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Abstract

Permutation techniques, where one recompute the test statistic over permutations
of data, have a long history in statistics and have become increasingly useful as the
availability of computational power has increased. Until now, no permutation tests for
examining returns to scale assumptions, nor for test of common production possibility
sets, when analysing productivity have been available.

We develop three novel tests based on permutations of the observations. The
first is a test for constant returns to scale. The other two are, respectively, tests for
frontier differences and for whether the production possibility sets are nested. All
tests are based on data envelopment analysis (DEA) estimates of efficiencies and are
easily implementable. We show that our suggested permutations of the observations
satisfy the necessary randomisation assumptions, and hereby that the sizes of the
proposed tests are controlled. The advantages of permutation tests are that they are
reliable even for relatively small samples and their size can generally be controlled
upwards. We further add a lower bound showing that the proposed tests are very
close to being exact. Finally, we show that our tests are consistent and illustrate the
rate of convergence in simulation studies.

Keywords: Permutation tests, Returns to scale, Comparison of production frontiers, Data
envelopment analysis (DEA), Size, Consistency
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1 Introduction

When assessing the productivity of firms, or other production units, various assumptions
are necessary. Typically, assumptions are made about the returns to scale characteristics
of the underlying production technology. Furthermore, when comparing production pos-
sibility sets between, for example, privately and publicly owned enterprises, domestic and
international companies, or organic and conventional farms, it is often relevant to determine
whether the (frontiers for the) technologies coincide.

In this paper we will introduce and verify the use of permutation tests for inference in
non-parametric production frontier models. The development of permutation methods in
statistics began in the 1920’s and the now well-known permutation test for exact inference
in 2×2 contingency tables (Fisher (1935)) was among the early contributions. The his-
torical development of permutation methods is described in Berry et al. (2014). Recently
such methods have gained popularity due to improved computational possibilities and are
mathematically formalized in e.g. Lehmann and Romano (2005).

We will describe and prove how a permutation test can be formulated for testing the
hypothesis of constant returns to scale. Returns to scale is typically viewed as being
technologically imposed and thus concerning the frontier (or production function) alone.
Yet, we here explicitly acknowledge the distinction between the overall distribution of the
units within the production possibility set and then the frontier estimated based on those
units.

We will show that the suggested permutation test meets the randomization requirements
and hereby that the size of the test is upward bounded. Additionally, we determine a lower
bound showing that the test is very close to being exact. Also, the test is shown to be
consistent. In the Supplementary Material (see Sections 8 and 9 below) the power of the
permutation test is investigated through Monte-Carlo simulations.

Furthermore, we introduce and examine two new test statistics which we prove can be
used for examining whether the frontier is independent of a discrete dichotomous environ-
mental (or contextual) variable. The result of the first of these tests indicates whether
the frontiers are likely to be different (including intersecting frontiers), and the second test
supplements the first as it is designed to detect whether one group overall has better pro-
duction possibilities than the other (nested frontiers). Like the test for returns to scale,
these tests are also consistent and almost exact.

An often used method for estimation of productive efficiency of a set of production units
is the non-parametric Data Envelopment Analysis (DEA) approach, which estimates the
production possibility set as a convex envelopment of the observed set of input and output
quantities (Farrell (1957), Charnes et al. (1978)). Our permutations tests utilise DEA’s
linear programming based estimation of the efficiencies and, indirectly, the production
possibility set.

The statistical properties of the estimated efficiencies have been the subject of numerous
studies, and Kneip et al. (2015) developed asymptotic results usable for inference about
mean efficiencies. The asymptotics were later improved in Simar and Zelenyuk (2020) and
Nguyen et al. (2022).

Methods for deciding appropriate technology assumptions have been the subject of
several papers, lately Kneip et al. (2016), but Simar and Wilson (2002) and Banker (1996),
among others, also address the importance of imposing the correct assumption and discuss
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statistics for testing returns to scale. Kneip et al. (2016) and Simar and Wilson (2020)
propose tests for returns to scale, with the hypothesis being constant returns to scale
(CRS) within a model assuming variable returns to scale (VRS). The test is based on the
asymptotic normal distribution of the difference of average sample means of efficiencies.

Most of the developed theory is concentrated on inference for individual or mean effi-
ciencies, whereas the theory on another important issue - statistical tests concerning the
production frontiers - is sparse. In Kneip et al. (2016), methods for comparisons of mean ef-
ficiencies and a common frontier for two independent samples, based on asymptotic normal
approximations are developed. The proposed method focuses on testing equality of means
for two independent groups when the efficiencies for the two samples are measured relative
to a common frontier and when they are measured relative to different frontiers. The sug-
gested test is formally a test for a composite hypothesis, namely whether the groups are
facing the same frontier and whether the mean efficiencies are the same in the two groups.
Consequently, it is not possible to determine whether rejection is due to different frontiers,
different mean efficiencies, or both simultaneously.

The importance of the assumption of equal production possibility sets, known as the
’separability condition’ is also addressed in e.g. Simar and Wilson (2007), Simar and Wilson
(2015), and Daraio et al. (2018). Daraio et al. (2018) develop central limit theorems for
means of conditional efficiencies and propose an asymptotic test for the separability con-
dition when conditioning on a continuous environmental variable, later improved in Simar
and Wilson (2020). When dealing with a discrete dichotomous environmental variable, the
proposed test is basically the same as in the continuous case expect for the bias-correction
method.

All the above tests rely on asymptotic results for the estimated efficiencies. The es-
timates are biased and therefore bootstrap methods for bias corrections are needed for
improving the properties of the asymptotic tests. The permutation tests proposed here do
not rely on asymptotic results for the estimated efficiencies and the size of the bias need
not be estimated, as long as the sample sizes are equal in the tests comparing independent
groups (otherwise a simple jackknife is implemented). Furthermore, this implies that the
permutation tests also perform well for relatively small sample sizes.

The structure of the paper is as follows: In Section 2 we introduce our notation and the
production frontier methodology. The method of inference on scalability (a concept that
includes constant returns to scale, c.f. equation 9 below) and proof of the properties of the
test are described in Section 3, and Section 4 similarly describes methods for comparisons
of frontiers for independent groups. In Section 5 consistency of the proposed tests is proved
and Section 6 concludes the paper. In the Appendix (see Section 7 below) we show the
theoretical results on permutation test leading to the proposed permutation tests being
close to exact. Finally, some additional technical results on consistency, together with a
series of Monte Carlo experiments for evaluating the performance of the described tests,
are presented in the Supplementary Material (see Sections 8 and 9 below).
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2 The non-parametric frontier model

2.1 The production possibility set and returns to scale

Let the vector of input (x) and output (y) quantities be denoted by (x, y) ∈ Rp+q
+ . Us-

ing standard notation, the feasible set of input-output combinations, i.e. the production
possibility set, is

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y}.

The production possibility set is assumed to be closed, convex and satisfying strong dis-
posablity in both inputs and outputs. The efficient frontier of Ψ is given by

Ψδ = {(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ, ∀γ > 1}. (1)

The efficiency of a given production unit is often measured by either the Farrell input index
or the corresponding output index (Farrell (1957)), with the input index given by

θ(x, y | Ψ) = inf{θ > 0| (θx, y) ∈ Ψ},

and the output index given by

ϑ(x, y | Ψ) = sup{ϑ > 0| (x, ϑy) ∈ Ψ}.

If θ = 1 the firm is said to be technically efficient in the input direction, while if ϑ = 1 the
firm is technically efficient in the output direction. Otherwise, the firm is referred to as
technically inefficient in either the input and/or the output direction. Technical efficiency
can alternatively be measured in hyperbolic distances, defined by Färe et al. (1985) as

γ(x, y | Ψ) = inf{γ > 0| (γx, γ−1y) ∈ Ψ}.

Various assumptions about returns to scale are possible. Here we concentrate on the
two most commonly used: Constant returns to scale (CRS) means that the production can
be scaled arbitrarily up and down. Formally, that is

(x, y) ∈ Ψ ⇒ λ(x, y) ∈ Ψ for all λ ≥ 0, (2)

and we will refer to this as Ψ satisfying CRS. On the other hand, the less restrictive assump-
tion of variable returns to scale (VRS) means that rescaling of all points in the production
possibility set is not necessarily possible, i.e. that (2) is not assumed to be satisfied. Con-
stant returns to scale implies that the efficiency is invariant under simultaneous scaling
of both inputs and outputs, contrary to the variable returns to scale scenario where the
efficiency likely varies when scaling the units. We will denote the input efficiencies when
assuming CRS or VRS as θCRS and θV RS respectively.

We define the operator C(·) such that

C(Ψ) = {(x, y) ∈ Rp+q
+ | (x, y) = η(x̃, ỹ) for some (x̃, ỹ) ∈ Ψ and η ≥ 0}, (3)

i.e. the smallest set containing Ψ that also exhibits CRS. Thus C(Ψ) = Ψ if (and only if)
Ψ exhibits CRS.

For later reference, we collect all assumptions on the production possibility set in As-
sumption 1 below. We will distinguish between the VRS and the CRS cases.
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Assumption 1. A production possibility set Ψ is said to satisfy Assumption 1 (a) resp.
(b) if

(a) Ψ is closed, convex and satisfies strong disposability in both inputs and outputs, such
that if (x, y) ∈ Ψ, and x̃ ≥ x and 0 ≤ ỹ ≤ y, then (x̃, y) ∈ Ψ and (x, ỹ) ∈ Ψ.
Furthermore, it satisfies that if (x, y) ∈ Ψ and x = 0, then y = 0.

(b) In addition to (a), the production possibility set Ψ is assumed to satisfy CRS.

Under Assumption 1 (a) let (x, y) ∈ Ψ \ {(0, 0)}, and note that θ(x, y | Ψ) > 0. Define

δ(x, y | Ψ) = θ(x, y | Ψ) · x,

where clearly (δ(x, y | Ψ), y) ∈ Ψδ. Defining

z(y) = ‖y‖, v(y) =
y

‖y‖
=

y

z(y)
, w(x) =

x

‖x‖
,

we see from the definition of θ(x, y | Ψ) that δ(x, y | Ψ) has the form

δ(x, y | Ψ) = φ(z(y), v(y), w(x)) (4)

for some measurable map φ. If furthermore Assumption 1 (b) is satisfied, this map in fact
has the form

δ(x, y | Ψ) = z(y) · φ̃(v(y), w(x)), (5)

for some measurable map φ̃.

2.2 Statistical model, estimation and notation

In applications the underlying production possibility set Ψ will typically be unknown and
therefore has to be estimated from observed production units. We consider n such produc-
tion units, represented as random vectors with a distribution that has support on Ψ. In
the following Ψ is a production possibility set that satisfies either Assumption 1 (a) or (b).
For convenience, we use the notation X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn).

Assumption 2. Let F be a continuous distribution on Rp+q
+ with support Ψ, where Ψ is a

production possibility set satisfying Assumption 1 (a) or (b). A family of random variables
(X,Y) is said to satisfy Assumption 2 with distribution F , if (X1, Y1), . . . , (Xn, Yn) are in-
dependent and identically distributed random vectors such that each (Xi, Yi) has distribution
F .

A few additional pieces of notation will be convenient. In line with the notation intro-
duced in the end of Section 2.1: Let Zi = ‖Yi‖ and Vi = Yi

Zi
. Furthermore, let Wi = Xi

‖Xi‖ ,

Θi = θ(Xi, Yi | Ψ) and Xi,δ = Θi ·Xi. Note that Xi,δ is deterministically known from Zi, Vi,
and Wi in a way that is only determined by Ψδ since

Xi,δ = φ(Zi, Vi,Wi). (6)

Under Assumption 1 (a) and Assumption 2, the production possibility set Ψ can be
estimated by

Ψ̂V RS(X,Y) = {(x, y) ∈ Rp+q
+ |∃ω ∈ Rn

+ : x ≥ Xω, y ≤ Yω,
∑

ωi = 1} .
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The input efficiency index for (x, y) is estimated by

θ̂V RS(x, y | X,Y) = min
θ,ω
{θ | θx ≥ Xω, y ≤ Yω,

∑
ωi = 1, ω ∈ Rn

+} .

Analogously, under Under Assumption 1 (b) and Assumption 2, the production possibility
set Ψ is estimated by

Ψ̂CRS(X,Y) = {(x, y) ∈ Rp+q
+ |∃ω ∈ Rn

+ : x ≥ Xω, y ≤ Yω} ,

whereas the input efficiency index for (x, y) is estimated by

θ̂CRS(x, y | X,Y) = min
θ,ω
{θ | θx ≥ Xω, y ≤ Yω, ω ∈ Rn

+} . (7)

Remark 1. For any set of observations X and Y, the additional requirement on ω in the
definition of θ̂V RS(x, y | X,Y) clearly implies that

θ̂V RS(x, y | X,Y) ≥ θ̂CRS(x, y | X,Y)

, for all (x, y) ∈ Rp+q
+ .

Remark 2. It should be noted that θ̂CRS(x, y | X,Y) is well defined for all (x, y) ∈ Rp+q
+ .

If (x, y) /∈ Ψ̂CRS(X,Y), the value will be above 1. On the other hand θ̂V RS(x, y | X,Y) is
not necessarily well defined outside of Ψ̂V RS(X,Y).

In Section 4 we consider observations from two different and independent groups of
production units. There the notation will be extended appropriately.

The test procedures described in the following sections will rely on permutation meth-
ods. For this we will need to introduce a few additional pieces of notation. For any
d ∈ N we let Sd denote the set of all permutations of {1, . . . , d}, i.e. the set of all bi-
jections of {1, . . . , d} into itself. Any σ ∈ Sd can thus be represented as a reordering
σ = (σ(1), . . . , σ(d)) of the numbers in {1, . . . , d}.

Furthermore, for any Borel space X and permutation σ = (σ(1), . . . , σ(d)) ∈ Sd, we let
σX denote the map X d → X d defined by

σX (x1, . . . , xd) = (xσ(1), . . . , xσ(d)),

for x1, . . . , xd ∈ X .
Finally, if X = (X1, . . . , Xn) and S = {s1, . . . , sn′} ⊆ {1, . . . , n} is a set of indices, then

we define
X(S) = (Xs1 , . . . , Xsn′

). (8)

3 Inference on scalability of production

In this section we will work under Assumption 1 (a) and Assumption 2. We refer to the
notation introduced after Assumption 2. Recalling, in particular, that Zi = ‖Yi‖, the main
interest in this section will be to test the hypothesis of distributional scalability, i.e. that
production is independent of the scaling in the sense that

H : Zi and
(Xi, Yi)

Zi
are stochastically independent for each i. (9)
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Remark 3. In words, the hypothesis means that the output size factor out of the production
distribution as an independent component.

Remark 4. If the hypothesis (9) is satisfied (in addition to Assumption 1 (a) and Assump-
tion 2), then in particular the production possibility set Ψ satisfies CRS: The independence

in (9) gives that the distribution of the variable
(
Zi,

(Xi,Yi)
Zi

)
has support in a product set

A×B, where A ⊆ [0,∞) and B ⊆ Sp+q−1
+ with Sp+q−1

+ denoting the positive unit sphere in
Rp+q. From the strong disposability in Assumption 1 (a) we have that in fact A = [0,∞).
We then immediately see that for any possible value (x, y) of (Xi, Yi), all rescalings λ(x, y)
can happen as well.

In Proposition 1 below we give a condition under which the hypotheses (9) and CRS
coincide.

Proposition 1. Assume that Assumption 1 (a) and Assumption 2 are satisfied. Assume
additionally for each i = 1, . . . , n that Zi is independent of (Vi,Wi,Θi), then the hypothesis
in (9) is equivalent with

H : The production possibility set Ψ satisfies CRS. (10)

Note that, the independence assumption in Proposition 1 can be checked graphically,
using estimated efficiencies.

Proof. Due to Remark 4 it suffices to show that under the independence assumption of the
proposition, hypothesis (10) implies hypothesis (9).

Thus we assume that Zi is independent of (Vi,Wi,Θi) and that Ψ satisfies CRS. Then,
recalling the notation Zi, Vi,Wi from Section 2.2, we have from (5) that Xi,δ has the form

Xi,δ = Zi · φ̃(Vi,Wi),

such that

Xi =
Zi · φ̃(Vi,Wi)

Θi

.

Then,
(Xi, Yi)

Zi
=
( φ̃(Vi,Wi)

Θi

, Vi

)
,

from which the independence in (9) is directly obtained from the independence between Zi
and (Vi,Wi,Θi).

A measure of the difference between CRS and VRS (also known as scale efficiency) for
any (potential) observation (x, y) ∈ Rp+q

+ , is

θ̂V RS(x, y | X,Y)

θ̂CRS(x, y | X,Y)
,

and the overall difference can be measured by the geometric mean of the n ratios, when
calculated in all (Xi, Yi). That is, the test statistic for scalability Trts(X,Y) is given by

Trts(X,Y) =

(
n∏
i=1

θ̂V RS(Xi, Yi | X,Y)

θ̂CRS(Xi, Yi | X,Y)

)1/n

. (11)
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Remark 5. Since, by construction, all (Xi, Yi) ∈ Ψ̂V RS(X,Y), the test statistic Trts(X,Y)
is well defined due the considerations in Remark 2. Additionally, Remark 1 gives that
Trts(X,Y) ≥ 1.

The statistic will be used to test the hypothesis (9) but with special emphasis on the
hypothesis (10) of CRS: A value of Trts(X,Y) significantly above one will be evidence
against the hypothesis. To underline this interpretation, as we will see in Section 5.1,
Trts(X,Y) converges in probability to a value strictly larger than 1, when the sample size
tends to infinity and CRS is not satisfied.

Remark 6. The information contained in X and Y enters the test statistic Trts(X,Y) in
two different ways: Via the DEA estimation procedure and through the points (x, y) ∈ Rp+q

+

the estimators are calculated in. However, in the subsequent permutation procedures we
perform the same alterations on both of the (identical) versions of (X,Y). Therefore, the
notation for Trts(X,Y) only expresses one unified dependence on (X,Y).

The distribution of the test statistic Trts(X,Y) is unknown under the hypothesis (9) of
scalability of production. However, the significance of the hypothesis in (9) can be evaluated
using permutation methods of the type described in Section 7. For this, Procedure 1 below
can be applied to generate test statistics that under H have the same marginal distribution
as Trts(X,Y).

Procedure 1. Based on the family of variables (X,Y) we follow 1–5 below to derive the
variable T̃rts

1. Recall the definitions Zi = ‖Yi‖ and Vi = Yi
Zi

. Furthermore define Ui = Xi
Zi

.

2. Let σ = (σ(1), . . . , σ(n)) be randomly chosen according to the uniform distribution on
Sn.

3. Define the new variables Z̃i, i = 1, . . . , n, by

(Z̃1, . . . , Z̃n) = (Zσ(1), . . . , Zσ(n)).

4. Define X̃i = Z̃i · Ui and Ỹi = Z̃i · Vi for each i = 1, . . . , n.

5. Define
T̃rts = Trts(X̃, Ỹ),

where X̃ = (X̃1, . . . , X̃n) and Ỹ = (Ỹ1, . . . , Ỹn).

The following theorem gives that the comparison of Trts(X,Y) with the empirical dis-
tribution of variables generated independently according to Procedure 1 can be used to
construct a test of the hypothesis in (9), where the size is controlled. Note that the Theo-
rem requires Assumption 1 (a) but then states the result under hypothesis H in (9). This
also covers Assumption 1 (b), but it is usual practice to state the hypothesis in question
explicitly in a theorem about the behaviour of a test statistic.
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Theorem 1. Let (X,Y) be a family of random variables satisfying Assumption 1 (a)
and Assumption 2. Let N ∈ N be given, and suppose that T̃ 1

rts, . . . , T̃
N
rts are generated

independently according to Procedure 1. Define

p̃ =
1

N + 1

(
1 +

N∑
j=1

1{Trts(X,Y)≤T̃ jrts}

)
.

Then under the hypothesis in (9) it holds that(n!− (N + 1)

n!

)N(
α− 1

N + 1

)
≤ P (p̃ ≤ α) ≤ α, (12)

for all α ∈ (0, 1).

Remark 7. Theorem 1 provides a significance probability in terms of p̃ for testing the
hypothesis in (9). The inequalities in (12) mean that the size of the test is controlled: If,

for example, n = 50 and N = 1000 then the first factor
(
n!−(N+1)

n!

)N
is indistinguishable

from 1 and the inequalities read

α− 0.001 ≤ P (p̃ ≤ α) ≤ α.

Thus the probability of making a type I error is very close to α.

Remark 8. Obviously, it is a requirement in Theorem 1 that n! > N + 1. However, the
theorem will only be useful if n! >> N + 1. In cases, where n is very small (however, still
large enough to make DEA–estimates well defined), it is instead recommended to replace
the randomly chosen permutations in Procedure 1 by systematically going through all per-
mutations. In that case the inequalities in (12) can be simplified and sharpened by using
(29) instead of (30) in Theorem 6 in the Appendix.

Proof of Theorem 1. We use the framework and results from Section 7 in the Appendix.
More precisely, we let G be all transformations of the dataset (X,Y) that are possible
via Procedure 1. Then the number of elements in G is M = n! since each transformation
corresponds to a permutation of (Z1, . . . , Zn).

With this choice of G and the notation from Procedure 1 we easily find that Assump-
tion 4 from Section 7 in the Appendix is satisfied: For any permutation σ ∈ Sn and
(Z̃1, . . . , Z̃n) defined accordingly we have, due to the independent and identical distribu-
tion of (Xi, Yi)

n
i=1, that the variables (Z̃i)

n
i=1 jointly have the same distribution as (Zi)

n
i=1.

Furthermore, the independence property given by (9) gives that both (Z̃i)
n
i=1 and (Zi)

n
i=1

are jointly independent of (Ui, Vi)
n
i=1 (recalling the definition Ui = Xi

Zi
from Procedure 1).

That leads to the conclusion that (X̃i, Ỹi)
n
i=1 are independent and distributed with the same

distribution F as the original observations (Xi, Yi).
Furthermore, we have that Assumption 5 from Section 7 in the Appendix is satisfied

with K = 1: This is simply due to the fact that (Xi, Yi) has an absolute continuous
distribution, making the VRS–estimated frontier and efficiencies different across different
permutations in Procedure 1.

Now the result of Theorem 1 follows from Theorem 6 in Section 7 in the Appendix.
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Corollary 1. Assume that (X,Y) is a family of random variables satisfying Assumption 1
(a) and Assumption 2, such that additionally for each i = 1, . . . , n the variable Zi is inde-
pendent of (Vi,Wi,Θi). Then the conclusion of Theorem 1 holds true under the hypothesis
in (10).

Proof. This is a direct consequence of Proposition 1.

4 Inference on common frontiers for two groups of

firms

In this section we will be concerned with two families of random variables (X1,Y1) and
(X2,Y2), where X1 = (X1

1 , . . . , X
1
n1

), Y1 = (Y 1
1 , . . . , Y

1
n1

), X2 = (X2
1 , . . . , X

2
n2

) and Y2 =
(Y 2

1 , . . . , Y
2
n2

) from two different groups of production units. Without loss of generality
we assume that n1 ≤ n2. For these two families we make the Assumption 3 below. In
particular, we make the CRS assumption for both groups. Throughout the section we for
simplicity, will use the notation θ̂ instead of θ̂CRS.

Assumption 3. The two families (X1,Y1) and (X2,Y2) are said to satisfy Assumption 3,
if

(i) for each g = 1, 2, the continuous distribution Fg on Rp+q
+ has support Ψg, where Ψg

satisfies Assumption 1 (b) (CRS).

(ii) for each g = 1, 2, the variables (Xg
1 , Y

g
1 ), . . . , (Xg

ni
, Y g

ng) are independent and identi-
cally distributed random vectors such that each (Xg

i , Y
g
i ) has distribution Fg.

(iii) (X1,Y1) and (X2,Y2) are independent.

Remark 9. In Section 4.1 we discuss the implications of relaxing Assumption 1 (b) to 1
(a) in Assumption 3 (i),.

Based on the notation from Assumption 3 we can now introduce the hypothesis that
will be the main focus of this section

H : F1 = F2. (13)

Remark 10. In Proposition 2 below we demonstrate that (13) simplifies to a comparison
of the two production possibility sets under an additional assumption about the distributions
in the two groups. Note, that equality between production possibility sets is equivalent to
equality between frontiers.

Similar to the notation introduced in Section 2.2 we define for each group g = 1, 2 and

production unit i = 1, . . . , ng: Z
g
i = ‖Y g

i ‖, V
g
i =

Y gi
Zgi

, W g
i =

Xg
i

‖Xg
i ‖

, Θg
i = θ(Xg

i , Y
g
i | Ψg), and

Xg
i,δ = Θg

i ·X
g
i . Additionally, Xg

i,δ is known from (Zg
i , V

g
i ,W

g
i ), since

Xg
i,δ = φg(Z

g
i , V

g
i ,W

g
i ), (14)

where the deterministic function φg only depends on Ψg.

10



Proposition 2. Assume that (X1,Y1) and (X2,Y2) satisfy Assumption 3. If, additionally,
(V 1

i ,W
1
i , Z

1
i ,Θ

1
i ) and (V 2

i ,W
2
i , Z

2
i ,Θ

2
i ) have the same distribution, then the hypothesis in

(13) is equivalent with
H : Ψ1 = Ψ2. (15)

Remark 11. In the test procedure presented in Theorem 2 below it will, in fact, only be
required that (V 1

i ,W
1
i ,Θ

1
i ) and (V 2

i ,W
2
i ,Θ

2
i ) have same distribution to ensure that the test

concerns the hypothesis in (15), cf. Corollary 2.

Proof of Proposition 2. Clearly, the requirement given by (13) is stronger than the require-
ment given by (15), so it suffices to demonstrate that the assumptions of Proposition 2
implies (13).

When assuming (15) we also have that φ1 = φ2 in (14). From (14) combined with the

relations Xg
i =

Xg
i,δ

Θgi
and Y g

i = V g
i · Z

g
i , we have a deterministic function H such that

(Xg
i , Y

g
i ) = H(Zg

i , V
g
i ,W

g
i ,Θ

g
i ),

for all g = 1, 2 and i = 1, . . . , ng. If also (V 1
i ,W

1
i , Z

1
i ,Θ

1
i ) and (V 2

i ,W
2
i , Z

2
i ,Θ

2
i ) have equal

distributions, then (X1
i , Y

1
i ) and (X2

i , Y
2
i ) have equal distributions, which is exactly the

assumption in (13).

Below we introduce two methods to test the hypothesis (13). The tests are both designed
to evaluate (13) but with a special emphasis on (15). However, the interpretation of the
alternative hypothesis is different in the two cases. We will elaborate on the differences
subsequently, but generally the test statistic TMdiff defined in Procedure 2 below is designed
to detect overall differences between the frontiers, whereas the second test statistic TMnest is
designed to detect whether one of the groups has better production possibilities than the
other, i.e. whether one of the technologies is nested within the other.

It should be emphasized that Assumption 3 allows for an unbalanced design, i.e. unequal
sample sizes for the two groups of production units. Therefore, the comparison of the two
groups of production units will be based on a jackknife procedure using several subsets of
equal size.

Suppose that two pairs of random vectors X = (X1, . . . , Xn1), Y = (Y1, . . . , Yn1) and
X̃ = (X̃1, . . . , X̃n1), Ỹ = (Ỹ1, . . . , Ỹn1), respectively, represent observations from two pro-
duction groups. Then we use the statistics

Tdiff ((X,Y), (X̃, Ỹ)) =

 n1∏
i=1

(
max{θ̂(Xi, Yi | X,Y), θ̂(Xi, Yi | X̃, Ỹ)}
min{θ̂(Xi, Yi | X,Y), θ̂(Xi, Yi | X̃, Ỹ)}

) 1
2n1


·

 n1∏
i=1

(
max{θ̂(X̃i, Ỹi | X,Y), θ̂(X̃i, Ỹi | X̃, Ỹ)}
min{θ̂(X̃i, Ỹi | X,Y), θ̂(X̃i, Ỹi | X̃, Ỹ)}

) 1
2n1

 ,

and

Tnest((X,Y), (X̃, Ỹ)) =

 n1∏
i=1

(
θ̂(Xi, Yi | X,Y)

θ̂(Xi, Yi | X̃, Ỹ)

) 1
2n1

 ·
 n1∏

i=1

(
θ̂(X̃i, Ỹi | X,Y)

θ̂(X̃i, Ỹi | X̃, Ỹ)

) 1
2n1

 ,

to obtain measures for the difference between the two production possibility sets.

11



Remark 12. To explain the expressions, the statistic Tdiff ((X,Y), (X̃, Ỹ)) is a product of
2n1 factors that are each of the type

max{θ̂(X, Y | X,Y), θ̂(X, Y | X̃, Ỹ)}
min{θ̂(X, Y | X,Y), θ̂(X, Y | X̃, Ỹ)}

,

where (X, Y ) is an input–output pair from either (X,Y) or (X̃, Ỹ). This is a measure of
the difference between the efficiencies for (X, Y ) relative to each of the estimated production
possibility sets Ψ̂CRS(X,Y) and Ψ̂CRS(X̃, Ỹ); a value substantially larger than 1 means a
difference between the two estimated production possibility sets in that direction, and con-
sequently indicates a difference between the true production possibility sets. By definition,
it always hold that Tdiff ((X,Y), (X̃, Ỹ)) ≥ 1.

Similarly, the test statistic Tnest((X,Y), (X̃, Ỹ)) consists of 2n1 factors of the type

θ̂(X, Y | X,Y)

θ̂(X, Y | X̃, Ỹ)
,

that in the direction of (X, Y ) compares the production possibilities within Ψ̂CRS(X,Y) and
Ψ̂CRS(X̃, Ỹ). A value above 1 means better production possibilities within Ψ̂CRS(X̃, Ỹ).
Thereby the value of Tnest((X,Y), (X̃, Ỹ)) makes an overall comparison of the two pro-
duction possibility sets, such that a value above 1 indicates that the group represented by
(X̃, Ỹ), on average over all observed directions, has better production possibilities. Con-
versely, a value below 1 means that the group represented by (X,Y) has the best production
possibilities.

Remark 13. It should be noted that if e.g. the input–output pair (X, Y ) in Remark 12
are among the variables in (X,Y), then due to Remark 2 using CRS–based DEA–estimates
ensures that θ̂(X, Y | X̃, Ỹ) is always well defined - also when (X, Y ) /∈ Ψ̂CRS(X̃, Ỹ). In
that case, the efficiency score will be greater than 1. Relaxing the CRS–assumption would
require estimation of the hyperbolic efficiency measure instead. This is briefly discussed in
Section 4.1.

The test statistics Tdiff ((X,Y), (X̃, Ỹ)) and Tnest((X,Y), (X̃, Ỹ)) are defined such that
X,Y, X̃, Ỹ all have length n1 and is therefore not directly applicable when using (X1,Y1)
and (X2,Y2). To make an evaluation of (13) based on all variables in (X2,Y2) we use
TMdiff ((X1,Y1), (X2,Y2)) and TMnest((X1,Y1), (X2,Y2)) defined in Procedure 2 below.

Procedure 2. Let M ∈ N be given. Based on X1,Y1,X2,Y2 and for each m = 1, . . . ,M
we follow

1. Draw randomly without replacement, and independently for varying m, a vector sm =
(sm1 , . . . , s

m
n1

) of length n1 from the set {1, . . . , n2}.

2. Define (recalling the notation introduced in (8))

X̃m = X2(sm) and Ỹm = Y2(sm).

Then define

TMdiff = TMdiff ((X1,Y1), (X2,Y2)) =

(
M∏
m=1

Tdiff ((X1,Y1), (X̃m, Ỹm))

) 1
M

,

12



and

TMnest = TMnest((X1,Y1), (X2,Y2)) =

(
M∏
m=1

Tnest((X1,Y1), (X̃m, Ỹm))

) 1
M

.

Remark 14. We will assume that all repeated applications of Procedure 2 will rely on the
same M randomly chosen subsets. In practice it does not make much difference, but it
simplifies the subsequent proofs and it makes the comparison of TMdiff and TMnest with T̃diff
and T̃nest, respectively, more direct.

Remark 15. Note that the purpose of the jackknife described in Procedure 2 above, as
opposed to using e.g. Tdiff ((X1,Y1), (X2,Y2)) when (X1,Y1) and (X2,Y2) have different
lengths, is to make the bias that arises when estimating the frontier in each of the two
groups of the same magnitude. This has no effect on the rejection rate under the hypothesis
of equal distributions in the two groups – the permutation argument above works both with
and without jackknifing. However, the use of jackknifing is of substantial importance for the
rejection rate when the hypothesis of equal frontiers (or distributions) is false, i.e. for the
power of the test. Without jackknifing, different group sizes will lead to unequal magnitudes
of the biases for the two frontiers, and this may neutralize the real difference between them.
This effect is illustrated as part of the simulation study in Section 9.2 in the Supplementary
material.

Remark 16. The two test statistics TMdiff and TMnest directly inherits the interpretation from
Remark 12. Thus TMdiff attaining a value substantially above 1, or TMnest having a value far
from 1, will both be indications that the hypothesis (13) is incorrect.

Remark 17. It should be noted that TMdiff and TMnest are random given X1,Y1,X2,Y2 due to
the randomness in step 1 in Procedure 2. This randomness is easily controlled by adjusting
M , and if n1 and n2 are close it is indeed possible to replace the M random vectors sm

by the non–random collection of all n1–subsets of {1, . . . , n2}. If in fact n1 = n2, then
Procedure 2 just means that M = 1 and

T 1
diff ((X1,Y1), (X2,Y2)) = Tdiff ((X1,Y1), (X2,Y2)),

T 1
nest((X1,Y1), (X2,Y2)) = Tnest((X1,Y1), (X2,Y2)).

From Remark 16 we have interpretations of the value of TMdiff and TMnest in relation to
the hypothesis (13). However, the distribution of both is unknown under (13). Instead
we propose to apply Procedure 3 below to generate test statistics with the same marginal
distribution as TMdiff and TMnest under (13).

Procedure 3. Let M ∈ N be given. Based on X1,Y1,X2,Y2 we follow

1. Define

X = (X1,X2) = (X1
1 , . . . , X

1
n1
, X2

1 , . . . , X
2
n2

),

Y = (Y1,Y2) = (Y 1
1 , . . . , Y

1
n1
, Y 2

1 , . . . , Y
2
n2

).

2. Draw randomly, without replacement, a vector s1 = (s1
1, . . . , s

1
n1

) of length n1 from
the set {1, . . . , n1 + n2}.

13



3. Let s2 = (s2
1, . . . , s

2
n2
} = {1, . . . , n1 + n2} \ s1.

4. Define (recalling the notation defined in (8))

X̃1 = X(s1), Ỹ1 = Y(s1), X̃2 = X(s2), Ỹ2 = Y(s2).

5. Based on X̃1, Ỹ1, X̃2, Ỹ2 use Procedure 2 (recalling Remark 14) to calculate

T̃diff = TMdiff ((X̃1, Ỹ1), (X̃2, Ỹ2)),

and
T̃nest = TMnest((X̃1, Ỹ1), (X̃2, Ỹ2)).

Theorem 2. Let (X1,Y1) and (X2,Y2) be two families of random variables that satisfy
Assumption 3. Let N ∈ N and M ∈ N be given, and suppose that T̃ 1

diff , . . . , T̃
N
diff and

T̃ 1
nest, . . . , T̃

N
nest are generated independently according to Procedure 3. Define

p̃diff =
1

N + 1

(
1 +

N∑
j=1

1{TMdiff (X1,Y1,X2,Y2)≤T̃ jdiff}

)
,

and

p̃nest =
1

N + 1

(
1 +

N∑
j=1

1{TMnest(X1,Y1,X2,Y2)≤T̃ jnest}

)
.

Then under the hypothesis in (13) it holds that((
n1+n2

n1

)
− (N + 1)(

n1+n2

n1

) )N (
α− 2

N + 1

)
≤ P (p̃diff ≤ α) ≤ α, (16)

and ((
n1+n2

n1

)
− (N + 1)(

n1+n2

n1

) )N (
α− 1

N + 1

)
≤ P (p̃nest ≤ α) ≤ α, (17)

for all α ∈ (0, 1).

Remark 18. Theorem 2 provides significance probabilities for two tests of the hypothesis
(13), which under the additional assumptions in Proposition 2 is equivalent with the hy-
pothesis in (15). The inequalities in (16) and (17) display to what extend the sizes of the
two tests are controlled.

The difference between the tests lies in which part of the alternative hypotheses there
is an emphasis on detecting. The test based on the significance probability p̃diff is designed
to detect overall differences between the two frontiers, while the test based on p̃nest will
detect whether the hypothesis is violated in a way, where Ψ1 ⊂ Ψ2. If the emphasis is on
the alternative Ψ1 ⊃ Ψ2 instead, the inequality in the definition of p̃nest should be turned
around. That the two tests, in fact, has emphasis on these alternatives is underlined by the
consistency results demonstrated in Section 5.2.
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Proof of Theorem 2. We use the framework and results of Section 7 in the Appendix. Let G
be all transformations of the dataset (X1,Y1), (X2,Y2) that are possible via Procedure 3,
that is, all unordered divisions into two sub–groups of n1 and n2 elements, respectively.
Then there are M =

(
n1+n2

n1

)
elements in G. That all new datasets (X̃1, Ỹ1, X̃2, Ỹ2)

created by Procedure 3 have the same distribution as (X1,Y1), (X2,Y2), when assuming
the hypothesis in (13), is obvious.

All new divisions of the observations into two sub–groups will, with probability 1, give
different values of T̃nest. Thus, in that case and with the notation from Section 7 in the
Appendix, we can choose K = 1. In the case n1 = n2 (or in the degenerate case, where all
subsets in Procedure 2 are the same), two different applications of Procedure 3, i.e. two
different divisions of the observations into sub–groups, may lead to the same value of T̃diff –
namely the two divisions, where the two groups are interchanged. Thus, for T̃diff we choose
K = 2.

The desired result now follows from Theorem 6 in Section 7 in the Appendix.

Up to now, the CRS assumption has played a role in making the test statistics well
defined: this can be circumvented by changing the efficiency measure as described in Sec-
tion 4.1 below. However, the assumption of CRS can furthermore provide a simplification
of the assumptions required in Proposition 2, with the purpose of simplifying the hypothesis
(13) under consideration. This is summarized in Corollary 2 below.

Corollary 2. Assume that the two families (X1,Y1) and (X2,Y2) of random variables
satisfy Assumption 3. If the data generating process furthermore is such that (V 1

i ,W
1
i ,Θ

1
i )

and (V 2
i ,W

2
i ,Θ

2
i ) have the same distribution, then the conclusion of Theorem 2 holds true

under the hypothesis (15).

Proof. Similarly to the proof of Proposition 2 we have for g = 1, 2 that Xg
i and Y g

i are
given by

Xg
i = Zg

i

H(V g
i ,W

g
i )

Θg
i

and Y g
i = Zg

i · V
g
i , (18)

where H is independent of g = 1, 2 due to the hypothesis assumption (15). The multiplica-
tive structure of θ̂(x, y | X,Y) in x, y,X,Y (cf. (7)) then gives that for all g, g′ and all i
the estimate θ̂(Xg

i , Y
g
i | Xg′ ,Yg′) is independent of Z1

1 , . . . , Z
1
n1
, Z2

1 , . . . , Z
2
n2

. Consequently,
the test statistics TMdiff and TMnest will not depend on Z1

1 , . . . , Z
1
n1
, Z2

1 , . . . , Z
2
n2

either.
For g = 1, 2, let the vectors (X∗g,Y

∗
g) be the family of input–output pairs (Xg,∗

i , Y g,∗
i )

obtained by using (18) with (V g
i ,W

g
i ,Θ

g
i , Z

g
i ) replaced by (V g

i ,W
g
i ,Θ

g
i , Z

g,∗
i ), where Zg,∗

i

for all i, g are independent of each other and of everything else and follow the same (also
for varying g = 1, 2) continuous distribution concentrated on [0,∞). Note that (X∗g,Y

∗
g)

has exactly the same production possibility set as (Xg,Yg) for g = 1, 2 and will therefore
satisfy the requirements for Proposition 2. So Proposition 2 gives that when Theorem 2 is
applied based on the variables (X∗1,Y

∗
1) and (X∗2,Y

∗
2), the result holds under the hypothesis

(15).
On the other hand, due to the considerations above, using the two families (X∗1,Y

∗
1)

and (X∗2,Y
∗
2) in Theorem 2 will lead to exactly the same test statistics and significance

probabilities as when using (X1,Y1) and (X2,Y2). This concludes the proof.
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4.1 Other efficiency measures

In Section 4 we have until now made Assumption 1 (b) about the production possibility
set satisfying CRS. Consequently, the test statistics TMdiff and TMnest have been based on
CRS DEA–estimates of the input efficiency. These could, alternatively, have been based
on output-oriented efficiency measures, with trivial modifications (still assuming CRS).

Relaxing the assumptions to only cover Assumption 1 (a) and instead using the VRS
input efficiency estimates, could be problematic, since θ̂V RS(x, y | X,Y) is not necessarily
well defined (not even asymptotically), when (x, y) /∈ Ψ̂V RS(X,Y). On the other hand,
the hyperbolic efficiency estimate is well defined for all (x, y). Färe et al. (2016) propose
a linear programming approach for estimating the hyperbolic efficiency within the DEA
framework. All results in Section 4, except Proposition 2 and Corollary 2, are still valid
in the case, where input efficiency estimates in TMdiff and TMnest are replaced by hyperbolic
efficiency scores.

5 Consistency

The two subsections below will demonstrate consistency of the test methods introduced in
Sections 3 and 4, i.e. that if the hypothesis under study is not satisfied, then the hypothesis
will be rejected with increasing probability as the sample size increases.

To keep the presentation as simple as possible, we assume that necessary regularity
conditions are satisfied, making various DEA–estimates point wise consistent, such that

e.g. θ̂V RS(x, y | X,Y)
P→ θ(x, y | Ψ) for all (x, y) ∈ Ψ as the sample size n increases (see

e.g. Kneip et al. (1998) for conditions ensuring such point wise consistency).

5.1 The test on scalability of frontiers

Recall Procedure 1 that constructs a new dataset (X̃, Ỹ) by a permutation of (Z1, . . . , Zn),
where Zi = ‖Yi‖. Theorem 3 below gives that an observation pair (X̃, Ỹ ) in (X̃, Ỹ) satisfies
the hypothesis in (9), when the pair is constructed from two different original observations
(Xi, Yi) and (Xj, Yj); also in the situation, where (X,Y) does not satisfy (9).

Theorem 3. Suppose Assumptions 1 (a) and 2 are satisfied. Let i, j ∈ {1, . . . , n} with
i 6= j and define

X = Zj · Ui and Y = Zj · Vi.

Defining Z = ‖Y ‖, and let F denote the distribution of (X,Y ), and let Ψ denote the
production possibility set of F . Then

(i) Z and (X,Y )

Z
are independent.

(ii) F is independent of n.

(iii) Ψ satisfies CRS.

Proof. Statement (i) follows directly from the independence between (Xi, Yi) and (Xj, Yj),
and (ii) is a result of the fact that the two distributions are independent of n. Statement
(iii) follows from combining (i) with Remark 4.
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For a permutation σ ∈ Sn we say that i ∈ {1, . . . , n} is a fixed point, if σ(i) = i.
Furthermore, σ is a derangement if it has no fixed points. The number of derangements in
Sn is denoted !n, and it is well–known that

!n =

⌊
n!

e

⌋
,

where b·c denotes the integer part. The following lemma gives the distribution of the
number of fixed points, when a permutation is chosen randomly.

Lemma 1. Suppose that σ is chosen randomly according to the uniform distribution on
Sn. Let Nσ denote the number of fixed points of σ. Then the distribution of Nσ is given by

P (Nσ = k) =
!(n− k)

k! · (n− k)!
, (19)

for k ∈ {0, . . . , n}. Furthermore Nσ
D→ Pois(1) as n → ∞. Here

D→ denotes convergence
in distribution, and Pois(1) denotes the Poisson distribution with mean 1.

Proof. For any choice of k ∈ {0, . . . , n} and distinct numbers m1, . . . ,mk ∈ {1, . . . , n},
there are !(n − k) permutations in Sn with m1, . . . ,mk as fixed points: The permutation
of the n − k remaining numbers {1, . . . , n} \ {m1, . . . ,mk} needs to be a derangement.
Furthermore for k given, there are

(
n
k

)
possible choices of m1, . . . ,mk. Since there are n!

elements in Sn, we find

P (Nσ = k) =
!(n− k) ·

(
n
k

)
n!

=
!(n− k)

k! · (n− k)!
,

which is (19).
The second statement of the lemma follows by letting n → ∞ in (19), using that

!n ∼ n!
e

.

We now introduce the notation (Xn,Yn) which is the same as the notation (X,Y)
defined previously, but making the n–dependence clear: I.e. Xn = (X1, . . . , Xn) and Yn =
(Y1, . . . , Yn), where (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed with
common distribution F . Similarly, we assume that (X1, Y 1), . . . , (Xn, Y n) are independent
and identically distributed with common distribution F , defined in Theorem 3. We let
Xn = (X1, . . . , Xn) and Yn = (Y 1, . . . , Y n). Finally, we also replace the notation (X̃, Ỹ)
defined in Procedure 1 by (X̃σ

n, Ỹ
σ
n) to clarify the dependence on n and the permutation

σ ∈ Sn.
We now consider the case, where the production possibility set Ψ of the distribution

F does not satisfy CRS. In particular, hypothesis (9) is not satisfied, cf. Remark 4. We
furthermore assume for both F and F that relevant regularity conditions are satisfied such
that the DEA–estimates are point wise consistent and the logarithm of the efficiency score
is integrable. Then from Lemma 4 in the supplementary material we have for F that

1

n

n∑
i=1

log θ̂V RS(Xi, Yi | Xn,Yn)
P→ E log(θ(X1, Y1 | Ψ)), (20)
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and
1

n

n∑
i=1

log θ̂CRS(Xi, Yi | Xn,Yn)
P→ E log(θ(X1, Y1 | C(Ψ))). (21)

And for F that

1

n

n∑
i=1

log θ̂V RS(X i, Y i | Xn,Yn)
P→ E log(θ(X1, Y 1 | Ψ)), (22)

and
1

n

n∑
i=1

log θ̂CRS(X i, Y i | Xn,Yn)
P→ E log(θ(X1, Y 1 | Ψ)). (23)

Note that E log(θ(X1, Y1 | Ψ)) > E log(θ(X1, Y1 | C(Ψ))), since Ψ ⊂ C(Ψ) where the
inclusion is strict due to the assumption that CRS is not satisfied. We also have that the
common limit in (22) and (23) equals E log(θ(X1, Y 1 | C(Ψ))) since C(Ψ) = Ψ.

Theorem 4. Under Assumption 1 (a), Assumption 2 and the additional assumptions stated
above, we have for p̃ defined in Theorem 1 that

p̃
P→ 0,

as n→∞.

Proof. Recalling Procedure 1, we define for a permutation σ ∈ Sn the n new variable pairs
(X̃i, Ỹi) for i = 1, . . . , n by

X̃i = Zσ(i) · Ui and Ỹi = Zσ(i) · Vi.

This can be represented by a directed graph G = (V,E) with vertices V = {1, . . . , n} and
with a directed edge from j to i if (X̃i, Ỹi) has the form

(X̃i, Ỹi) = (Zj · Ui, Zj · Vi).

Note that for each vertex there is exactly one edge leaving and one edge arriving. For the
fixed points m1, . . . ,mNσ of σ it is the same edge that leaves and arrives at the vertex.
Clearly, the n−Nσ vertices {1, . . . , n} \ {m1, . . . ,mNσ} that are not fixed points of σ will
form a number of directed cycles.

It is now possible to divide the n − Nσ non–fixed points into 3 groups such that no
vertex has neighbours that are connected to vertices in the same group. Furthermore, the
3 groups can be chosen such that they each have either bn−Nσ

3
c or bn−Nσ

3
c + 1 elements

respectively: All non–fixed points can, for example, be reordered such that vertices in the
same cycle appear consecutively in the ordering, and using this new ordering, the first
element is put into the first group, the second element is put into the second, the third
into the third, the fourth into the first, and so on. Let G1

σ, G
2
σ, G

3
σ denote the three groups

(recall that everything depends on n as well). Similarly, let G4
σ = {m1, . . . ,mNσ} denote

the group of fixed points for σ.
Recalling the notation defined in (8), we always have

θ(x, y | Ψ) ≤ θ̂V RS(x, y | X̃σ
n, Ỹ

σ
n) ≤ θ̂V RS(x, y | X̃σ

n(G`
σ), Ỹσ

n(G`
σ)), (24)
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for ` = 1, . . . , 4 (and similarly for the CRS estimator).
Now we find the following bounds for the statistic Trts(X̃

σ
n, Ỹ

σ
n) defined in Procedure 1,

using the inequalities in (24)

1 ≤ Trts(X̃
σ
n, Ỹ

σ
n) ≤

4∏
`=1

∏
i∈G`σ

θ̂V RS(X̃i, Ỹi | X̃σ
n(G`

σ), Ỹσ
n(G`

σ))1/n∏
i∈G`σ

θ(X̃i, Ỹi | Ψ)1/n
. (25)

By the choice of the groups G`
σ, the variable pairs (X̃i, Ỹi) within a group are independent.

Thus the collections (X̃σ
n(G`

σ), Ỹσ
n(G`

σ)) and (Xn(G`
σ),Yn(G`

σ)) have the same distribution,
where (Xn,Yn) and σ are independent. In particular, for ` = 1, . . . , 4 we find for the
nominator on the right hand side of (25) that∏

i∈G`σ

θ̂V RS(X̃i, Ỹi | X̃σ
n(G`

σ), Ỹσ
n(G`

σ))1/n D=
∏
i∈G`σ

θ̂V RS(X i, Y i | Xn(G`
σ),Yn(G`

σ))1/n. (26)

For ` = 1, 2, 3 the right hand side of this has the limit

exp

(
1

3
E log(θ(X1, Y 1 | Ψ))

)
, (27)

in probability by (22), using that |G`
σ| ∼ n

3
as n → ∞, since |G4

σ| = Nσ = oP (n) due to
Lemma 1. Similarly for ` = 4, the limit of the right hand side of (26) is 1 in probability,
using again that |G4

σ| = oP (n) as n → ∞. Moreover, the denominator of (25) is equal in
distribution to ∏

i∈G`σ

θ(X i, Y i | Ψ)1/n,

which by a direct application of the law of large numbers is seen to converge in probability
to (27) for ` = 1, 2, 3 and to 1 for ` = 4. In total, we have deduced that the upper bound
in (25) converges to 1 in probability. Therefore, also

Trts(X̃
σ
n, Ỹ

σ
n)

P→ 1,

as n→∞.
By a similar, but simpler, reasoning without dividing into sub–groups, we obtain that

Trts(Xn,Yn)
P→

exp
(
E log(θ(X1, Y1 | Ψ)

)
exp

(
E log(θ(X1, Y1 | C(Ψ)))

) ,
which is strictly greater than 1. Therefore,

P (Trts(Xn,Yn) ≤ Trts(X̃
σ
n, Ỹ

σ
n))→ 0,

as n→∞, which in turn gives
Ep̃→ 0.

From this the desired result is directly obtained.
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5.2 The test on common frontiers

The reasoning for the consistency of the tests proposed in Section 4 is similar to but
somewhat simpler than the arguments in Section 5.1. The aim is again to demonstrate

that p̃diff
P→ 0 and p̃nest

P→ 0 as n1 → ∞ (recall that n2 ≥ n1 by assumption), when the
hypothesis under investigation is false.

Suppose that the hypothesis in (13) is incorrect in such a way that

E0 :=E log(θ(X1
1 , Y

1
1 | Ψ1))− E log(θ(X1

1 , Y
1

1 | Ψ2))

+ E log(θ(X2
1 , Y

2
1 | Ψ1))− E log(θ(X2

1 , Y
2

1 | Ψ2)) 6= 0,

and note that (13) would give that all four terms in E0 are in fact equal, while a value
larger than 0 means that, generally across the directions in the two groups, Ψ2 is larger
than Ψ1, and similarly a negative value means that Ψ1 is larger than Ψ2. Also define

E1 :=E log(max{θ(X1
1 , Y

1
1 | Ψ1), θ(X1

1 , Y
1

1 | Ψ2)})
− E log(min{θ(X1

1 , Y
1

1 | Ψ1), θ(X1
1 , Y

1
1 | Ψ2)})

+ E log(max{θ(X2
1 , Y

2
1 | Ψ1), θ(X2

1 , Y
2

1 | Ψ2)})
− E log(min{θ(X2

1 , Y
2

1 | Ψ1), θ(X2
1 , Y

2
1 | Ψ2)}),

and note that E1 > 0 since E0 6= 0.
It can be seen that with X̃1, Ỹ1, X̃2, Ỹ2 constructed in Procedure 3 it holds that (X̃g

i , Ỹ
g
i )

are independent and have the same distribution across g = 1, 2 and varying observation
indices i. Let the common distribution be denoted F and let Ψ denote the corresponding
production possibility set.

Under suitable regularity conditions, we have point wise consistency and with another
reference to Lemma 4 in the supplementary material, we can obtain convergences similar
to (20)–(23). From such convergences we find that

T̃nest
P→ 1 and T̃diff

P→ 1,

while
Tnest

P→ exp(E0) and Tdiff
P→ exp(E1),

as n→∞. This directly gives that p̃diff
P→ 0 as n→∞.

If E0 > 0, we similarly have that p̃nest
P→ 0, while p̃nest

P→ 1 if E0 > 0. This demonstrates
that p̃nest can be used to test the one–sided alternative corresponding to E0 > 0, i.e. that
group 2 has better production possibilities than group 1.

6 Concluding remarks

The test for returns to scale presented in Section 3 is, in its current form, testing the differ-
ence between CRS and VRS. This could, just as well, be (re)formulated as a test comparing
non-decreasing returns to scale (NDRS) or non-increasing returns to scale (NIRS) to CRS.
Furthermore, the theory is presented in the case of input-oriented productivity measures,
but can, with appropriate modifications, be adapted to the case of output-orientation.
Modifying the tests comparing frontiers for independent groups, from CRS to NDRS and
NIRS, is left for future research.
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APPENDIX

7 Permutation tests

This appendix is a both condensed and extended version of Lehmann and Romano (2005,
Section 15.2) and displays definitions and relevant results concerning permutation tests,
which are applied throughout the paper.

We consider a measurable space (Ω,F , P ) with P ∈ P , where P is a family of probability
measures on (Ω,F). We think of data as an observation of a random object X defined on
(Ω,F , P ) with values in a sample space X . Focus will be on the null hypothesis

H : P ∈ P0, (28)

where P0 ⊂ P is a subset. Now let G be a group of transformations g : X → X with a finite
number M of elements. The following, that is known as the randomization hypothesis, will
be a crucial assumption when constructing permutation tests.

Assumption 4. It holds that

g(X)(P ) = X(P ) for all g ∈ G

for all P ∈ P0.

In our applications, G will be all possible permutations of a specified type of the data
set X, and Assumption 4 will be a requirement that such permutations cannot change the
distribution of X under the null hypothesis H.

For each x ∈ X we define the G-orbit set Gx as

Gx = {g(x) : g ∈ G}.

Across varying values of x, the sets Gx form a partition of X . Let G be the σ-algebra
generated by these sets.

Let furthermore T : X → R be a measurable function; making T (X) a test statistic.
In principle, T can be any measurable function, but to make the test procedure presented
below useful, it should have the property that T (X) has larger values under P , when
P /∈ P0 as compared to P ∈ P0. We have the following theorem describing the conditional
distribution of T (X) given the σ–algebra G. The proof is found directly in Lehmann and
Romano (2005, Section 15.2).

Theorem 5. Assume, with the notation introduced above that Assumption 4 is satisfied.
For any P ∈ P0 and Borel–measurable subset A of R it holds that

P (T (X) ∈ A | G) =
1

M

∑
g∈G

1{T (g(X))∈A}.

If the M values of T (g(X)) are distinct for varying g ∈ G, then the conditional
distribution of T (X) given G is particularly simple; it is the uniform distribution on
T (GX) = {T (g(X)) : g ∈ G}.

In contrast to this, we will face situations, where T (g(X)) = T (g̃(X)) can naturally
happen for some g 6= g̃. There will, however, be limits for how many different g that gives
the same value of T (g(X)). More precisely, the following assumption will be satisfied in
our applications, typically with K = 1 or K = 2.
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Assumption 5. There is a constant K ∈ N such that for all g ∈ G

P
(∑
g′∈G

1{T (g′(X))=T (g(X))} ≤ K}
)

= 1.

We now introduce a p–value for testing the null hypothesis H in (28). This is defined
as

p̂ =
1

M

∑
g∈G

1{T (g(X))≥T (X)}.

In practice, M will be very large, making this expression intractable. For a suitable and
smaller number B, a stochastic approximation of p̂ can be obtained by sampling the trans-
formations g1, . . . , gB−1 independently (also jointly independently of X) and identically
distributed, such that each is chosen according to the uniform distribution on G. Then the
approximation is obtained as

p̃ =
1

B

[
1 +

B−1∑
i=1

1{T (gi(X))≥T (X)}

]
.

Now fix the nominal level 0 < α < 1. We have the following theorem giving that the two
tests obtained by rejecting the null hypothesis, when p̂ ≤ α and p̃ ≤ α, respectively, are
both very close to be of level α, i.e. being exact. The closeness will be controlled by M ,
K and B, where M in our applications will depend on the size of the data set and K is a
result of the specific permutation method related to the type of the data X. The precision
parameter B directly dictates the computational effort due to simulated permutations.

Theorem 6. Assume, with the notation introduced above, that Assumptions 4 and 5 are
satisfied. Then

α− K

M
≤ P (p̂ ≤ α) ≤ α, (29)

and (
M −B
M

)B−1(
α− K

B

)
≤ P (p̃ ≤ α) ≤ α (30)

for all 0 < α < 1.

The proof of the theorem is found below.

Remark 19. It will, in fact, be clear from the proof below, that the upper bounds in (29) and
(30) are also satisfied without Assumption 5. We will, however, only consider situations
where Assumption 5 is satisfied for a relatively small number K.

For the lower bound in (30) to be useful, B should be much smaller than M , but still
large enough to make K/B small. In our applications, the lower bound will typically be
very close to α, which makes a test procedure based on p̃ close to being exact. If, on the
other hand, B and M are of the same magnitude, it would be easier to go through all
permutations in G and use p̂ directly instead of using the stochastic approximation.
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Remark 20. Suppose instead, in the definition of p̃, that the transformations g1, . . . , gB−1

are chosen randomly without replacement from G \ {id}, where id : X → X is the identity
map. Then p̃ as defined in (30) satisfies

α− K

B
≤ P (p̃ ≤ α) ≤ α. (31)

The argument for this follows from a simplification of the second part of the proof of The-
orem 6. Though the lower bound in (31) is more precise than the lower bound in (30), it
will, in most practical applications, be much simpler to implement sampling g1, . . . , gB−1

with than without replacement.

Before we proceed to the proof of Theorem 6 we state and prove the following lemmas,
that provide parts of the arguments for (30). For real random variables Z1, . . . , ZB we will
use the notation Z(i) for the i’th ordered variable, i.e.

Z(1) ≤ Z(2) ≤ · · · ≤ Z(B).

Furthermore, we write Z = (Z1, . . . , ZB) and Z() = (Z(1), . . . , Z(B)). For a vector z =

(z1, . . . , zB) we also introduce the i’th coordinate projection Ẑi : RB → R as

Ẑi(z) = zi,

and the i’th ordered coordinate projection Ẑ(i) : RB → R as

Ẑ(i)(z) = z(i).

Lemma 2. Assume that Z1, . . . , ZB are random variables with values in R, and suppose
that the distribution of Z = (Z1, . . . , ZB) is invariant to permutations, i.e.(

σX (Z)
)
(P ) = Z(P ),

for all σ ∈ SB, with the notation from Section 2.2. Then, for any Borel–measurable set
A ⊆ R, it holds that

P (ZB ∈ A | Z()) =
1

B

B∑
i=1

1{Z(i)∈A}. (32)

Proof. The right hand side of (32) is clearly Z()–measurable, so it suffices to show that∫
(Z(1)∈A1,...,Z(B)∈AB)

1

B

B∑
i=1

1{Z(i)∈A} dP = P (ZB ∈ A,Z(1) ∈ A1, . . . , Z(B) ∈ AB),

for all Borel measurable sets A1, . . . , AB in R. First, we notice that

1

B

B∑
i=1

1{Z(i)∈A} =
1

B

B∑
i=1

1{Zi∈A} =
1

B!

∑
σ∈SB

1{Zσ(B)∈A}.
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Therefore,∫
(Z(1)∈A1,...,Z(B)∈AB)

1

B

B∑
i=1

1{Z(i)∈A} dP

=
1

B!

∑
σ∈SB

P (Zσ(B) ∈ A,Z(1) ∈ A1, . . . , Z(B) ∈ AB)

=
1

B!

∑
σ∈SB

P (ẐB(σX (Z)) ∈ A, Ẑ(1)(Z) ∈ A1, . . . , Ẑ(B)(Z) ∈ AB)

=
1

B!

∑
σ∈SB

P (ẐB(σX (Z)) ∈ A, Ẑ(1)(σX (Z)) ∈ A1, . . . , Ẑ(B)(σX (Z)) ∈ AB)

=
1

B!

∑
σ∈SB

P (ẐB(Z) ∈ A, Ẑ(1)(Z) ∈ A1, . . . , Ẑ(B)(Z) ∈ AB)

=
1

B!

∑
σ∈SB

P (ZB ∈ A,Z(1) ∈ A1, . . . , Z(B) ∈ AB),

as desired, where the last but one equality follows from the fact that Z(P ) is invariant to
permutations.

Lemma 3. Assume that Z1, . . . , ZB are random variables with values in R, and suppose
that the distribution of (Z1, . . . , ZB) is invariant to permutations. Define

q =
1

B

[
1 +

B−1∑
i=1

1{Zi≥ZB}

]
.

Then, for all 0 < α < 1
P (q ≤ α) ≤ α. (33)

Furthermore, suppose there is a constant K ∈ N such that

P
(

for all i ∈ {1, . . . , B} :
B∑
j=1

1{Zj=Zi} ≤ K}
)

= 1. (34)

Then for all 0 < α < 1

P (q ≤ α) ≥ α− K

B
. (35)

Proof. First, we focus on (33). From Lemma 2 we have that, conditioned on Z(), the distri-
bution of ZB is the uniform distribution on the B values in Z() counted with multiplicity.
Note also that clearly,

q =
1

B

B∑
i=1

1{Z(i)≥ZB}.

Given Z(), the event that q ≤ α corresponds to ZB being among the αB largest elements
in {Z(1), . . . , Z(B)}. Now choose Z0 ∈ {Z(1), . . . , Z(B)} such that

B∑
i=1

1{Z(i)>Z0} ≤ αB and
B∑
i=1

1{Z(i)<Z0} < (1− α)B.
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Then q ≤ α corresponds to ZB > Z0. Since at most αB elements in {Z(1), . . . , Z(B)} satisfy
this, we immediately have that

P (q ≤ α | Z()) ≤ α.

Furthermore, the assumption (34) gives that at most K elements in {Z(1), . . . , Z(B)} are
equal to Z0. Thus under (34) we, in fact, have

B∑
i=1

1{Z(i)>Z0} > αB −K,

such that

P (q ≤ α | Z()) > α− K

B
.

Now the results (33) and (35) follow from taking expectation.

Proof of Theorem 6. From Theorem 5 we have the conditional distribution of T (X) given
G as the uniform distribution on T (GX) = {T (g(X)) : g ∈ G}, counted with multiplicity.
Following the same line of arguments as in the proof of Lemma 3, it is easily seen that
under Assumption 5 it holds that

α− K

M
≤ P (p̂ ≤ α | G) ≤ α,

from which (29) follows.
Next, we turn to the proof of (30). We recall that g1, . . . , gB−1 are drawn independently

from G according to the uniform distribution, and also independently of X. Clearly, from
the invariance in Assumption 4, we have(

T (g1(X)), . . . , T (gB−1(X)), T (X)
)
(P )

=
(
T (g1(g0(X))), . . . , T (gB−1(g0(X))), T (g0(X))

)
(P ),

where g0 is drawn uniformly from G, independently of everything else. Since g1◦g0, . . . , gB−1◦
g0, g0 are independent and uniform on G, the second vector has the same distribution as

T (g1(X)), . . . , T (gB(X)), (36)

where g1, . . . , gB are independent and uniform on G. Thus the vector (36) is invariant to
permutations, so the original vector

(
T (g1(X)), . . . , T (gB−1(X)), T (X)

)
is also invariant.

From Lemma 3 we therefore have

P (p̃ ≤ α) ≤ α.

To use Lemma 3 to obtain a lower bound for P (p̃ ≤ α) we need that an assumption
like (34) is satisfied. This is not the case since g1, . . . , gB−1 are drawn with replacement.
The probability that g1, . . . , gB−1 are different, and different from the identity map on X ,
denoted id is, however, very high when M is much larger than B. We define the event that
this happens as

C = {gi 6= id and gi 6= gj for all i, j, where i 6= j}.
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Then with simple combinatorics,

P (C) =
(M − 1)(M − 2) · · · (M − 1− (B − 1))

MB−1
≥
(
M −B
M

)B−1

, (37)

and furthermore, the conditional distribution of g1, . . . , gB−1 given C is that the B − 1
permutations are drawn from G \ {id} without replacement. With arguments identical to
the above it is seen that the conditional distribution of

(
T (g1(X)), . . . , T (gB−1(X)), T (X)

)
given C is invariant under permutations. If Assumption 5 is satisfied, we have that (34) is
satisfied on C for the variables T (g1(X)), . . . , T (gB−1(X)), T (X). Therefore,

P (p̃ ≤ α | C) > α− K

B
.

Writing

P (p̃ ≤ α) = P (C)P (p̃ ≤ α | C) + P (Cc)P (p̃ ≤ α | Cc) ≥ P (C)P (p̃ ≤ α | C),

and combining with (37) gives the desired result.

SUPPLEMENTARY MATERIAL

8 Technical result on consistency

The lemma below gives that if DEA–estimates are point wise consistent and the efficiency
scores are integrable with respect to the distribution of an observation pair (X, Y ), then
the empirical mean of estimated efficiency scores is also consistent. Conditions ensuring
point wise consistency can e.g. be found in Kneip et al. (1998).

Lemma 4. Let Xn = (X1, . . . , Xn) and Yn = (Y1, . . . , Yn) be random variables, such that
Assumption 1 (a) and Assumption 2 are satisfied for (Xn,Yn). Furthermore, assume one
of the following:

(i) Assumption 1 (b) is satisfied, and it holds that

θ̂CRS(x, y | Xn,Yn)
P→ θ(x, y | Ψ)

for all (x, y) ∈ Ψ.

(ii) It holds that

θ̂V RS(x, y | Xn,Yn)
P→ θ(x, y | Ψ),

for all (x, y) ∈ Ψ.

(iii) It holds that

θ̂CRS(x, y | Xn,Yn)
P→ θ(x, y | C(Ψ))

for all (x, y) ∈ Ψ.
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Let θ̂(x, y | Xn,Yn) denote the input oriented DEA efficiency estimate and θ(x, y) denote
the limiting efficiency score from the relevant case. If furthermore,

E(− log θ(X1, Y1)) <∞,

then
1

n

n∑
i=1

log θ̂(Xi, Yi)
P→ E log θ(X1, Y1)

as n→∞.

Proof. First we note that, for i fixed, it holds that

θ̂(Xi, Yi | Xn,Yn)→ θ(Xi, Yi),

since, eventually, θ̂(Xi, Yi | Xn,Yn) = θ̂(Xi, Yi | Xn \{Xi},Yn \{Yi}) as (Xi, Yi) is an inner
point (with probability 1) in Ψ.

From the law of large numbers we have

1

n

n∑
i=1

log θ(Xi, Yi)
a.s.→ E log θ(X1, Y1),

so it suffices to show that
1

n

n∑
i=1

Zn,i
P→ 0,

where
Zn,i = log θ̂(Xi, Yi | Xn,Yn)− log θ(Xi, Yi).

Note that Zn,i
P→ 0 as n→∞ for every fixed i and that

0 ≤ Zn,i ≤ − log θ(Xi, Yi). (38)

Now let ε > 0 be given and use the integrability of − log θ(X1, Y1) to choose a finite constant
K such that

E
[
− log θ(X1, Y1)1{− log θ(X1,Y1)>K}

]
≤ ε

3
.

Then choose 0 < δ < ε/3 and n0 ∈ N such that KP (Zn,1 > δ) ≤ ε/3 for n ≥ n0. Using
(38) and that Zn,1, . . . , Zn,n have the same distribution, we find

E(
1

n

n∑
i=1

Zn,i) = E(Zn,1)

≤ δP (Zn,1 ≤ δ) +KP (Zn,1 > δ,− log θ(X1, Y1) ≤ K)

+ E
[
Zn,11{Zn,1>δ,− log θ(X1,Y1)≤K}

]
≤ δP (Zn,1 ≤ δ) +KP (Zn,1 > δ) + E

[
− log θ(X1, Y1)1{− log θ(X1,Y1)>K}

]
≤ ε.

Thus, we have convergence in L1 and, in particular, in probability.
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9 Monte Carlo experiments

9.1 Test for returns to scale

Simulation procedure 1

In the following simulations we let p = 2 and q = 1, and we will simulate such that the
independence property stated in Proposition 1 is satisfied. Therefore, the hypothesis under
study will be whether CRS is satisfied. First, the frontier is defined by a Cobb–Douglas
function

f(x1, x2) = xα1x
α
2 ,

where α = γ
2

and 0 < γ ≤ 1. A point ((x1, x2), y) is placed on the frontier, if

y = f(x1, x2) .

Note that the case γ = 1 corresponds to a CRS situation since then, with the frontier Ψδ

defined by f , it always holds that ‖(x1, x2)‖ = |y| when ((x1, x2), y) ∈ Ψδ. If, on the other
hand, γ < 1 and ((x1, x2), y) satisfies f(x1, x2) = y, then for a > 0

f(a · x1, a · x2) = aγ · y ,

demonstrating that CRS cannot be assumed when γ < 1. Thus f is homogeneous of order
1 under the hypothesis of CRS, while γ < 1 corresponds to the alternative hypothesis
of VRS. When γ decreases from one to zero then the ’distance’ to the CRS hypothesis
becomes ’larger’.

We generate each of the points (Xi, Yi)i=1,...,n in the following way, where we suppress i
in the notation:

1. Generate U1 and U2 independently from a Beta(3, 3)–distribution.

2. Define the unit vector (W1,W2) by normalizing (U1, U2). That is

(W1,W2) =
(U1, U2)

‖(U1, U2)‖
.

3. Generate A from a Γ(3, 3)1–distribution, and calculate (Xδ
1 , X

δ
2) as

(Xδ
1 , X

δ
2) = A · (W1,W2)

f(W1,W2)1/γ
.

4. Calculate Y as
Y = f(Xδ

1 , X
δ
2).

5. Generate Θ from a Beta(3, 1.5)–distribution and calculate (X1, X2) as

(X1, X2) =
(Xδ

1 , X
δ
2)

Θ
.

1We use the notation Γ(shape, scale)
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We have chosen parameters that mimic what is often encountered in real data: In 1. we
use a Beta–distribution with large shape parameters to make directions close to the axes
less likely than directions “in the middle”. In 5. the shape parameter 1.5 is chosen to
limit the probability of observations very close to the frontier, but still ensuring that the
major part of the observation are not too far away. In particular, this choice means that
the joint density of (X, Y ) is 0 at the frontier. Therefore based on this simulation study,
the performance of the test procedure from Section 3 cannot be compared directly with
the tests suggested in e.g. Section 3.2 in Kneip et al. (2016), where the density is required
to be non–zero at the frontier.

Note that Y and (X1, X2) are related through A. This means that the simulation
procedure satisfies the independence property stated in Proposition 1, requiring that the
length of Y is independent of the joint distribution of V,W and Θ.

Results from simulation procedure 1

For different combinations of n, the number of observations, and γ, the degree of departure
from the CRS hypothesis, we have simulated 1000 sets of observations. For each set we have
used the permutation procedure proposed in Section 3 with the number of permutations
N = 1000 to calculate a significance probability. From this we have derived the proportion
of rejected hypotheses on a 5% significance level across the 1000 simulations. The upper
part of Table 1 shows the resulting rejection rates.

The first column in Table 1 shows the rejection rates for γ = 1. This corresponds to the
situation where the CRS hypothesis is actually true. As expected, the simulated rejection
rate here is close to 5% for all the demonstrated values of n, meaning that the test has
the correct size. In the next columns, the γ–parameter is decreased, which means that the
departure from the CRS hypothesis increases. Here we see that rejection rates, i.e. the
power of the test, increases rather fast, when γ decreases. It is also clear that the test
procedure is more powerful for larger sets of observations.

9.2 Test for equality of frontiers

Simulation procedure 2

In this procedure we generate independent samples of observations from two production
groups, each satisfying CRS, with p = 2, q = 1. Furthermore the production groups jointly
satisfy the condition of Proposition 2, making the hypothesis under study to be a statement
about equal frontiers. We can, without loss of generality, let Y g

i = 1 for g = 1, 2 and all
i = 1, . . . , ng and focus on generating the points Xg

i . For each sample g = 1, 2, let the
frontier be defined by the Cobb-Douglas function

fg(x1, x2) = βgx
αg
1 x

1−αg
2 ,

such that a point ((x1, x2), 1) is placed on the frontier, if

1 = fg(x1, x2) .

In each group g = 1, 2 we generate Xg
i ∈ R2 as follows, where i is suppressed in the notation.
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n1 = 50

β2 n2 = 100 n2 = 200

diff nest diff nest

1.00 0.062 0.048 0.050 0.052

1.02 0.106 0.092 0.110 0.128

1.04 0.148 0.278 0.246 0.278

1.06 0.350 0.382 0.448 0.514

1.08 0.596 0.650 0.706 0.762

1.10 0.806 0.824 0.892 0.918

n2 = 50

β2 n1 = 100 n1 = 200

diff nest diff nest

1.00 0.060 0.060 0.058 0.046

1.02 0.058 0.086 0.088 0.138

1.04 0.134 0.268 0.164 0.314

1.06 0.310 0.422 0.446 0.578

1.08 0.596 0.702 0.680 0.752

1.10 0.816 0.846 0.892 0.910

Table 2: Proportions of rejected hypotheses on a 5% significance level, when testing equality

of frontiers using both the general difference (denoted diff) and the nested (denoted nest)

test. Observations are generated by simulation procedure 2 with β1 = 1 and varying values

of β2 such that the two production possibility sets are, in fact, nested.

1. Generate U1 and U2 independently from a Beta(3, 3)–distribution.

2. Define the unit vector (W1,W2) by normalizing (U1, U2). That is

(W1,W2) =
(U1, U2)

‖(U1, U2)‖
.

3. Generate Θ from a Beta(3, 1.5)–distribution and calculate (X1, X2) as

(X1, X2) =
(W1,W2)

fg(W1,W2)Θ
.

Results from simulation procedure 2

Now we investigate the performance of the test procedures proposed in Section 4, when
the two independent groups of observations are simulated according to simulation proce-
dure 2. In all simulation studies we generate 500 datasets each consisting of two groups of
observations with varying group sizes n1 and n2. When calculating the test statistics, the
number of jackknife replications, M , is chosen to be 50, and for the test procedures we have
used N = 1000 permutations. For each combination of the parameters we have derived the
proportion of rejected hypotheses on a 5% significance level across the 500 simulations.

First we have investigated the performance of the tests in a situation, where the two
production possibility sets are nested. Thus we have chosen β1 and β2 to be unequal, while
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n1 = 50

β2 n2 = 100 n2 = 200

diff nest diff nest

1.00 0.047 0.041 0.051 0.051

1.02 0.139 0.155 0.144 0.150

1.04 0.311 0.349 0.320 0.329

1.06 0.489 0.509 0.599 0.603

1.08 0.746 0.766 0.832 0.831

1.10 0.900 0.904 0.971 0.973

n2 = 50

β2 n1 = 100 n1 = 200

diff nest diff nest

1.00 0.052 0.049 0.059 0.055

1.02 0.029 0.020 0.015 0.013

1.04 0.009 0.004 0.005 0.005

1.06 0.009 0.002 0.000 0.000

1.08 0.025 0.002 0.001 0.000

1.10 0.069 0.014 0.000 0.000

Table 3: Simulations similar to Table 2 but without jackknifing.

α1 and α2 are both chosen to be 0.5. We let β1 = 1 and let β2 vary from 1 to 1.1. Therefore,
the production possibility set for group 1 is nested within the production possibility set for
group 2. Furthermore, the sample sizes vary such that one of them is 50 and the other is
either 100 or 200.

In the left part of Table 2 the rejection rates are seen for the cases, where sample 1 is
smaller than sample 2, i.e. n1 = 50 and n2 ∈ {100, 200}, and in the right part group 2
is smaller than group 1. In the first row β2 = 1, which means that the two frontiers are
equal. Here the rejection rates are approximately 5% for both tests – as expected.

In the following rows β2 is increased, which corresponds to the two frontiers becoming
more and more different, such that the production possibility set for group 1 is nested
within the production possibility set for group 2. Here the rejection rates are seen to
increase substantially for both tests – no matter which of the groups is larger than the
other. However, the rejection rate generally seems to be slightly higher for the nested test
than for the general difference test. This is not surprising, since the nested test is, in fact,
designed to detect exactly the kind of difference between the two frontiers that have been
used to produce the two samples.

To illustrate the importance of the use of the jackknife method in the test procedures,
we have included a simulation study similar to the one in Table 2, but without jackknifing,
where the test statistics TMdiff and TMnest are now replaced by Tdiff ((X1,Y1), (X2,Y2)) and
Tnest((X1,Y1), (X2,Y2)) (allowing different lengths of (X1,Y1) and (X2,Y2)). Here the
findings are remarkably different from those of Table 2: When sample size in group 1 is
smaller than in group 2, the rejection rate increases faster than before. On the other hand,
when group 1 is larger than group 2, both of the tests seem to be unable to reject the
false hypothesis of no difference for almost all of the simulated datasets. This is due to the
different magnitude of bias when estimating the two frontiers. In the table to the right,
the production possibility set for group 1 is nested within the production possibility set
for group 2, but at the same time, the frontier of group 1 is estimated with a smaller bias.
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n1 = 50

α2 n2 = 100 n2 = 200

diff nest diff nest

0.1 0.988 0.022 1.000 0.016

0.2 0.948 0.020 0.992 0.030

0.3 0.646 0.024 0.782 0.036

0.4 0.184 0.034 0.262 0.054

0.5 0.062 0.048 0.050 0.052

0.6 0.160 0.038 0.230 0.054

0.7 0.654 0.020 0.778 0.040

0.8 0.952 0.018 0.998 0.012

0.9 0.952 0.014 0.996 0.028

Table 4: Proportions of rejected hypotheses on a 5% significance level, when testing equality

of frontiers using both the general difference (denoted diff) and the nested (denoted nest)

test. Observations are simulated according to simulation procedure 2 with β1 = β2 = 1,

α1 = 0.5 and varying values of α2.

These two effects counteract, such that the estimated frontiers are so close that the tests
are unable to distinguish between them.

Another part of the evaluation of the two tests is to consider a situation, where the
frontiers are different without one production possibility set being nested within the other.
Here we have chosen β1 = β2 = 1, α1 = 0.5 and varying values of α2. When α1 and α2

are different the two frontiers will be different and, since they intersect, the corresponding
production possibility sets are not nested. The rejection rates from this simulation study
are seen in Table 4. The middle row with α2 = 0.5 is identical to the first row in the left
part of Table 2. Thus, the rejection rate is approximately 5%.

In the other rows the frontiers are different, with a larger difference as α2 becomes more
different from 0.5. Here we see that only the general difference test, in the table denoted
as diff , detects the difference with an increasing rejection rate, as the two frontiers become
more and more different. The nested test, on the other hand, is unable to distinguish
between the two frontiers: This test keeps track of, which frontier corresponds to the
best production possibilities for each observation, and when averaging over all observations
these differences tend to cancel out when the frontiers intersect. Thus, in this situation,
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the two tests jointly detect the difference between the two frontiers with high power and
furthermore correctly concludes that the production possibility sets are not nested.

Simulation procedure 3

For completeness of the evaluation of our test for equality of frontiers, we have included a
simulation study using the following simulation procedure that is inspired by a procedure
described in Daraio et al. (2018). However, the two simulation procedures are still somewhat
different: While the observations generated in our procedure are divided into two groups
with a distinct frontier in each group, the datasets generated in Daraio et al. (2018) all
have separate frontiers, determined parametrically by the value of a numerical covariate.

We let p = q = 2 and assume CRS. In each of the two groups g = 1, 2 we generate each
of the observations (Xi, Yi) for i = 1, . . . , ng in the following way:

1. Generate U and V independently and each following the uniform distribution on the
part of the unit circle, where both coordinates are positive.

2. Generate Z from a standard normal distribution.

3. Calculate X, Y ∈ R2 as

X =

(
1.01− U

‖U‖

)
· (1 + |Z|) · (1 + γg) and Y =

V

‖V ‖
+ 0.01 .

Choosing γ differently for the two groups corresponds to the two groups having different
frontiers in such a way that one of the production possibility sets will be nested within the
other.

Results from simulation procedure 3

The purpose of Table 5 is to investigate the performance of the two tests from Section 4,
when the two groups of observations are simulated according to simulation procedure 3. For
each combination of parameters we have generated 500 datasets. For the test procedures, we
have again used m = 50 jackknife replications and N = 1000 permutations. Furthermore,
the proportions of rejected hypotheses on a 5% significance level are derived across the 500
simulations.

For different combinations of group sizes, the first row of Table 5 shows the rejection
rates when the two frontiers are equal, i.e. when γ1 = γ2 = 0. As expected theoretically,
all rejection rates in this row are close to 5%. In the next rows the parameter γ1 = 0 is
fixed, while γ2 increases. This corresponds to the two frontiers becoming more different.
Here the two tests with a very high power correctly identifies both the difference and the
fact that the production possibility sets are nested.
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n1 = 50

γ2 n2 = 100 n2 = 200

Fdiff Fnest Fdiff Fnest

0.0 0.040 0.062 0.050 0.050

0.2 0.634 0.902 0.756 0.938

0.4 0.998 1.000 1.000 1.000

0.6 1.000 1.000 1.000 1.000

Table 5: Simulation results for test for equality of frontiers, when data is simulated ac-

cording to simulation procedure 3. Proportions of rejected hypotheses for varying values

of γ2.
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