Krämer, Walter

Working Paper
Long memory with Markov-Switching GARCH

CESifo Working Paper, No. 2225

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Krämer, Walter (2008) : Long memory with Markov-Switching GARCH, CESifo Working Paper, No. 2225, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/26270

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
LONG MEMORY WITH
MARKOV-SWITCHING GARCH

WALTER KRÄMER

CESifo Working Paper No. 2225
Category 10: Empirical and Theoretical Methods
February 2008

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
LONG MEMORY WITH
MARKOV-SWITCHING GARCH

Abstract

The paper considers the Markov-Switching GARCH(1,1)-model with time-varying transition probabilities. It derives sufficient conditions for the square of the process to display long memory and provides some additional intuition for the empirical observation that estimated GARCH-parameters often sum to almost one.

JEL Code: C13, C22.

Keywords: Markov switching, GARCH, long memory.

Walter Krämer
Statistics Department
University of Dortmund
CDI-Building
Vogelpothsweg 78
44221 Dortmund
Germany
walterk@statistik.uni-dortmund.de

Version October 2007
Research supported by Deutsche Forschungsgemeinschaft, SFB 475. I am grateful to Michael Röckner, Jonas Kaiser, Matthias Arnold and Baudouin Tameze Azamo for helpful insights and comments.
1 Introduction

The GARCH(1,1) - model

\[\epsilon_t = \sigma_t \eta_t \]
\[\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \]

is still the main workhorse in all areas of applied economics whenever conditional heteroskedasticity is seen to be a problem. Almost from the moment it was born, it was however plagued by the observation that in many applications, the observed empirical autocorrelations of the \(\epsilon_t^2 \) were much larger than the theoretical autocorrelations implied by the estimated model parameters. In particular, the empirical autocorrelations of the \(\epsilon_t^2 \) often seem to indicate long memory, which is not possible in the GARCH-model; in fact, in all standard GARCH-models, theoretical autocorrelations must eventually decrease exponentially, so long memory is ruled out.

The same holds for Markov-Switching GARCH models with constant transition probabilities, as suggested, among others, by Cai (1994), Hamilton and Susmel (1994), Francq et al. (2001), Klaassen (2002) or Haas et al. (2004). It is easily seen (for a proof see e.g. Francq and Zakoian (2005)) that theoretical autocorrelations must likewise decrease exponentially in such models. The present paper therefore allows for transition probabilities that change with sample size, along the lines of Diebold and Inoue (2001), and derives the limiting behaviour of the variance of the sum of the \(\epsilon_t^2 \) as sample size increases.

If the staying probabilities of the underlying Markov-process tend to 1, these autocorrelations lead to a variance of the sum of the \(\epsilon_t^2 \) which grows faster than sample size, and thus induce the appearance of long memory.
2 Structural breaks and sample size

Most models that allow for changes in the coefficients of (1) do so by letting ω, α and β depend on the unobserved state of a finite-dimensional irreducible homogeneous Markov chain

$$\sigma_t^2 = \omega(\Delta_t) + \alpha(\Delta_t)\epsilon_{t-1}^2 + \beta(\Delta_t)\sigma_{t-1}^2, \quad \Delta_t \in \{1, \ldots, M\}, \quad (2)$$

$$P(\Delta_t = j|\Delta_{t-1} = i) = p_{ij} = \text{constant.} \quad (3)$$

Recent examples and variants thereof, with useful surveys of the literature, are Francq et al. (2001), Klaassen (2002) or Haas et al. (2004). Although theoretical autocorrelations of the ϵ_t^2 are notoriously hard to derive exactly for such models, it is clear from the Markov-structure that they must eventually decrease exponentially (if they exist; for details see Francq and Zakoian 2005), so these models cannot explain long memory in the squared ϵ_t's. Intuitively speaking, the reason is that the number of realized regimes in such models is roughly proportional to sample size. The present paper considers another type of asymptotics where the expected number of realized regimes remains bounded as sample size increases. The most simple example is the one considered by, among others, Mikosch and Starica (2004) or Hildebrand (2005), who divide the sample $\{1, \ldots, T\}$ into $K + 1$ subsamples

$$\{1, \ldots, [Td_1]\}, \{[Td_1 + 1], \ldots, [Td_2]\}, \ldots, \{[Td_K], \ldots, T\}, \quad (4)$$

where $0 < d_1 < \ldots < d_K < 1$ are fixed and $[Td_i]$ denotes the integer part of Td_i, and where different GARCH models hold in each subsample.

The present paper considers the Markov switching model (2), where however the transition probabilities p_{ij} depend on sample size. A similar set-up is investigated by Diebold and Inoue (2001), who explore Markov switching in the
expectation μ_t in the model $y_t = \mu_t + \epsilon_t$, while the present paper explores Markov switching with time dependent transition probabilities in the dynamics of the ϵ_t-process itself.

It is easily seen that with Markov-switching the expected number of regimes in a given time interval $1,...,T$ depends only on the staying probabilities p_{ii}:

\[
E(\sum_{t=1}^{T-1} I_{\Delta_{t+1} \neq \Delta_t}) = \sum_{t=1}^{T-1} P(\Delta_{t+1} \neq \Delta_t) = \sum_{t=1}^{T-1} \sum_{i=1}^{M} \pi(i) \sum_{j=1}^{M} p_{ij} = (T-1) \sum_{i=1}^{M} \pi_i (1 - p_{ii}), \tag{5}
\]

where $\pi(i) = P(\Delta_t = i)$ denotes the stationary distribution of the Markov chain. In particular, if

\[
1 - p_{ii}^{(T)} = \frac{K}{(T-1)} \tag{6}
\]

for all i and for some natural number K, we have

\[
E(\text{number of regimes}) = K.
\]

If $1 - p_{ii}^{(T)}$ tends to zero more slowly than in (6), the expected number of regimes will increase with sample size, but will still be $o(T)$, which provides the intuition behind our result below that time-dependent staying probabilities of type (6) imply the appearance of long memory in the squares of the ϵ_t-process.

A similar set-up was studied by Hildebrand (2005), who shows by different arguments that, with finitely many nonstochastic switches in regime along the lines of (4), the estimated persistence parameters $\hat{\lambda} = \hat{\alpha} + \hat{\beta}$ must tend to unity as sample size increases.
3 Structural change and long memory

There are various definitions of long memory in ϵ_t^2 (see e.g. Diebold and Inoue 2001, p. 133, for an overview). The most general of these simply requires that $E(\epsilon_t^2) < \infty$, but

\[
\frac{1}{T} \operatorname{var}\left(\sum_{t=1}^{T} \epsilon_t^2\right) \to \infty \text{ as } T \to \infty.
\]

(7)

For the case of a stationary ϵ_t^2 - process, this is equivalent to the spectral density of ϵ_t^2 tending to infinity for small frequencies.

Below we consider a triangle sequence of models

\[
\epsilon_1^{(1)}, \epsilon_2^{(2)}, \ldots
\]

where the sequence $\epsilon_1^{(T)}, \ldots, \epsilon_T^{(T)}$ is generated by a Markov switching model (2) and where the transition matrices depend on T in such a way that the expected number of regimes remains bounded away from both zero and infinity (The superscript T will be omitted in the sequel whenever there is no danger of confusion). From Francq and Zakoian (2005, theorem 3.1) we obtain the covariance matrix of $(\epsilon_1^2, \ldots, \epsilon_T^2)'$ as a function of the GARCH parameters $\omega(i), \alpha(i), \beta(i)$ and of the transition probabilities p_{ij} ($i, j = 1, ..., M$). In particular, Francq and Zakoian (2005) show that $\{\epsilon_t^2\}$, which follows an ARMA(1,1) process

\[
\epsilon_t^2 = \omega + (\alpha + \beta)\epsilon_{t-1}^2 + u_t - \beta u_{t-1}
\]

(8)

when there is no Markov-switching, where $u_t := \epsilon_t^2 - \sigma_t^2$ continues to follow an ARMA-process, albeit with different parameters and different orders, when...
Markov-switching in the GARCH - parameters is introduced. The autocorrelation function $\gamma(l)$ of this process satisfies a linear difference equation of the form

$$\sum_{i=0}^{n-n_0} a_{n-i} \gamma(l-i) = 0, \quad (l > n - n_0), \quad (9)$$

where n_0, $0 \leq n_0 \leq n$, is the index of the first nonzero coefficient of the polynomial

$$f(x) = \prod_{k=1}^{K} (\lambda_k - x) g(x), \quad (10)$$

where the λ_k's ($k = 1, \ldots, K < M$) are the eigenvalues - in increasing order - of the transition matrix of the Markov process which are different from 0 and 1, and where $g(x)$ is the characteristic polynomial of the matrix

$$\tilde{P} := \begin{pmatrix} p_{11}[\alpha(1) + \beta(1)] & \cdots & p_{1M}[\alpha(1) + \beta(1)] \\ \vdots & \ddots & \vdots \\ p_{M1}[\alpha(M) + \beta(M)] & \cdots & p_{MM}[\alpha(M) + \beta(M)] \end{pmatrix} \quad (11)$$

(see Francq and Zakoian (2005), formula 3.10). This implies that one can express the autocorrelations $\gamma(l)$ of the ε_t^2 - process as

$$\gamma(l) = \sum_{k=1}^{K} c_k \lambda_k^l + \sum_{k=1}^{M} \tilde{c}_k \tilde{\lambda}_k^l \quad (12)$$

for suitable coefficients c_k and \tilde{c}_k, where the $\tilde{\lambda}_k$ are the eigenvalues of the matrix (11). From $\alpha(i) + \beta(i) < 1$ ($i = 1, \ldots, M$), these eigenvalues are all smaller than the largest eigenvalue (different from unity) λ_K of the transition matrix of the underlying Markov process, which implies that

$$\gamma(l) = c_K \lambda_K^l + o(\gamma(l)) \quad (13)$$
Therefore, the limiting behavior of $\text{var}(\sum_{t=1}^{T} \epsilon_t^2)$ depends only on λ_K and is, for a fixed λ_K, given by

$$\text{var}(\sum_{t=1}^{T} \epsilon_t^2) = O(\sum_{i,j=1}^{T} \lambda_K|^{i-j}|) = O(T[1 + 2\sum_{i=1}^{T-i} \frac{T-i}{T} \lambda_K]) = O(T \frac{1}{1-\lambda_K}).$$

(14)

However, from elementary calculus, it is easily seen that (14) continues to apply if λ_K depends on T, as long as $(1 - \lambda_K)/T = O(1)$. In particular,

$$\text{var}(\sum_{t=1}^{T} \epsilon_t^2) = O(T^{2d+1})$$

(15)

whenever

$$1 - \lambda_K = O(T^{-2d}).$$

(16)

In the conventional notation of the long-memory literature (see e.g. Diebold and Inoue 2001, p.133), this then implies that ϵ_t^2 behaves as if it were $I(d)$.

The largest eigenvalue different from unity of the transition matrix connects to the staying probabilities p_{ii} via

$$\lambda_K \geq \left(\sum_{i=1}^{M} p_{ii} - 1 \right) / (M - 1),$$

(17)

so $\lambda_K \to 1$ whenever $p_{ii} \to 1$.

4 Discussion

The argument above has taken the existence of $\text{var}(\epsilon_t^2)$ for granted. Francq and Zakoian (2005, section 2) give necessary and sufficient conditions for the
existence of higher moments of Markov-switching GARCH models which depend on the moments of the innovations η_t, on the GARCH-parameters and on the transition matrix of the Markov process. As the present paper is only concerned with conditions that lead to the appearance of long memory in otherwise standard situations, such subtleties are here ignored.

Another issue concerns the estimated persistence parameter $\hat{\alpha} + \hat{\beta}$ when Markov switching is ignored when estimating the model (1). It has long been known that $\hat{\alpha} + \hat{\beta}$ is then biased upwards towards unity, and from Krämer and Tameze (2006) we see that

$$\hat{\alpha} + \hat{\beta} \xrightarrow{p} 1 \text{ as } T \to \infty$$

whenever $d \geq \frac{1}{2}$ and estimation is done with the Baillie-Chung (2001) minimum distance estimator. This is so because empirical autocorrelations of $I(d)$ processes for $d \geq \frac{1}{2}$ tend to 1 in probability as $T \to \infty$ and the distance between theoretical and empirical autocorrelation of the ε_t^2 process is then minimized whenever $\hat{\alpha} + \hat{\beta} = 1$.

References

2160 Stergios Skaperdas and Samarth Vaidya, Persuasion as a Contest, December 2007

2161 Morten Bennedsen and Christian Schultz, Arm’s Length Provision of Public Services, December 2007

2162 Bas Jacobs, Optimal Redistributive Tax and Education Policies in General Equilibrium, December 2007

2163 Christian Jaag, Christian Keuschnigg and Mirela Keuschnigg, Pension Reform, Retirement and Life-Cycle Unemployment, December 2007

2164 Dieter M. Urban, Terms of Trade, Catch-up, and Home Market Effect: The Example of Japan, December 2007

2166 Samuel Bentolila, Juan J. Dolado and Juan F. Jimeno, Does Immigration Affect the Phillips Curve? Some Evidence for Spain, December 2007

2167 Rainald Borck, Federalism, Fertility and Growth, December 2007

2168 Erkki Koskela and Jan König, Strategic Outsourcing, Profit Sharing and Equilibrium Unemployment, December 2007

2169 Egil Matsen and Øystein Thøgersen, Habit Formation, Strategic Extremism and Debt Policy, December 2007

2170 Torben M. Andersen and Allan Sørensen, Product Market Integration and Income Taxation: Distortions and Gains from Trade, December 2007

2171 J. Atsu Amegashie, American Idol: Should it be a Singing Contest or a Popularity Contest?, December 2007

2173 Ben Greiner, Axel Ockenfels and Peter Werner, The Dynamic Interplay of Inequality and Trust – An Experimental Study, December 2007

2176 Alexander Chudik and M. Hashem Pesaran, Infinite Dimensional VARs and Factor Models, December 2007

2177 Christoph Moser and Axel Dreher, Do Markets Care about Central Bank Governor Changes? Evidence from Emerging Markets, December 2007

2179 Christa Hainz, Creditor Passivity: The Effects of Bank Competition and Institutions on the Strategic Use of Bankruptcy Filings, December 2007

2182 María del Carmen Boado-Penas, Salvador Valdés-Prieto and Carlos Vidal-Meliá, the Actuarial Balance Sheet for Pay-As-You-Go Finance: Solvency Indicators for Spain and Sweden, January 2008

2183 Assar Lindbeck, Economic-Social Interaction in China, January 2008

2186 Lans Bovenberg and Coen Teulings, Rhineland Exit?, January 2008

2188 Sándor Csengődi and Dieter M. Urban, Foreign Takeovers and Wage Dispersion in Hungary, January 2008

2192 Jan Bouckaert, Hans Degryse and Theon van Dijk, Price Discrimination Bans on Dominant Firms, January 2008

2193 M. Hashem Pesaran, L. Vanessa Smith and Takashi Yamagata, Panel Unit Root Tests in the Presence of a Multifactor Error Structure, January 2008

2196 Antonis Adam, Margarita Katsimi and Thomas Moutos, Inequality and the Import Demand Function, January 2008

2197 Helmut Seitz, Democratic Participation and the Size of Regions: An Empirical Study Using Data on German Counties, January 2008

2199 Chiara Dalle Nogare and Roberto Ricciuti, Term Limits: Do they really Affect Fiscal Policy Choices?, January 2008

2200 Andreas Bühn and Friedrich Schneider, MIMIC Models, Cointegration and Error Correction: An Application to the French Shadow Economy, January 2008

2205 Sascha O. Becker and Mathias Hoffmann, Equity Fund Ownership and the Cross-Regional Diversification of Household Risk, January 2008

2208 Frederick van der Ploeg and Steven Poelhekke, Globalization and the Rise of Mega-Cities in the Developing World, February 2008

2209 Sara Biancini, Regulating National Firms in a Common Market, February 2008

2210 Jin Cao and Gerhard Illing, Liquidity Shortages and Monetary Policy, February 2008

2211 Mathias Kifmann, The Design of Pension Pay Out Options when the Health Status during Retirement is Uncertain, February 2008

2212 Laszlo Goerke, Tax Overpayments, Tax Evasion, and Book-Tax Differences, February 2008

2213 Jun-ichi Itaya and Heinrich W. Ursprung, Price and Death, February 2008

2214 Valentina Bosetti, Carlo Carraro and Emanuele Massetti, Banking Permits: Economic Efficiency and Distributional Effects, February 2008

2215 Assar Lindbeck, Mårten Palme and Mats Persson, Social Interaction and Sickness Absence, February 2008

2218 Dorothee Crayen and Joerg Baten, Global Trends in Numeracy 1820-1949 and its Implications for Long-Run Growth, February 2008

2222 Raymond Riezman and Ping Wang, Preference Bias and Outsourcing to Market: A Steady-State Analysis, February 2008

2223 Lars-Erik Borge and Jørn Rattsø, Young and Old Competing for Public Welfare Services, February 2008

2224 Jose Apesteguia, Steffen Huck, Jörg Oechssler and Simon Weidenholzer, Imitation and the Evolution of Walrasian Behavior: Theoretically Fragile but Behaviorally Robust, February 2008

2225 Walter Krämer, Long Memory with Markov-Switching GARCH, February 2008