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Non-technical summary

Research Question

Thanks to the ongoing digital transformation, official statistics has started to collect more

and more infra-monthly economic time series alongside traditional data types, and the

recent COVID-19 pandemic has accelerated the demand of many users for such timely

data. However, infra-monthly time series are likely to exhibit seasonal behaviour and

other peculiarities not commonly seen in monthly and quarterly economic data, rendering

official statistics’ traditional modelling and seasonal adjustment approaches inapplicable

and raising the question for alternatives.

Contribution

We discuss the most common peculiarities of infra-monthly economic time series and the

new challenges they pose for model building and estimation. We give an extensive re-

view of recent methodological advances in the modelling and seasonal adjustment of such

data. This overview covers extensions of well-established approaches with long-standing

traditions of treating monthly and quarterly data in official statistics as well as new devel-

opments that seemingly have barely been noticed outside academia so far. We illustrate

key peculiarities and selected advances using daily realised electricity consumption and

hourly counts of TARGET2 customer transactions in Germany.

Results

We provide a systematic overview of the multitude of new approaches to the seasonal ad-

justment of infra-monthly economic time series that have been developed in recent years.

Our illustrations suggest that extensions of several approaches used conveniently for treat-

ing monthly and quarterly data provide solid seasonal adjustments of infra-monthly time

series. However, more research is needed to achieve permanent acceptance of these and

other new methods in official statistics, and we finally share some thoughts on potential

areas for future developments.



Nichttechnische Zusammenfassung

Fragestellung

Im Zusammenhang mit der anhaltenden Digitalisierung wurden zuletzt in der amtli-

chen Statistik neben den traditionellen Datentypen auch immer mehr untermonatliche

ökonomische Zeitreihen gesammelt, wobei der jüngste Ausbruch der COVID-19-Pandemie

die Nachfrage vieler Nutzer nach solchen zeitnah verfügbaren Daten nochmals erhöhte.

Untermonatliche Zeitreihen weisen jedoch häufig saisonale Muster und andere Charakte-

ristika auf, die in dieser Form in monatlichen und vierteljährlichen ökonomischen Zeitrei-

hen für gewöhnlich nicht zu beobachten sind. Traditionelle Modellierungs- und Saisonbe-

reinigungsansätze der amtlichen Statistik sind damit auf sie nicht anwendbar und es stellt

sich die Frage nach geeigneten Alternativen.

Beitrag

Wir stellen häufig zu beobachtende Charakteristika untermonatlicher ökonomischer Zeitrei-

hen sowie die sich aus ihnen ergebenden Probleme bezüglich Modellwahl und Modellschät-

zung vor. Zudem geben wir einen ausführlichen Überblick über jüngste methodische Fort-

schritte bei der Modellierung und Saisonbereinigung solcher Daten. Dieser Überblick deckt

Weiterentwicklungen der traditionell für Monats- und Quartalsdaten verwendeten Ansätze

in der amtlichen Statistik sowie neue und außerhalb der akademischen Welt bisher eher

wenig beachtete Ansätze ab. Zwecks Illustration sowohl der eingangs genannten Charak-

teristika als auch ausgesuchter methodischer Fortschritte betrachten wir den täglich rea-

lisierten Stromverbrauch und die stündliche Anzahl an TARGET2-Kundentransaktionen

in Deutschland.

Ergebnisse

Wir liefern einen systematischen Überblick über die Vielzahl neuer und auf untermonat-

liche Zeitreihen anwendbarer Methoden zur Saisonbereinigung, die in den letzten Jahren

entwickelt wurden. Unsere Illustrationen lassen den Schluß zu, dass die Weiterentwick-

lungen mehrerer in der amtlichen Statistik traditionell für Monats- und Quartalsdaten

verwendeten Ansätze zufriedenstellende Saisonbereinigungen untermonatlicher Zeitreihen

liefern. Nichtsdestotrotz ist weitere Entwicklungsarbeit erforderlich, um diese und andere

neue Methoden in der amtlichen Statistik zu etablieren, und wir schließen mit einigen

Gedanken zu möglichen zukünftigen Forschungsfeldern.
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1 Introduction

The compilation and analysis of infra-monthly economic data in official statistics can be
traced back to the mid-nineteenth century. For example, Babbage (1856) studied the day-
of-the-week and day-of-the-month patterns in daily monetary data and conducted what
might be seen as one of the first seasonal adjustments ever as he removed respective av-
erages from the data. In the postwar twentieth and early twenty-first centuries, however,
economic measurement models in official statistics have been centred around monthly,
quarterly and annual household and business sample surveys. The recent emergence of
new information technologies and automated data collection methods may change this
paradigm as it has drawn official statistics’ attention slowly but surely to unconventional
sources that provide timely access to data of unprecedented spatial and temporal granular-
ity. Prime examples include point-of-sale and credit/debit card transactions, newspaper
and social media data and various types of traffic data. Accompanied by a general dis-
cussion about official statistics’ role in a digital society, statistical agencies across the
world have explored ways to replace or complement traditional measurement models with
new models that are capable of blending survey data with administrative and digital
data sources (Jarmin, 2019; Radermacher, 2019, 2020). Despite relatively short histories
and sometimes rather experimental characters, such infra-monthly data has already been
used to improve early estimation of key economic indicators (Aprigliano, Ardizzi, and
Monteforte, 2019; Askitas and Zimmermann, 2011; Dickopf, Janz, and Mucha, 2019), to
give modelling of moving holiday effects in monthly data subtle nuances (Czaplicki and
Hutchinson, 2020; Liou, Lin, and Peng, 2012), and to analyse the impact of uncertainty
shocks on economic activity in real-time (Nyamela, Plakandaras, and Gupta, 2020).

The recent outbreak of the COVID-19 pandemic has accelerated this general transfor-
mation process, primarily as a result of official statistics’ endeavours to satisfy the demand
of many users for more timely data in order to monitor pandemic-induced disruptions and
recoveries both nationwide and within specific economic sectors and geographical regions
(Biancotti, Rosolia, Veronese, Kirchner, and Mouriaux, 2021; Tissot and De Beer, 2020).
Infra-monthly economic data has been used, for example, to implement—often under the
“experimental statistics” label—dashboards as well as early warning and sentiment in-
dicators (Aguilar, Ghirelli, Pacce, and Urtasun, 2021; Alvarez and Lein, 2020; Coffinet,
Delbos, Kaiser, Kien, Kintzler, Lestrade, Mouliom, Nicolas, Bricongne, and Meunier,
2020; Eckert and Mikosch, 2020; Eraslan and Götz, 2021; Fenz and Stix, 2021; Keane and
Neal, 2021; Lewis, Mertens, Stock, and Trivedi, 2022; Lourenço and Rua, 2021; Seiler,
2020; Wegmüller, Glocker, and Guggia, 2021; Woloszko, 2020), sometimes blending eco-
nomic measurements especially with Google search data. Another strand of research has
been concerned with trend extraction and short-term forecasting in medical data, espe-
cially in daily infected, recovered and deceased COVID-19 cases (Doornik, Castle, and
Hendry, 2022; Lee, Liao, Seo, and Shin, 2021; Li and Linton, 2021).

Although the latter medical studies employ unobserved-components decompositions
that are well-known in official statistics, seasonality is not an issue there as models are
often built upon short (sliding) data spans, sometimes shorter than two weeks, and thus
day-of-the-week effects are typically considered negligible. However, longer—but still rel-
atively short—histories of at least a few years are usually available in economics and
therefore seasonality is no stranger to infra-monthly socio-economic data. Overall, the
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latter are likely to affect established data collection methods as well as data processing
and dissemination steps in the statistical production chains and thus pose an increasing
number of challenges for statistical agencies. One of the key challenges in the processing
step is the modelling and seasonal adjustment of such time series. Theoretical consider-
ations often suggest that infra-monthly observations genuinely display stylised facts that
are also inherent but not directly measurable from less granular data, such as official
statistics’ traditional headline indicators: monthly and quarterly economic time series.
As a consequence, established modelling and seasonal adjustment approaches are likely
to become inapplicable to infra-monthly data.

The purpose of this paper is thus to summarise common features of infra-monthly
economic time series (Section 2) and to provide a thorough review of recent developments
in the modelling and seasonal adjustment of such data (Section 3). This overview can
also be seen as a partial update of the most recent yet slightly dated review given in
Findley (2005). Selected modelling and seasonal adjustment approaches are then applied
to daily realised electricity consumption in Germany and hourly transaction counts from
the TARGET2 system for the purpose of illustration (Section 4), followed by some final
remarks and conclusions (Section 5).

2 Data peculiarities

Let {yt} be a discrete time series with a seasonal periodicity of τ , that is a long-term av-
erage of τ observations per year. For example, τ = 12 for monthly data and τ = 365.2425
for daily data, assuming—here and throughout the rest of the paper—the 400-year cycle
of the Gregorian calendar. In official statistics, {yt} is commonly categorised as a higher-
frequency (HF) time series if data is observed at infra-monthly intervals (τ > 12) and as
a lower-frequency (LF) time series if data is observed at monthly or lower periodicities
(τ ≤ 12). We first catalogue common features of HF time series (Section 2.1) and then
summarise key challenges which these features pose in terms of modelling (Section 2.2).

2.1 Stylised facts

This section synthesises research on various types of HF data and attempts to categorise
key stylised facts according to the underlying time series dynamics they are most likely
associated with. The non-exhaustive list of related literature includes studies on:

• minute-by-minute (Taylor, 2008),

• half-hourly (Cottet and Smith, 2003; Taylor, 2003, 2010a,b; Taylor, de Menezes, and
McSharry, 2006; Taylor and McSharry, 2007; Taylor and Snyder, 2012),

• hourly (Alonso, Garćıa-Martos, Rodŕıguez, and Sánchez, 2011; Cancelo, Espasa, and
Grafe, 2008; Dordonnat, Koopman, Ooms, Dessertaine, and Collet, 2008; Gould,
Koehler, Ord, Snyder, Hyndman, and Vahid-Araghi, 2008; Harvey and Koopman,
1993; Liu, Chen, Liu, and Harris, 2006; Monteiro, Menezes, and Silva, 2017; Mart́ın-
Rodŕıguez and Cáceres-Hernández, 2005; Mestekemper, Windmann, and Kauer-
mann, 2010; Ramanathan, Engle, Granger, Vahid-Araghi, and Brace, 1997; Soares
and Medeiros, 2008; Soares and Souza, 2006),
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• 4-hourly (Pedregal and Young, 2006),

• daily (Cabrero, Camba-Mendez, Hirsch, and Nieto, 2009; Cancelo and Espasa, 1996;
Cox, Triebel, Linz, Fries, Flores, Lorenz, Ollech, Dietrich, LeCrone, and Webel,
2020; De Livera, Hyndman, and Snyder, 2011; Hyndman and Fan, 2010; Koopman
and Ooms, 2003, 2006; Koopman, Ooms, and Carnero, 2007; Ladiray, Palate, Mazzi,
and Proietti, 2018; McElroy and Monsell, 2017; McElroy, Monsell, and Hutchinson,
2018; Ollech, 2021; Puindi and Silva, 2021; Webel, 2020; Weinberg, Brown, and
Stroud, 2007), and

• weekly data (Cleveland, Evans, and Scott, 2018; Cleveland and Scott, 2007; Farley
and O’Brien, 1987; Harvey, Koopman, and Riani, 1997; Pierce, Grupe, and Cleve-
land, 1984).

Hourly counts of customer payments (HCP) in the trans-European automated real-time
gross settlement express transfer (TARGET2) system1 in Germany are used to illustrate
selected stylised facts (Figure 1).

Irregular variation. Due to their granular nature, HF time series are prone to various
irregularities that are well-known from small sample theory. Those include zero or close-
to-zero observations and missing values, which may result from some deficiency in the
reporting process. Gaps may also occur rather naturally as some data generating processes
inevitably distribute observations non-uniformly across time. Technically, such gaps do
not count as missing values as measurements are not expected there and thus cannot be
missing. Data containing such gaps is said to be irregularly spaced, or non-equidistant.
The HCP series shown in Panel (a) is a prime example as transactions are recorded only
during the business hours for customer payments on TARGET2 business days, that is
between 07:00 and 17:00 on Monday through Friday excluding TARGET2 holidays which
are New Year’s Day, Good Friday, Easter Monday, Labour Day, Christmas Day and
Boxing Day.

HF data may also display aberrant behaviour in the sense of outlying observations.
Such behaviour may manifest itself in a similar manner as it does in LF data: short-lived
additive outliers, transitory changes, and persistent level shifts. However, it seems that
HF data is also susceptible to new forms of transitional outliers with ramp-like, triangular,
wavy, or otherwise smooth signatures. As a general rule of thumb, the complexity of such
signatures tends to increase with the periodicity of the data. For example, a single peak
in daily sales may display a U -shaped signature in the corresponding hourly data due to
infra-daily consumer habits.

Overall, HF data tends to be subject to several irregularities that may easily add up
to very volatile dynamics and therefore seems to be at higher risk of heteroskedasticity
compared to LF data.

1TARGET2 is the real-time gross settlement system owned and operated by the Eurosystem, which
comprises the European Central Bank and the national central banks of those countries that have
adopted the euro and is the monetary authority of the euro area. It settles, in central bank money,
customer and interbank payments as well as payments related to the Eurosystem’s monetary policy
operations and operations of other financial market infrastructures.

3
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(f) Infra-weekly pattern: 07:00–08:00
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Figure 1: Hourly counts of TARGET2 customer payments in Germany (thousands). Grey
verticals in Panels (b)–(d) indicate the calendar event(s) given in the subtitles.
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Calendar variation. According to the above categorisation of HF and LF data, the
monthly periodicity forms a natural boundary between the two types. Since the length of
months is not constant over time, the number of HF observations naturally varies across
LF periodicities. For example, a regularly spaced daily time series has 28 observations in
non-leap-year Februaries, 29 observations in leap-year Februaries and 30 or 31 observations
in the other months. This effect is referred to as the length-of-lower-frequency-periodicities
(LOLFP) effect. As opposed to LF data,2 it does not affect directly the HF observations
but their seasonal periodicities (see discussion below).

In HF and especially (infra-)daily time series, calendar-related dynamics can often
be measured directly with pinpoint accuracy. This applies particularly to the effects of
fixed and moving holidays as well as related events, such as bridging days, including
anticipatory and catch-up effects. Panels (b)–(d) exemplify different facets of such effects
in the infra-daily dynamics of the HCP series: Panel (b) reveals an unusually high “early-
bird” and a usual “later-bird” activity immediately after the Easter-related TARGET2
holidays, which most likely results from unprocessed orders that have accumulated over a
stretch of four consecutive non-TARGET2 business days; Panel (c) shows a consistently
lower activity with a noticeably smoother infra-daily profile on Pentecost Monday, which
is a public holiday but still a TARGET2 business day; Panel (d) reveals a higher activity
with usual infra-daily dynamics throughout the entire final day of the third quarter.

The previous examples already allude to the flip side of data granularity. In general,
as more and more effects become measurable, the probability of interactions among them
usually increases. This is particularly true for calendar and seasonal effects. For example,
fixed-holiday and end-of-period effects may depend on the particular days of the week
which the corresponding events fall onto. Christmas effects may be noticeably different
for 24 to 26 December falling onto Tuesday through Thursday, as in Panel (a), versus
Friday through Sunday. The same applies to the short-lived end-of-Q3 elevation in level
if the final day of that quarter had not been a Monday, as in Panel (d).

Calendar-related dynamics may become even more complicated when secular and re-
ligious activities mainly follow different calendars. Economic time series, especially those
primarily driven by cultural and social events, such as private consumption, may then be
affected by the solar Gregorian calendar and, for example, the lunar Hijri calendar, which
is approximately 11 days shorter.

Seasonal variation. The seasonal dynamics of HF time series are often generated by a
set of superimposed seasonal patterns, each of which is composed of several seasonal cycles
associated with the pattern’s fundamental seasonal frequency and its harmonics. For
example, Panel (e) shows that the payment counts tend to peak at the early business hours
and flatten out during the rest of the day, except for a small yet visible increase between
15:00 and 16:00. This hour-of-the-day pattern contains five seasonal cycles associated
with movements that occur once, twice and three to five times a business day. Panel
(f) reveals that the “early-bird” effect associated with the first business hour is more
pronounced on Mondays and Fridays. Similar U -type shapes can be observed for the
other business hours, which in sum constitute the hour-of-the-week pattern.

2For example, the length-of-month effect in monthly flows can be decomposed into a constant level effect,
a non-seasonal leap-year effect and a seasonal effect (Bell, 1984), which are usually modelled with the
aid of preadjustment factors or regression variables.
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Some of these patterns have a fractional periodicity, as opposed to LF data and mainly
as a consequence of the LOLFP effect. Seasonal periodicities of infra-weekly and shorter
patterns will still be integers but those of the monthly, quarterly and yearly patterns will
be non-integers, except for second-by-second data which, however, rarely occur in official
statistics. For example, the hour-of-the-day pattern of a regularly spaced hourly time
series consist of 24 hours, whereas the hour-of-the-month pattern has a long-term average
duration of 730.485 hours. In such a case, the patterns’ fundamental seasonal frequencies
are not integer multiples of each other and therefore the patterns or, more precisely, the
seasonal cycles of the two patterns are not nested, which facilitates identification at the
expense of increased model complexity. Additional non-nested patterns are likely to be
present if the data is subject to dual-calendar effects.

Overall, the seasonal profile of HF time series is highly complex due to the coexistence
of multiple seasonal patterns with integer versus non-integer periodicities. Interactions
both among those patterns and with other HF variations, especially calendar variation,
are lurking underneath.

2.2 Challenges in model building

The peculiarities of HF time series complicate modelling, especially with approaches well-
established in official statistics for LF data. This section therefore elaborates on the
challenges of finding adequate HF data models with respect to four key steps in model
building. Selected solutions are referred to on occasion, bearing in mind that those are
usually not generic but depend on the particular problem at hand.

Data regularisation. Several data irregularities, such as non-equidistant observations,
missing values and the LOLFP effect, suggest that HF data should be regularised first, es-
pecially when the modelling approach is incapable of dealing with fractional periodicities.
For example, Koopman and Ooms (2003, 2006) transform the time axis and introduce
artificial mid-month missing values in order to obtain a structural time series model for
daily Dutch tax revenues with 23 banking days in each month. The missing values are
then imputed straightforwardly by the Kalman filter and smoother during model esti-
mation. Similarly, Ollech (2021) uses cubic splines to stretch the time axis so that each
month contains 31 days when modelling daily currency in circulation.

Non-artificial missing values can be imputed with simpler standard techniques, such
as carrying the last observation forward and linear interpolation.

Remark 1. When regularising weekly data, the phasing of weeks must be considered
as well for some modelling problems. The reason is that, for example, the first Monday
through Sunday period of the year is not the same in each year and thus relates to slightly
different time phases relative to the seasons in adjacent years. □

Model calibration. The identification of relevant seasonal patterns may be hampered
by a shortage of established tools. Spectral diagnostics seem to perform quite reliably.
But many standard seasonality tests have been derived for LF data with a single seasonal
pattern and an integer-valued periodicity and thus it is not obvious that those work equally
well for HF data. Finding a sparse representation of the identified patterns may pose
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another issue. Seasonal dummies clearly become infeasible in many instances and thus
trigonometric seasonal models seem to have the edge, not least because of their capability
of incorporating fractional periodicities. However, even such models can become quite
large for some patterns. For example, the full trigonometric representation of the annual
seasonal pattern in daily data would require about 365 parameters and, therefore, reduced
representations that contain only a small subset of seasonal cycles have been considered
repeatedly in such cases (e.g. Ollech, 2021; Taylor and Letham, 2018).

The correct specification of calendar-related dynamics can be a difficult task as well
since data granularity enables measurement not only of fixed- and moving-holiday effects
but also of effects of related events, such as bridging days or longer pre- and post-holiday
phases of interest. Finding and testing appropriate HF regression variables for such
a variety of effects can quickly become time-consuming even when working only with
dummy variables. However, more nuanced HF regression variables are often advisable
and thus should be checked as well. Candidates include impact models that capture
linearly increasing and decreasing holiday effects, potentially with different slopes, and
non-linear variants with time-varying slopes.

A separability issue arises from the fact that calendar variation associated with fixed
holidays is closely entangled with the annual seasonal pattern. Disentangling the two
dynamics once again requires appropriate specification of either component. However,
when aiming at seasonal adjustment, it could also be postulated that such calendar vari-
ation belongs to those calendar-induced effects that are already captured by the annual
seasonal pattern and thus will be extracted by the respective seasonal filter at a later
stage. Tailored HF regression variables are not needed in this case.

Overall, data granularity tends to enforce larger models in terms of both components
and parameters compared to LF data. This directly raises the question of how to balance
model accuracy against parsimony and flexibility, keeping in mind that larger models with
potentially interacting components bear a higher risk of violating the default orthogonality
assumption of many LF models. Given that models with non-orthogonal components tend
to be even more complex, the willingness to sacrifice some accuracy seems inevitable.

Model estimation. In the light of model complexity and especially superimposed sea-
sonal patterns, the benefits of sequential versus simultaneous extraction of HF dynamics
should be weighed up. In either case, another separability issue arises from the fact that
annual seasonality can be easily confused with trend behaviour since the fundamental an-
nual seasonal frequency is very close to zero, except for weekly data. For example, the fun-
damental day-of-the-year (DOY) frequency in daily data is ωDOY = 2π/365.2425 ≈ 0.017.
Utilising the concept of canonical atomic models, McElroy and Monsell (2017) and McEl-
roy et al. (2018) advocate to estimate the joint trend-DOY component first and to dis-
entangle the two dynamics afterwards with the Hodrick-Prescott filter that targets ωDOY,
which, however, is difficult even in fairly long time series.

Data availability brings up another dilemma. On the one hand, only a rather short
history, such as a few years, of HF observations is usually available nowadays but a long
history is needed to estimate reliably all HF dynamics, including potential interaction
effects. On the other hand, a long data history may complicate established estimation
principles, such as likelihood evaluation, and make them even infeasible in practice for
some model-based approaches.
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Model stability. Many analyses in official statistics are repeated on a regular basis
and therefore HF models will be re-estimated with updated data more or less frequently,
depending on the revision policy. In such a case, the estimated parameters will inevitably
undergo revisions and those can be quite large even if only a few additional HF observa-
tions have become available. Model and parameter stability can be fostered in the long
run by avoiding the inclusion of variables with borderline significant effects, especially
with respect to outliers and calendar variation. Critical values and thresholds used, for
example, in automatic detection procedures and routine significance tests should thus be
suited to HF data, as the defaults established for LF time series may be misleading.

3 Modelling and seasonal adjustment methods

Virtually all approaches designed for the seasonal adjustment of LF data and used rou-
tinely in official statistics assume orthogonality of unobserved components (UC) and pres-
ence of a single seasonal pattern with an integer period. However, the discussion in the
previous section showed that the dynamics of HF time series rarely match those LF as-
sumptions. After extending the standard UC decomposition from the LF to the HF case
(Section 3.1), this section therefore provides an overview of new methods applicable to HF
data, considering both extensions of conventional LF approaches (Section 3.2) and uncon-
ventional approaches that probably have not received much attention in official statistics
so far (Section 3.3). Throughout this overview, the focus will be on the specification of
the seasonal and calendar variations.

3.1 Modelling framework

Let {yt} denote a HF time series and assume that it can be decomposed additively, maybe
after taking logs, into latent components according to

yt = tt + st + ct + it. (1)

The sequence {tt} covers trend-cyclical behaviour, that is the long-term growth path and
periodic fluctuations around it with a minimum duration of one year. The sequences
{st} and {ct} capture seasonal and calendar variation and the irregular component {it}
absorbs stationary transient infra-yearly movements that will be modelled as white noise
or some low-order MA process in most cases.

To further portray the seasonal component, we distinguish between three types of
seasonal dynamics: stable seasonality refers to seasonal behaviour that can be represented
by a strictly periodic function of time; moving seasonality refers to seasonal behaviour
that is characterised by gradual changes in seasonal amplitude and/or phase over time;
constrained seasonality refers to abrupt yet periodically recurring changes in stable and/or
moving seasonality over time. The seasonal component in model (1) is then decomposed
into additive seasonal patterns according to

st =
∑
τi∈S

s
(τi)
t , (2)

8



where S is an index set and {s(τi)t } is the seasonal pattern that captures stable, moving
and constrained seasonality associated with the seasonal periodicity τi ∈ S. Each seasonal
pattern in (2) is further atomised into additive seasonal cycles according to

s
(τi)
t =

⌊τi/2⌋∑
j=1

s
(τi)
j,t , (3)

where ⌊x⌋ is the largest integer not exceeding x and {s(τi)j,t } is the periodic swing generated

by the seasonal frequency λ
(τi)
j = 2πj/τi and therefore occurs j times during a period of

τi HF units of time.
Overall, model (1) is the traditional low-resolution decomposition of {yt} developed

originally for LF data, whereas model (2)–(3) zooms in on the seasonal component’s higher
resolutions that are characteristic of HF data.

Example 1. An unconstrained stable seasonal pattern can be represented by (3) with
the j-th seasonal cycles given by

s
(τi)
j,t = αj cos

(
λ
(τi)
j t

)
+ βj sin

(
λ
(τi)
j t

)
. (4)

Unconstrained moving seasonality can be introduced into (4) by allowing for smooth tran-
sitions in the amplitudes αj and βj, e.g. by specifying αj,t and βj,t as independent random
walks, or by switching to a stochastic trigonometric representation. Constrained season-
ality can be incorporated by temporally decomposing the seasonal pattern, or selected
seasonal cycles, according to

s
(τi)
t = s̄

(τi)
t × 1C(t) + s

(τi)
t × 1C̄(t), (5)

where C is the set of HF time units where the constraint is in effect, C̄ is the complement
of C and 1A(·) is the indicator function over A, that is 1A(t) = 1 if t ∈ A and 1A(t) = 0
otherwise. An extension to multiple constraints is straightforward. □

Remark 2. Constrained seasonality is a flexible concept applicable to a wide range of
phenomena. For example, differences between seasonal dynamics in summer versus winter
could be modelled with the same structural form, such as (4), but different parameters for

{s̄(τi)t } and {s(τi)t }. Interactions between {s(τi)t } and other seasonal patterns or calendar
variations could also be modelled within (5) by using multiple constraints. □

Remark 3. The application of (4) to weekly data is not straightforward due to the
phasing of weeks. A possible solution for weekly aggregates of daily data is to assume
validity of model (4) for the daily data and to aggregate the trigonometric terms over the
relevant days in order to obtain a weekly seasonal cycle (Cleveland and Grupe, 1983).
Week-of-the-month and some holiday effects can be modelled in a similar way, using also
intervention models. □

Some of the modelling approaches to be discussed in the next subsections will impose
certain restrictions on the higher-resolution seasonal dynamics (2)–(3). The following
assumptions are thus introduced for convenience.
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Assumption 1 (I). The seasonal component is constituted by seasonal patterns with
integer-valued seasonal periodicities, that is τi ∈ N for all τi ∈ S in (2). □

Assumption 2 (S). The seasonal component is constituted by a single seasonal pattern,
that is |S| = 1 in (2). □

3.2 Conventional methods

Many statistical agencies around the world conduct seasonal adjustment of LF time series
with one of the following well-established approaches: the X-11 method, the ARIMA
model-based (AMB) approach, and structural time series (STS) models. JDemetra+
(JD+), a software officially recommended by Eurostat and the European Central Bank
for seasonal adjustment in official statistics in the European Union,3 provides easy access
to the former two approaches via a graphical user interface. The Java source code also
contains extensions and modifications applicable to HF data (Ladiray et al., 2018) and
an STS framework.

3.2.1 Extended X-11 approach

The modified X-11 approach sticks to the basic 4-step principle of the genuine X-11
method (Shiskin, Young, and Musgrave, 1967) as it sequentially applies linear trend and
seasonal filters to the linearised observations in order to estimate the trend-cyclical, sea-
sonal and irregular components in (1). To this end, it relies on well-known tools, such
as symmetric m × n moving averages, 3 × k seasonal filters with k ∈ {1, 3, 5, 9, 15} plus
predefined asymmetric variants and extreme value detection based on lower and upper
σ-limits.

Notwithstanding these commonalities, the extended X-11 approach incorporates two
key modifications to the genuine X-11 method. The first modification is the addition of
various kernel-based trend extraction filters derived from weighted least squares (WLS)
estimators in local polynomial regressions (Proietti and Luati, 2008). Asymmetric vari-
ants can be constructed within this framework either through direct minimisation of the
WLS objective function with the data available near the endpoints, using appropriate
partitions of the involved vectors and matrices, or through minimisation of a more gen-
eral objective function that allows for a bias-variance trade-off in the asymmetric filters
(Grun-Rehomme, Guggemos, and Ladiray, 2018). Hence, the latter minimise the mean-
squared revision error at the expense of preserving only lower-degree polynomials, subject
to reproduction constraints dictated by the corresponding symmetric filter. These gen-
eralisations encompass X-11’s pioneering Henderson filters and Musgrave surrogates as
special cases. Another implementation is the “cut-and-normalise” approach (Gasser and
Müller, 1979) according to which asymmetric variants are found through dropping the
unneeded weights from the symmetric filter and dividing the remaining ones by their
sum.

The second modification is triggered by the LOLFP effect and fractional seasonal
periodicities in (2). Recall that the actual number of HF observations per LF periodicity
often varies over time. In such a case, the famous X-11 tables have ragged right edges

3See the institutions’ joint release letter (Ref. Ares(2015)241738–21/01/2015).
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and column-wise smoothing is impossible. This is especially burdensome for table D8,
the matrix representation of the seasonal-irregular component. For the day-of-the-month
(DOM) pattern in daily data, for instance, the row-wise number of empty entries at
the right edge will range from 0 in months with 31 days to 3 in non-leap-year Februaries.
Therefore, if τi /∈ N, weighted averages of the nearest integer-lagged values of the seasonal-
irregular component will be computed according to (7) below, and the seasonal pattern
will be extracted from those averages, using the specified 3 × k seasonal filters. For
example, the DOM pattern in daily data, where τi = 30.44, can be estimated from the
detrended data with a symmetric 3× 3 seasonal filter according to

ŝt =
1

9

[
0.88 (ŝi)t−61 + 0.12 (ŝi)t−60

]
+

2

9

[
0.44 (ŝi)t−31 + 0.56 (ŝi)t−30

]
+

3

9
(ŝi)t

+
2

9

[
0.56 (ŝi)t+30 + 0.44 (ŝi)t+31

]
+

1

9

[
0.12 (ŝi)t+60 + 0.88 (ŝi)t+61

]
.

Weighted averages for asymmetric variants and other fractional periodicities are calculated
analogously.

3.2.2 Extended AMB approach

The extended AMB approach essentially translates the classical ARIMA model decompo-
sition algorithm (Burman, 1980) to the case of fractional Airline models. Its key idea can
be summarised in four steps: first, an ARIMA model is fit to the linearised observations;
second, the estimated model is decomposed into canonical ARIMA models for the UCs
in (1)—or, more generally, for the signal and noise—by employing a factorisation of the
stationary and non-stationary AR polynomials and a partial fraction expansion of the
MA part; third, the polynomials of the canonical ARIMA models are rearranged to form
the signal’s Wiener-Kolmogorov (WK) filter; fourth, the estimated signal is obtained from
applying the WK filter to the observations.

The classical decomposition is founded on the assumption that each UC in (1) admits
an ARIMA representation. The extended AMB approach adopts this assumption but
allows for fractional periodicities in the UC models for the seasonal patterns according to

(1−Bτi) s
(τi)
t = ε

(τi)
t , (6)

where {ε(τi)t } is typically white noise that is mutually uncorrelated with any other pattern’s
innovations and B is the backshift operator, Bkxt = xt−k. Its fractional variant is written
as Bτi = Bτ iBτ i with τ i = ⌊τi⌋, τ i = τi − τ i and Bτ i ≈ (1 − τ i) + τ iB according to the
first-order Taylor approximation at 1. Hence, Bτi is essentially replaced with a weighted
average of Bτ i and Bτ i+1:

Bτi ≈ (1− τ i)B
τ i + τ iB

τ i+1, (7)

which also defines the generalised first-order differencing operator in (6). For example,
τi = 52.18 for weekly data, so that first-order differencing becomes(

1−B52.18
)
yt ≈ yt − (0.82 yt−52 + 0.18 yt−53).
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The UC model for {st} thus follows directly from (2) and (6) using standard ARIMA
theory.

The fractional Airline model also lays the base for a TRAMO-like pretreatment rou-
tine that includes estimation of user-defined regression effects and automatic detection
of additive outliers, level shifts and lag-1 switch interventions, which are a special type
of reallocation outliers (Wu, Hosking, and Ravishanker, 1993) defined by the sequence
(0, 1,−1, 0) around the outlier date. The full pretreatment model is given by

(1−B)
∏
τi∈S

(1−Bτi)
{
yt − x⊤

t β
}
= (1− θ1B)

∏
τi∈S

(1− θτiB
τi){εt}, (8)

where xt is the vector of regression variables associated with calendar and outlier effects
and β is the vector of unknown time-constant calendar and outlier effects. The Taylor
logic utilised in (7) also applies to the seasonal MA polynomials occurring on the right-
hand side of (8).

Since the fractional Airline model in (8) contains only non-stationary AR polynomials,
its roots can always be allocated to the trend-cyclical and seasonal UCs. As a consequence,
the irregular component in (1) does not carry transitory movements and is white noise
by construction. However, the Burman-like decomposition of HF data can become un-
stable quite quickly. For that reason, model (8) is put into state space form (Gómez and
Maravall, 1994) and estimated with a modified version of Koopman (1993)’s disturbance
smoother that includes polynomial reduction and diffuse square root initialisation.

3.2.3 Structural time series models

STS and state space models have been popularised by Harvey (1989) and JD+ adopts
many key concepts and standard routines described in Durbin and Koopman (2012). The
general idea is to specify a model for each UC in (1) that reflects a priori beliefs about
the component’s dynamics. The UC models then dictate the bottom-up model for the
observations and its state space representation that is finally estimated with the Kalman
filter and smoother. JD+ implements classical time-varying level models, such as local
linear trends, local levels with or without drift and smooth trends, as well as autoregressive
and trigonometric representations of cyclical movements.

The seasonal component is modelled according to the West-Harrison (WH) repre-
sentation (West and Harrison, 1997). This is a first-order vector autoregressive (VAR)
model that needs validity of Assumption I. Letting Assumption S also hold temporarily,
the WH representation is either a τ -dimensional VAR model with a singular disturbance
covariance matrix, which induces one cointegrating relationship and hence a stochastic
zero-sum restriction in the τ seasonal effects, or a (τ − 1)-dimensional reparametrised
model with a non-singular disturbance covariance matrix that already incorporates the
above constraint explicitly. We discuss the latter form here. Let s⊤t = (s1,t, . . . , sτ,t) be
the vector of the τ seasonal effects at time t and define the permutation matrix P ∈ Rτ×τ

and the dimension reduction matrix D ∈ Rτ×(τ−1) as

P =

(
0τ−1 Iτ−1

1 0⊤
τ−1

)
and D =

(
Iτ−1

−1⊤
τ−1

)
,
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where 0n and 1n are n-dimensional column vectors of zeros and ones, respectively, and
In is the n-dimensional identity matrix. The (τ − 1)-dimensional reduced form of the τ
seasonal effects is then given by

s̃t = D−Pt−1st =
(
s̃1,t · · · s̃τ−1,t

)⊤
,

whereD− =
(
D⊤D

)−1
D⊤ ∈ R(τ−1)×τ is the Moore-Penrose inverse ofD, and the seasonal

component is specified as
st = e⊤1,τ−1s̃t, (9)

where ek,n is the k-th unit vector of length n and the reduced form of the seasonal effects
is assumed to follow the VAR model

s̃t = T s̃t−1 + ωt, T = D−PD =

(
0τ−2 Iτ−2

−1⊤
τ−1

)
, (10)

with ωt
iid∼ N (0τ−1,Σω). The seasonal dynamics are thus completely specified by the

choice of Σω and JD+ implements the crude, dummy, Harrison-Stevens and trigonometric
models discussed in detail by Proietti (2000). Some generalisations of this approach are
given in Proietti and Pedregal (2022).

Example 2. The classical form of a stochastic trigonometric seasonal model reads(
sj,t
s⋆j,t

)
=

(
cosλj sinλj

− sinλj cosλj

)(
sj,t−1

s⋆j,t−1

)
+

(
ωj,t

ω⋆
j,t

)
(11)

for the j-th seasonal cycle in (3), where it is usually assumed that the disturbances are

distributed as (ωj,t, ω
⋆
j,t)

⊤ iid∼ N (02, σ
2
ω I2) with σ2

ω > 0 being a common variance for all

seasonal cycles. The WH representation of (11) is obtained for setting Σω = σ2
ω ×ΩΩ⊤

in (10), where Ω = D−H with H⊤ = (h1, . . . ,hτ ) ∈ R(τ−1)×τ and

h⊤
i =

[
cos (λ1i) sin (λ1i) · · · cos

(
λ⌊τ/2⌋i

)
sin
(
λ⌊τ/2⌋i

)]
.

When τ is even, the last element is dropped from each hi, so that hi ∈ Rτ−1 holds indeed
for each i ∈ {1, . . . , τ}. □

If Assumption S does not hold, then each seasonal pattern in (2) is modelled according to
(9)–(10) with proper adjustments in order to obtain the correct dimensions of all system
vectors and matrices given S.

The UC models of the trend-cyclical and seasonal components are finally translated
into a univariate linear Gaussian state space model. This form also enables direct mod-
elling of calendar variation by including regression variables in the observation equa-
tion. Outliers can be considered in similar fashion, and an automatic detection procedure
(Grassi, Mazzi, and Proietti, 2018) has been implemented that is essentially a “forward-
addition-backward-deletion” algorithm based on the point-wise maximum τ ⋆

2

t -statistics
(de Jong and Penzer, 1998). Regarding model estimation, JD+ implements some non-
standard features, such as the inclusion of the observation disturbances in the state vec-
tor and numerically more stable variants of the classical Kalman filtering and smoothing
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techniques, such as Chandrasekhar-type recursions for time-invariant models and square
root filters (Morf, Sidhu, and Kailath, 1974; Morf and Kailath, 1975), alongside diffuse
(Ansley and Kohn, 1990; Koopman, 1997; Koopman and Durbin, 2003) and augmented
initialisations (de Jong, 1991; de Jong and Chu-Chun-Lin, 2003).

3.3 Unconventional methods

Several alternatives to the conventional methods have been suggested over the years.
Some of those have been known for quite some time but not been recognised as much in
official statistics as the conventional methods, while some others are relatively new and
target primarily HF data.

3.3.1 STS-type model-based approaches

The approaches presented in this section follow the same bottom-up modelling strategy
as the STS approach: the UC models are specified first and then aggregated to form
the model for the observed time series. Conceptual overlaps with STS models are thus
inevitable.

Exponential smoothing. Exponential smoothing is a forecasting technique based on
moving averages with exponentially decaying weights. Examples include the Holt-Winters
method (Holt, 1957; Winters, 1960) and the double and triple seasonal methods (Taylor,
2003, 2010b). Ord, Koehler, and Snyder (1997) and Hyndman, Koehler, Snyder, and
Grose (2002) show that the innovations state space framework provides a common theo-
retical foundation for exponential smoothing methods. This framework also admits the
general state space representation but has the key difference that both the observations
and all UC models are driven by the exact same disturbances. For that reason, such
models are sometimes referred to as single-source-of-error models.

Some efforts have been made recently to increase model flexibility in general and
to incorporate a wider variety of seasonal patterns in particular. Gould et al. (2008)
and Hyndman, Koehler, Ord, and Snyder (2008) extend the double seasonal model to
the case of |S| > 2 under validity of Assumption I and the restriction that the seasonal
patterns are nested. De Livera et al. (2011) further generalise this approach by developing
the BATS and TBATS models that can handle multiple nested and non-nested seasonal
patterns with integer and non-integer seasonal periodicities. TBATS is an acronym for
the model’s key features: trigonometric seasonal representation, Box-Cox transformation,
ARMA disturbances, trend and seasonal components. The trigonometric representation
of each seasonal cycle in (3) is similar to the classical STS model (11) and given by(

s
(τi)
j,t

s
(τi),⋆
j,t

)
=

(
cosλ

(τi)
j sinλ

(τi)
j

− sinλ
(τi)
j cosλ

(τi)
j

)(
s
(τi)
j,t−1

s
(τi),⋆
j,t−1

)
+

(
γ
(τi)
1

γ
(τi)
2

)
ωt, (12)

where γ
(τi)
1 and γ

(τi)
2 are pattern-specific smoothing parameters and {ωt} is the common

single-source-of-error ARMA disturbance driven by Gaussian white noise.
The TBATS model is extendable in a variety of ways. The Box-Cox transformation

could be replaced with the inverse hyperbolic sine transformation to fit data with zero
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or negative observations. Non-Gaussian disturbances and modifications for multivariate
time series could also be implemented within the general framework. Puindi and Silva
(2021) introduce trigonometric structural models with covariates (TSCov) which integrate
explanatory variables with time-invariant effects into the TBATS framework. This ap-
proach also extends well-known bootstrap techniques for improving the forecasts from the
Kalman filter recursions (Cordeiro and Neves, 2009; Rodriguez and Ruiz, 2009). How-
ever, it needs to compromise the single-source-of-error concept and is currently limited to
additive trends and seasonality.

Atomic seasonal models. Atomic seasonal models have been introduced by McElroy
(2017) as part of a multivariate version of model (1). They are similar in spirit to the
single-source-of-error approach but differ in two respects: first, the UC models are driven
by individual innovations that are uncorrelated with one another and potentially collinear;
second, the seasonal cycles within a seasonal pattern do not follow the same model as in
(12). Instead, assuming τi is odd, the atomic model for the j-th vector seasonal cycle in
(3) is given by

δλ
(τi)
j (B) s

(τi)
j,t = ε

(τi)
j,t , (13)

where j ∈ {1, . . . , (τi−1)/2}, δλ(B) = 1−2 cosλB+B2 is a “Gegenbauer-type” differenc-

ing operator at frequency λ ∈ [0, π] and {ε(τi)j,t } is multivariate Gaussian white noise with

covariance matrix Σ
(τi)
j . When τi is even, then (13) applies only to the first (τi/2−1) vec-

tor seasonal cycles and the model for the last cycle is given by (1+B) s
(τi)
τi/2,t

= ε
(τi)
τi/2,t

. The

structural similarity to (6), which utilises the fractional backshift operator, is apparent
in either case. However, note that δλ(B) yields a complete factorisation of seasonal unit
root differencing polynomials. For example, the weekly differencing operator for daily
data factorises as 1−B7 = (1−B) δ2π/7(B) δ4π/7(B) δ6π/7(B).

The atomic nature of (13) allows the widths and heights of spectral seasonal peaks
to be controlled by multiple parameters and thus to be different within each seasonal
pattern. This especially facilitates coverage of rapidly moving seasonality, which may
occur during times of strong economic changes. In addition, the multivariate nature of
the entire framework allows each UC to be common, related or unrelated across original
series, depending on whether its white noise is collinear or, if not, has a non-diagonal
versus diagonal covariance matrix.

However, some refinements and modifications are needed to make atomic models and
the generalised Wiener-Kolmogorov (WK) matrix formulas for multivariate signal extrac-
tion (McElroy, 2008; McElroy and Trimbur, 2015) feasible for HF data, or large data
sets in general. McElroy and Monsell (2017) introduce canonical variants in the spirit of
Hillmer and Tiao (1982), from which all extractable white noise has already been removed.
As a consequence, the differenced canonical UCs have MA-like structures instead of being
white noise. McElroy and Monsell (2017) also utilise the generalised Cholesky decom-
position to derive invertible method-of-moments (MOM) estimators that ensure positive
definiteness of all estimated covariance matrices. Forecasts of the observations can then be
generated from the MOM-estimated data model—with fixed outlier and calendar effects
being univariately removed beforehand—, using recursive one-step ahead predictions pro-
vided by the Durbin-Levinson algorithm. UC estimates are finally obtained from running
the generalised WK filter on the forecast-extended observations. Due to a separability
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issue, the trend and annual seasonal components are first extracted as a joint component
that is eventually separated with the Hodrick-Prescott filter. Applications to daily data
are discussed in McElroy and Monsell (2017) and McElroy et al. (2018).

3.3.2 Generalised Gegenbauer processes

Gegenbauer processes (Gray, Zhang, and Woodward, 1989) and their generalisations (Gi-
raitis and Leipus, 1995; Woodward, Cheng, and Gray, 1998) provide a flexible way of
modelling time series with trend and seasonal, or cyclical, long memory. Recall that the

atomic seasonal models (13) already utilise the filter
[
δλ(B)

]−d
, which is the generating

function of the orthogonal Gegenbauer polynomials, with d = 1 at each seasonal fre-
quency and white noise innovations. Gegenbauer processes allow for fractional orders of
integration, different orders of integration at different frequencies, and any short memory
innovations. Ignoring calendar variation, the k-factor Gegenbauer process is given by

k∏
j=1

(
1− 2 cosλjB +B2

)dj yt = εt, (14)

where λj ∈ [0, π] can be related to the trend or any seasonal pattern in (1), dj is the
memory parameter associated with λj, and {εt} is a linear short memory process (often a
finite-order ARMA process). Model (14) is stationary and invertible, if | dj | < 1/2 for all
λj ∈ (0, π) and | dj | < 1/4 for all λj ∈ {0, π}, and it encompasses standard fractionally
integrated processes, such as ARFIMA processes and seasonal variants, as special cases.
The spectral density of a Gegenbauer process {yt} takes the form

fy(λ) = fε(λ)
k∏

j=1

|2 (cosλ− cosλj)|−2dj , (15)

where fε(·) is the spectral density of the short memory process. Hence, (15) can have
multiple poles/zeros at arbitrary locations and of arbitrary shapes: the locations are
specified through the λj’s and the shapes are governed by dj’s, where dj > 0 corresponds
to a pole (i.e. long memory behaviour) and dj < 0 corresponds to a zero (i.e. intermediate,
or negative, memory behaviour).

The autocovariances of (14) can be computed either from the Wold decomposition
(McElroy and Holan, 2012) or from utilising the so-called “splitting method”—which
essentially convolves the long memory and short memory dynamics—after an additive
decomposition of (15) such that each summand has a single pole/zero (McElroy and
Holan, 2016). Assuming a generalised exponential model, either approach employs a cep-
stral representation of the short memory dynamics, and the latter is akin to a partial
fraction decomposition, which is utilised in the classical and extended AMB approaches
(Section 3.2.2). For some special cases of the seasonal fractionally differenced exponen-
tial model, Holan and McElroy (2012) develop a block Metropolis-Hastings algorithm
for model estimation within a fully Bayesian framework, and finite-sample MMSE sig-
nal extraction formulas (McElroy, 2008) for seasonal adjustment, which also enables the
inclusion of calendar regression variables in a straightforward way.

In many applications, the problem at hand will suggest a proper choice of the fre-
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quencies λj to be considered in (14), and hence the model order k. In some applications,
however, the choice of k might be less clear a priori, and an automatic selection procedure
could be warranted. Leschinski and Sibbertsen (2019) provide such a procedure, which
is based on sequential tests for the maximum of the spectral density of the iteratively
Gegenbauer-filtered data and illustrated for hourly electricity loads. The latter type of
HF data has also been analysed by Soares and Souza (2006) with the aid of periodic re-
gressions that contain dummy variables for weekly seasonality and holiday variation and
2-factor Gegenbauer errors that capture trend behaviour and annual seasonality. Another
strand of application is the modelling of volatility in daily and infra-daily financial time
series (e.g. Asai, McAleer, and Peiris, 2020; Bisaglia, Bordignon, and Lisi, 2003; Bor-
dignon, Carporin, and Lisi, 2007). In this context, Voges and Sibbertsen (2021) introduce
a bivariate extension of model (14) and seasonal multiple local Whittle estimation in or-
der to study cyclical fractional cointegration in half-hourly trading volume and realised
volatility of the component stocks of the Dow Jones Industrial Average index.

3.3.3 STL-based approaches

Cleveland, Cleveland, McRae, and Terpenning (1990) have propagated a seasonal-trend
decomposition based on LOESS regressions (STL) as an alternative to the genuine X-11
method for LF data with τ ∈ {4, 12}. This procedure also relies on iterative filtering
under Assumption S but can handle any integer τ > 1 and missing values. It essentially
consists of an inner loop responsible for sequential UC estimation and refinement and an
outer loop responsible for extreme value correction. Two variants have been developed
recently, each of which facilitates sequential extraction of multiple seasonal patterns in
(2) under Assumption I, an idea already alluded to by Cleveland et al. (1990).

The {rjd3highfreq} package. This package basically provides access to the Java
translation of the original FORTRAN and S implementations of STL. Thus, pretreat-
ment model (8) can be used for adjusting outlying observations as an alternative to the
outer loop. Additive and multiplicative forms of the general UC model (1) are available
and—calling the STL routine |S| times—the numbers of neighbouring observations to be
considered in the inner-loop local regressions for trend and seasonal smoothing can be
specified. Non-integer seasonal periodicities will be automatically rounded down to the
nearest integer.

The {dsa} package. This packages provides an alternative integrated framework tai-
lored to daily data with S = {7, 31, 365}, in which classical regARIMA pretreatment
replaces the fractional Airline model (8) and the day-of-the-week (DOW), DOM and
DOY patterns are extracted sequentially from a single call of STL (Ollech, 2021). The
key difference to the {rjd3highfreq} package is the order of operations: in {dsa}, the
DOW pattern is estimated first from the observed data and regARIMA pretreatment
is run on the DOW-adjusted data afterwards. For that reason, applying the outer-loop
robust filter weights during DOW extraction is usually beneficial. In a third step, the
DOM pattern is extracted from the linearised DOW-adjusted series. Cubic splines are
employed to temporarily stretch-and-interpolate or extrapolate months with less than 31
days to 31 days. Both tactics are similar to row-wise interpolation in the extended X-11
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approach. In a fourth step, the DOY pattern is estimated from the linearised DOM- and
DOW-adjusted series. Leap-year Februaries are temporarily shortened by skipping the
last day so that each year has 365 days. Empty spots in the seasonally adjusted series
related to those skipped observations are finally filled with spline interpolations.

3.3.4 STR approach

Dokumentov and Hyndman (2015) discuss a procedure inspired by the genuine STL ap-
proach in which the LOESS regression is essentially replaced with a more general ridge-
or LASSO-type regression model (STR), so that validity of Assumption I is still required.
The key conceptual difference to all approaches discussed so far is that the seasonal com-
ponent is thought of as a two-dimensional array that carries both visible and invisible
seasonal dynamics. Assume that the observed time series in (1) has a finite length T ,
written as yT . Each seasonal pattern can then be expressed in matrix form as

S(τi) = [sk,l]
(τi)
k,l ∈ Rτi×T , (16)

where each column stores τi elements of the seasonal pattern at time t. Only one of those
elements is actually in effect and the others are hidden. Thus, (16) connects to (2) via

s
(τi)
t = S

(τi)
τ⋆i (t),t

(17)

for some mapping τ ⋆i : N 7→ {1, . . . , τi} that picks the pattern’s correct season at time t
in rotational fashion. This is akin to model (9), in which the vector of seasonal effects is
ceaselessly shuffled and e1,τ−1 picks the first entry at each time t.

The STR approach also enables a more nuanced specification of calendar variation
as it explicitly distinguishes between three types of calendar regression variables: static
predictors have constant effects as in (8), whereas flexible and seasonal predictors have
time-varying effects that evolve in a non-seasonal and seasonal manner, respectively.

The entire STR equivalent of model (1) can be recast as a linear regression model of
the form yext = Xβ + ε, where yext = (y⊤

T ,0
⊤
n )

⊤ for some proper choice of n and ε ∼
N (0, σ2

ε Σ) with Σ being a block matrix that carries IT in the upper left block and zeros
everywhere else. This model can be estimated by some maximum likelihood technique
and the underlying optimisation problem can be expressed in terms of discrete second-
order derivatives of the UCs, which has two consequences: first, additional smoothness
restrictions can be imposed on the seasonal component in the time, time-season and
season dimensions; second, Assumption I can be relaxed quite naturally. To see this,
note that seasonal patterns with fractional periodicities—and all other UCs as well—can
be rewritten as linear combinations of smooth basis functions, such as Fourier terms,
splines or wavelets. Those functional components provide a valid reparametrisation of
the second-order derivative matrices in the optimisation problem and ultimately lead to
a substantial reduction of computation time.

Depending on the optimisation problem at hand, OLS-based techniques or numerical
solutions apply alongside an evaluation of cross-validated residuals to obtain estimates of
the smoothing parameters contained in the design matrix X and of σ2

ε. A robust STR
method is also available, which assumes the residuals ε to be Laplacian and thus leads to
an optimisation problem of a quantile regression that can be solved only numerically.
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3.3.5 Regularised singular value decomposition

Lin, Huang, and McElroy (2020) suggest a signal extraction approach based on regularised
singular value decomposition (RSVD) (Huang, Shen, and Buja, 2008, 2009). This method
rewrites the observations and UCs as matrices in STR-like fashion but the seasonal matrix
stores only the visible elements in (16). Let Assumptions I and S hold and assume that
n = T/τ ∈ N. Ignoring temporarily calendar variation, the matrix form of model (1) is
given by Y = S+N, where

S = [sk,l]k,l ∈ Rn×τ (18)

is the seasonal matrix that stores the seasonal effects related to the i-th subspan in its
i-th row, and Y and N denote the observation and non-seasonal matrices that are defined
analogously. Accordingly, (18) can be linked to (2) via

st = S⌈t/τ⌉,t−⌊t/τ⌋τ ,

where ⌈x⌉ is the smallest integer not less than x. The seasonal matrix is further decom-
posed according to

S = 1nf
⊤ +UV⊤, (19)

where f = (f1, . . . , fτ )
⊤ is the vector of τ fixed seasonal effects and U ∈ Rn×r and

V ∈ Rτ×r are the matrices of left and right singular vectors of S that satisfy U⊤1n = 0n

and V⊤V = Ir for some r ≤ τ to ensure identifiability. Thus, (19) disentangles stable
from moving seasonality, which is actually represented as a linear combination of r layers
stored in V with corresponding span-varying magnitudes stored in U.

Once the number of layers has been chosen, model estimation proceeds in three steps:
first, an estimate Û is obtained through loop-like sequential runs of the RSVD method
under a zero-sum restriction on the layers in V; second, estimates f̂ and V̂ are obtained
jointly through solving a least-squares minimisation problem that uses Û as a plug-in
estimator and is subject to the zero-sum constraints f⊤1τ = 0 and V⊤1τ = 0r; third,
parameter estimates related to non-seasonal dynamics are obtained, if warranted. The
RSVD method imposes a roughness penalty on each column of U that includes a layer-
specific smoothing parameter and hence opens up the possibility of taking constrained
moving seasonality into account by using different smoothing parameters in different seg-
ments of a given layer. An automatic routine for detecting such segments has also been
implemented.

If Assumption S does not hold, then model (1) can be rewritten in terms of |S|-
dimensional arrays in order to extract multiple seasonal patterns. In addition, calendar
variation can be considered by including regression variables in the constrained least-
squares minimisation problem. Overall, simulations with monthly time series indicate
that RSVD-based signal extraction performs well in the presence of strong seasonality
and/or seasonal breaks, whereas it tends to be outperformed by the classical X-11 and
AMB approaches in cases of weak seasonality.

3.3.6 Prophet

Prophet is a Bayesian approach developed by Facebook’s Core Data Science team (Taylor
and Letham, 2018) with the primary aim of providing a flexible and reliable forecasting
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tool that can be configured, interpreted and evaluated by subject-matter experts and
analysts without great expertise in time series modelling. The general idea is to spec-
ify relatively sparse UC models in (1) and impose Gaussian or Laplacian priors on the
unknown parameters.

The notion of sparsity translates into a seasonal component that is composed of stable
patterns in which each seasonal cycle has the trigonometric form (4) and a Gaussian prior
is imposed on the amplitudes. Let

s
(τi)
t =

[
cos

(
2πt

τi

)
, sin

(
2πt

τi

)
, · · · , cos

(
2πJt

τi

)
, sin

(
2πJt

τi

)]
(20)

and γ = (α1, β1, . . . , αJ , βJ)
⊤, where J = J(τi) is a pattern-specific number of seasonal

cycles. Then, each seasonal pattern in (2) is modelled as

s
(τi)
t = s

(τi)
t × γ, γ ∼ N (02J , σ

2
γ × I2J).

Prophet can thus deal with both non-nested seasonal patterns and fractional periodicities.
In addition, concept (5) can be used to place constraints on any stable seasonal pattern.

Calendar variation is modelled with the aid of dummy indicators that can be defined
via built-in lists of national and international holiday dates or specified by the user. The
regression effects are then assumed to have a Gaussian prior as well. Model estimation
is finally carried out using the L-BFGS optimisation algorithm (Byrd, Lu, Nocedal, and
Zhu, 1995) to find the maximum a posteriori estimates.

3.3.7 CAMPLET

The CAMPLET method decomposes an observed time series into its non-seasonal and
seasonal parts without the need for data pretreatment as the method’s tuning parameters
automatically adapt to outliers and other irregularities (Abeln and Jacobs, 2015; Abeln,
Jacobs, and Ouwehand, 2019). Both the data and decomposition is assumed to be known
up to time t and a new point-wise decomposition at t+1 is to be found as observation yt+1

becomes available. The notion of seasonality is akin to the matrix representation (16) and
mapping (17) employed in the STR approach. However, the vectors of seasonal effects
are not estimated jointly but updated sequentially at each point in time based on past
information, which is similar to Kalman filtering without smoothing. Under Assumptions
I and S, let st = (s1,t, . . . , sτ,t)

⊤ be the t-th column of S(τ) in (16) with s⊤t 1τ = 0. Then,
the visible and invisible seasonal effects are assumed to evolve through time according to

st+1 = st + p× at+1, (21)

where p = (p1, . . . , pτ )
⊤ is a fixed vector of positions with pi = (τ + 1)/2 − i for i ∈

{1, . . . , τ}, so that p⊤1τ = 0, and at+1 is a time-varying adjustment scalar. The latter is
defined as the ratio between the extrapolation error and the adjustment length and hence
is essentially the change in the average growth of the non-seasonal component, where
the average is calculated over a recent time segment that ends in t. In other words: the
evolution of the seasonal effects in (21) is driven by recent non-seasonal dynamics and
thus naturally encompasses interactions especially with the trend-cycle.
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3.3.8 Direct filter approach

The direct filter approach (DFA) (Wildi, 2005, 2008) provides a real-time framework for
estimating any target signal that is expressible as a linear function of the observations,
which is not necessarily required in UC model (1). Like generalised Gegenbauer processes,
this approach can handle series with multiple spectral peaks of arbitrary width and loca-
tion. Let Γ(B) =

∑
k γkB

k be a possibly bi-infinite linear filter. A target is then defined
as zt = Γ(B) yt, which could be a UC, combination of UCs, or even a forecast of {yt}.
The estimated target is given by ẑt = Γ̂(B) yt, where Γ̂(B) =

∑L−1
k=0 wkB

k is a concurrent
linear approximation to Γ(B) of finite length L. The prediction error can thus be written
as

zt − ẑt =
[
Γ(B)− Γ̂(B)

]
yt,

and its mean squared error (MSE) is given by

MSEΓ(w, g) =
1

2π

∫ π

−π

∣∣∣Γ (e−iλ
)
− Γ̂w

(
e−iλ

)∣∣∣2
|δ (e−iλ)|2

g(λ) dλ, (22)

where w = (w0, . . . , wL−1)
⊤ ∈ RL is the vector of weights of the concurrent filter, δ(B) is

the differencing polynomial needed to render {yt} weakly stationary, and g(·) is a generic
real-valued non-negative function over [−π, π], usually a design-specific estimator of the
spectral density of {δ(B) yt}. Let w(g) be a solution to minimising (22) with respect to w
(under additional assumptions on Γ(B) and Γ̂(B) to ensure zero-mean weakly stationary
prediction errors in case {yt} is integrated). Then Γ̂w(g)(B) is the optimal concurrent
linear approximation within the considered class of filters for a given function g(·).

Remark 4. The generic specification of an “ideal” target as the outcome of an ideal
band-pass filter can account for spectral peaks of arbitrary width and location in {yt}.
The DFA thus enables replication—and further customisation—of classical filter-based
and model-based signal extraction results by plugging the respective target signals and
spectrum estimates in (22). However, it finds the “best” target estimator through direct
optimisation over the filter weights w, whereas classical model-based approaches optimise
over some underlying parameters θ. Nevertheless, w will be expressible as a function of
θ in some cases. □

Example 3. Let Assumption S hold and S(B) = 1 + B + · · · + Bτ−1 be the annual
aggregation operator. A naive estimator of {st} in (1) is then obtained through Γ(B) =
1− τ−2S(B)S(B−1) and the periodogram for g(·) in (22). □

Wildi and McElroy (2016) embed the DFA into the more general framework of linear
prediction problems for time series. Wildi and McElroy (2019) provide generalised opti-
misation criteria based on a decomposition of the frequency response functions in (22) into
their amplitude and phase components, which yields three constituent error components
of the MSE associated with the accuracy, timeliness and smoothness of the involved filters.
McElroy and Wildi (2020) develop a multivariate DFA for stationary and non-stationary
vector time series in which the determinant of the vector prediction errors’ covariance
matrix is minimised in place of (22). An early application to trend-cycle extraction can
be found in Buss (2016).
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4 Illustration

This section demonstrates the capabilities of selected seasonal adjustment approaches
discussed in Section 3, without intending a qualitative comparison or even a ranking. It
considers daily electricity consumption in Germany (Section 4.1) and hourly counts of
TARGET2 customer payments (Section 4.2).

4.1 Daily electricity consumption

Daily realised electricity consumption is a key component of the weekly activity index
that has been developed in the wake of the COVID-19 pandemic to track the German
economy (Eraslan and Götz, 2021). The series covers electricity supplied to the network
for the general supply—excluding electricity supplied to the railroad network and to in-
ternal industrial and closed distribution networks as well as electricity consumed by the
producers—, is freely available from the Federal Network Agency (“Bundesnetzagentur
| SMARD.de”) under URL https://www.smard.de/en and is considered here in units
of terawatt hours (TWh) as of 1 January 2015 up to 31 December 2021, resulting in
2,557 daily observations. The seasonal profile is described first (Section 4.1.1), followed
by the linearisation of the series (Section 4.1.2). Unconstrained stable and moving sea-
sonal patterns are then extracted from the linearised series with the three unconventional
approaches (Section 4.1.3). Finally, a stable DOW pattern is estimated with Prophet,
imposing a constraint on each year’s volatile period between Christmas and New Year
(Section 4.1.4). The results are discussed rather briefly as an extended discussion of the
series is given by Webel (2020), albeit for the slightly shorter data span up to 30 August
2020.

4.1.1 Seasonal profile

Figure 2 reveals key facets of the series’ seasonal profile. Panel (a) shows that electricity
consumption is higher in the winter and lower in the summer. Given usual temperature
curves and daylight hours in Germany, this pronounced U -shaped DOY pattern may not
come as a surprise. However, it is interrupted every year by a deep spike trough between
Christmas and New Year and clearly affected by the start of the first COVID-19 lockdown,
which also breaks the slight upward trend in the series.

Panel (b) depicts the infra-monthly dynamics with the aid of DOM boxplots. Although
electricity consumption tends to be somewhat lower around the turn of the month—partly
due to the occurrence of fixed public holidays such as New Year’s Day, Labour Day and All
Saints’ Day—and shows some signs of time-varying volatility, it has an almost constant
median level and an almost symmetric distribution for the majority of days and thus does
not exhibit a very distinct DOM pattern.

Panel (c) zooms in on a recent subspan, revealing a persistent DOW pattern. Electric-
ity consumption is relatively high from Monday until Friday, mostly because of commercial
consumers being active. Then it drops on Saturday and even more so on Sunday, where
the share of private consumption is usually highest. However, this stable pattern is out of
play from Christmas until New Year—regardless of the second COVID-19 lockdown—and
also visibly affected by both fixed and moving holidays.
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(a) Day-of-the-year (DOY) pattern: 1 January 2015 to 31 December 2021
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(b) Day-of-the-month (DOM) pattern: 1 January 2015 to 31 December 2021
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(c) Day-of-the-week (DOW) pattern: 1 December 2020 to 30 June 2021


1.0

1.2

1.4

1.6

W49 W51 W53 W02 W04 W06 W08 W10 W12 W14 W16 W18 W20 W22 W24 W26

T
W

h

Figure 2: Seasonal profile of daily realised electricity consumption in Germany. Shaded back-
grounds in Panels (a) and (c) correspond to COVID-19 lockdowns: 23 March to 3 May 2020,
and 16 December 2020 to 10 January 2021. Verticals in Panel (c) correspond to fixed (solid) and
moving (dashed) holidays: Christmas (1), New Year (2), Easter (3), Labour Day (4), Ascension
(5), Pentecost (6), and Corpus Christi (7).
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Table 1: Estimated variance ratios (23) for daily electricity consumption.

DOW pattern DOM pattern DOY pattern
Seasonal adjustment approach τi = 7 τi = 30.5369 τi = 365.2425

Extended X-11 0.9431 0.1684 0.8774
Extended AMB 0.9416 0.0521 0.8775

0.0001

0.001
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1

10

0.001 0.01 0.1 0.5

Figure 3: Estimated autoregressive spectrum of logged (solid) and differenced logged (dashed)
electricity consumption, scaled by 2π. Grey verticals correspond to selected seasonal harmonics
of the DOY (dotted), DOM (dashed) and DOW (solid) patterns.

The strength of the three seasonal patterns can be determined with the aid of the
variance ratio

1− V(it)

V
(
s
(τi)
t + it

) , τi ∈ S, (23)

which measures a pattern’s portion of volatility relative to the irregular dynamics (Kang,
Hyndman, and Smith-Miles, 2017; Wang, Smith, and Hyndman, 2006). A ratio close to
one (zero) indicates a strong (weak) seasonal pattern. In fact, 0.5 seems to be a reasonable
threshold as a lower ratio indicates that the irregular component explains more volatility
in the data than the seasonal pattern. A tentative version of pretreatment model (8)
is thus estimated for the full set of seasonal patterns, including the regression variables
explained in the next section. Table 1 reports the estimated ratios (23) for the three
seasonal patterns obtained from the extended X-11 and AMB approaches. For either
approach, the DOW and DOY patterns appear strong, whereas the DOM pattern does
not. Estimated autoregressive spectra confirm this dominance (Figure 3) and, hence, the
DOM pattern is not considered in subsequent analyses.
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Figure 4: Estimated calendar (solid) and outlier (dashed) components of daily electricity con-
sumption.

4.1.2 Pretreatment

We fit model (8) to logged electricity consumption with S = {7, 365.2425}. Dummy re-
gression variables are used to account for standard fixed and moving holidays in Germany,
associated bridging days and daylight saving time (DST). We also run automatic detec-
tion of additive outliers, level shifts and lag-1 switch interventions and eventually keep all
calendar and outlier regression variables with absolute t-values larger than 5.4 The only
exception is the March DST dummy, which has an absolute t-value of 4.6 but is kept in
the model for the sake of coherence.

Table 2 reports the estimated fractional Airline model. The estimated seasonal MA
parameters exceed 0.85, reflecting again the strong DOW and DOY patterns. Five ad-
ditive outliers have been automatically detected, the dates of which coincide with the
Saturdays of Christmas and New Year’s Eve 2016, German Unification Day 2020, Labour
Day 2021 and Christmas Day 2021. Each estimated effect is positive and hence partially
cancels the respective negative holiday effect, which underlines the general difficulty of
estimating reliably time-constant regression effects of rare events. It may also indicate
the presence of cross-dependencies between the DOW pattern and fixed holidays, which
could be solved in theory by adding appropriate regression variables to model (8) but
is infeasible here as the sample size is just seven years. Two level shifts have also been
automatically detected with dates related to the onset and recovery phase of the first
COVID-19 wave. The estimated calendar and outliers components are shown in Figure 4.

4.1.3 Seasonal adjustment

The DOW and DOY patterns are extracted sequentially from linearised electricity con-
sumption with the extended X-11 and AMB approaches. The X-11 approach utilises a
9-term third-order Henderson kernel and a 3× 9 seasonal filter for extracting the DOW

4This threshold accounts nicely for the effective number of observations during automatic outlier detection
as it is close to 4.9, which is the X-13 default critical value at the 1% level of significance according to
the implemented modified formula of Ljung (1993).
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Table 2: Estimated pretreatment model (8) for logged daily electricity consumption.

Event Date Weight Estimate SE t-value
Fixed holidays
New Year’s Day 1 Jan 1.0 −0.193 0.010 −19.973
Epiphany 6 Jan 0.4 −0.109 0.019 −5.738
Labour Day 1 May 1.0 −0.202 0.008 −24.457
German Unification Day 3 Oct 1.0 −0.155 0.008 −18.225
500th Reformation Day 31 Oct 2017 1.0 −0.139 0.018 −7.609
All Saints’ Day 1 Nov 0.7 −0.127 0.013 −10.094
Christmas Eve 24 Dec 1.0 −0.148 0.011 −13.991
Christmas Day 25 Dec 1.0 −0.226 0.012 −18.222
Boxing Day 26 Dec 1.0 −0.148 0.010 −14.999
New Year’s Eve 31 Dec 1.0 −0.111 0.010 −10.680
Moving holidays
Good Friday 1.0 −0.185 0.007 −25.936
Easter Monday 1.0 −0.212 0.007 −29.629
Ascension 1.0 −0.233 0.008 −27.395
Pentecost Monday 1.0 −0.217 0.007 −30.981
Corpus Christi 0.7 −0.198 0.012 −16.315
Bridging days
Ascension Friday 1.0 −0.110 0.009 −12.890
Corpus Christi Friday 0.7 −0.083 0.012 −6.829
Daylight saving time
March Last Sunday 1.0 −0.032 0.007 −4.567
October Last Sunday 1.0 0.053 0.007 7.580
Additive outliers
Christmas Eve 2016 24 Dec 2016 0.156 0.020 7.702
New Year’s Eve 2016 31 Dec 2016 0.147 0.020 7.402
German Unification Day 2020 3 Oct 2020 0.137 0.019 7.052
Labour Day 2021 1 May 2021 0.122 0.019 6.406
Christmas Day 2021 25 Dec 2021 0.142 0.020 6.968
Level shifts

16 Mar 2020 −0.066 0.007 −9.622
8 Aug 2020 0.051 0.007 7.478

MA parameters
θ1 −0.569 0.014 −40.708
θ7 0.854 0.013 66.243
θ365.2425 0.874 0.009 99.268

Remarks: National events are given a weight of 1.0. Regional events are weighted according to the
approximate share of employees working in the federal states where the event is actually celebrated.
Fixed holidays falling onto a Sunday are treated as Sundays. Regression variables for moving
holidays and associated bridging days have been centred by removing daily means calculated over
the entire sample.
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pattern, and a 371-term third-order Henderson kernel and a 3 × 3 seasonal filter for
extracting the DOY pattern. The choice of the short trend filter in the first step ensures
that the DOY dynamics are passed on to the DOW-adjusted data as part of the trend-
cycle, and the choice of the short seasonal filter in the second step is essentially dictated
by sample size. In either step, asymmetric trend filters are obtained through the “cut-and-
normalise” method, and the default σ-limits of (1.5, 2.5) are applied. The AMB approach
is run in default mode.

Figure 5 (a) shows that the two estimated DOW patterns are very stable and similar
in size and shape with the unsurprising exception of slightly less moving seasonality in
the canonically smooth AMB estimates. Panel (b) reveals that the two estimated DOY
patterns capture nicely the U -shaped infra-yearly dynamics and spike year-end troughs
seen in unadjusted electricity consumption (Figure 2 (a)). Again, the AMB estimates
are visibly smoother than the X-11 estimates, which also fluctuate much more rapidly as
a result of the short DOY seasonal filter. Overall, either approach manages to remove
successfully the most distinct repetitive dynamics of the raw series (Figure 6), bearing
in mind that such a mere graphical diagnosis is qualitative and might be subject to
misjudgement.

4.1.4 Constrained DOW pattern

The DOW and DOY patterns extracted with the extended X-11 and AMB approaches
cover unconstrained stable and moving seasonality. However, Figure 2 (a) and (c) already
provided visual evidence that the DOW pattern between Christmas and New Year (C2NY)
looks noticeably different from the rest of the year. To compare the unconstrained and
constrained estimates, stable DOW and DOY patterns are extracted with Prophet from
linearised electricity consumption, setting J(7) = 3 and J(365.2425) = 10 in (20) and
C = {W52,W53} in (5) to impose the C2NY constraint. A piecewise linear trend is also
specified alongside automatic change-point selection.

Figure 5 (c) shows the two estimated stable DOW patterns. Compared to the un-
constrained estimates, the constrained C2NY estimates are lower from Monday through
Friday and higher on Saturday and Sunday, resulting in a lower weekend drop-off and a
flatter overall shape. In contrast, the estimates constrained to the rest of the year are
almost indistinguishable from the unconstrained estimates.

4.2 Hourly counts of TARGET2 customer payments

Hourly counts of customer payments (HCP) in the TARGET2 system in Germany are
considered from 2 January to 31 December 2019 (Figure 1 (a)), where counts are measured
by the introduction time in the settlement queue during the daytime settlement cycle
from 07:00 to 17:00. Hence, the series consists of 10 observations per TARGET2 business
day and a total of 2,550 irregularly spaced observations in 2019. Some stylised facts,
including the seasonal profile, have already been described in Section 2.1 and visualised
in Figure 1 (e)–(f). The latter revealed a dominant hour-of-the-day (HOD) pattern, which
is confirmed by spectral graphs (Figure 7) and mainly driven by counts peaking at the
early business hours. Being somewhat pronounced around the turn of the week, this
“early-bird” effect also seems to introduce an hour-of-the-week (HOW) pattern. We now
show how the HCP series can be seasonally adjusted with the STS approach.
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(a) DOW pattern: extended X-11 (black) and AMB (grey) approaches
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(c) DOW pattern: Prophet without (solid) and with constraints to W01–W51 (dashed) and W52–W53
(dotted)
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Figure 5: Estimated day-of-the-week (DOW) and day-of-the-year (DOY) patterns for daily
electricity consumption.
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(a) Time series plot
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(b) Estimated periodogram (logged series)
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Figure 6: Seasonally adjusted electricity consumption obtained from the extended X-11 (black)
and AMB (grey) approaches. Dashed grey line in Panel (a) corresponds to unadjusted series.
Grey verticals in Panel (b) correspond to selected seasonal harmonics of the DOY (dotted), DOM
(dashed) and DOW (solid) patterns.

In a first step, a tentative basic structural model (BSM) is fitted to the logged HCP
series. The trend-cyclical component in (1) is assumed to follow a local linear trend, which
is given by

tt = tt−1 + νt−1 + ξt, ξt
iid∼ N

(
0, σ2

ξ

)
,

νt = νt−1 + ζt, ζt
iid∼ N

(
0, σ2

ζ

)
,

where the level and slope disturbances, {ξt} and {ζt}, are mutually uncorrelated. The
seasonal component’s HOD pattern in (2) is modelled according to the West-Harrison
representation (10) with τ = 10 and trigonometric seasonality (Example 2), the HOW
pattern is modelled with the aid of 20 dummies—one for each business hour on Mondays
and Fridays—and the irregular component in (1) is assumed to be Gaussian white noise.
In addition, a set of 42 dummy variables is considered to account for the following calen-
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Figure 7: Estimated autoregressive spectrum of logged (solid) and differenced logged (dashed)
HCP series, scaled by 2π. Grey verticals correspond to HOD harmonics.

Table 3: Estimated calendar and outlier effects for the logged HCP series.

Event Est. SE t-value Event Est. SE t-value
Post-TARGET2 holidays HOW dummies
Easter Tuesday 0.284 0.061 4.641 Monday 07:00 0.088 0.018 4.995
Fixed holidays Monday 09:00 0.139 0.017 8.150
German Unification Day −0.333 0.060 −5.510 Monday 11:00 0.097 0.017 5.698
All Saints’ Day −0.417 0.060 −6.894 Friday 07:00 0.079 0.018 4.486
Christmas Eve −0.692 0.060 −11.465 Additive outliers
Moving holidays 2019-04-23 09:00 0.544 0.112 4.867
Ascension −0.541 0.060 −8.953 2019-11-18 16:00 0.566 0.110 5.130
Pentecost Monday −0.338 0.060 −5.599 2019-12-30 10:00 0.545 0.113 4.844
End of quarter
Q3 0.369 0.060 6.109
Q4 −0.489 0.086 −5.686

dar events: (a) banking days that follow immediately after the TARGET2 holiday (New
Year’s Day, Good Friday, Easter Monday, Labour Day, Christmas Day, Boxing Day); (b)
banking days that fall onto the other public holidays considered for electricity consump-
tion; (c) the last banking day of the reserve maintenance periods (RMP) as indicated
by the European Central Bank (12 March, 16 April, 11 June, 30 July, 17 September, 29
October and 17 December 2019); (d) the last banking day of each quarter. For the sake
of parsimony, the hourly effect of each of the HOW and calendar dummies is assumed
constant over the entire banking day. Finally, additive outliers and level shifts are au-
tomatically detected, using a critical value of 4.5 which corresponds to the 5% level of
significance (see Footnote 4). The corresponding state space model is estimated with the
Kalman filter and smoother, using a diffuse square root initialisation.

In a second step, the least significant HOW or calendar dummy is removed and the
tentative BSM is re-estimated (including automatic outlier detection) until all calendar
and outlier regression variables have absolute t-values larger than 4.5. The resulting
final BSM contains four HOW dummies associated with Monday’s early business hours
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Figure 8: Estimated combined HOW-calendar (solid) and outlier (dashed) components of the
HCP series.
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Figure 9: Smoothed estimates of the HOD pattern for the HCP series (1 to 28 February 2019).

and Friday’s opening business hour, eight calendar dummies and three additive outliers
(Table 3).5 None of the RMP dummies is included in the final BSM, which may not
come as a surprise given the current monetary policy environment and the fact that the
data concerns customer payments. More surprisingly, the end-of-quarter dummies for
Q1 and Q2 also fail to have sufficiently significant estimated effects, displaying t-values
of approximately 3 and 4, respectively, during variable selection. The included calendar
effects are in line with earlier descriptive analyses (Figure 1 (b)–(d)), although it should
be kept in mind that the sample contains only one observation for each calendar event.
The difficulty in estimating those effects from such a few cases is also mirrored by the
fact that two out of the three automatically detected additive outliers are close in time
to calendar events, such as the one found for 09:00 on the Tuesday after Easter. The
estimated combined HOW-calendar and outlier components are shown in Figure 8.

5Running variable selection with the fractional Airline model (8) with S = {10} yields essentially the
same results, except for an additional yet barely significant level shift for 07:00 on 28 May 2019.
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Figure 10: Seasonally adjusted HCP series obtained from the STS approach. Dashed line in
Panel (a) corresponds to unadjusted series. Grey verticals in Panel (b) correspond to HOD
harmonics.

The q-ratios, that is the estimated disturbance variances relative to that of the irregular
component, for the final BSM are given by σ̂2

ξ/σ̂
2
i = 0.133, σ̂2

ζ/σ̂
2
i = 0 and σ̂2

ω/σ̂
2
i = 1.691×

10−4, so that the local linear trend has turned into a local linear trend with drift. Figure 9
shows the smoothed estimates of the HOD pattern, which capture nicely the “early-bird”
effects in the data. Once these and the deterministic combined HOW-calendar effects
have been removed, the seasonally adjusted HCP series tends to settle somewhere between
10,000 and 15,000 transactions per hour with a substantial variance reduction of more than
91% compared to the unadjusted data. Overall, the STS approach provides satisfactory
results as it manages to remove successfully the most distinct repetitive swings in the
HCP series (Figure 10).
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5 Summary

Both the emergence of new digital data sources and the recent outbreak of the COVID-19
pandemic have increased the interest in and demand for more timely economic data in
official statistics. In seeking to meet those demands, more and more attention has been
paid to infra-monthly time series which often display not only seasonal behaviour of known
forms but also new stylised facts not observable in monthly and quarterly economic data.
Examples include irregular spacing, coexistence of multiple seasonal patterns with integer
versus non-integer seasonal periodicities and granular calendar variation. We discussed a
broad range of potential issues in the modelling and seasonal adjustment of such peculiar
data, highlighting that traditional approaches in official statistics are often inapplicable.
Employing a unified latent component model, we reviewed recent developments, made
mostly within the past 10 to 15 years, that can handle a fair amount of infra-monthly
data peculiarities but seem to have been given little recognition in official statistics so
far. We finally illustrated some of these developments, using daily realised electricity
consumption and hourly transaction counts in the TARGET2 system in Germany.

Notwithstanding these methodological achievements, it seems that more research is
needed to elevate seasonal adjustment of infra-monthly economic data above its current
experimental stage in official statistics. Availability of tailored exploratory tools, methods
for identifying relevant seasonal patterns, or even cycles, and statistical tests and qual-
ity diagnostics for seasonal adjustment adequacy is limited for such data and, therefore,
developing such tools could be a first step into this direction. Dealing with increasingly
complex models will certainly be another challenge. Dimension reduction techniques,
functional components, smooth transition models and continuous-time models or discrete
Fourier transforms of periodic time series models (e.g. Anderson, Sabzikar, and Meer-
schaert, 2021; Chambers, 1999; Chambers and McGarry, 2002; He, Kang, Teräsvirta,
and Zhang, 2019; Mart́ın-Rodŕıguez and Cáceres-Hernández, 2010; Zamani, Haghbin,
Hashemi, and Hyndman, 2022) could be interesting approaches to developing flexible
yet parsimonious and potentially multivariate models. What is more, some basis func-
tions, such as (cyclical) cubic splines, and continuous-time models in general are directly
applicable to irregularly spaced time series without the need for prior data regularisa-
tion. Hybrids of non-parametric and model-based approaches (e.g. McElroy and Monsell,
2017) may also pave the way for the addition of correlated latent components (e.g. Hin-
drayanto, Jacobs, Osborn, and Tian, 2019; McElroy and Maravall, 2014) or GARCH-type
heteroskedasticity (e.g. Koopman et al., 2007). Companion advances in the development
of fast algorithms and parallel computing could round off any of these approaches with
respect to (potentially robust) model estimation. Assuming that the availability of and
demand for infra-monthly economic time series will continue to increase, mass production
of seasonal adjustments based mainly upon automatic procedures is likely to become an-
other challenge in the future, especially for empirical-based methods, such as the extended
STL and X-11 approaches which, for example, currently lack automatic selection rules for
trend and seasonal filters given the data.
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