsco (t)

δ (t)
. (8)

Observe that those tax rates are higher than the respective social cost by δsoc(t)
δ(t)

≥ 1 because
firms discount cash flows more than a social planner discounts carbon emission damages.

3. Implementation and calibration

We start by describing the general setup of the EUREGEN model (Subsection 3.1) and the
used set of technologies (Subsection 3.2). Next, we show how we calculate the social cost of carbon
(Subsection 3.3). Finally, we describe the applied discount rates and resulting optimal carbon tax
rates (Subsection 3.4).

3.1. Setup
We translate the modeling strategy into EUREGEN (Weissbart and Blanford, 2019), which

is a multi-region partial equilibrium model of the European power market with perfect foresight
(i.e., intertemporal optimization) that optimizes overall system cost—i.e., investments, holding
and decommissioning of capacity, and dispatch of multiple generation, storage, and transmission
technologies—intertemporally from 2015 (base year) to 2050 (end year). The period 2020 is the
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first period of endogenous decommissioning and capacity investments. In fact, we work with an
adjusted 2015 calibration that already accounts for investments that happen within the period
2016 to 2020. EUREGEN chooses between different discount and interest rates, investor types or
investment cost specifications, respectively, and spatial resolutions (Mier and Azarova, 2021a,b).
We opt for the normal investor (specification) that carries (places) cost of investments within the
period of investment and uses endeffects when the investment’s depreciation extends beyond the
model horizon (see Equation (3) in Section 2). Moreover, we apply the maximum spatial resolution
of 28 countries (EU27 less the island states of Cyprus and Malta, including Norway, Switzerland,
and United Kingdom) and an hour choice algorithm to reduce the hourly resolution for sake of
numerical feasibility.6 EUREGEN uses the CGE model PACE to calibrate for annual electricity
demand and major fuel prices (see Tables B.1 and B.2 in Appendix B).7 EUREGEN calculates
CO2 emissions from an emission factor and can either implement a carbon price (e.g., Mier et al.,
2020, 2022, Siala et al., 2022) or a quantity target (e.g., Weissbart, 2020, Azarova and Mier, 2021).
We refrain from using carbon prices resulting from the CGE calibration or quantity targets as
imposed for instance by the EU ETS and instead apply optimal carbon taxes that follow from
SCC and the respective differential between social and private discount factors.

3.2. Technologies
We consider steam turbines burning biomass (bioenergy), biomass with carbon-capture and

storage (bio-CCS), coal, coal-CCS, lignite, and natural gas (gas-ST). This portfolio is enriched by
combined-cycle gas turbines burning natural gas without (gas-CCGT) and with carbon-capture
and storage (gas-CCS), open-cycle gas turbines burning natural gas (gas-OCGT), and gas turbines
or engines, respectively, using oil and other non-biomass non-natural gas fuels (oil).8 We further
consider nuclear and geothermal plants. Hydro, wind onshore, wind offshore, and solar PV are in-
termittent technologies with hourly-varying availability factors. We consider two different turbine
heights (80m for current fleet, 100m for future vintages) for wind onshore and offshore. Hydro
expansion is restricted to existing capacity. Wind and solar expansion is restricted to resource
potentials that are differentiated by quality classes (high, mid, and low). We further differentiate
three storage technologies (pump hydro, batteries, and power-to-gas). Similarly to hydro, expan-
sion of pump hydro is restricted to existing capacity. Transmission technologies are represented
by AC lines as well as DC cables.9 Appendix C summarizes efficiencies, emission factors, and

6The hour choice algorithm selects and weights hours that present the extremes of load, wind onshore, wind
offshore, solar, and hydro generation. We obtain 280 hours and finally scale timeseries to match annual demand
and full-load hours of all intermittent technologies.

7For more details of the used GREEN scenario with almost unconstrained transmission expansion from 2035
onwards see Mier et al. (2020, 2022), Siala et al. (2022).

8We refrain from depicting combined-heat-and-power (CHP) plants for four reasons: (1) CHP power plants are
must-run technologies due to heating demand. (2) There is substantial change going on in the heating sector. (3)
Decarbonization discourages burning fossil fuels for heating anymore, making most existing CHP plants obsolete.
(4) Electrification in heating is considered by the CGE calibration.

9DC cables mainly apply to connecting countries that are divided by water.
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investment cost of technologies.

3.3. Social cost of carbon
We calculate specific SCC by using a calibrated version of the DICE model.10. The CGE model

used to calibrate the EUREGEN model projects GDP development until 2050 and underlying
population projections are taken from the World Bank (see Appendix D). In the DICE model,
2015 world GDP is 105.5 trillion 2010-US$. We translate this value to 86.1 trillion 2015–US$.
Additionally, we scale total factor productivity by 0.8254 to match 2020 global CO2 emission of
39.6 Gt. We further adjust population and total factor productivity from 2020 to 2050 to precisely
match World Bank (population) and CGE (GDP) projections (see DICE calibration in Table 1).
Finally, we change the DICE pure rate of time preference (PRTP) from 1.5% to 1% but keep the
default elasticity of marginal utility of consumption of 1.45.11 Our calibrated DICE model expands
GDP from 10,661 e/capita in 2015 to 20,335 e/capita in 2050. Average consumption growth is
at 1.94%. This leads to a social discount rate (SDR) of 3.81%.12

Table 1: DICE calibration and output

2020 2030 2040 2050

DICE calibration Gross world GDP (trillion 2015-$) 99.7 131.5 171.7 216.6
World population (billion) 7.75 8.50 9.14 9.68

DICE output SCC ($/ton) 46.86 61.30 80.44 104.88
CO2 emissions (Gt) 39.60 37.01 37.29 36.45
Atmosphere temperature increase (°C) 1.02 1.36 1.71 2.04

Conversion in e SCC (e/ton) 42.60 55.73 73.13 95.35
We apply an exchange rate of 1.1 to convert US-$ into e, i.e., 1 e is worth 1.1 US-$ in 2015.

Table 1 also presents selected DICE output. We obtain specific SCC of 47 $/ton in 2020 and
105 $/ton in 2050.13 Observe that (global) carbon emissions remain almost constant, leading to
a temperature increase of above 1.5° (2.0°) Celsius already in 2040 (2050). We are aware that

10We use DICE-2016R-091216a. GAMS code is available at http://www.econ.yale.edu/~nordhaus/homepage/
homepage/DICE2016R-091916ap.gms

11We decide to lower the PRTP because recent findings of Drupp et al. (2018) suggest lower PRTP and resulting
2050 SCC from the DICE model would be around 62 $/ton otherwise, which is too low given recent findings and
discussions of carbon damages.

12The Ramsey formula states that the SDR is equal to PRTP plus (per capita) consumption growth times the
elasticity of marginal utility of consumption, i.e., 0.01 + 0.0194× 1.45 = 0.0381.

13Note that DICE maximizes the net present value of utility (from consumption) and thus the specific SCC is
calculated according to the fraction of the marginal of the emission equation (in utility units per ton) and the
consumption equation (in utility units per $). Utility units are in present values, so that the division of present
value utility (per ton) by present value utility (per $) leaves specific SCC in current $/ton. We can thus use the so
calculated specific SCC directly again in another discounting framework that uses current values to minimize the
net present value of cost.
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those predictions do not correspond with targets from the Paris Agreement (2015) nor with recent
ambitions of the EU (Green Deal) but are in line with recent findings of Dietz et al. (2021), who also
find that the optimal path leads to more than 2° Celsius warming. SCC values are even lower in
Dietz et al. (2021) compared to our values (applying our default PRTP of 1%). Recently published,
the IPCC Sixth Assessment Report also reveals that an extrapolation of current decarbonization
policies and pledges would still exceed the 1.5° Celsius goal of the Paris Agreement (IPCC Working
Group II, 2022).

3.4. Discounting and taxation
The standard discounting in EUREGEN applies a private discount rate (PDR) of 7% to evaluate

all cash flows from investments, as well as fixed and variable cost including taxes (private cost).
Intertemporal models neglecting the difference between social and private discount rates would
apply 7% to evaluate taxes equal to the damages from carbon emissions as well. However, SCC
are calculated on the basis of a PRTP of 1% and the resulting SDR is 3.81% (see Subsection 3.3).

Table 2: Social discount factors and resulting carbon tax

2020 2030 2040 2050

Social discount factor

Low (BAU) 0.82 0.42 0.21 0.11
Medium 0.85 0.48 0.27 0.16
High 0.87 0.54 0.34 0.21
Optimal 0.89 0.62 0.42 0.29

Resulting carbon tax (in e/ton)

Low (BAU) 42.60 55.73 73.13 95.35
Medium 43.98 64.29 94.26 137.34
High 45.21 72.67 117.15 187.69
Optimal 46.49 82.24 145.93 257.32

Social discount factors (SDF) represent five year averages, where 2020 covers years
2016 to 2020, ..., and 2050 years 2046 to 2050. Low carbon tax presents the
business-as-usual (BAU) where there is no differentiation between PDR and SDR.
Optimal carbon tax presents the social optimum that sets carbon taxes according
to Equation 8. Medium and high carbon tax does not apply the SDR from SCC
calculation (3.81%) to determine carbon taxes but rather use 4.81% or 5.81%,
respectively.

Given this setup, we analyze four taxation choices and how they effect the technology mix,
resulting carbon emissions, and damages. The first taxation choice neglects the difference between
PDR and SDR and is the standard way of implementing carbon taxes (or specific SCC) in energy
system and power market models. We thus call it business-as-usual (BAU) in the remainder. The
BAU leads to a low carbon tax equal to the specific SCC—43 e/ton in 2020 that rises to 95
e/ton in 2050. The alternative choice is to set the optimal carbon tax by using a SDR of 3.81%
to calculate a social discount factor (SDF). The resulting carbon tax follows from the specific
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SCC and the differential between SDF (fourth line in Table 2) and PDF (first line). The carbon
tax rises to 257 e/ton in 2050. We also analyze two in-between solutions of a medium and a
high carbon tax that use 2% or 1% higher SDR.14 The 2050 carbon taxes are then 137 e/ton
(medium carbon tax) or 188 e/ton (high carbon tax), respectively. Those diverging tax choices
have particular impact on the technology mix because the absolute magnitude of carbon taxes
changes the relative competitiveness of technologies (see technology-specific carbon taxes resulting
from different SDR in Appendix E).

4. Results

We start by analyzing the impact of the four taxation choices (low (BAU), medium, high, and
optimal; see Table 2) on the generation mix and resulting carbon emissions (Subsection 4.1). Next,
we compare accumulated CO2 emissions and social cost across taxation choices (Subsection 4.2).
Finally, we test sensitives of results with respect to the specific SCC level (Subsection 4.3).

4.1. Generation mix and carbon emissions
Figure 1 visualizes the generation mix and resulting carbon emissions from the different taxation

choices. The stacked bars depict annual generation by technology (in TWh, left axis). Gray
diamonds depict annual CO2 emissions (in Gt, right axis). 2015 serves as calibration year assuming
a joint CO2 tax of 7.75 e/ton (2015 EU ETS average) and is the same across all specifications. The
2015 technology mix is dominated by nuclear (836 TWh, 25.8%), conventional gas (gas-CCGT,
gas-ST, gas-OCGT; 719 TWh, 22.2%), and coal (539 TWh, 16.6%). Hydro (418 TWh, 12.9%),
wind (306 TWh, 9.4%), lignite (245 TWh, 7.6%), and solar (109 TWh, 3.4%) are the remaining
relevant technologies.15 Generation from oil, bioenergy, and geothermal plants is negligible. CCS
is not employed yet. Corresponding CO2 emissions are at 1.06 Gt.16

Our four analyzed taxation choices are grouped for periods 2020, 2030, 2040, and 2050.17 In
2020, there is almost no difference across taxation choices because the discounting differential (see
Table 2) in 2020 is almost negligible. However, CO2 emissions are lowest at 0.48 Gt for the optimal
carbon tax and highest for the low carbon tax from the business-as-usual (BAU). In particular,
wind, bioenergy, and conventional gas production is higher for optimal carbon taxes, whereas BAU
relies slightly more on lignite and coal, hinting that the small tax differences (46.5 vs. 42.6 e/ton)
already start changing the relative competitiveness of technologies. Our two variations (medium
and high carbon tax) perform as expected between low and optimal taxes.

14We keep a PRTP of 1% for our DICE calculation and only change the SDR in our optimization framework.
15Absolute generation from hydro is the same across all specifications for all periods so that we refrain from

mentioning hydro generation in the following.
16True 2015 CO2 emissions from electricity generation were 1.09 Gt, so that our calibration reflects real-world

generation quite well.
17EUREGEN optimizes in five-year steps. For parsimony, we refrain from presenting 2025, 2035, and 2045

outcomes.
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Figure 1: Generation mix and carbon emissions for different taxation choices

Differences between taxation choices grow in 2030 and 2040. All specifications abandon the
three dirtiest technologies (oil, lignite, and coal). Instead, conventional gas takes over considerable
market shares in 2030. Wind and solar power are successively deployed but their generation shares
grow only slightly from 32.5–33.1% in 2020 to 35.3%–41.2% in 2040. Interestingly, 2040 wind and
solar power generation is even higher for high carbon tax than for optimal carbon tax. Instead,
firms start employing gas-CCS in 2030 (257 TWh, generation share of 5.3%), expand gas-CCS
until 2040 (1,014 TWh, 17.1%), and use also bio-CCS in 2040 (258 TWh, share of 4.4%) under
optimal carbon tax. Also medium and high carbon tax start employing gas-CCS (medium in 2040,
and high in 2035) as well as bio-CCS (both in 2050). Final bio-CCS deployment under optimal
carbon tax and under high carbon tax are the same but gas-CCS, nuclear, and wind usage are
slightly higher for optimal carbon tax so that final CO2 emissions are at –0.15 Gt (while high
carbon tax delivers –0.07 Gt).

Medium carbon tax deploys bio-CCS but the magnitudes are negligible (2 TWh, 0.04%). How-
ever, the wind power share is highest among all specifications (43.2%). BAU in turn neither
uses gas-CCS nor bio-CCS and thus has by far highest emissions (0.83 Gt). Observe, however,
that electricity generation doubles in the period 2015 to 2050 (due to rising demand). Hence,
the final power system is considerably cleaner than the initial one. Moreover, solar generation is
indeed highest in BAU because solar generation patterns perfectly match with conventional gas
cost structures. The low carbon tax also yields lowest 2050 nuclear generation (282 TWh, 4.2%).
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4.2. Emissions and cost assessment
The taxation choice has considerable impact on accumulated carbon emissions and resulting

social cost. Table 3 presents accumulated CO2 emissions (in Gt), accumulated SCC (in current
billion e, value in parentheses present the net present value of or discounted SCC, respectively) as
well as the amount of carbon taxes (in billion e). Table 3 further shows the European weighted
electricity price (in e/MWh) including carbon tax shares in 2020 (first value) and 2050 (second
value) with the maximum value in parentheses—e.g., 63.0–73.0 (73.0, 2050) reflects a 2020 price
of 63 e/MWh and a 2050 of 73 e/MWh with a maximum price of 73 e/MWh in 2050.

Table 3: Accumulated CO2 emissions, SCC, and tax yields with price ranges from period 2020 to
2050 for different taxation choices

Taxation CO2 SCC (*) Tax yield Electricity price (e/MWh)
choice (Gt) (billion e) (billion e) Total Tax share

Low (BAU) 28.4 1,918 (555) 1,918 63.0–73.0 (73.0, 2050) 7.0–12.7 (12.7, 2050)
Medium 23.3 1,501 (484) 1,871 62.9–75.4 (77.1, 2045) 7.0–9.4 (12.6, 2040)
High 15.9 902 (384) 1,213 62.9–76.2 (78.3, 2035) 7.1–(–2.1) (11.9, 2030)
Optimal 10.8 532 (300) 643 63.1–78.5 (78.6, 2035) 7.2–(–6.4) (11.4, 2030)
The period 2020 to 2050 covers indeed 35 years as period 2020 reflects years 2016 to 2020 and so on. We do not
include 2015 in this calculation because the outcomes from the calibration year are the same for all specifications and
SCC are not internalized perfectly in this year. *The value in parentheses refers to discounted SCC. Electricity price
(total, tax share) ranges are from 2020 to 2050 with the maximum value and the corresponding year in parentheses.

Start with low (BAU). Remember that such a taxation choice yields almost no emission cut-
backs. CO2 emissions accumulate to 28 Gt (0.81 Gt/a). Accumulated SCC are 1,918 billion e
(billion e/a) and discounted SCC are 555 billion e. The tax yield is equal to accumulated SCC
because the chosen tax rate is equal to the specific SCC.

Now turn to medium. Accumulated CO2 emissions drop to 23 Gt. The tax yield remains
almost unchanged (–47 billion e), while such medium carbon taxes additionally avoid damages
of 417 billion e. The tax yield considerably drops for the high carbon tax choice (1,213 billion
e). In turn, accumulated SCC are also considerably lower. This pattern continues for the optimal
carbon tax choice. Accumulated CO2 emissions are now at 11 Gt, accumulated SCC at 532 billion
e and the corresponding tax yield is at 643 billion e.

The BAU electricity price continuously increases from 2020 to 2050 but this pattern does not
hold for the three other taxation choices. For example, under optimal carbon tax electricity prices
peak in 2035. In the long run, however, prices are lowest for the low carbon tax from the BAU
and highest for optimal carbon tax. Interestingly, the tax share is highest again for low carbon
tax (BAU) because for higher taxes overall emissions are considerably lower or even negative.

4.3. Sensitivity analysis
Despite careful calibration, some uncertainty remains regarding specific SCC. We address this

uncertainty by additionally modifying specific SCC levels to 25%, 50%, 75%, 125%, 150%, and
200% of the default level (from 2020 onwards). Appendix F visualizes the generation mix and
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resulting carbon emissions and also mirrors corresponding accumulated carbon emissions, social
cost, tax yields, and price ranges from Table 3.

Generation mix and carbon emissions. 25% SCC is insufficient to induce competitiveness of CCS
technologies. Instead, conventional gas technologies substitute for gas-CCS and substantial parts
of nuclear generation. The 2050 wind (solar, nuclear) share is 32.6% (11.67%, 4.2%). 50% SCC
employs gas-CCS in 2050 but only at a minor generation share of 9.5%. Wind (solar, nuclear)
contributes 43% (12.4%, 6.7%). Bio-CCS is not part of the system for 25% and 50% SCC, so
that 2050 CO2 emissions are at 1.03 Gt or 0.53 Gt, respectively. 75% SCC is sufficient to increase
bio-CCS (generation share of 5.5%) up to its maximum potential. 2050 wind (solar, nuclear) share
is at 41.3% (10.8%, 8.8%) and resulting CO2 emissions are at –0.07 Gt. Even higher SCC increase
wind and nuclear usage, whereas solar shares drop.18 Moreover, gas-CCS usage is highest for 100%
(23.3%) but then drops for higher SCC to the benefit of carbon-neutral nuclear because gas-CCS
still has a slightly positive emission factor. However, CO2 emissions do not fall much further (from
–0.15 Gt to –0.21 Gt) when doubling underlying SCC and carbon taxes, because the biomass
potential for negative emissions is limited.

Emissions and cost assessment. Accumulated CO2 emissions increase from 11 Gt (for 100% SCC)
to 37 Gt (for 25% SCC) and drop to –2 Gt (for 200% SCC). The accumulated SCC (tax yields) are
622 (1,214) billion e for 25% SCC and –465 (–1,237) billion e for 200% SCC. Prices are lowest for
25% SCC and highest for 200% SCC. The tax share is at –17.5 e/MWh in 2050 for 200% but at
10.7 e/MWh for 25%. These figures inform about how SCC and tax yields deviate when specific
SCC levels change accordingly. In particular, SCC (also in discounted terms) and tax yields are
similar for 100% SCC (our default calibration) but deviate already by factor two for 25% SCC.
Relative differences are even more severe for higher SCC.

5. Conclusion

We determine the optimal carbon tax given that private firms discount their cash flows (and
thus taxes) more heavily than a social planner would discount social cost from emitting CO2 (the
social cost of carbon, SCC). We quantify results by implementing the theoretical framework in
the EUREGEN model that intertemporally optimizes capacity expansion, decommissioning, and
generation of the European power market until 2050. In particular, we analyze how a business-as-
usual policy choice (carbon tax equal to specific SCC) and the optimal policy (carbon tax above
specific SCC) affect technology deployment and resulting CO2 emissions.

Intertemporally optimal tax rates of CO2 emissions are higher than their marginal damages
(specific SCC) by the ratio of social (for SCC) to private (for firms’ cash flows) discount factors
of the respective period. For example, assuming pure rate of time preferences of 1% (social dis-
count rate of 3.81%) for damages from CO2 emissions and private discount rates of 7% for firms’

18200% SCC yields a wind (solar, nuclear) share of 42.9% (9.6%, 15.7%).
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cash flows, yields an (intertemporally) optimal 2050 carbon tax of 257 e/ton, whereas marginal
damages, that is, specific SCC, are at 95 e/ton only.

We analyze four taxation choices in detail. The business-as-usual policy choice neglects the
difference between private and social discount rates, resulting in a low carbon tax (95 e/ton in
2050) that is insufficient to spur investments into carbon-neutral or carbon-negative technologies.
Final CO2 emissions are at 0.83 Gt. In particular, carbon-capture-and-storage is absent in the
technology mix and also nuclear capacity is low. However, wind and solar shares are comparable
to those of higher carbon taxes. The optimal carbon tax leads to heavy deployment of gas-CCS,
nuclear, and bio-CCS and reduces emissions to –0.15 Gt. A slightly lower carbon tax (188 e/ton
in 2050) is already sufficient to reduce carbon emissions to –0.07 Gt. However, reducing the carbon
tax even more towards the business-as-usual policy results in substantial positive emissions and
fails again to achieve carbon-neutrality targets.

The comparison of outcomes from different taxation choices shows flaws in policy making and
explains missing investments into emerging carbon-neutral (gas-CCS, nuclear) or even carbon-
negative (bio-CCS) technologies. Announced 2050 carbon prices of 95 e/ton lead to negligible
and insufficient emission cutbacks because firms do not evaluate these investments to pay-off in
the long-run. However, announcing a carbon price of 257 e/ton delivers the social optimum (as
we define it). Electricity prices are highest for the optimal carbon tax (78.5 e/MWh in 2050) but
the social cost (or tax) shares are actually lowest because the overall amount of emitted CO2 is
considerably lower in the long-run and even negative in 2050. We further calculate that the optimal
carbon tax would reduce accumulated CO2 emissions by 17 Gt (from 28 Gt in the business-as-
usual to 11 Gt) between 2016 and 2050 and saves 1,386 billion e in social cost (255 billion e in
discounted terms). On the contrary, the accumulated tax yield would drop by 1,275 billion e (166
billion e in discounted terms).

Our paper demonstrates that the interpretation of modeling results and their consideration by
policy makers requires careful review of the assumptions about discount rates, taxes, and what
the respective model aims to determine. Some models aim for the social optimum, others depict
firm equilibria, and others in turn do not even make any explicit statement thereabout. We
model specifications where a social planner tries to set carbon tax rates to push firms to make
intertemporally and socially optimal investment and generation decisions. Our first key result that
emission tax rates are to be set above marginal damages also underlines that social planners need
to consider tax rates or emission prices above marginal damages instead of trying to argue for
equality.

Our analysis comes with some limitations. We do not address the time inconsistency problem
when re-setting intertemporally optimal tax rates in succeeding periods. To do so, we would
need to run the model on a rolling horizon until arriving at 2050. However, effective tax rates
from firms’ perspectives would remain unchanged. Moreover, the objective of our analysis is to
highlight flaws of current modeling when interpreting results and, thus, we refrain from undergoing
this computationally intense task. Moreover, we do not account for benefits that arise from using
the tax yields of carbon taxation. Those tax yields are indeed highest for the business-as-usual.
Finally, our suggested optimal policy might induce distortions across sectors and regions, because
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it would lead to higher carbon taxes for sectors with higher private discount rates and lower prices
in regions with lower social discount rates.
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Appendix A. Model constraints

Generation constraints. Equations (A.1) to (A.9) contain all constraints that restrict generation
(capacity):

Yir (h, v, t) ≤ αir (h, v) βir (h, v)Qir (v, t) ∀ (i, r, h, v ≤ t, t) , (A.1)
Qir (v, t) ≤ qbaseir (v) Λi (v, t) ∀

(
i, r, v ≤ tbase, t

)
, (A.2)

Qir (v, t) ≤ IQir (v) Λi (v, t) ∀
(
i, r, tbase < v ≤ t, t

)
, (A.3)

Qir (v, t) ≥ Qir (v, t+ 1) ∀
(
i, r, v ≤ t, t < tend

)
, (A.4)∑

v≤t

Qir (v) ≤ iqlimir (t) ∀ (i, r, t) , (A.5)

IQir (v) ≥ iqpipeir (t) ∀
(
i, r, tbase < v ≤ t, t

)
, (A.6)∑

µi(class)

∑
v≤t

Qir (v, t) ≤ qlimir (class) ∀
(
µirnw(i)(class), r, t

)
, (A.7)

∑
bio(i)

∑
h,v≤t

Yir (h, v, t)

ηir (v)
≤ bclimr (t) ∀ (r, t) , (A.8)

∑
ccs(i)

∑
h,v,t

εCCS
ir (v)Yir (h, v, t) ≤ sclimr ∀ (r) . (A.9)

Equation (A.1) is the capacity constraint that restricts generation by available capacity. α is the
hourly availability parameter for intermittent renewable energies. Denote by irnw(i) the subset of
intermittent renewable energies. In particular, we consider hydro, wind onshore, wind offshore, and
solar PV. β is the hourly availability parameter for all other technologies that is calculated out of
monthly generation patterns and assumptions about the reliability of the respective technologies.
In particular, we consider bioenergy, bio-CCS, gas-OCGT, gas-CCGT, gas-ST, gas-CCS, coal, coal-
CCS, lignite, oil, nuclear, and geothermal. For example, when nuclear generation shuts down in
summer due to lower load and hot rivers (that prevent cooling of nuclear power plants) then β < 1.
We have αirnw(i),r (h, v) ∈ [0, 1] depending on the hourly availability and technological progress of
the respective technology, βirnw(i),r(h, v) = 1, αnot irnw(i),r (h, v) = 1, and βnot irnw(i),r (h, v) ∈ [0, 1]
depending on monthly availability and technological progress of the respective technology.

Equations (A.2) and (A.3) are the capacity stock constraints that describe the movement of
capacity over time. Λ ∈ [0, 1] is the exogenous lifetime parameter that tells us how much of
capacity added in period v is still active in period t. In particular, Λ = 0 indicates that the
entire capacity is inactive. Equation (A.2) refers to existing capacities qbase that are still active
at the beginning of the planning horizon (from tbase to tend). Equation (A.3) in turn explains
the movement of added capacity. We allow for endogenous decommissioning of capacities from
tbase + 1 onward. For parsimony, we relinquish to show the respective constraints here that avoid
early decommissioning of existing capacities in tbase already. We assume that the entire investment
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is capable of reaching the end of the specified lifetime. Half of the investment is still active 5 years
later, and 30% is active even 10 years later. 15 years later none of the past investments are still
active. For existing capacities, we assume Λ

(
tbase

)
,Λ

(
tbase + 1

)
= 1 to avoid distortions from

enforced decommissioning although those existing capacities are still active in reality. We apply
the 50% or 30% metric with one period lag, i.e., for tbase + 2 and tbase + 3. Equation (A.4) is
the monotonicity constraint that enforces monotonic decommissioning of capacity. In particular,
once capacity is decommissioned (enforced by the two capacity stock constraints (A.2) and (A.3))
the model should not be able to build them up again. This is particular important when some
capacities cause only cost in early periods but have benefits later. Note that this constraint is not
restrictive (and also not active) in the last optimization period tend.

Equation (A.5) is the capacity limit constraint that enforces that overall capacity does not
exceed a certain level, e.g., due to political decisions of not installing further nuclear capacity.
Equation (A.6) is the pipeline constraint that enforces investments that are already planned or
under construction but not commissioned yet. This constraint is particular important in tbase+1 =
2020 for wind and solar investments but also in later periods when it is about ongoing nuclear
projects. We work with an adapted 2015 calibration that already contains lots of investments
until the end of 2020 that are enforced in the model by this pipeline constraint. Equation (A.7)
restricts expansion of intermittent renewable energies according to their resource potential by
quality class (resource potential constraint). In particular, we consider three classes (high, mid, low)
of wind onshore, wind offshore, and solar PV potential. µi (class) is the mapping of the respective
intermittent technology to its class. qlimir (class) is then the upper limit of the respective quality
class (GW). Equation (A.8) is the biomass constraint. bio (i) is the subset of technologies using
biomass and η the burning efficiency of the respective technology.

∑
bio(i)

∑
h,v≤t

1
ηir(v)

Yir (h, v, t) is
used biomass and bclimr (t) the annual limit (both in GWh thermal). The underlying assumption of
that region-specific constraint is that biomass is not traded across regions. Finally, equation (A.9)
is the carbon-capture-and-storage constraint. ccs(i) is the subset of carbon-capture-and-storage
(CCS) technologies, εCCS the capture rate (ton/GWh electric), and sclimr is the region-specific
potential of storing carbon in the ground (ton).

19



Storage constraints. Equations (A.10) to (A.18) contain all constraints that restrict storage (ca-
pacity):

GCjr (h, v, t) ≤ GQjr (v, t) ∀ (j, r, h, v ≤ t, t) , (A.10)
GDjr (h, v, t) ≤ GQjr (v, t) ∀ (j, r, h, v ≤ t, t) , (A.11)

GBjr (h, v, t) ≤ GQjr (v, t) · ghoursjr (v) ∀ (j, r, h, v ≤ t, t) , (A.12)
GBjr (h, v, t) = GBjr (h− 1, v, t) ηgbjr (v)

+GCjr (h, v, t) η
gc
jr (v)−GDjr (h, v, t) ∀ (j, r, h, v ≤ t, t) , (A.13)

GQjr (v, t) ≤ gqbasejr (v) Λj (v, t) ∀
(
j, r, v ≤ tbase, t

)
, (A.14)

GQjr (v, t) ≤ GIQjr (v) Λj (v, t) ∀
(
j, r, tbase < v ≤ t, t

)
, (A.15)

GQjr (v, t) ≥ GQjr (v, t+ 1) ∀
(
j, r, v ≤ t, t < tend

)
, (A.16)∑

v≤t

GIQjr (v) ≤ gqlimjr (t) ∀ (j, r, t) , (A.17)

GIQjr (v) ≥ giqpipejr (t) ∀ (j, r, v = t) . (A.18)

Equations (A.10) and (A.11) are the charge and discharge constraint. Equation (A.12) is the
size constraint that restricts the storage balance to the maximum size of the storage. Equation
(A.13) is the balance constraint that explains the evolution of stored energy over time. ηgb hourly
efficiency reflecting the hourly loss of stored energy (e.g., evaporation) and ηgc is the charging
efficiency (e.g., electricity necessary to use pumps) that accounts for the fact that taking one unit
of electricity from the market leads to less than one unit of electricity in the storage. The storage
discharge is subject to losses as well but those are not depicted but rather in the demand-equals-
supply constraint (1). Equations (A.14) and (A.15) are the capacity stock constraints, Equation
(A.16) is the monotonicity constraint, Equation (A.17) the capacity limit constraint, and Equation
(A.18) the pipeline constraint that mirror equations (A.2) to (A.6) from the set of generation
constraints. Here, gqbase are capacities already active in tbase (in GW) and gqlim, giqpipe (in GW)
the respective upper and lower limits of expanding overall capacity or adding capacity, respectively.
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Transmission constraints. Equations (A.19) to (A.24) contain all constrains that restrict trans-
mission (capacity):

Ek,r−rr (h, t) ≤
∑
v≤t

TQk,r−rr (v, t) ∀ (µk,r−rr, h, t) , (A.19)

TQk,r−rr (v, t) ≤ tqbasek,r−rr (v) Λk (v, t) ∀
(
µk,r−rr, v ≤ tbase, t

)
, (A.20)

TQk,r−rr (v, t) ≤ TIQk,r−rr (v) Λk (v, t) ∀
(
µk,r−rr, t

base < v ≤ t, t
)
, (A.21)

TQk,r−rr (v, t) ≥ TQk,r−rr (v, t+ 1) ∀
(
µk,r−rr, v ≤ t, t < tend

)
, (A.22)∑

rr,v≤t

TIQk,r−rr (v) ≤ tqlimk,r−rr (t) ∀ (µk,r−rr, t) , (A.23)

TIQk,r−rr (v) ≥ tiqpipek,r−rr (t) ∀ (µk,r−rr, v ≤ t, t) . (A.24)

Equation (A.19) is the trade constraint that restricts the bilateral trade between a region
pair r − rr to the overall amount of transmission capacity between that region pair. We do not
differentiate trade flows by vintages because technology characteristics are assumed to be the same
for each vintage. Equations (A.20) and (A.21) are the capacity stock constraints, Equation (A.22)
is the monotonicity constraints, Equation (A.23) is the limit constraint, and Equation (A.24) is the
pipeline constraint. tqbasek,r−rr is the existing transmission capacity of technology k between a region
pair r−rr, tqlim the upper limit of possible transmission expansion, and tiqpipe ongoing transmission
projects (all in GW). In particular, tqlim grows over time to account for the political will to increase
interchange in Europe but still limits expansion to a socially acceptable amount. tiqpipe is mainly
in line with the plans of transmission system operators to reach a 25% interconnectivity target
and contains already planned projects. Those two constraints are fundamentally more important
for transmission than the matches for generation and storage operations.
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Appendix B. Annual electricity demand and fuel prices

Table B.1: Annual electricity demand (TWh)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 63 64 78 91 137 147 156 163
Belgium 83 82 96 107 131 157 181 196
Bulgaria 30 30 35 36 37 39 41 43
Croatia 16 16 17 18 18 20 23 25
Czech Republic 59 63 116 121 125 133 141 149
Denmark 32 32 37 35 39 47 52 56
Estonia 7 8 9 11 12 12 13 14
Finland 80 73 83 79 80 82 87 91
France 448 450 759 768 813 868 926 986
Germany 528 534 832 843 843 874 910 950
Greece 52 53 58 54 58 63 68 71
Hungary 38 37 44 53 67 71 75 81
Ireland 26 26 31 32 39 42 45 49
Italy 297 319 421 562 597 644 689 735
Latvia 6 7 8 9 10 12 12 13
Lithuania 10 12 18 18 17 18 19 20
Luxembourg 6 6 7 8 11 14 15 17
Netherlands 109 113 148 186 189 199 210 226
Norway 119 124 131 126 158 168 179 190
Poland 139 143 164 179 229 267 280 293
Portugal 47 52 61 62 66 70 73 76
Romania 47 47 54 58 60 67 74 80
Slovak Republic 25 27 34 39 48 56 58 60
Slovenia 13 13 15 17 19 22 23 24
Spain 239 247 313 367 494 523 543 568
Sweden 128 133 159 161 232 248 265 282
Switzerland 58 61 67 71 117 128 139 151
United Kingdom 311 317 358 389 435 489 533 595

Table B.2: Exemplary fuel prices for Germany (e/MWh thermal)

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Coal 8.35 8.22 8.09 7.94 7.79 7.68 7.58 7.49
Lignite 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Gas 20.65 20.34 20.01 19.63 19.27 18.99 18.74 18.53
Oil 40.26 40.84 41.18 41.58 42.14 42.74 43.51 44.34
Uranium 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33
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Appendix C. Technology parameters

Table C.3: Efficiencies of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.23
Bio-CCS 0.16 0.16 0.17 0.17 0.17 0.18 0.18 0.18

Gas-CCGT, Gas-ST 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Gas-CCS 0.47 0.48 0.49 0.50 0.50 0.50 0.50 0.50
Gas-OCGT 0.42 0.44 0.45 0.46 0.46 0.47 0.47 0.47

Coal 0.45 0.47 0.48 0.49 0.49 0.49 0.49 0.49
Coal-CCS 0.36 0.37 0.38 0.39 0.39 0.39 0.39 0.39
Lignite* 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Oil* 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Geothermal 0.09 0.11 0.11 0.12 0.13 0.13 0.14 0.14
Nuclear 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values
refer to 2015 vintages in the respective period because lignite and oil expansion is forbidden.

Table C.4: Emission factor (ton/GWh electric) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bio-CCS -855 -855 -805 -805 -805 -760 -760 -760

Gas-CCGT, Gas-ST 347 341 335 330 330 330 330 330
Gas-CCS 42 41 40 39 39 39 39 39
Gas-OCGT 507 484 473 463 463 453 453 453

Coal 797 763 747 732 732 732 732 732
Coal-CCS 94 91 89 86 86 86 86 86
Lignite 838 838 838 838 838 838 838 838
Oil 910 910 910 910 910 910 910 910
Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values
refer to 2015 vintages in the respective period because lignite and oil expansion is forbidden.
Bioenergy, geothermal, and nuclear are emission neutral.
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Table C.5: Investment cost (e/kW) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 4,322 4,236 4,149 4,149 4,106 4,063 4,063 4,020
Bio-CCS 6,322 6,236 6,149 6,149 6,106 6,063 6,063 6,020

Gas-CCGT, Gas-ST 850 850 850 850 850 850 850 850
Gas-CCS 1,495 1,495 1,495 1,495 1,495 1,495 1,495 1,495
Gas-OCGT 437 437 437 437 437 437 437 437

Coal 1,500 1,500 1,440 1,410 1,395 1,380 1,380 1,365
Coal-CCS 3,415 3,415 3,278 3,210 3,176 3,142 3,142 3,108
Lignite* 1,640 1,640 1,640 1,640 1,640 1,640 1,640 1,640
Oil* 822 822 822 822 822 822 822 822

Geothermal 12,364 11,993 11,622 11,498 11,251 11,127 11,004 11,004
Nuclear** 7,600 7,006 6,346 6,082 5,818 5,488 5,488 5,356

Solar 1,300 1,027 936 858 819 780 741 715
Wind offshore 3,600 3,024 2,700 2,520 2,376 2,268 2,160 2,088
Wind onshore 1,520 1,397 1,368 1,339 1,325 1,310 1,310 1,296
Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values refer to 2015 vintages
in the respective period because lignite and oil expansion is forbidden. **Social cost of nuclear are often neglected
in energy system analysis, in particular, decommissioning cost and storing nuclear waste. Given cost estimates
of around 6,000 e/kW for installing nuclear facilities, estimates are around 1,000 e/kW for decommissioning
them. However, the timing of those cost at the very end of the respective life times impedes their appropriate
consideration. In fact, a discount rate of 7% leads to the consideration of only 100 e/kW decommissioning
cost. We thus opt for an approach, where firms need to pay a decommissioning premium of 1,000 e/kW into a
decommissioning fund at time of construction, so that 2020 investment cost are at 7,000 (instead of 6,000) e/kW.

24



Appendix D. GDP and population projections

Table D.6: GDP projections (billion 2015-e)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 436 474 511 546 589 636 683 728
Belgium 528 566 606 654 719 797 877 960
Bulgaria 56 62 67 71 75 79 83 86
Croatia 57 62 65 69 75 82 88 94
Czech Republic 204 223 238 258 277 297 317 338
Denmark 346 388 429 463 499 542 590 643
Estonia 26 29 31 33 35 38 40 41
Finland 271 287 303 323 350 382 413 445
France 2,841 3,066 3,270 3,488 3,763 4,094 4,435 4,820
Germany 3,850 4,091 4,328 4,490 4,640 4,855 5,097 5,334
Greece 234 241 246 256 275 295 306 316
Hungary 137 148 165 180 194 207 217 231
Ireland 250 282 306 333 363 393 420 455
Italy 2,132 2,273 2,409 2,556 2,733 2,939 3,144 3,385
Latvia 31 35 39 42 44 47 50 52
Lithuania 47 54 57 58 59 63 67 71
Luxembourg 65 74 84 95 108 123 138 154
Netherlands 876 938 987 1,028 1,083 1,153 1,230 1,317
Norway 507 555 601 654 715 785 861 936
Poland 542 622 698 769 826 881 919 947
Portugal 228 245 266 281 296 309 319 330
Romania 198 222 243 261 278 297 317 338
Slovak Republic 99 114 128 144 156 164 169 173
Slovenia 49 53 58 62 65 70 74 78
Spain 1,376 1,510 1,652 1,793 1,936 2,061 2,141 2,264
Sweden 570 630 697 765 847 937 1,033 1,131
Switzerland 700 776 859 950 1,055 1,172 1,300 1,430
United Kingdom 2,984 3,188 3,366 3,611 3,948 4,354 4,780 5,215

World 78,242 90,573 104,038 119,466 136,834 155,959 175,894 196,762
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Table D.7: Population projections (million)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 8.64 8.92 8.98 9.04 9.07 9.06 9.01 8.93
Belgium 11.27 11.54 11.70 11.83 11.93 12.01 12.06 12.09
Bulgaria 7.18 6.92 6.66 6.38 6.10 5.84 5.59 5.36
Croatia 4.20 4.04 3.93 3.82 3.70 3.56 3.43 3.30
Czech Republic 11 11 11 11 11 11 11 11
Denmark 5.68 5.83 5.94 6.03 6.10 6.17 6.21 6.25
Estonia 1.32 1.33 1.30 1.27 1.24 1.21 1.18 1.15
Finland 5.48 5.53 5.56 5.55 5.52 5.50 5.48 5.45
France 66.55 67.20 68.01 68.54 68.87 69.09 69.18 69.09
Germany 81.69 83.15 82.55 82.22 81.72 80.93 79.80 78.53
Greece 10.82 10.66 10.38 10.15 9.93 9.71 9.48 9.20
Hungary 9.84 9.74 9.58 9.40 9.18 8.94 8.73 8.52
Ireland 4.70 4.98 5.14 5.27 5.38 5.50 5.60 5.68
Italy 60.73 60.18 59.51 58.59 57.64 56.62 55.29 53.59
Latvia 1.98 1.89 1.81 1.73 1.66 1.60 1.55 1.50
Lithuania 2.90 2.76 2.64 2.54 2.44 2.35 2.26 2.18
Luxembourg 0.57 0.63 0.66 0.69 0.72 0.74 0.76 0.78
Netherlands 16.94 17.38 17.55 17.65 17.67 17.61 17.48 17.29
Norway 5.19 5.39 5.62 5.83 6.03 6.21 6.37 6.52
Poland 37.99 37.91 37.57 36.95 36.09 35.09 34.12 33.19
Portugal 10.36 10.25 10.11 9.95 9.77 9.57 9.34 9.08
Romania 19.82 19.25 18.82 18.35 17.84 17.31 16.82 16.30
Slovak Republic 5.42 5.46 5.44 5.39 5.30 5.19 5.07 4.96
Slovenia 2.06 2.09 2.08 2.06 2.03 2.00 1.97 1.93
Spain 46.44 47.13 46.87 46.46 45.93 45.30 44.51 43.49
Sweden 9.80 10.34 10.61 10.83 11.01 11.19 11.38 11.55
Switzerland 8.28 8.63 8.90 9.13 9.32 9.47 9.59 9.68
United Kingdom 65.12 67.16 68.44 69.54 70.48 71.36 72.13 72.74

World 7,339 7,754 8,140 8,501 8,836 9,145 9,426 9,676

26



Appendix E. Technology-specific social cost and optimal tax

Table E.8: Optimal carbon tax (e/MWh electric) of generation technologies for different social discount rates

2020 2030 2040 2050

Low (BAU) Bio-CCS -35.67 -44.79 -56.49 -70.92
Coal 31.13 38.82 50.93 66.41
Coal-CCS 3.89 5.09 6.68 8.72
Gas-CCGT, Gas-ST 14.32 18.13 23.79 31.02
Gas-CCS 1.75 2.29 3.00 3.91
Gas-OCGT 19.74 24.74 31.77 41.42
Lignite* 35.70 46.71 61.29 79.91
Oil* 38.76 50.70 66.53 86.75

Medium Bio-CCS -36.83 -51.67 -72.83 -102.15
Coal 32.14 44.78 65.66 95.66
Coal-CCS 4.02 5.88 8.62 12.55
Gas-CCGT, Gas-ST 14.78 20.91 30.66 44.67
Gas-CCS 1.80 2.64 3.87 5.63
Gas-OCGT 20.38 28.54 40.95 59.66
Lignite* 36.86 53.88 79.00 115.10
Oil* 40.01 58.49 85.76 124.95

High Bio-CCS -37.86 -58.40 -90.51 -139.60
Coal 33.04 50.61 81.60 130.73
Coal-CCS 4.13 6.64 10.71 17.16
Gas-CCGT, Gas-ST 15.19 23.64 38.11 61.05
Gas-CCS 1.85 2.98 4.81 7.70
Gas-OCGT 20.95 32.26 50.89 81.53
Lignite* 37.89 60.90 98.19 157.30
Oil* 41.13 66.11 106.59 170.76

Optimal Bio-CCS -38.93 -66.10 -112.75 -191.39
Coal 33.97 57.29 101.65 179.23
Coal-CCS 4.25 7.52 13.34 23.52
Gas-CCGT, Gas-ST 15.63 26.75 47.47 83.70
Gas-CCS 1.91 3.37 5.99 10.55
Gas-OCGT 21.54 36.51 63.40 111.78
Lignite* 38.96 68.93 122.31 215.66
Oil* 42.30 74.82 132.77 234.11

The private discount rate is at 7%. Values refer to state-of-the-art capacities from the
respective vintage. *Lignite and oil values refer to 2015 vintages in the respective period
because lignite and oil expansion is forbidden. Bioenergy, geothermal, and nuclear are
emission neutral and those not subject to taxation.
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Appendix F. Sensitivity analysis

Figure F.1: Generation mix and carbon emissions for different SCC levels

Table F.9: Accumulated carbon emissions, SCC, and tax amounts with price ranges from
period 2020 to 2050 for different SCC levels

SCC CO2 SCC (*) Tax Electricity price (e/MWh)
level (Gt) (billion e) (billion e) Total Tax

25% 37.2 622 (186) 1,214 54.8–67.0 (67.0, 2050) 2.9–10.7 (10.7, 2050)
50% 28.4 918 (297) 1,718 57.6–74.9 (77.5, 2045) 5.1–10.9 (13.0, 2045)
75% 18.3 789 (325) 1,253 60.2–76.0 (77.6, 2035) 6.3–(–2.3) (12.4, 2035)
100% 10.8 532 (389) 643 63.1–78.5 (78.6, 2035) 7.2–(–6.4) (11.4, 2030)
125% 5.4 240 (231) 67 66.2–79.9 (79.9, 2045) 8.3–(–9.5) (10.2, 2025)
150% 1.5 -57 (146) -485 70.2–81.1 (81.8, 2045) 9.0–(–12.1) (9.0, 2020)
200% -2.1 -465 (17) -1,237 75.8–82.8 (83.9, 2045) 8.4–(–17.5) (8.4, 2020)
The period 2020 to 2050 covers indeed 35 years because 2020 reflects 2016 to 2020. We spare 2015 to include
in this calculation because the outcome from the calibration year are the same for each specification and
SCC are not internalized perfectly in this year. *The value in brackets refers to discounted SCC. Electricity
price (total, tax share) ranges are from 2020 to 2050 with the maximum value and the corresponding year in
brackets.
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